Sample records for ruapehu volcano taupo

  1. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes characterization2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes 13 In this study, we report chemical and isotope data for 23 geothermal water samples collected geothermal waters collected from deep boreholes16 in different geothermal fields (Ohaaki, Wairakei, Mokai

  2. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  3. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  4. ambrym volcano vanuatu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 3 km thick Shield volcano Slightly sloped Up to 9000 m Basalt Gentle, some Hawaii high fire fountains Iceland Composite volcano Laske, Gabi 52 Learning to Recognize Volcanoes on...

  5. atypical arc volcano: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Insights from Merapi Volcano, Geosciences Websites Summary: Volcano, Indonesia Olivier Nadeau Department of Earth & Planetary Sciences McGill University Montreal...

  6. active submarine volcano: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be installed on the ground and thus 139 Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Klauea Volcano intrusion Geosciences Websites...

  7. avacha volcano kamchatka: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is highly significant. Clues to the processes forming submarine mud volcanoes can Biggs, Juliet 79 Publications of the Volcano Hazards Program 2010 U.S. Department of the...

  8. RESEARCH ARTICLE The 2005 eruption of Sierra Negra volcano,

    E-Print Network [OSTI]

    .g., Allan and Simkin 2000; Teasdale et al. 2005). Sierra Negra volcano began its first eruption in 26 years

  9. Publications of the Volcano Hazards Program 2005

    E-Print Network [OSTI]

    Torgersen, Christian

    ://www.avo.alaska.edu/volcanoes/latlong.php Cameron, Cheryl, Guffanti, Marianne, Kimberly, Paul, Mayberry, Gari, McIntire, Jacqueline, Ramsey, David. L. A., Wilson, C. J. N., Lowenstern, J. B., Blake, S., van Calsteren, P. W., and Davidson, J. P

  10. GEOTHERMAL EXPLORATION OF NEWBERRY VOLCANO, OREGON

    SciTech Connect (OSTI)

    Waibel, Albert F [Columbia Geoscience; Frone, Zachary S [Southern Methodist University; Blackwell, David D [Southern Methodist University

    2014-12-01T23:59:59.000Z

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  11. active cascade volcano: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The behavior of Cu, Zn and Pb during magmatichydrothermal activity at Merapi volcano, Indonesia Environmental Sciences and Ecology Websites Summary: The behavior of Cu, Zn and Pb...

  12. Analysis Of Multiple Scattering At Vesuvius Volcano, Italy, Using...

    Open Energy Info (EERE)

    Scattering At Vesuvius Volcano, Italy, Using Data Of The Tomoves Active Seismic Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  13. Haleakala Volcano Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon| OpenHaitiHaleakala Volcano

  14. Geology of Kilauea Volcano | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, EtRaft riverPyramidVolcano

  15. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10 K.J. Kim a,

    E-Print Network [OSTI]

    Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea b Department of Geology, Wayne State University, Detroit, MI 48202, USA c Geology Institute volcanoes, sedimentary volca- noes, gas­oil volcanoes etc. Mud volcanoes resemble magmatic volcanoes

  16. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23T23:59:59.000Z

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'Ã?Â?Ã?Â?s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.

  17. arenal volcano costa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flank of Arenal volcano, Costa Rica, Geochem. Geophys. Geosyst., 11, Q12004, doi:10 Biggs, Juliet 14 FORAGING AND NESTING ECOLOGY OF A COSTA RICAN LEAF-CUTTING ANT, ACROMYRMEX...

  18. Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia)

    E-Print Network [OSTI]

    Snieder, Roel

    Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia) U. Wegler,1 of the edifice of Merapi volcano (Java, Indonesia) before its eruption in 1998 by analyzing multiply scattered eruption of Merapi volcano (Indonesia), Geophys. Res. Lett., 33, L09303, doi:10.1029/2006GL025928. 1

  19. Analysis of the Seismic Activity Associated with the 20101 Eruption of Merapi Volcano, Java2

    E-Print Network [OSTI]

