National Library of Energy BETA

Sample records for russia rwanda senegal

  1. Rwanda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Rwanda Population 10,515,973 GDP 7,431,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code RW 3-letter ISO code RWA Numeric ISO...

  2. Senegal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Senegal Population 13,508,715 GDP 13,864,000,000 Energy Consumption 0.09 Quadrillion Btu 2-letter ISO code SN 3-letter ISO code SEN Numeric ISO...

  3. Rwanda-National Adaptation Programs of Action to Climate Change...

    Open Energy Info (EERE)

    National Adaptation Programs of Action to Climate Change Jump to: navigation, search Name Rwanda-National Adaptation Programs of Action to Climate Change AgencyCompany...

  4. Rwanda-Developing a Strategic Climate Change Framework | Open...

    Open Energy Info (EERE)

    over nine months as a collaborative effort among the Government of Rwanda, the Smith School of Enterprise and Environment (SSEE), DFID and CDKN. It stimulated high-level...

  5. Senegal-UNEP Risoe-Technology Needs Assessment Program | Open...

    Open Energy Info (EERE)

    Risoe-Technology Needs Assessment Program Jump to: navigation, search Name Senegal-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization --Sean Esterly (talk)...

  6. Russia`s atomic tsar: Viktor N. Mikhailov

    SciTech Connect (OSTI)

    Reams, C.A.

    1996-12-01

    Minatom (Ministry of Atomic Energy) was created to manage Russia`s nuclear weapons program in the age of disarmament. The ministry is responsible for the development, production, and maintenance of nuclear weapons, warhead dismantlement, the production of nuclear materials for weapons, the disposition of nuclear materials disassembled from warheads, the administration of Russia`s vast nuclear weapons complex, the development of policy for the future role of Russia`s nuclear complex and payment of employees entrusted with such tasks. Thus, Minatom is instrumental in the implementation of arms control, disarmament and nonproliferation agreements. The director of Minatom, Viktor N. Mikhailov, wields a great deal of power and influence over Russia`s nuclear infrastructure. He is an important player amidst efforts to reduce the threats posed by Russia`s decaying nuclear complex. There are certainly other personalities in the Russian government who influence Minatom; however, few affect the ministry as profoundly as Mikhailov. His ability to influence Russia`s nuclear complex has been clearly demonstrated by his policies in relation to the US purchase of Russian highly enriched uranium, the planned fissile material storage facility at Mayak, materials protection, control and accountability programs, and his unwavering determination to sell Iran commercial nuclear technology. Mikhailov has also been a key negotiator when dealing with the US on issues of transparency of weapons dismantlement and fissile material disposition, as well as the use of US threat reduction funds. His policies and concerns in these areas will affect the prospects for the successful negotiation and implementation of future nuclear threat reduction programs and agreements with Russia.

  7. South Africa-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Peru, Philippines, Russian Federation, Rwanda, Senegal, Serbia, South Africa and Ukraine." References "UNEP Green Economy Advisory Services" Retrieved from "http:...

  8. NNSA Celebrates 10 Years of Cooperation with Russia in Securing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrates 10 Years of Cooperation with Russia in Securing Nuclear Material NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear Material Moscow, Russia The ...

  9. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    SciTech Connect (OSTI)

    Schaaf, Rebecca E.; Evans, Meredydd

    2010-05-01

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  10. Russia`s nuke complex: A case for downsizing

    SciTech Connect (OSTI)

    Bukharin, O.

    1995-07-01

    Nuclear weapons stored in former Soviet republics, uncontrolled export of bomb-grade nuclear materials, and recruitment of ex-Soviet nuclear physicists by Third-World nations remain today`s top proliferation risks, reports Oleg Bukharin, a visiting researcher at Princeton University`s Center for Energy and Environment Studies. To address these risks, Russia {open_quotes}must shift its weapons production and development to weapons dismantlement, management of weapons materials, and maintenance of a much smaller...arsenal,{close_quotes} Bukharin writes. The goal of such conversion, he says, {open_quotes}is a nuclear complex that is environmentally safe...and compatible with nonproliferation objectives.{close_quotes} Reconfiguration of Russia`s weapons complex also must provide for redeployment of the hundreds of thousands of scientists, engineers, and technicians who have supported the federation`s nuclear weapons program, Bukharin insists. {open_quotes}A truly durable strategy to prevent the dispersion of Russian weapons expertise must [involve] these weapons experts in non-weapons research,{close_quotes} says Bukharin. Furthermore, Bukharin writes, the Russian conversion program must prevent nuclear materials from falling into the wrong hands. {open_quotes}Widespread corruption, crime, and emerging black markets increase the risk of diversion of weapons-grade uranium or plutonium,{close_quotes} he says.

  11. russia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    russia NNSA Partnership Successfully Removes All Remaining HEU from Uzbekistan WASHINGTON, DC - Today, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced the successful return of the final 5 kilograms (approximately 11 pounds) of highly enriched uranium (HEU) spent fuel from the IIN-3M "Foton" research reactor in Tashkent, Uzbekistan to... US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The Department of Energy's

  12. Russia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  13. Russia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    for Russia Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies view all Add a Program 6 Tools Ecofys-Country Fact Sheets UNFCCC-Global...

  14. Russia-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Russia Eastern Europe References USAID Russia1 "Currently, USAIDRussia addresses global climate change issues through its support to the U.S. Forest Service (USFS)....

  15. Development of the Electricity Carbon Emission Factors for Russia...

    Open Energy Info (EERE)

    Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia AgencyCompany Organization European Bank for Reconstruction and...

  16. All of Russia's Border Crossings to be Outfitted with Proliferation...

    National Nuclear Security Administration (NNSA)

    All of Russia's Border Crossings to be Outfitted with Proliferation Prevention Equipmen June 01, 2007 All of Russia's Border Crossings to be Outfitted with Proliferation Prevention ...

  17. russia

    National Nuclear Security Administration (NNSA)

    into fuel rods, and ultimately delivered to commercial customers for use in U.S. nuclear power reactors. 

    Learn more about these efforts at

  18. Nuclear weapons and NATO-Russia relations

    SciTech Connect (OSTI)

    Cornwell, G.C.

    1998-12-01

    Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountability and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.

  19. Russia's energy policy: A framing comment

    SciTech Connect (OSTI)

    Aslund, A.

    2006-05-15

    A prominent specialist on the Russian economy provides a framing comment on two preceding papers entitled 'Russia's Energy Policy' (by Vladimir Milov, Leonard Coburn, and Igor Danchenko) and 'Russia's Energy Policy: A Divergent View' (by Matthew J. Sagers). The author argues that Russia's current energy policy should be viewed as an outcome of competition between three overlapping programs. In this context, he identifies three policy models - the old Soviet, the liberal or oligarchic, and the most recent state capitalist. The latter is currently supported by President Putin, who prioritizes diversification of the country's economy at the expense of diminished investments in the oil and gas sector.

  20. Russia vows to end oil export tax

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper reports that Russia will eliminate its oil export tax by 1994 and until then will allow some exemptions, Russian officials have assured a group of US tax specialists. They stopped short of saying it would be repealed by the end of the year, the Ken Crawford, a member of a Tax Foundation delegation visiting Russia and managing partner of KPMG Peat Marwick's Moscow office. The export tax was one of several tax related Russian economic issues on which the US experts and Russian officials exchanged views early this month. The 15 member delegation was in Moscow on invitation from Russia's Ministry of Finance and State Committee on Taxation to help develop guidelines for laws governing Russia's taxation of foreign investment. The US group was sponsored by the Tax Foundation, Washington, DC, a nonprofit, nonpartisan tax and fiscal policy research and public education group.

  1. Why Russia is not a state

    SciTech Connect (OSTI)

    Stern, J.E.

    1993-08-16

    This article makes two principal points. First the author argues that the Russian federation has never been a state and is not sustainable as a state. Four centrifugal indicators are presented to support this claim: ethnic divisiveness; uncertainty about the legitimacy of Russia`s current borders; competing claims for legitimacy on the part of federal and regional leaders; and army units` unpredictable allegiances. Second, she argues that Soviet policies intended to facilitate central control of the periphery had the perverse effect of creating ethnic identity and demands for national autonomy where, in many cases, they did not exist prior to the Communist regime. Following the introduction, part one briefly reviews the concepts of state, nation, and nationalism and the roles they play in Russia. Criteria for state-hood are discussed. Part two lists the main ethnic groups in Russia and considers the roots of ethnic nationalism in the Russian Federation. Part three discusses confusion over the legitimacy of the physical, economic, and political boundaries of the Russian Federation. Part four discusses political disarray in the center and the regions and the lack of unity among order-enforcing entities. The Volga-Ural region -- where there is a large concentration of nuclear weapons and facilities, and which is especially volatile politically -- is discussed in somewhat more detail. Part five argues that these factors taken together call into question Russia`s identity as a state. The author concludes that Russia remains a multi-ethnic empire in which the rule of law is still not supreme.

  2. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium...

  3. Mechanical characterization of filler sandcretes with rice husk ash additions. Study applied to Senegal

    SciTech Connect (OSTI)

    Cisse, I.K.; Laquerbe, M.

    2000-01-01

    To capitalize on the local materials of Senegal (agricultural and industrial wastes, residual fines from crushing process, sands from dunes, etc.), rise husk ash and residues of industrial and agricultural wastes have been used as additions in sandcretes. The mechanical resistance of sandcrete blocks obtained when unground ash (and notably the ground ash) is added reveals that there is an increase in performance over the classic mortar blocks. In addition, the use of unground rice husk ash enables production of a lightweight sandcrete with insulating properties, at a reduced cost. The ash pozzolanic reactivity explains the high strengths obtained.

  4. EERE Russia and Eurasian Partnerships and Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Russia and Eurasian Partnerships and Projects EERE Russia and Eurasian Partnerships and Projects The Office of Energy Efficiency and Renewable Energy (EERE) engages in the region in deployment-focused collaborations with Russia. In addition, EERE Technology Offices engage in bilateral research partnerships with Armenia. Bilateral Partnerships Russian Federation Launched in 2009 to reinvigorate cooperation between the United States and the Russian Federation, the Presidential Bilateral Commission

  5. Secretary Bodman Travels to Russia to Advance Energy Security | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary

  6. NNSA, Russia Cooperate to Enhance Nuclear Security | National...

    National Nuclear Security Administration (NNSA)

    "The United States and Russia remain committed partners in improving nuclear security and preventing the proliferation of nuclear material around the world," said Anne Harrington, ...

  7. Russia-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Russia-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  8. Russia, Ukraine and European security. Final report

    SciTech Connect (OSTI)

    Blank, S.J.

    1993-05-20

    The author examines the problems connected with the presence of nuclear weapons in Ukraine and their impact on Russo-Ukrainian relations and European security. He analyzes the fears of both Russia and Ukraine, vis-a-vis each other, that have led to this situation and suggests ways out of the impasse for both states, and particularly for the United States. He examines how the present situation evolved and recommends a solution that contributes in peaceful fashion to all parties' interests.... Strategic Arms Reduction Talks (START); Soviet Union/ Russian republic; Ukraine; Conventional and strategic deterrence; NATO; North Atlantic Cooperation Council.

  9. Changes in Russia's Military and Nuclear Doctrine

    SciTech Connect (OSTI)

    Wolkov, Benjamin M.; Balatsky, Galya I.

    2012-07-26

    In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993 doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of

  10. Deputy Secretary Poneman to Travel to Russia | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. - On Monday, December 6, U.S. Deputy Secretary of Energy Daniel Poneman will travel to Russia as part of the ongoing cooperation between the two countries on ...

  11. Senegal food and energy study: energy use and opportunities for energy-related improvements in the food system

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The growth of agriculture, the mainstay of Senegal's economy, is contingent upon the acquisition of imported energy. This study examines the key constituents of the Senegalese food system in relation to energy supply and demand. The study first analyzes the food system (crop characteristics, and physical and institutional components) and the energy system (sources, costs, supply/conversion technologies, and consumption patterns). Next, energy-use profiles are provided on the production and distribution processes of millet/sorghum, rice, groundnuts, and fish. Household cooking practices are also discussed. Recommendations to improve irrigation, the second key to increasing food supplies, include funding for low-capacity photovoltaic and solar-thermal systems, setting up windmills in coastal areas, and designing large-capacity solar plants similar to those at Bakel. To save energy at the household level, wood or charcoal cooking stoves must be made more efficient and the use of biogas plants should be studied. To counter the serious depletion of fuelwood, Senegal's main indigenous energy resource, energy-efficient charcoal production should be developed, the charcoal industry reorganized, and afforestation and forest management programs expanded.

  12. The perils and pitfalls of business in Russia

    SciTech Connect (OSTI)

    Spears, R.B.

    1995-09-01

    It is not for the lack of trying that few Western oil companies have profitable operations in Russia. Quite the contrary. Every oil company with a thirst for opportunity has searched that once-forbidden region for deals. This gold rush was triggered by an apparent crying need or Western know-how and capital, but appearances in Russia often widely differ from reality. Hype of early oil ventures set a false tone of promise, but company and company came home poorer and wiser. The gold rush went bust. Now in the fourth year of the West`s involvement in Russia`s oilfields, operators are soberly evaluating their prospects. Even while signals are encouraging the West, like a reduction in export tariffs and some progress on contract law, a remarkable event is occuring that throws out many Western arguments for continuing involvement and investment: On their own, the Russians are arresting their production decline and have increased output. This will have immediate and long term effects on Westerners. First, it lends credibility to Russian voices demanding that Mother Russia not sign away its precious resources to foreigners. Second, it encourages trade barriers to protect domestic industry. Third, it weakens the bargaining position of Westerners. Fourth, it reduces the options available to Western operators. What remains will be E&P opportunities where Western technology and capital really can play a role-complex reservoirs, hostile environments-but poor contract terms.

  13. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  14. U.S. and Russia Sign Bratislava Accord | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Bratislava Accord U.S. and Russia Sign Bratislava Accord February 01,...

  15. ,"Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Re-Exports to Russia (Million Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSMMCF" "Date","Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)" ...

  16. Russia to import more goods for upstream projects

    SciTech Connect (OSTI)

    Not Available

    1992-10-12

    This paper reports that Russia is stepping up its imports of petroleum hardware. In the latest developments; Nippon Steel Corp. and C. Itoh and Co. Ltd., Tokyo, signed contracts to provide Russia $300 million worth of export credits for steel pipe and undisclosed drilling equipment; Nizhnevartovskneftegaz, a Russian oil and gas production association, asked the European Bank for Reconstruction and Development for a $60 million loan to buy western oil and gas equipment. The hardware, mostly pipe, tools, pumps, and workover rigs, will be used in part to return shut-in wells to production.

  17. NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear

    National Nuclear Security Administration (NNSA)

    Material | National Nuclear Security Administration | (NNSA) Celebrates 10 Years of Cooperation with Russia in Securing Nuclear Material NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear Material Moscow, Russia The National Nuclear Security Administration (NNSA) commemorated ten years of work securing nuclear and radiological material in Russia and the former Soviet Union by completing security upgrades at two Russian nuclear facilities. Upgrades at a third facility

  18. FSU/Eastern Europe: Russia spearheads small upturn

    SciTech Connect (OSTI)

    1996-08-01

    The paper discusses the political and legal scene in Russia, domestic restructuring, exploration, drilling, development by Western companies and by Russian companies, and production. Exploration and development in Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Kyrgyzstan, Latvia, Lithuania, Moldova, Tajikistan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia are also discussed.

  19. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  20. Demonstration of a PC 25 Fuel Cell in Russia

    SciTech Connect (OSTI)

    John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

    2004-09-01

    This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three major tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.

  1. Evidences of global warming for various regions of Russia

    SciTech Connect (OSTI)

    Batyreva, O.V.; Pischehko, V.A.; Vilfand, R.M.; Vasiliev, A.A.

    1997-12-31

    The automatical classification of mean monthly temperature fields of Russia was carried out. The data of 42 years in regular grid-points 5 x 10{degree} of Northern Hemisphere were used. The combination of land`s algorithm of K-averages was applied. The increasing of prevailing occurrence of warm types during last decades was discovered. It turned out that different regions had different dynamics of type occurrences.

  2. United States-Russia: Environmental management activities, Summer 1998

    SciTech Connect (OSTI)

    1998-09-01

    A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications.

  3. United States-Russia Joint Statement on the Results of the Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Nuclear Security Working Group Meeting | Department of Energy States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting December 10, 2010 - 12:00am Addthis Moscow - Earlier this week, Deputy Secretary of Energy Daniel Poneman, representing the United States government, signed a joint statement with Russia's Director

  4. China and Russia to Join the Generation IV International Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy China and Russia to Join the Generation IV International Forum China and Russia to Join the Generation IV International Forum July 13, 2006 - 3:03pm Addthis International Scope of Nuclear Nations Pursuing Advanced Reactors Broadens WASHINGTON, DC - U.S. Department of Energy Assistant Secretary for Nuclear Energy Dennis Spurgeon today announced that China and Russia are expected to join the Generation IV International Forum (GIF), a group of the world's leading nuclear nations who

  5. Secretary Chu to Travel to Russia Next Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Russia in the areas of innovative clean energy technology, safe and reliable civilian nuclear power, best practices in energy efficiency, and nuclear non-proliferation. ...

  6. US and Russia agree to collaborate on nuclear energy and security...

    National Nuclear Security Administration (NNSA)

    Russia agree to collaborate on nuclear energy and security R&D | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  7. Current status and prospects of research on Plasma Physics and Controlled Fusion in 2009 in Russia

    SciTech Connect (OSTI)

    Grishina, I. A.; Ivanov, V. A.; Kovrizhnykh, L. M.

    2010-12-15

    Papers presented at the XXXVII International Zvenigorod Conference on Plasma Physics and Controlled Fusion in Russia are reviewed, and the main research directions are analyzed.

  8. U.S., Russia Agree to Extend Nuclear Security Cooperation | National...

    National Nuclear Security Administration (NNSA)

    "The United States and Russia remain committed partners in improving global nuclear security, combating weapons proliferation, and preventing dangerous nuclear equipment and ...

  9. Russia-IEA Network of Expertise in Energy Technology | Open Energy...

    Open Energy Info (EERE)

    Russia-IEANetworkofExpertiseinEnergyTechnology&oldid329172" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  10. Risk reduction projects in Russia, Ukraine, and eastern Europe

    SciTech Connect (OSTI)

    Guppy, J.G.; Fitzpatrick, R.G.; Reisman, A.W. ); Spencer, B.W. )

    1993-01-01

    Assistance to Russia, Ukraine, and Central and Eastern Europe countries (CEEC) in the area of nuclear power safety has been undertaken in the United States. The U.S. Department of Energy is responsible for implementing the nuclear safety portion of this assistance. One aspect of this work is to provide near-term improvement to the safety of VVER and RBMK nuclear power plants (NPPs). This activity has been designated as near-term risk reduction (NTRR). This accident risk reduction effort is being conducted by utilizing teams of experts.

  11. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicaragua Niger Nigeria Niue Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Reunion Romania Russia Rwanda...

  12. WorldWide Science.org

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Libya Lithuania Madagascar Malawi Malaysia Mauritius Mexico Mozambique Nepal The Netherlands New Zealand Nicaragua Nigeria Norway Philippines Poland Portugal Russia Rwanda Saudi ...

  13. Stump the Scientist Question Form | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nigeria Norway Northern Mariana Islands Oman Pakistan Palau Palestine Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Rwanda ...

  14. THE NUCLEAR MATERIAL MEASUREMENT PROGRAM PLAN FOR GOSATOMNADZOR OF RUSSIA

    SciTech Connect (OSTI)

    Bokov, Dmitry; Byers, Kenneth R.

    2003-08-01

    As the Russian State regulatory agency responsible for oversight of nuclear material control and accounting (MC&A), Gosatomnadzor of Russia determines the status of the MC&A programs at Russian facilites by testing the nuclear material inventory for accounting record accuracy. Currently, Gosatomnadzor is developing and implementing an approach to planning and conducting MC&A inspections using non-destructive assay (NDA) instruments that will provide for consistent application of MC&A measurement inspection objectives throughtout Russia. This Gosatomnadzor NDA Program Plan documents current NDA measurement capability in all regions of Gosatomnadzor; provides justification for upgrades to equipment, procedures and training; and defines the inspector-facility operator interface as it relates to NDA measurement equipment use. This plan covers a three-year measurement program cycle, but will be reviewed and updated annually to ensure that adequate inspection resources are available to meet the demands of the inspection schedule. This paper presents the elements of this plan and describes the process by which Gosatomnadzor ensures that its NDA instruments are effectively utilized, procedures are developed and certified, and inspection personnel are properly trained to provide assurance that Russian nuclear facilities are in compliance with Russian MC&A regulations.