    Boyer, Edmond

    Analysis of the Seismic Activity Associated with the 20101 Eruption of Merapi Volcano, Java2 3 4 Keywords16 Merapi Volcano, Volcano Seismology, Eruption Forecasting, Pre-eruptive Seismicity,17 RSAM. The main features of the seismic activity during the23 pre-eruptive period and the crisis are presented

  20. The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park

    E-Print Network [OSTI]

    Heggie, Travis Wade

    2006-04-12T23:59:59.000Z

    TABLE 15 Behavioral and preparedness factors most frequently involved in frontcountry incidents in Hawaii Volcanoes National Park??????. 72 16 Frontcountry destinations in Hawaii Volcanoes National Park with the highest number... Park????????????????????????. 86 27 Behavioral and preparedness factors commonly associated with backcountry incidents in Hawaii Volcanoes National Park??????.. 87 28 Distribution of roadway incidents by specific road and severity...

  1. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  2. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    SciTech Connect (OSTI)

    Jaffe, Todd

    2012-01-01T23:59:59.000Z

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  3. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect (OSTI)

    G.A> Valentine; F.V. Perry

    2006-06-06T23:59:59.000Z

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  4. LATE QUATERNARY GLACIATION OF THE ERCIYES VOLCANO, CENTRAL TURKEY

    E-Print Network [OSTI]

    Zreda, Marek

    LATE QUATERNARY GLACIATION OF THE ERCIYES VOLCANO, CENTRAL TURKEY SARIKAYA, M. Akif1, Ã?INER, Attila, Turkey, aciner@hun.edu.tr, (2) Hydrology and Water Resources, Univ of Arizona, Tucson, AZ 85721 Mount Erciyes (3917 m), highest stratovolcano of Central Turkey, is located in the northeastern part

  5. Revised isotopic (40 Ar) age for the lamproite volcano of

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Revised isotopic (40 Ar/39 Ar) age for the lamproite volcano of Cabezos Negros, Fortuna Basin (lamproites) of the Fortuna Basin in southeast Spain. This age is significantly older than earlier reported K. Because the volcanic rocks are intercalated in the stratigraphic sequence of the Fortuna Basin directly

  6. The deep structure of Axial Volcano Michael West

    E-Print Network [OSTI]

    West, Michael

    the competing roles or ocean ridge and hot spot at Axial Volcano Provide a template on which long-term studies;Airgun survey April '99 20 gun array 8670 in3 volume 8 days #12;Airgun survey, April '99 5000+ shots 1225

  7. Volcano-tectonic modelling of magma chambers, ring-faults, unrest, and eruptions in the Tianchi Volcano, China

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    this range to AD938-946), produced between 96 and 172 km3 of deposits, or around 30 km3 of dense magma, and is one of the largest eruptions on Earth during the past 1100 years. A 5-km-diameter collapse caldera, indicating that the shallow magma chamber and/or an associated geothermal system beneath the volcano

  8. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect (OSTI)

    Benkovitz, C.M.

    1995-07-01T23:59:59.000Z

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  9. Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

  10. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  11. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    SciTech Connect (OSTI)

    Jaffe, Todd

    2012-01-01T23:59:59.000Z

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  12. Lahars Deposits Architecture and Volume in the C. Lengkong Valley at Semeru volcano, Indonesia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Lahars Deposits Architecture and Volume in the C. Lengkong Valley at Semeru volcano, Indonesia. Université Paris 1 ­ Sorbonne & Univ. Gadjah Mada (Indonesia) Laboratoire de Géographie Physique CNRS UMR Lahars at Semeru volcano, Indonesia, are an ongoing phenomenon that rapidly transports large amount

  13. Stratigraphy and textural characteristics of the 198283 tephra of Galunggung volcano (Indonesia): implications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stratigraphy and textural characteristics of the 1982­83 tephra of Galunggung volcano (Indonesia Orléans Cedex 2, France Abstract The Galunggung volcano in western Java (Indonesia) was the site activity, and consequently the corresponding increase in explosivity. Author Keywords: Indonesia

  14. Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain) Andújar and rheological state. insu-00447691,version1-18Jan2010 #12;33 Introduction In the Canary Islands (Spain), Teide storage depth at about 5 ± 1 km below current summit of Teide volcano. Given that the island has

  15. Seismic interpretation and classification of mud volcanoes of the South Caspian Basin, offshore Azerbaijan.

    E-Print Network [OSTI]

    Yusifov, Mehdi Zahid

    2005-11-01T23:59:59.000Z

    Basin. A 2D seismic grid in southeastern offshore Azerbaijan is used to define the areal distribution of mud volcanoes and to make a classification of the mud volcanoes based on characteristic seismic features. As a result detailed database for each...