  15. Russia's views on cruise missiles in the context of START III

    SciTech Connect (OSTI)

    Ball, D Y

    2000-10-30

    The abysmal state of Russia's conventional forces has caused Russia to rely on nuclear weapons to ensure its security. This reliance was formalized in Russia's military doctrine which states that nuclear weapons can be used ''in situations critical to the national security of the RF and its allies.'' In fact, most Russian security analysts believe that this dependence on nuclear weapons will remain for the foreseeable future because the economy will have to improve significantly before a conventional force build up can be contemplated. Yet, despite Russia's need to rely on nuclear weapons, even this may be problematic because its economic plight may create difficulties in maintaining its current level of nuclear forces. Thus, Russia has a keen interest in negotiating a treaty to reduce Strategic Nuclear Forces below START II levels and would prefer to go even beyond the 2,000-2,500 numbers agreed to by Presidents Yeltsin and Clinton in Helsinki in 1997. Sergei Rogov, an influential defense analyst, believes that Russia's strategic nuclear forces will fall below 1,000 warheads by 2010 irrespective of arms control agreements. Accordingly, Russia is keen to ensure rough parity with the US. To retain a credible deterrent posture at these lower levels, Russia believes that it is important to restrain US sea-launched cruise missiles (SLCM)--forces that have heretofore not been captured as strategic weapons in the START treaties. Russian officials reason that once strategic nuclear forces go to very low levels, SLCM capabilities become strategically significant. In fact, according to two well-known Russian security analysts, Anatoli Diakov and Pavel Podvig, Russia's current START III negotiating position calls for the complete elimination of all SLCMs, both nuclear and conventional. Prior to assessing Russia's position regarding cruise missiles and START III, I will examine Russia's overall view of its security position vis-a-vis the US in order to provide background for

  16. INTERNATIONAL COOPERATION ON RADIOLOGICAL THREAT REDUCTION PROGRAMS IN RUSSIA

    SciTech Connect (OSTI)

    Landers, Christopher C.; Tatyrek, Aaron P.

    2009-10-07

    Since its inception in 2004, the United States Department of Energy’s Global Threat Reduction Initiative (GTRI) has provided the Russian Federation with significant financial and technical assistance to secure its highly vulnerable and dangerous radiological material. The three program areas of this assistance are the removal of radioisotope thermoelectric generators (RTG), the physical protection of vulnerable in-use radiological material of concern, and the recovery of disused or abandoned radiological material of concern. Despite the many successes of the GTRI program in Russia, however, there is still a need for increased international cooperation in these efforts. Furthermore, concerns exist over how the Russian government will ensure that the security of its radiological materials provided through GTRI will be sustained. This paper addresses these issues and highlights the successes of GTRI efforts and ongoing activities.

  17. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  18. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect (OSTI)

    C. E. Singer; G. H. Miley

    1997-10-01

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  19. Case study on aid in district heating energy efficiency and gas transportation leakages in Russia

    SciTech Connect (OSTI)

    Gritsevich, I.

    1997-12-31

    Russia makes one of the greatest contribution to GHG emissions in the world and is listed in the FCCC as a country with economy in transition committed to return by the end of the present decade to its GHG emissions level in 1990. Russia has accumulated a significant reserve for carbon credit as a result of production decline: GHG emissions fell down by 25% in 1995/1990, and one of the greatest energy efficiency potentials (more than 480 mln tce). Russia is interested in international cooperation, for instance, in the form of JI projects.

  20. Main Principles of the Perspective System of SNF Management in Russia - 13333

    SciTech Connect (OSTI)

    Baryshnikov, Mikhail

    2013-07-01

    For the last several years the System of the Spent Nuclear Fuel management in Russia was seriously changed. The paper describes the main principles of the changes and the bases of the Perspective System of SNF Management in Russia. Among such the bases there are the theses with the interesting names like 'total knowledge', 'pollutant pays' and 'pay and forget'. There is also a brief description of the modern Russian SNF Management Infrastructure. And an outline of the whole System. The System which is - in case of Russia - is quite necessary to adjust SNF accumulation and to utilize the nuclear heritage. (authors)

  1. U.S.-Russia Twenty-Year Partnership Completes Final Milestone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program. ... into nuclear fuel, and used in nuclear power plants to generate nearly ten percent of ...

  2. U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade...

    Energy Savers [EERE]

    U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey ...

  3. Performance potential of the coal strip mining in the east of Russia

    SciTech Connect (OSTI)

    Cheskidov, V.I.

    2007-07-15

    The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.

  4. United States-Russia Joint Statement on the Results of the Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group meeting that took place on December 6-7, 2010. The Working Group meeting strengthened cooperation between the U.S. and Russia on civil nuclear energy and nuclear security. ...

  5. U.S. Department of Energy Welcomes the United Kingdom as 21st...

    Energy Savers [EERE]

    DOE most recently welcomed South Korea, Italy, Canada, and Senegal as GNEP partners. At ... size when the original GNEP partners - China, France, Japan, Russia and the United ...

  6. Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security Progress | Department of Energy Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia Nuclear Security Progress Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia Nuclear Security Progress February 1, 2008 - 11:13am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey Kiriyenko today met to highlight U.S.-Russian efforts to keep nuclear weapons and weapons material out

  7. U.S. and Russia Cooperation Continues on Nuclear Security | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Russia Cooperation Continues on Nuclear Security U.S. and Russia Cooperation Continues on Nuclear Security June 28, 2007 - 2:08pm Addthis Newly Signed Fifth Bratislava Report Highlights Most Recent Advances in Nuclear Security and Nonproliferation WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey Kiriyenko today submitted to Presidents Bush and Putin the fifth report on nuclear security cooperation

  8. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Russia and Chelyabinsk Region

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-01-01

    Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This paper reviews opportunities to implement energy efficiency projects in Russian public buildings, created by new Russian legislation and regulations. Given Russia's limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. The authors use Chelyabinsk Region as an example to discuss opportunities, challenges and solutions to financing and implementing an EPC in Russia, navigating through federal requirements and specific local conditions.

  9. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaboration Following Russian Delegation Visit to the United States | Department of Energy Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and

  10. DOE Announces U.S.-Russia Fourth Report on Bratislava Agreement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S.-Russia Fourth Report on Bratislava Agreement DOE Announces U.S.-Russia Fourth Report on Bratislava Agreement January 12, 2007 - 9:59am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel Bodman announced today that he and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have submitted to Presidents Bush and Putin the fourth report of the Senior Interagency Working Group on implementation of the February 2005 Bratislava Checklist.

  11. The Security of Russia's Nuclear Arsenal: The Human Factor

    SciTech Connect (OSTI)

    Ball, D.Y.

    1999-10-12

    Assertions by the Russian military that all of their nuclear weapons are secure against theft and that nuclear units within the military are somehow insulated from the problems plaguing the Russian military should not be accepted uncritically. Accordingly, we should not give unwarranted credence to the pronouncements of military figures like Cal.-Gen. Igor Valynkin, Chief of the Defense Ministry's 12th Main Directorate, which oversees the country's nuclear arsenal. He contends that ''Russian nuclear weapons are under reliable supervision'' and that ''talk about the unreliability of our control over nuclear weapons has only one pragmatic goal--to convince international society that the country is incapable of maintaining nuclear safety and to introduce international oversight over those weapons, as it is done, for example, in Iraq.'' While the comparison to Iraq is preposterous, many analysts might agree with Valynkin's sanguine appraisal of the security of Russia's nuclear weapons. In contrast, I argue that the numerous difficulties confronting the military as a whole should cause concern in the West over the security of the Russian nuclear arsenal.

  12. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic

  13. {open_quotes}Rosshelf{close_quotes} company and development of the Arctic Shelf of Russia

    SciTech Connect (OSTI)

    Velikhov, E.P.

    1994-09-01

    The Russian {open_quotes}Rosshelf{close_quotes} company for developing the shelf is the nucleus of a new branch of industry for developing oil and gas fields on shelves of Russia, primarily in the Arctic. {open_quotes}Rosshelf{close_quotes}, created on the basis of leading naval defence enterprises, Russia`s largest geological and mining enterprises, and territorial organizations managing the northern regions of Russia, obtained a license in March 1993 for the right to use the natural resources of Europe`s largest Shtokman gas-condensate field and Prirazlomnoe oil field in the Barents Sea and thus has all the conditions and possibilities for the successful organization of oil and gas production on the continental shelf of Russia. The goals of {open_quotes}Rosshelf{close_quotes} are: the production of oil and gas equipment at converted defence enterprises, including under foreign license and for export; the development of oil and gas fields on the continental shelf of Russia; the creation of new prospective technologies for offshore oil and gas production under conditions of the Russian and mainly the arctic shelf. {open_quotes}Rosshelf{close_quotes} should develop the Pechora Sea fields, mainly the Prirazlomnoe oil field with its relatively small depth and distance from the shore. It is planned to develop Europe`s largest Shtokman field at a distance of 600 km from the shore in the course of 10-12 years with expenditures of about $6 billion. The use of defence technologies underlying the activities of {open_quotes}Rosshelf{close_quotes} gives the company a real change to reach the world level of offshore oil- and gas-production technology. Broad cooperation with foreign companies, mainly in the area of engineering, finances, ecology, and safety, planned also for this. Calculations show that already the priority projects of {open_quotes}Rosshelf{close_quotes} will provide 250,000-300,000 highly skilled jobs at Russian defence enterprises.

  14. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity

    Broader source: Energy.gov [DOE]

    Last Delivery Arrived in Baltimore, MD, Under Landmark 1993 U.S.-Russia HEU Purchase Agreement; U.S. and Russia Pledge to Future Nuclear Nonproliferation Collaboration

  15. U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity | Department of Energy Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity November 14, 2013 - 11:26am Addthis NEWS MEDIA CONTACT National Nuclear Security Administration (NNSA) Public Affairs: (202) 586-7371

  16. Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.12 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price

  17. Liquefied U.S. Natural Gas Exports to Russia (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Russia (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to Russia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 1,895 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0

  18. U.S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cooperation | Department of Energy S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy Cooperation U.S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy Cooperation December 19, 2006 - 9:46am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey V. Kiriyenko last week submitted to U.S. President George W. Bush and Russian President Vladimir Putin a

  19. U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative | Department of Energy And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative December 23, 2008 - 9:18am Addthis WASHINGTON, DC -The U.S. Department of Energy today delivered the Bratislava Nuclear Security report to the White House, which detailed the status of work agreed to by Presidents Bush and Putin in Bratislava in 2005. U.S. and Russian officials from the U.S. Department of

  20. U.S. and Russia Sign Plan for Russian Plutonium Disposition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sign Plan for Russian Plutonium Disposition U.S. and Russia Sign Plan for Russian Plutonium Disposition November 19, 2007 - 4:31pm Addthis Will Eliminate Enough Russian Plutonium for Thousands of Nuclear Weapons WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have signed a joint statement outlining a plan to dispose of 34 metric tons of surplus plutonium from Russia's weapons program. Under the new plan, the

  1. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  2. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect (OSTI)

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  3. Desk study of production energy savings control systems feasibility study. (Russia). Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-07-17

    The objective of the feasibility study is to determine the marketability of heating/ventilating energy conserving control systems in the major city markets of eastern Russia. The second part of the objective is to determine if the existing military based Zelenograd micro-electronic manufacturing and research facility can be utilized to produce Direct Digital Control systems for use within Russia as well as for export to the European Economic Community (EEC) and other countries. Because significant exports of U.S. products and services to support the joint venture are questionable, it is suggested that, potential markets for U.S. products be identified. Sources of capital to finance the joint venture should be identified.

  4. Feasibility study for integrated solar cell manufacture in Russia. Export trade information

    SciTech Connect (OSTI)

    1998-07-01

    This report, conducted by Global Photovoltaic Specialists, Inc., was funded by the US Trade and Development Agency. The study concerns the techno-economic feasibility of fully integrated photovoltaic manufacture in Russia. In addition to the executive summary, the study consists of the following: (1) background of the project; (2) world market study; (3) technology prospects; (4) techno-economic feasibility-proprietary deleted; (5) financial-proprietary deleted; (6) conclusions and recommendations; (7) references; (8) bibliography.

  5. NNSA Partners With Russia to Recover Material That Could Be Used in Dirty

    National Nuclear Security Administration (NNSA)

    Bombs | National Nuclear Security Administration | (NNSA) Partners With Russia to Recover Material That Could Be Used in Dirty Bombs November 07, 2013 WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Russian Federation, has successfully completed the removal of 14 Russian radioisotope thermoelectric generators (RTGs) from the Northern Sea Route. These devices, which contain high-activity radioactive sources, powered

  6. NORTHWEST RUSSIA AS A LENS FOR CHANGE IN THE RUSSIAN FEDERATION

    SciTech Connect (OSTI)

    Seward, Amy M.

    2009-04-18

    The region of Northwest Russia – encompassing the Kola Peninsula and the Arctic seas to its north – offers a lens through which to view the political, economic, ecological and cultural change occurring in the Russian Federation (RF) today. Amidst the upheaval that followed the collapse of the Soviet Union, this region was left to address the legacy of a Cold War history in which it was home to the Soviet (and now Russian) Navy’s Northern Fleet. This paper addresses the naval nuclear legacy from an ecological and environmental and perspective, first addressing the situation of radioactive contamination of the region. The focus then turns to one of the largest problems facing the RF today: the management and disposal of SNF and RW, much of which was produced by the Northern Fleet. Through the international programs to address these issues, and Russia's development of a national infrastructure to support spent nuclear fuel and waste management, the author discusses political, economic, environmental and cultural change in Russia.

  7. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  8. Some social and economic problems, tasks and purposes of nuclear power in Russia

    SciTech Connect (OSTI)

    Adamov, E.O.; Bryunin, S.V.; Orlov, V.V.

    1996-08-01

    The complicated economic situation in Russia in power generation is manifested in a low efficiency of power utilization and in reduction of its generation and mining of energy resources. Primary energy production per capita in Russia is approximately 50% higher than on the average for Western Europe and approximately the same amount of electric power is generated. But per unit value of gross domestic product (GDP) its consumption is 3.0 and 2.7 times higher, respectively. Amount of diverse pollutants release to the atmosphere per GDP unit value is about 3.0 times higher. Restructuring of Russian economy and modernization of its power generation, which is also a matter of international community concern, will improve these indices, though it will require a lot of time and expenses. A number of aspects should be emphasized: (1) energy policy is to be considered in the context of general economic situation, as well as a key element for solving long-term social problems and base of Russia integration into the world economy; (2) comparatively large resources of fossil fuel are to be considered as national wealth and, strategically, reduction of their consumption for energy generation and export purposes should be envisaged; (3) reactor technologies, that do not rule out potentiality of recurrence of the gravest accidents (reactivity type accidents and the ones involving loss of coolant), can not be put at the foundation of large-scale NP; (4) conditions of nonproliferation that are in use now failed to prevent nuclear weapons propagation to new states and should be replaced by more effective ones; (5) for a country, where NP share in fuel and energy balance is slightly above 3%, not solely evolutionary course of development is feasible; (6) expanding scale of high-level wastes disposal is unacceptable in principle; (7) radical solution of growing ecological problems all over the world, including global warming of climate, is unthinkable without NP development.

  9. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  10. Environmental assessment of decommissioning radioisotope thermoelectric generators (RTG) in northwest Russia

    SciTech Connect (OSTI)

    Hosseini, A.; Standring, W.J.F.; Brown, J.E.; Dowdall, M.; Amundsen, I.B.

    2007-07-01

    This article presents some results from assessment work conducted as part of a joint Norwegian-Russian project to decommission radioisotope thermoelectric generators (RTG) in Northwest Russia. Potential worst case accident scenarios, based on the decommissioning procedures for RTGs, were assessed to study possible radiation effects to the environment. Close contact with exposed RTG sources will result in detrimental health effects. However, doses to marine biota from ingestion of radioactivity under the worst-case marine scenario studied were lower than threshold limits given in IAEA literature. (authors)

  11. Simulators for Russia and the Ukraine: a status report on US assistance

    SciTech Connect (OSTI)

    Yoder, J.; Kohut, P.

    1996-06-01

    The US government`s International Nuclear Safety Program (INSP) purpose is to improve the level of safety of Soviet-designed nuclear power plants in Eastern Europe including Russia and the Ukraine. The objective of the INSP is the comprehensive improvement in safety culture, power plant operation and physical conditions, and infrastructures in countries operating Soviet-designed reactors. The program areas are categorized into elements that relate to: management and operations, engineering and technology, plant safety analysis, fuel cycle, legislative and regulatory framework.

  12. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

  13. Debt swapping as a tool for economic and social stabilization in Russia's closed nuclear cities (briefing paper)

    SciTech Connect (OSTI)

    JL Fuller; KM Leek

    2000-03-08

    The next great issue on the Russian landscape will be management of its foreign debt. In the near future the United States will be called upon to lead an international program of debt restructuring to assist Russia in overcoming the burden of its debt trap. With debt service obligations equal to 50{percent} of 1999 revenues, Russia has virtually no chance of sustaining a program of economic recovery without debt relief (Hardt, 1999). With some form of debt restructuring a foregone conclusion, Russia, the United States, and world community have a vital stake in searching for creative ways to transform the inevitability of debt restructuring into something of value and constructive to Russia and the problems it faces. This was the rationale behind debt-for-nature swaps which emerged in the early 1980s in Latin American and Eastern Europe as a means of relieving developing nations of their crippling foreign debt. Debt-for-nature swaps served both domestic and international needs by converting a portion of foreign debt, often at steep discounts, into local currency that was then used to fund programs to preserve the environment. The debt swap mechanism provides the prospect of getting something of real value where nothing is expected. The Pacific Northwest National Laboratory (PNNL) has proposed to use the same model to synergistically capitalize defense threat reduction activities and environmental remediation within Russia's closed nuclear cities. Preventing the emigration of nuclear technology, expertise, and hardware from these cities to subnational groups and countries of proliferation concern is one of the world's foremost pressing problems. It is in the best national security interest of the United states to assist Russia in overcoming the legacy of the Cold War by helping to address the catastrophic environmental and public health effects of nuclear production that negatively impact economic stabilization.

  14. ,"Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Russia (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  15. Method for calculating the value of bioanthropogenic emission of CO2 into the atmosphere resulted from forest cutting on the Russia`s territory

    SciTech Connect (OSTI)

    Zakharova, O.K.

    1997-12-31

    Biotical anthropogenic CO2 emission Qb into the atmosphere is now the essential part from the industrial emission. Qb is equal to the deficit of forest productivity and appeared during the periodical forest cuttings. This flux may change slightly because of the full destroying of forest areas and reforestation measures, which lead to changes in full forest areas. Bioanthropogenic flux Qb is equal to the forest productivity deficit DP because of its periodical cuttings with the period td. The forest productivity P(t), where t is the forest age marked off the cutting moment, is rebuilding after cutting not immediately but during the time period tp. Suggested is the formula for calculation of Qb as the function of td and tp. This formula holds true only for a limited forest area. But it can be used for big forest parts supposing that these parts consist of small forest cutting areas with forest ages t distributed evenly between 0 and td. The Qb for world and Russia are calculated. Besides, we studied the possibility to decrease the greenhouse effect by means of decreasing biotical anthropogenic emission till 2025 without essential forest industry changes.

  16. Managing the global environmental risks in Russia: The missing links and external influences

    SciTech Connect (OSTI)

    Sokolov, V.

    1996-12-31

    Based on analysis of management history of three global environmental issues in Russia--climate change, ozone depletion and acid rains--the author suggests a few explanations of failure to build-up the nationwide strategy to manage global risks. Among them are specific factors related to the science-policy relationship on global changes processes and impacts. Particular attention is given to such internal factors as: the monopolization of these issues by the single state agency Hydromet until the late 1980s; the interest of the Soviet military in global atmospheric issues; the absence of any major input from the public or the media; and the manner in which the discussion of these issues was nested within the Soviet government`s broader foreign policy agenda.

  17. Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-10-26

    The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries.

  18. Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes

    SciTech Connect (OSTI)

    Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

    1995-04-01

    Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

  19. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  20. Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia

    SciTech Connect (OSTI)

    Gerber, T P; Ball, D Y

    2008-06-05

    How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.

  1. Energy, economics, and security in central Asia: Russia and its rivals

    SciTech Connect (OSTI)

    Blank, S.J.

    1995-04-10

    Five Central Asian states emerged out of the Soviet Union`s Central Asian republics in 1991. Although U.S. policy makers presumed that Iran would inevitably sweep them into its sphere of influence, this has not happened. Nor is it likely to occur. Instead there has developed a multistate competition for influence and even control of these new states. This competition involves Russia as the leading force in the area and Moscow`s main rivals are Turkey, Iran, Pakistan (and India), China, and the United States. This rivalry is particularly strong in the struggle among these states to gain positions of leverage over the energy economy, i.e. production, pipelines, and refining in Central Asia because this region is blessed with enormous energy deposits. These deposits are crucial to Central Asia`s integration with the world economy and economic progress. Indeed, energy exports may be the only way these governments can hope for any economic stability and progress in the future.