  16. Correction to "Threedimensional computational axial tomography scan of a volcano with cosmic ray muon radiography"

    E-Print Network [OSTI]

    Aoki, Yosuke

    Correction to "Threedimensional computational axial tomography scan of a volcano with cosmic ray.1029/2011JB008256. [1] In the paper "Threedimensional computational axial tomography scan of a volcano. Aoki, R. Nishiyama, D. Shoji, and H. Tsuiji (2011), Correction to "Threedimensional computational axial

  17. American Journal of Science UTURUNCU VOLCANO, BOLIVIA: VOLCANIC UNREST DUE TO

    E-Print Network [OSTI]

    Pritchard, Matthew

    American Journal of Science JUNE 2008 UTURUNCU VOLCANO, BOLIVIA: VOLCANIC UNREST DUE TO MID. Uturuncu volcano, SW Bolivia, is a dormant stratovolcano ( 85 km3 ) dominated by dacitic lava domes §§§ Empresa Minera Unificada S.A., La Paz, Bolivia; Mayelsuco@hotmail.com Institute of Geophysics, University

  18. Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes

    E-Print Network [OSTI]

    Henderson, Gideon

    Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes the information contained in volcano CO2 emissions is important from both a volcanic hazards perspective into this program. The opportunity will also be taken to map out CO2 emissions at these systems and to review what

  19. Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpen Energy Information

  20. Anomalously High B-Values In The South Flank Of Kilauea Volcano...

    Open Energy Info (EERE)

    High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Evidence For The Distribution Of Magma Below Kilauea'S East Rift Zone Jump to: navigation, search OpenEI...

  1. Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain

    E-Print Network [OSTI]

    Lamarche, Amy J.

    2004-09-30T23:59:59.000Z

    them difficult to investigate. Because undersea volcanoes are made up of highly magnetic basaltic rock, it is possible to use variations in the magnetic field to explore the internal structure of such edifices. This study combines magnetic survey data...

  2. Classification of volcano events observed by multiple seismic stations Robert P.W. Duin

    E-Print Network [OSTI]

    Duin, Robert P.W.

    @bt.unal.edu.co John Makario Londo~no-Bonilla Observatorio Vulcanol´ogico y Sismol´ogico de Manizales INGEOMINAS, Colombia Email: jmakario@ingeominas.gov.co Keywords-volcano eruptions; combining classifier; spectrum

  3. A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes...

    Open Energy Info (EERE)

    and applied to aeromagnetic anomalies of Izu-Oshima Volcano surveyed in 1986 and in 1997. The calculated results of the 1986 data show that the volcanic edifice of Izu-Oshima...

  4. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

  5. Scoria Cone Construction Mechanism, Lathrop Wells Volcano, Southern Nevada

    SciTech Connect (OSTI)

    G. Valentine; D. Krier; F. Perry; G. Heiken

    2005-01-18T23:59:59.000Z

    Scoria cones are commonly assumed to have been constructed by the accumulation of ballistically-ejected clasts from discrete and relatively coarse-grained Strombolian bursts and subsequent avalanching such that the cone slopes are at or near the angle of repose for loose scoria. The cone at the hawaiitic Lathrop Wells volcano, southern Nevada, contains deposits that are consistent with the above processes during early cone-building phases; these early deposits are composed mainly of coarse lapilli and fluidal bombs and are partially welded, indicating relatively little cooling during flight. However, the bulk of the cone is comprised of relatively fine-grained (ash and lapilli), planar beds with no welding, even within a few tens of meters of the vent. This facies is consistent with deposition by direct fallout from sustained eruption columns of relatively well-fragmented material, primarily mantling cone slopes and with a lesser degree of avalanching than is commonly assumed. A laterally extensive fallout deposit (up to 20 km from the vent) is inferred to have formed contemporaneously with these later cone deposits. This additional mechanism for construction of scoria cones may also be important at other locations, particularly where the magmas are relatively high in volatile content and where conditions promote the formation of abundant microlites in the rising mafic magma.

  6. Measuring Sulphur Dioxide (SO2) Emissions in October, 2010 Catastrophic Eruption from Merapi Volcano in Java, Indonesia

    E-Print Network [OSTI]

    Gilbes, Fernando

    Volcano in Java, Indonesia with Ozone Monitoring Instrument (OMI) José A. Morales-Collazo Geology This paper discusses sulfur dioxide (SO2) cloud emissions from Merapi Volcano in Java, Indonesia during, Indonesia. In October 26th , 2010, a catastrophic eruption was reported from Merapi causing nearly 386

  7. Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia

    E-Print Network [OSTI]

    Podladchikov, Yuri

    . Implications for the Lusi mud volcano, Indonesia A. Mazzini a,*, A. Nermoen a , M. Krotkiewski a , Y 2009 Accepted 12 March 2009 Available online xxx Keywords: Java, Indonesia Lusi mud volcano Faulting volcano in Indonesia (Mazzini et al., 2007). Lusi became active the 29th of May 2006 on the Java Island

  8. Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia

    E-Print Network [OSTI]

    Mazzini, Adriano

    . Implications for the Lusi mud volcano, Indonesia A. Mazzini a,*, A. Nermoen a , M. Krotkiewski a , Y 2009 Accepted 12 March 2009 Available online 19 March 2009 Keywords: Java, Indonesia Lusi mud volcano the newly formed Lusi mud volcano in Indonesia (Mazzini et al., 2007). Lusi became active the 29th of May

  9. Humans and Volcanoes in Australia and New Guinea. Peter Bindon (1)

    E-Print Network [OSTI]

    Boyer, Edmond

    as a resource. 1 1. Anthropology Department, Western Australian Museum, Perth 6000 AUSTRALIA 2. CDRADHumans and Volcanoes in Australia and New Guinea. Peter Bindon (1) and Jean-Paul Raynal (2) ,1 de mythes d'aquisition du feu. FIRST COLONIZATION OF AUSTRALIA The occupation of greater Australia

  10. Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia

    E-Print Network [OSTI]

    Manga, Michael

    Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia Bambang., Wisma Mulia 22nd Floor, JI. Jend. Gatot Subroto 42, 12710 Jakarta, Indonesia b Bakosurtanal, Jl. Jakarta-Bogor Km. 46, 16911 Cibinong, Indonesia c Applied Geology Research Division, Institute of Technology

  11. Numerical Simulation of Tsunami Generation by the Potential Flank Collapse of the Cumbre Vieja Volcano

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    ; La Palma ,Canary Islands, Spain). Subaerial slide scenarios are first defined based on recent slope Volcano (CVV) on La Palma island (Canary Islands, Spain; Fig. 1) has been the object of numerous studies of past large paleo-submarine landslides of O(100 km3 ) volume, around the canary islands, at least

  12. Seismic interpretation and classification of mud volcanoes of the South Caspian Basin, offshore Azerbaijan. 

    E-Print Network [OSTI]

    Yusifov, Mehdi Zahid

    2005-11-01T23:59:59.000Z

    development in the South Caspian Basin is generally linked to faults, which in some instances are detached at the basement level. By using interpreted seismic surfaces it is possible to determine relative time of mud flows from the mud volcanoes. Timing of mud...