  2. Petroleum Resource Management and Assessment project for the Western Siberian Administration Russia. TDA feasibility study. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The objective of the study is: (1) To determine the nature and availability of the information necessary for Resource Assessment in oil fields to be open to foreign investment; (2) To determine what resources are required to implement the 'Alberta Model' of Resource Management in Siberia; (3) To establish a pilot Data Collection and Information System, including software, hardware and technology; (4) To indicate whether the studied database model and related software can meet Russia's long term requirements for information management in the petroleum sector; (5) The transfer of information techniques to the Russian implementation teams; and (6) To define the requirements for a resource/economic study.

  3. Energy Efficiency Investments in Public Facilities - Developing a Pilot Mechanism for Energy Performance Contracts (EPCs) in Russia

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha; Parker, Steven A.; Baranovskiy, Aleksandr

    2012-02-01

    : Russian public sector buildings tend to be very inefficient, which creates vast opportunities for savings. This report overviews the latest developments in the Russian legislation related to energy efficiency in the public sector, describes the major challenges the regulations pose, and proposes ways to overcome these challenges. Given Russia’s limited experience with energy performance contracts (EPCs), a pilot project can help test an implementation mechanism. This paper discusses how EPCs and other mechanisms can help harness energy savings opportunities in Russia in general, and thus, can be applicable to any Russian region.

  4. Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309

    SciTech Connect (OSTI)

    Field, D.; McAtamney, N.

    2013-07-01

    Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and icebreakers during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, provided support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation

  5. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect (OSTI)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  6. U.S. Department of Energy's initiatives for proliferation prevention program: solidification technologies for radioactive waste treatment in Russia

    SciTech Connect (OSTI)

    Pokhitonov, Y.; Kelley, D.

    2008-07-01

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopin Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)

  7. Senegal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 76 2008 NREL Coal Reserves Unavailable Million Short Tons NA 2008 EIA Natural Gas Reserves Unavailable Cubic Meters (cu m) NA 2010 CIA World Factbook Oil Reserves 0...

  8. Blend Down Monitoring System Fissile Mass Flow Monitor Implementation at the ElectroChemical Plant, Zelenogorsk, Russia

    SciTech Connect (OSTI)

    Uckan, T.

    2005-11-11

    The implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the ElectroChemical Plant (ECP), Zelenogorsk, Russia, are presented in this report. The FMFM, developed at Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS), developed for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower-assay ({approx}4%) product low enriched uranium (P-LEU) to the United States from down-blended weapons-grade HEU are meeting the nonproliferation goals of the government-to-government HEU Purchase Agreement, signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999 and is successfully providing HEU transparency data to the United States. The second BDMS was installed at ECP in February 2003. The FMFM makes use of a set of thermalized californium-252 ({sup 252}Cf) spontaneous neutron sources for a modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments. The FMFM provides unattended, nonintrusive measurements of the {sup 235}U mass flow in the HEU, LEU blend stock, and P-LEU process legs. The FMFM also provides the traceability of the HEU flow to the product process leg. This report documents the technical installation requirements and the expected operational characteristics of the ECP FMFM.

  9. An environmental assessment strategy for the identification of pollution prevention opportunities in the southern Urals Region of Russia

    SciTech Connect (OSTI)

    Gonzalez, M.A.; Ott, R.L.

    1993-08-23

    The serious environmental problems of the South Urals Region of Russia have been broadly described in a report coauthored by Russian weapons scientists. The importance of taking the first steps to prevent further environmental damage and adverse public health effects has been recognized by the international scientific community. Scientists at the Lawrence Livermore National Laboratory have initiated a project to assist the Russians in their pollution prevention efforts. The specific objectives of this project are to: (1) conduct a pragmatic survey of the industrial and governmental pollution sources in a limited geographic region of the South Urals and (2) identify the priorities for pollution prevention and for food and water supply improvements at distribution points. The emphasis is on preventing adverse impacts to human health and improving industrial productivity. This project focuses on immediate pollution problems resulting from current operations and their solutions, not on long-term research related to the large-scale cleanup of legacy wastes. The project emphasizes near-term cost effective solutions to prevent pollution while longer term research aimed at contamination from past practices is pursued by other scientists. The project is being conducted in collaboration with environmental and physical scientists from institutes associated with the Ural Branch of the Russian Academy of Sciences; government officials at the national, regional, and local levels; and non-governmental Russian environmental groups. A broad cross section of Russian technical, political, and environmental abilities and interests is mandatory. This cross section will ensure the technical quality, the political acceptability, and the popular credibility of the project results to the affected Russians in the South Urals. Progress on this project is presented in this paper.

  10. Blend Down Monitoring System Fissile Mass Flow Monitor and its Implementation at the Siberian Chemical Enterprise, Seversk, Russia

    SciTech Connect (OSTI)

    Uckan, T

    2005-07-28

    In this paper the implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the Siberian Chemical Enterprise (SChE), Seversk, Russia, are presented. The FMFM, developed by Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS) for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower assay ({approx}4%) product low enriched uranium (PLEU) to the United States from down-blended weapon-grade HEU are meeting the nonproliferation goals of the government-to-government HEU purchase agreement signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999. The second BDMS has been operational at Electro Chemical Plant, Zelenogorsk, since March 2003. These systems are successfully providing HEU transparency data to the United States. The third BDMS was successfully installed on the HEU down-blending tee in the SChE Enrichment Plant in October 2004. The FMFM makes use of a set of thermalized {sup 252}Cf spontaneous neutron sources for modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments retained in the flow. The FMFM provides unattended nonintrusive measurements of the {sup 235}U mass flow of the UF{sub 6} gas in the blending tee legs of HEU, the LEU blend stock, and the resulting P-LEU. The FMFM also confirms that highly enriched UF{sub 6} gas identified in the HEU leg flows through the blending tee into the P-LEU leg. This report contains details of

  11. Energy choices in Russia

    SciTech Connect (OSTI)

    Ebel, R.E.

    1994-12-31

    Ebel concentrates primarily on oil, his specialty and the foundation stone of the Russian energy economy. He also covers natural gas, another important export fuel, as well as coal, economically unproductive and socially explosive, and nuclear energy, whose growth remains adversely affected by Chernobyl.

  12. Desk study of the proposed Petroleum Resource Management and Assessment project for the Western Siberia Administration, Russia. Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-05-15

    The United States Trade and Development Program (TDP) is considering the provision of funds to allow a U.S. firm or firms to be hired to conduct a feasibility study on a Petroleum Resource Management and Assessment project in Russia's West Siberian Basin. To evaluate whether or not to fund the study, TDP contracted a Desk Study to evaluate the concept of the project; cost out the scope of work for the feasibility study; estimate the potential exports of U.S. equipment and services during project implementation; and make a recommendation as to whether TDP should fund the study. The goal of the feasibility study would be to stem the rapid decline in oil and gas production which has resulted in a well-publicized hard currency crisis.

  13. Turmoil doesn`t dampen enthusiasm

    SciTech Connect (OSTI)

    1997-08-01

    The paper discusses the outlook for the African gas and oil industries. Though Africa remains politically and economically volatile, its vast energy potential is becoming increasingly attractive to foreign oil and gas companies. Separate evaluations are given for Algeria, Egypt, Nigeria, Angola, Libya, Congo, Gabon, Tunisia, Cameroon, Cote D`Ivoire, and briefly for South Africa, Sudan, Equatorial Guinea, Ghana, Zaire, Benin, Mozambique, Chad, Namibia, Tanzania, Eritrea, Guinea-Bissau, Senegal, Morocco, Sao Tome and Principe, Ethiopia, Niger, Madagascar, Rwanda, Mauritania, Seychelles, Uganda, and Liberia.

  14. Rwanda-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  15. Rwanda-Developing a Strategic Climate Change Framework | Open...

    Open Energy Info (EERE)

    in a stronger position not only to face the twin challenges of climate change and poverty, but to take advantage of the opportunities presented by a low-carbon growth path in...

  16. Rwanda-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  17. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  18. Nuclear safety assistance to Russia, Ukraine, and Eastern Europe. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundred Third Congress, First Session, October 28, 1993

    SciTech Connect (OSTI)

    1994-12-31

    The hearing addresses United States nuclear safety assistance to Russia, Ukraine and the nations of eastern europe operating Soviet-built nuclear powerplants. The primary issue is that Soviet-designed nuclear reactors bore almost no relation to the reactors designed and operated in Western countries. The Soviet reactors were devoid of safety features such as fire protection and containment. The absence of a safety culture and standardized operating procedures were also of great concern. The role and status of assistance by the United States in the future is discussed. Statements of government and industry officials are included, along with documents submitted for the record.

  19. Senegal-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  20. Senegal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  1. Senegal-Partnership for Action on Green Economy (PAGE) | Open...

    Open Energy Info (EERE)

    Want, which recognizes the green economy as a vehicle for sustainable development and poverty eradication. PAGE will support 30 countries over the next seven years in building...

  2. Senegal-GTZ Programme to Promote Rural Electrification and a...

    Open Energy Info (EERE)

    in producing and marketing their products, and also promotes companies which produce alternative fuels from waste materials and reeds. This lightens the workload of women, who...

  3. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approximation template 7. Number iterations 1. Local size of matrix 1000 rows. Number of calls 40. Modifi ed for the Web As a result of this work, the measurement program ...

  4. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... P(TW) E(kJ) t(ns) Load (MA) Vout (kV) P (TW) E (kJ) Modified for the Web This project studies transport problem computations in multiple-layer systems of various optical thickness ...

  5. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Russian experiments provide unique, complementary approaches to high-current z-pinch driver. Russian Electromagnetic Pulse Generator Modifi ed for the Web Modifi ed for the Web ...

  6. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifi ed for the Web Project Description The objective of the project is to obtain new ... Modifi ed for the Web Physical processes in space and time are described by systems of ...

  7. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.R. Kutsar, 7 This work 20 15 10 5 0 250 300 350 400 450 600 Modifi ed for the Web ... Modifi ed for the Web 7 6 5 4 3 2 1 0 1 2 3 4 P, GPa 293 K 493 K 595 K This work L. N. ...

  8. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rev. B, V74, No. 14, p144110) Simulation of bubble-bubble interaction. Modifi ed for the Web production of stacking faults. Results obtained thus far on the initiation of damage ...

  9. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (VNIIEF) Radiograph showing perturbation growth. Pre-perturbed sample. Modified for the Web The perturbation growth method will be applied for the purpose of developing ...

  10. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The image on the top is from a FormZ model of a reactor system. The image on the bottom is a model of a radiation dose phantom. Modified for the Web MCGen makes it possible to ...

  11. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifi ed for the Web Scalability Assessment for Parallel Algorithms of Numerical ... Distribution of points over the processors, 48 processors. Modifi ed for the Web Both ...

  12. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifi ed for the Web 1 4 5 2 3 t 1 2.34ms t 2 2.39ms t 3 2.44ms t 4 2.47ms X 12 X 21 L (t) 1 6 120 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 t, ms L(t), mm Modifi ed for the Web ...

  13. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic radiographs of stable and unstable liner experiments compared with 2D MHD calculations. Modifi ed for the Web Modified for the Web experiments" conducted in FY02, the ...

  14. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modified for the Web Both laboratories (LANL and VNIIEF) seek to understand the technological issues of high-current magnetically- driven high velocity liners. This project ...

  15. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifi ed for the Web Technical Purpose and Benefi ts Numerical 2-D and 3-D radiation magneto- hydrodynamic simulation is one of the tools to get a more detailed understanding of, ...

  16. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Different MD models of solids are used in simulations. Modifi ed for the Web Technical Purpose and Benefi ts The use of atomistic simulation brings high fi delity phys- ics into ...

  17. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52 6 72 8 Modifi ed for the Web Simple picture derived from the ... PDOS 5f (statesxeVatom) Atom 8 Atom 8 Modifi ed for the Web With the benefi t of new ...

  18. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous decomposition Radius, mm 2 1 0 Radius, mm 2 1 0 Radius, mm Aluminum Copper Modifi ed for the Web The task will be performed in two stages. In the fi rst stage (fi rst ...

  19. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GPa 9 GPa 7 GPa 3.8 GPa Modifi ed for the Web Project Description The development of an ... Pressure versus time in cerium. Modified for the Web The development of experimental ...

  20. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of MD simulation of crack propagation. Modifi ed for the Web Technical Purpose and Benefi ts The understanding of material fracture mechanisms is an important phase in ...

  1. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast ignition simulation. Modifi ed for the Web Under this contract, VNIITF will complete development of a hybrid implicit code using adaptive mesh refi ne- ment and use that code ...

  2. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Right: Simulated evolution of the Rayleigh-Taylor instability. Modified for the Web Several dynamic strength models have been implemented in LLNL hydrocodes, including the ...

  3. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B-dot (6 probes* 60) TL2-1...TL2-6 B-dot (6 probes* 60) TL3-1...TL3-6 PU CMU Liner Modified for the Web multi-year effort planned in eight phases continuing into FY09 ...

  4. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RD-1b, incipient spallation damage. RD-1a, full crack formation. VNIIEF generator and load protection. Modified for the Web The main objective of this effort is to obtain damage ...

  5. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... On-Line FTIR Condenser Reactor Schematic large sample thermal decomposition. Modifi ed for the Web The project has signifi cantly benefi ted USDP, ASC, and the Russian Federation, ...

  6. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (VNIIEF) Modified for the Web The NNSA and LANL have an obligation to the country to maximize the benefit gained from the USRussian Science and Technology collaborations. ...

  7. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C U R R E N T 0 50 100 150 200 250 300 Modifi ed for the Web Project Description ... Liner CMU Current Diagnostics Modified for the Web showed that the inner surface of the ...

  8. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (LANL), and Olga N. Ignatova (VNIIEF) Modified for the Web The development of better predictive capability is essential if LANL is to meet its obligations to NNSA and the country. ...

  9. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations using 3-D radiation-MHD capability in ALEGRA-HEDP provide understanding to scale to ZR. 40mm diameter array of 240, 7.5 - m- diameter wires. Modifi ed for the Web The ...

  10. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Exact solution Numerical solution, 100100 Numerical solution, 5050 Numerical solution, 2525 Modified for the Web Technical Purpose and Benefits The accurate ...

  11. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perform molecular dynamics simulations of the interaction of shocks with crystal grain boundaries, dislocations, and inclusions to investigate elasticplastic deformation of ...

  12. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with angle 81,78680, Plane (111) and planar 7. a b c d Modifi ed for the Web Visualizers Futures MolDraw ACDStructure Drawing Applet MW3D Crystal Lab Crystal Studio ...

  13. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modified for the Web Tasks to be completed during the first year of this project include (1) implementing high-resolution methods for the remap (advection) step of the algorithm ...

  14. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural changes in the rarefaction wave in an initially BCC single crystal. Modified for the Web particle collisions or bound states of a small number of electrons and ions for ...

  15. RussiaLANLV3-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Static and dynamic radio- graphs of experimental system compared to pre- dicted (synthetic) radiograph from simulation codes. Modified for the Web several changes to the technical ...

  16. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Modifi ed for the Web Environ- ment Com- muni- cation Note A 1 A A S A T A 1 Collaboration between Sandia National Laboratories (SNL), ...

  17. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.6 0.4 0.2 1 0 .857286 0.714571 0.571857 0.429143 0.286429 0.143714 0.001 Modified for the Web The simulation of multidimensional transport processes is an area of great interest. ...

  18. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The cube rotation problem: currently, the number of zones is 3500, compared to 125 zones initially. Modified for the Web The accurate simulation of hydrodynamic and heat conducting ...

  19. RussiaLLNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum T r 400 1.0 cm 1.0 cm 0.2 cm Schematic of test problem for energy adaptive studies. Modified for the Web The simulation of multidimensional transport processes is an area ...

  20. RussiaSNL2-web.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation of nanoscale cracksnanovoids in polysilicon under fatigue load. Modifi ed for the Web one of the thermal, mechanical, or electrical properties of the device, such as ...

  1. Rwanda-Project to Develop a National Strategy on Climate Change...

    Open Energy Info (EERE)

    (Redirected from SSEE-Project to Develop a Rwandan National Strategy on Climate Change and Low Carbon Development)...

  2. Rwanda-Project to Develop a National Strategy on Climate Change...

    Open Energy Info (EERE)

    for International Development, United Nations Development Programme (UNDP) Partner Smith School for Enterprise and Environment, University of Oxford Sector Climate, Energy,...

  3. Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles

    SciTech Connect (OSTI)

    Skelton, J.W. Jr.

    1993-12-31

    This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

  4. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  5. NNSA Partners with Canada, Russia to Build Counterterrorism Training...

    National Nuclear Security Administration (NNSA)

    Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application ...

  6. US, Russia Partner to Complete Krasnoyarsk Regional Training...

    National Nuclear Security Administration (NNSA)

    Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application ...

  7. Letter to Russia (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The calculated data show no sign of such saturation (Fig. 8), which indicates that the considered clusters are too small to draw conclusions about the bulk properties. I find it ...

  8. Russia-Making Energy Efficiency Real (MEER) | Open Energy Information

    Open Energy Info (EERE)

    for Energy Efficiency Cooperation (IPEEC) Sector Energy Focus Area Renewable Energy, People and Policy Topics Adaptation, Co-benefits assessment, - Energy Access,...

  9. 2013-05-24 Russia 123 Agreement.pdf

    National Nuclear Security Administration (NNSA)

  10. Working with Russia | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and wonder how they were going to feed their families," said Y-12 Program Manager Ken Williams. Two Department of Energy programs, Nuclear Cities Initiatives and the Initiatives...

  11. U.S. and Russia Sign Statement of Intent

    Broader source: Energy.gov [DOE]

    Secretary Chu and Sergei Kiriyenko, Director General of Russia’s State Corporation for Atomic Energy (Rosatom), signed a Statement of Intent (SOI) concerning collaboration in innovative technologies for environmental restoration and radioactive waste management.

  12. Changing tax system challenges producers and refiners in Russia

    SciTech Connect (OSTI)

    Khartukov, E.M.

    1996-03-25

    Over the past several years, economics of the Russian oil industry has undergone considerable change reflecting the radical transformation of the country`s core industry from a wholly state-run and heftily subsidized distribution system toward a formally privatized, cash-strapped, and quasi-market entrepreneurship. All-out price liberalization, launched by the Russian government at the start of 1992, did not apply to the national oil industry. Domestic oil prices remained tangibly restrained until mid-1993 and were officially deregulated in March 1995. Consequently, rising costs diminished profit margins of Russian oil producers, whose operating costs were never as low as popularly believed. This paper reviews the tax structure of the Russian oil industry showing the effects on exports, gas prices at the pumps, and distribution prices.

  13. U.S., Russia Celebrate Graduation of Nuclear Security Experts...

    National Nuclear Security Administration (NNSA)

    in the area of disarmament and non-proliferation has never been so great as today," ... of peace, disarmament and non-proliferation." "Since 1997 the National Research ...

  14. Letter to Russia (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... A lively debate takes place in the literature whether this approximation can adequately ... Country of Publication: United States Language: English Subject: 75 CONDENSED MATTER ...

  15. Regulatory Approaches for Solid Radioactive Waste Storage in Russia

    SciTech Connect (OSTI)

    Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

    2003-02-26

    The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

  16. Ihangire Sun Energy | Open Energy Information

    Open Energy Info (EERE)

    Name: Ihangire Sun Energy Place: Rwanda Sector: Solar Product: Rwanda-based solar start-up. References: Ihangire Sun Energy1 This article is a stub. You can help OpenEI by...

  17. UNEP-Risoe-Economics of GHG Limitations: Country Study Series...

    Open Energy Info (EERE)

    Gas Limitations1 Country study series: Argentina, Ecuador, Estonia, Hungary, Indonesia, Mauritius, Senegal, Vietnam Parallel country studies: Botswana, Tanzania, Zambia...

  18. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect (OSTI)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  19. Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 1,895 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016

  20. Liquefied U.S. Natural Gas Re-Exports to Russia (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,895 0 0 2010's

  1. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect (OSTI)

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  2. Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey

    SciTech Connect (OSTI)

    Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B.

    2009-05-15

    The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

  3. U.S and Russia Develop Action Plan to Enhance Global and Bilateral...

    Broader source: Energy.gov (indexed) [DOE]

    W. Bush and Russian President Vladimir Putin a joint work plan that will provide a ... In early 2006, President Bush and President Putin presented - independently of each other ...

  4. U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava...

    Energy Savers [EERE]

    of work agreed to by Presidents Bush and Putin in Bratislava in 2005. U.S. and Russian ... by President Bush and then-President Putin during their meeting in Bratislava, Slovak ...