  13. FESD Preliminary Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments

    E-Print Network [OSTI]

    Huybers, Peter

    (University of Michigan), Jerry McManus (Columbia Univer- sity), Suzanne Carbotte (Columbia University), JoergFESD Preliminary Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments Project Manager: Charles Langmuir (Harvard University) PIs: Peter Huybers (Harvard University), David Lund

  14. Seismic source mechanisms of tremor recorded on Arenal volcano, Costa Rica, retrieved by waveform inversion.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Seismic source mechanisms of tremor recorded on Arenal volcano, Costa Rica, retrieved by waveform.M. Mora4 , G.J Soto.5 1 Seismology and Computational Rock Physics Laboratory, School of Geological performed for a common source location, the position of which was retrieved through the evaluation

  15. Applicability of InSAR to tropical volcanoes: insights from Central AmericaQ1

    E-Print Network [OSTI]

    Biggs, Juliet

    volcanoes: insights from Central AmericaQ1 S. K. EBMEIER1*, J. BIGGS2,3, T. A. MATHER1 & F. AMELUNG3 1 COMET. 2009; Biggs et al. 2010), as well as a variety of shallower surface processes. These include previously thought to be quiescent (e.g. on the East African Rift: Biggs et al. 2009) and at locations

  16. The Mount Manengouba, a complex volcano of the Cameroon Line:1 Volcanic history, petrological and geochemical features2

    E-Print Network [OSTI]

    Boyer, Edmond

    1 The Mount Manengouba, a complex volcano of the Cameroon Line:1 Volcanic history, petrological Group 2). Both magmatic groups belong to the under-saturated alkaline40 sodic series. Petrological

  17. active rift taupo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deepest basin in the Baikal rift system ten Brink, Uri S. 24 Assessing the extent of carbonate deposition in early rift settings Environmental Sciences and Ecology Websites...

  18. Ra-Th disequilibria: Timescale of carbonatite magma formation at Oldoinyo Lengai volcano, Tanzania

    SciTech Connect (OSTI)

    Williams, R.W.; Gill, J.B.; Bruland, K.W. (Univ. of California, Santa Cruz (USA))

    1988-04-01T23:59:59.000Z

    This paper discusses geologic models dealing with the formation of carbonatites from recent lavas of the Oldoninyo Lengai volcano, Tanzania. This paper also acts as a rebutal to an earlier writing which discussed potential flaws in the collection and dating of the carbonatites. The paper goes on to provide activity ratios from different carbonatites and discussion the lack of evidence for fractional crystallization in a olivine sovite magma.

  19. Mud volcanoes and ice-keel ploughmarks, Beaufort Sea shelf, Arctic Canada

    E-Print Network [OSTI]

    Dowdeswell, J . A.; Todd, B . J.

    2015-01-01T23:59:59.000Z

    . 2013). This has led to a warming of what was terrestrial permafrost by water incursion, and to the dissociation of subsurface gas hydrates which now vent into marine waters. Accompanying this change is the development of conical submarine landforms... of the linear and curvilinear features is lost where they intersect conical mounds and associated moats, implying subsequent burial. Interpretation The conical mounds are interpreted to be mud volcanoes associated with the release of methane from gas hydrates...

  20. Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

  1. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01T23:59:59.000Z

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  2. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01T23:59:59.000Z

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  3. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    SciTech Connect (OSTI)

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25T23:59:59.000Z

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  4. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis

    E-Print Network [OSTI]

    Biggs, Juliet

    Click Here for Full Article Ground surface deformation patterns, magma supply, and magma storage., and S. McNutt (2010), Ground surface deformation patterns, magma supply, and magma storage at Okmok at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone

  5. High CO2 Levels in Boreholes at El Teide Volcano Complex (Tenerife, Canary Islands): Implications for Volcanic

    E-Print Network [OSTI]

    Long, Bernard

    High CO2 Levels in Boreholes at El Teide Volcano Complex (Tenerife, Canary Islands): Implications emissions at numerous water prospection drillings in the volcanic island of Tenerife. Large concentrations region of the island (Las Can~ adas del Teide caldera). In this work we analysed CO2 concentrations

  6. Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands, from land

    E-Print Network [OSTI]

    Jones, Alan G.

    Palma, Canary Islands, from land magnetotelluric imaging X. Garcia1,2 and A. G. Jones1 Received 9 March on the island of La Palma (Canary Islands) provides an ideal setting to address fundamental questions about (2010), Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands

  7. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands)

    E-Print Network [OSTI]

    Kirby, James T.