  5. Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 500 metric tons of weapons-origin HEU was downblended from dismantled ... Rosatom and the Department of Energy are in the process of extending the Russian-origin ...

  6. Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)

    SciTech Connect (OSTI)

    Jardine, L; Borisov, G B

    2002-07-11

    This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TC Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).

  7. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect (OSTI)

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  8. United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

  9. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.12 -- -- 2010's -- -- --

  10. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 -- -- -- -- -- -- -- -- -- 12.12 -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016 -- -- -- -- --

  11. Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.12 -- -- 2010's

  12. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...

    National Nuclear Security Administration (NNSA)

    Nearly every commercial nuclear reactor in the United States received nuclear fuel under ... and radiological material security, reactor conversion, combating the illicit ...

  13. Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 -- -- -- -- -- -- -- -- -- 12.12 -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- -- -- -- -- -- -- -- 2011 -- -- -- -- -- -- -- -- -- -- -- -- 2012 -- -- -- -- -- -- -- -- -- -- -- -- 2013 -- -- -- -- -- -- -- -- -- -- -- -- 2014 -- -- -- -- -- -- -- -- -- -- -- -- 2015 -- -- -- -- -- -- -- -- -- -- -- -- 2016

  14. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...

    Broader source: Energy.gov (indexed) [DOE]

    Nearly every commercial nuclear reactor in the United States received nuclear fuel under the program," said Energy Secretary Ernest Moniz. "This Agreement serves as an example of ...

  15. UNEP-Risoe-Economics of GHG Limitations: Country Study Series...

    Open Energy Info (EERE)

    Econo References Economics of Greenhouse Gas Limitations1 Country study series: Argentina, Ecuador, Estonia, Hungary, Indonesia, Mauritius, Senegal, Vietnam Parallel country...

  16. Chemical and biological monitoring of MIOR on the pilot area of Vyngapour oil field, West Sibera, Russia

    SciTech Connect (OSTI)

    Arinbasarov, M.U.; Murygina, V.P.; Mats, A.A.

    1995-12-31

    The pilot area of the Vyngapour oil field allotted for MIOR tests contains three injection and three producing wells. These wells were treated in summer 1993 and 1994. Before, during, and after MIOR treatments on the pilot area the chemical compounds of injected and formation waters were studied, as well as the amount and species of microorganisms entering the stratum with the injected water and indigenous bacteria presented in bottomhole zones of the wells. The results of monitoring showed that the bottomhole zone of the injection well already had biocenosis of heterotrophic, hydrocarbon-oxidizing, methanogenic, and sulfate-reducing bacteria, which were besides permanently introduced into the reservoir during the usual waterflooding. The nutritious composition activated vital functions of all bacterial species presented in the bottomhole zone of the injection well. The formation waters from producing wells showed the increase of the content of nitrate, sulfate, phosphate, and bicarbonate ions by the end of MIOR. The amount of hydrocarbon-oxidizing bacteria in formation waters of producing wells increased by one order. The chemical and biological monitoring revealed the activation of the formation microorganisms, but no transport of food industry waste bacteria through the formation from injection to producing wells was found.

  17. Approaches to Deal with Irradiated Graphite in Russia - Proposal for New IAEA CRP on Graphite Waste Management - 12364

    SciTech Connect (OSTI)

    Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg

    2012-07-01

    The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shown the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)

  18. Cooperative efforts of the materials protection control and accounting program at the electrochemical plant (Krasnoyarsk-45) in Russia-011

    SciTech Connect (OSTI)

    Moore, L.

    1998-07-22

    The USDOE Material Protection Control and Accountability Program (MPC&A) has established a Project Team with the goal of providing the Russian Electrochemical Plant (ECP) with equipment and training to enable ECP to evaluate, develop, and implement a comprehensive plan and systems for physical protection, material controls, and accountancy upgrades. The MPC&A project will provide for improvements such as risk assessments, access control upgrades, computerized MC&A, communications systems upgrades, building perimeter surveillance and intrusion detection upgrades, vault upgrades, metal and nuclear material detection upgrades, along with mass measurement and non- destructive analysis (NDA) instrumentation. This paper outlines the overall objectives of the MPC&A project at the Electrochemical Plant.

  19. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    SciTech Connect (OSTI)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang; Noack, Volker; Baeuerle, Guenther

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted waste monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)

  20. Probable maximum flood (PMF): basic information and problems with the procedure used for its calculation in Russia

    SciTech Connect (OSTI)

    Zhirkevich, A. N.; Asarin, A. E.

    2010-09-15

    A procedure is proposed for enhancement of the hydrologic safety of entities in the tail races of dams.

  1. Final Technical Report, 30 SEPTEMBER 2002 - 31 JANUARY 2006; ENERGY PARTIONING FOR SEISMIC EVENTS IN FENNOSCANDIA AND NW RUSSIA

    SciTech Connect (OSTI)

    Bungum, H.; Kvaerna, T.; Larsen, S.

    2006-01-31

    In this project we have addressed the problem of energy partitioning at distances ranging from very local to regional for various kinds of seismic sources. On the local and regional scale (20-220 km) we have targeted events from the region offshore Western Norway where we have both natural earthquake activity as well as frequent occurrence of underwater explosions carried out by the Norwegian Navy. On the small scale we have focused on analysis of observations from an in-mine network of 16-18 sensors in the Pyhasalmi mine in central Finland. This analysis has been supplemented with 3-D finite difference wave propagation simulations in a realistic mine model to investigate the physical mechanisms that partition seismic energy in the near source region in and around the underground mine. The results from modeling and analysis of local and regional data show that mean S/P amplitude ratios for explosions and natural events differ at individual stations and are in general higher for natural events and frequency bands above 3 Hz. However, the distributions of S/P ratios for explosions and natural events overlap in all analyzed frequency bands. Thus, for individual events in our study area, S/P amplitude ratios can only assist the discrimination between an explosion or a natural event. This observation is supported by synthetic seismograms calculated for simple 1-D models which demonstrate that explosions also generate shear-wave energy if they are fired close to an interface with a strong material contrast (as is the case for most explosions), e.g., free surface or the ocean bottom. The larger difference in S/P ratios between earthquakes and explosions for higher frequencies can be explained by the fact that at low frequencies (larger wavelengths), discontinuities and structural heterogeneities in the explosion source region are stronger generators of converted S energy. The S*-phase, for example, is most efficiently generated whenever an explosion source is located close (within one wavelength) to a strong discontinuity. The Pyhasalmi explosions have generally lower S/P ratios than the rockbursts for all frequencies, but the difference is far too small to be significant for classification purposes. The maxima for the explosion distributions are all below 2, whereas they are all above 2 for the rockbursts. The rockbursts also have a wider distribution of S/P ratios, which can be explained by the variability of the radiation patterns from the rockburst sources. S/P ratios for explosions and rockbursts located in the same small area of the mine show results very similar to those for the full data set. This indicates that the observed differences in S/P ratios between explosions and rockbursts are due to differences in the source characteristics, and not due to propagation effects along paths in the mine. 3-D finite-difference simulations were used to model seismic events within the Pyhasalmi mine. In particular, a January 26, 2003 rockburst was modeled at frequencies of 50 Hz (4 meter grid) and 100 Hz (2 meter grid). We were able to match the characteristics of the observed data at 50 Hz particularly well, and the characteristics of the 100 Hz data reasonably well. These results help validate the 3-D geologic mine model and the reliability of our simulations. The simulations showed that significant shear-energy can be produced due to the geologic and structural heterogeneities within the mine. In fact, mode-converted shear-energy generated from mine heterogeneity can dominate the compressional energy from an explosive source. A strong correlation is observed between the distance of a source from a mine heterogeneity and the magnitude of generated shear-energy. The ratio of shear to compressional energy is about a factor of two larger when the source is located within one wavelength from a mine heterogeneity. The simulations also suggest that excavated mine volumes are significantly stronger contributors to shear-energy generation than geologic heterogeneities. However, the simulations reveal that the magnitude of shear-energy ge

  2. User:GregZiebold/Test | Open Energy Information

    Open Energy Info (EERE)

    GregZieboldTest < User:GregZiebold Jump to: navigation, search click me Programs in Senegal 12 Retrieved from "http:en.openei.orgwindex.php?titleUser:GregZiebold...

  3. Microsoft PowerPoint - 9_David Thomas_WR Transparency at NMMSS...

    National Nuclear Security Administration (NNSA)

    HEU Downblending in Russia Under the 1993 U.S.-Russia HEU Purchase Agreement David Thomas NNSASAIC Russian HEU Down Blending Almost Complete The Agreement for the disposition...

  4. SHE 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSI, Germany G. Adamian, BLTP JINR, Russia A. Afanasjev, Mississippi State University, USA N. Aksenov, FLNR JINR, Russia H. Backe, University of Mainz, Germany M. Barbui, ...

  5. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for example, China, India, France, Japan, Russia, and possibly even South Korea. ... next decade as is being done in other countries, such as Japan, India, Russia, and China. ...

  6. Active Spectral Nephelometry in Studies of the Condensational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sciences Tomsk, Russia M. A. Sviridenkov A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia A. S. Kozlov Institute of Chemical...

  7. Material Protection, Control, and Accounting Program | National...

    National Nuclear Security Administration (NNSA)

    Engaged in ongoing nuclear security best practices dialogues with both China and Russia. Material Consolidation and Conversion Worked with Russia to consolidate weapons-usable ...

  8. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  9. Microsoft Word - VI_13-14_Colloquia and Seminars 2015.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research of Russian Academy of Science, Moscow, Russia Production of Medical Radioisotopes in Russia and Prospective Isotope Program in Institute of Nuclear Research October 8 Dr. ...

  10. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect (OSTI)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  11. Feasibility study for reconstruction of the reheat furnaces for the 2000 Hot Strip Mill (Novolipetsk Steel Works, Lipetsk, Russia): Final report. Export trade information

    SciTech Connect (OSTI)

    1997-05-01

    The objective of this study was to develop a furnace design that would be instrumental in advancing the NLMK 2000 Hot Strip Mill to a level of world class strip mills capable of producing high quality strip with improved energy efficiency and minimal environmental impact. The contents include the following: (1) executive summary; (2) capital cost assessment; (3) project financial analysis; (4) study overview; (5) basic furnace design; (6) silicon design specification; (7) utilities; (8) NOx reduction technologies for reheat furnaces; (9) site investigation and construction schedule; (10) hot connect.