    Palma, Canary Islands): Tsunami source and near field effects S. M. Abadie,1 J. C. Harris,2 S. T. Grilli of the Cumbre Vieja Volcano (CVV; La Palma, Canary Island, Spain) through numerical simulations performed in two of such wave trains on La Palma and other Canary Islands are assessed in detail in the paper. Citation: Abadie

  8. Naturally acid waters from Copahue volcano, Argentina J.C. Varekamp a,*, A.P. Ouimette b

    E-Print Network [OSTI]

    Royer, Dana

    Naturally acid waters from Copahue volcano, Argentina J.C. Varekamp a,*, A.P. Ouimette b , S), National University of Comahue, Neuquen, Argentina f REPSOL-YPF, Dirección General de Exploración, Talero 360 ­ (8300) Neuquén, Argentina a r t i c l e i n f o Article history: Available online 24 November

  9. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program

    E-Print Network [OSTI]

    Moyer, Craig

    Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean, M. J., S. C. Komor, P. Fryer, and C. L. Moyer, Deep-slab fluids fuel extremophilic Archaea.5, made up overwhelmingly of Archaea, is oxidizing methane from the ascending fluid to carbonate ion

  10. Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications on pre-eruptive conduit conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications of the eruptive products. We used quantitative analysis of water content in residual glasses (matrix glass. To better link water content to structural level, we performed new water solubility experiments at low

  11. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,

    E-Print Network [OSTI]

    Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

  12. Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions

    E-Print Network [OSTI]

    Belousov, Alexander

    rare and poorly understood, yet they may be quite important in terms of atmospheric impact because and 0377-0273/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jvolgeores.2005 for the 1989­1990 eruptions of the Redoubt volcano. D 2005 Elsevier B.V. All rights reserved. Keywords

  13. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    F.V. Perry

    2005-10-13T23:59:59.000Z

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard.

  14. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    SciTech Connect (OSTI)

    Heiken, G.; Duffield, W. (eds.)

    1990-09-01T23:59:59.000Z

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  15. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    SciTech Connect (OSTI)

    Gisler, Galen R.; Weaver, R. P. (Robert P.); Mader, Charles L.; Gittings, M. L. (Michael L.)

    2004-01-01T23:59:59.000Z

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  16. SMALL-VOLUME BASALTIC VOLCANOES: ERUPTIVE PRODUCTS AND PROCESSES, AND POST-ERUPTIVE GEOMORPHIC EVOLUTION IN CRATER FLAT (PLEISTOCENE), SOUTHERN NEVADA

    SciTech Connect (OSTI)

    G.A. Valentine; F.V. Perry; D. Krier; G.N. Keating; R.E. Kelley; A.H. Cogbill

    2006-04-04T23:59:59.000Z

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes, carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.

  17. Self-potential, soil co2 flux, and temperature on masaya volcano, nicaragua

    SciTech Connect (OSTI)

    Lewicki, J.L.; Connor, C.; St-Amand, K.; Stix, J.; Spinner, W.

    2003-07-01T23:59:59.000Z

    We investigate the spatial relationship between self-potential (SP), soil CO{sub 2} flux, and temperature and the mechanisms that produce SP anomalies on the flanks of Masaya volcano, Nicaragua. We measured SP, soil CO{sub 2} fluxes (<1 to 5.0 x 10{sup 4} g m{sup -2} d{sup -1}), and temperatures (26 to 80 C) within an area surrounding a normal fault, adjacent to Comalito cinder cone (2002-2003). These variables are well spatially correlated. Wavelengths of SP anomalies are {le}100 m, and high horizontal SP gradients flank the region of elevated flux and temperature. Carbon isotopic compositions of soil CO{sub 2} ({delta}{sup 13}C = -3.3 to -1.1{per_thousand}) indicate a deep gas origin. Given the presence of a deep water table (100 to 150 m), high gas flow rates, and subsurface temperatures above liquid boiling points, we suggest that rapid fluid disruption is primarily responsible for positive SP anomalies here. Concurrent measurement of SP, soil CO{sub 2} flux, and temperature may be a useful tool to monitor intrusive activity.