  12. Canada and the United States Cooperate to Shut Down One of the Last Weapons-Grade Plutonium Production Reactors in Russia

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. -- Canadian Foreign Affairs Minister Pierre Pettigrew and United States Secretary of Energy Samuel Bodman today announced the signing of a memorandum of understanding (MOU) to...

  13. A Busy Year Securing Vulnerable Nuclear Material and Making the World Safer

    Broader source: Energy.gov [DOE]

    NNSA assisted in reclaiming highly enriched uranium from the Ukraine to a secure facility in Russia.

  14. Shell structures for biogas plants

    SciTech Connect (OSTI)

    Sasse, L.

    1982-01-01

    The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

  15. Microsoft Word - Foreign Obligation Codes.docx

    National Nuclear Security Administration (NNSA)

    Obligation Codes - Updated March 2014 Transaction Code Material Balance Code Obligation 1 31 85 Australia 32 86 Canada 33 87 EURATOM 34 88 Japan 35 89 Peoples' Republic of China 36 C1 Russia 37 A8 Switzerland 38 A1 Argentina 39 A2 Brazil 40 A3 Chile 65 C4 Japan/Russia 66 C5 EURATOM/Russia 67 C6 Australia/Japan/Russia 68 C7 Canada/Japan/Russia 69 C8 EURATOM/Japan/Russia 70 B1 Les Centrifuge Enrichment/Japan 71 B2 Australia/Japan/Les Centrifuge Enrichment 72 B3 Canada/Japan/Les Centrifuge

  16. Courses on Beam Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Re-Exports to Russia (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSDMCF" "Date","Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUST-Russia)" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent ... Search for: All records CreatorsAuthors contains: "NUST-Russia)" Sort by Relevance ...

  19. Final project report for the Department of Energy Grant No. DE-FC02-99EE10673 [The successful story of regional implementation of energy performance standards in Russia

    SciTech Connect (OSTI)

    Goldstein, David B.; Chao, Mark; Matrosov, Yurij

    2001-12-01

    This report is the result of the collaborative effort between the Natural Resources Defense Council (NRDC), Institute for Market Transformation (IMT), and the Center for Energy Efficiency (CENEf). The report describes our success in promoting the adoption of the energy efficiency buildings code in 25 regions of the Russian Federation and in developing an energy efficiency buildings design manual.

  20. [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Nizhny Novgorod, 603600, Russia (Russian Federation) 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; QUANTUM MECHANICS; IONS; TRAPS; LASER RADIATION; RESONANCE;...

  1. Office of Strategic Programs

    Broader source: Energy.gov (indexed) [DOE]

    ... Bilateral Partnerships * China * Japan * India * Mexico * Brazil * Korea * Israel * Russia * EU * Kazakhstan * United Arab Emirates * Canada Multilateral Partnerships * APEC - ...

  2. Microsoft PowerPoint - Dynamics Complexities Accounting for Foreign...

    National Nuclear Security Administration (NNSA)

    Australia Namibia Euratom Canada China Russia South Africa Kazakhstan Uzbekistan ... Energy Community (EURATOM) Japan China Switzerland Chile Brazil ...

  3. Microsoft PowerPoint - 3_Gary and Brian_Wednesday 5-22 Transit...

    National Nuclear Security Administration (NNSA)

    France Germany Italy Japan Kazakhstan Mexico Netherlands China Russia Spain United Kingdom Sweden 5 Natural Uranium Imports ...

  4. Mutnovskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    References Geothermal Resources in Russia Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  5. USAID Europe and Eurasia Climate Program | Open Energy Information

    Open Energy Info (EERE)

    Country Armenia, Republic of Macedonia, Russia, Ukraine, Poland, Kazakhstan, Hungary, Turkey, Uzbekistan, Turkmenistan, Lithuania, Estonia, Latvia, Azerbaijan, Tajikistan Western...

  6. The importance of context in delivering effective EIA: Case studies from East Africa

    SciTech Connect (OSTI)

    Marara, Madeleine; Okello, Nick; Kuhanwa, Zainab; Douven, Wim; Beevers, Lindsay Leentvaar, Jan

    2011-04-15

    This paper reviews and compares the condition of the environmental impact assessment (EIA) system in three countries in the East Africa region: Kenya, Rwanda and Tanzania. The criteria used for the evaluation and the comparison of each system are based on the elements of the legal, administrative and procedural frameworks, as well as the context in which they operate. These criteria are adapted from the evaluation and quality control criteria derived from a number of literature sources. The study reveals that the EIA systems of Kenya and Tanzania are at a similar stage in their development. The two countries, the first to introduce the EIA concept into their jurisdiction in this part of Africa, therefore have more experience than Rwanda in the practice of environmental impact assessment, where the legislation and process requires more time to mature both from the governmental and societal perspective. The analysis of the administrative and procedural frameworks highlights the weakness in the autonomy of the competent authority, in all three countries. Finally a major finding of this study is that the contextual set up i.e. the socio-economic and political situation plays an important role in the performance of an EIA system. The context in developing countries is very different from developed countries where the EIA concept originates. Interpreting EIA conditions in countries like Kenya, Rwanda and Tanzania requires that the analysis for determining the effectiveness of their systems should be undertaken within a relevant framework, taking into account the specific requirements of those countries.

  7. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  8. anikine(2)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Determination of the Cloud Optical Depth from the Data of the Cloud-Radiation-Aerosol Experiments (1994, 1996) at IAPh, Russia P. P. Anikine and E. V. Romashova Oboukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia D. P. Anikine Bauman Moscow High Technical University Moscow, Russia Introduction Cloudiness is one of major factors that determines the formation of a climate and its change. Because of the complexity of direct measurements of cloud optical

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Remote Sensing Investigation of the Atmospheric Boundary Layer Thermal Regime Above an Urban Area G. S. Golitsyn Institute of Atmospheric Physics Russian Academy of Science Moscow, Russia E. N. Kadygrov Central Aerological Observatory Dolgoprudny, Russia I. N. Kuznetsova Hydrometeorological Center Moscow, Russia Introduction During 2000-2002, three microwave temperature profilers (MTP-5) were used simultaneously in the Moscow region for continuous measurements of the atmospheric

  10. treaties | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    treaties Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity WASHINGTON, D.C. - The United States and Russia are today commemorating the completion of the 1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of

  11. Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in

  12. La Fonda on the Plaza, Santa Fe, NM: June 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital, Sheffield, UK * Alla Lapidus, Ph.D., Director, Center for Algorithmic Biotechnology SPbSU, Russia * Donna Muzny, M.Sc., Director of Operations, BCM * Shannon ...

  13. EA-0841: Import of Russian Plutonium-238

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to purchase plutonium-238 from the Russian Federation (Russia) for use in the Nation's space program.

  14. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    State University Nizhny Novgorod Russia Russian Federation CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS QUANTUM MECHANICS IONS TRAPS LASER RADIATION RESONANCE HARMONIC...

  15. Office of Defense Nuclear Nonproliferation

    Broader source: Energy.gov (indexed) [DOE]

    ... best practices in Russia. Expand nuclear security best practices exchanges , e.g., Israel, France, and the U.K. Increase SLD mobile detection support for law enforcement ...

  16. Agenda CBS Public Meeting-Atlanta

    Energy Savers [EERE]

    dispute system and process design consultations and training for resolving environmental and land disputes in Estonia, IsraelWest Bank, Nicaragua, Kazakhstan, Russia, and Germany. ...

  17. Nuclear safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    After 20 months of negotiation, China, France, Germany, Great Britain, Russia and the ... Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers When ...

  18. 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...

    Open Energy Info (EERE)

    .8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search OpenEI...

  19. Solnechniy Potok Solar Stream | Open Energy Information

    Open Energy Info (EERE)

    Russian Federation Sector: Solar Product: Russia-based solar project developer and module manufacturer. References: Solnechniy Potok (Solar Stream)1 This article is a stub....

  20. List of International Projects for FY 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Russia Collaboration on Investigation of Next Generation Melter Technologies ... Sweden Fuel packaging technologies and methods for long-term storage of SNF spent ...

  1. 21st International Conference on Photochemical Conversion and Storage of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy "IPS-21" (St. Petersburg, Russia) - JCAP 1st International Conference on Photochemical Conversion and Storage of Solar Energy "IPS-21" (St. Petersburg, Russia) 21st International Conference on Photochemical Conversion and Storage of Solar Energy "IPS-21" (St. Petersburg, Russia) Mon, Jul 25, 2016 3:30pm 15:30 Fri, Jul 29, 2016 4:30pm 16:30 St. Petersburg Russia Joel Haber, "Artificial Photosynthesis-Progress and Prospects" July 24 2016

  2. Titan Omsk Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Titan Omsk Group Place: Omsk, Russian Federation Product: One of Russia's top chemical companies with a subsidiary, Silarus, which is planning on building a polysilicon...

  3. U

    U.S. Energy Information Administration (EIA) Indexed Site

    ... AS - Australia; CN - Canada; CL - Colombia; ID - Indonesia; PL - Poland; RS - Russia; VZ - Venezuela; OT - Other. | || |INSTRUCTIONS continued|For Column 'f' Coal Mine County Code, ...

  4. U

    U.S. Energy Information Administration (EIA) Indexed Site

    ... AS - Australia; CN - Canada; CL - Colombia; ID - Indonesia; PL - Poland; RS - Russia; VZ - Venezuela; OT - Other. 4 U.S. Department of Energy Energy Information Administration Form ...

  5. Russian/DOE Visit

    National Nuclear Security Administration (NNSA)

    and Training Center (RMTC) The RMTC, located at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia has been designated to: * Provide nuclear...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Boreal forests, situated in a circumpolar belt in the Northern latitudes throughout the United States, Canada, Russia, and Scandinavia, are, of all biomes, among the most active ...

  7. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  8. Frequently Asked Questions About the Higgs Boson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... China, Colombia, Czech Republic, Ecuador, France, Germany, India, Ireland, Korea, Mexico, the Netherlands, Russia, Spain, Sweden, Ukraine, the United Kingdom and the United States. ...

  9. Kvark part of Gruppa Konti | Open Energy Information

    Open Energy Info (EERE)

    Kvark (part of Gruppa Konti) Place: Krasnodar, Russian Federation Zip: 350 000 Sector: Solar Product: One of Russia's PV cells and panels manufacturing and research companies....

  10. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Lateral Agreements (France and Japan) Japan China India Australia (Not Activated) ... working group engagements with China, India, Argentina, Brazil, Japan, and Russia and ...