  18. DESERT PAVEMENTS AND SOILS ON BASALTIC PYROCLASTIC DEPOSITS AT LATHROP WELLS AND RED CONE VOLCANOES, SOUTHERN NEVADA

    SciTech Connect (OSTI)

    G.A. Valentine; C.D. Harrington

    2005-08-10T23:59:59.000Z

    Formation of desert pavement and accretionary soils are intimately linked in arid environments such as the Mojave Desert. Well-sorted fallout scoria lapilli at Lathrop Wells (75-80 ky) and Red Cone ({approx}1 Ma) volcanoes (southern Nevada) formed an excellent starting material for pavement, allowing infiltration of eolian silt and fine sand that first clogs the pore space of underlying tephra and then aggrades and develops vesicular A (Av) horizons. Variations in original pyroclast sizes provide insight into minimum and maximum clast sizes that promote pavement and soil formation: pavement becomes ineffective when clasts can saltate under the strongest winds, while clasts larger than coarse lapilli are unable to form an interlocking pavement that promotes silt accumulation (necessary for Av development). Contrary to predictions that all pavements above altitudes of {approx}400 m would have been ''reset'' in their development after late Pleistocene vegetation advances (about 15 ka), the soils and pavements show clear differences in maturity between the two volcanoes. This indicates that either the pavement soils develop slowly over many 10,000's of years and then are very stable, or that, if they are disrupted by vegetation advances, subsequent pavements are reestablished with successively more mature characteristics.

  19. Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources

    SciTech Connect (OSTI)

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    2002-06-06T23:59:59.000Z

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

  20. Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal-chemistry

    E-Print Network [OSTI]

    Della Ventura, Giancarlo; Bellatreccia, Fabio; De Benedetti, Arnaldo A; Mottana, Annibale

    2013-01-01T23:59:59.000Z

    This work relates the occurrence and the characterization of fibrous tremolite within the latest pyroclastic deposits of the Colli Albani (Alban Hills) volcano, to the south-east of Rome (Italy). These mineralizations were observed during a systematic rock-sampling undertaken to complete the geological survey for the new 1:50 000 map of this volcanic area. The examined specimens were collected inside distal deposits correlated to the last Albano Maar activity, which are geographically located within the boundaries of the Nemi community. Tremolite occurs within both carbonate ejecta and the host pyroclastic rocks. It shows up as whitish to light gray coloured aggregates of crystals with fibrous aspect and sericeous brightness. Due to the extremely small crystal dimensions, never exceeding 0.5 micron in diameter, the micro-chemical composition of the fibres could be obtained only by combining P-XRD, SEM-EDX and FTIR methods. Infrared spectroscopy, in particular, proved to be a valuable technique to characterize...

  1. Health-hazard Evaluation Report Heta 90-179-2172, National Park Service, Hawaii Volcanoes National Park, Hilo, Hawaii

    SciTech Connect (OSTI)

    Burr, G.A.; Stephenson, R.L.; Kawamoto, M.W.

    1992-01-01T23:59:59.000Z

    In response to a request from the National Park Service, an evaluation was undertaken of possible hazardous exposures to volcanic emissions, both gases and particulates, at the Hawaii Volcanoes National Park (SIC-7999) on the island of Hawaii in the State of Hawaii. Concerns included exposures to sulfur-dioxide (7446095) (SO2), asphalt decomposition products from burning pavement, acid mists when lava enters the ocean, volcanic caused smog, and Pele's hair (a fibrous glass like material). Two other related requests for study were also received in regard to civil defense workers in these areas. No detectable levels of SO2 were found during long term colorimetric detector tube sampling used to characterize park workers' personal full shift exposures. Short term detector tube samples collected near a naturally occurring sulfur vent showed SO2 levels of 1.2 parts per million (ppm). Work related symptoms reported by more than 50% of the respondents included headache, eye irritation, throat irritation, cough, and phlegm. Chest tightness or wheezing and shortness of breath were also frequently reported. Samples collected for hydrochloric-acid (7647010) and hydrofluoric-acid (7664393) recorded concentrations of up to 15ppm for the former and 1.0ppm for the latter acid. Airborne particulates in the laze plume were comprised largely of chloride salts. Airborne fibers were detected at a concentration of 0.16 fibers per cubic centimeter. The authors conclude that excessive exposure to SO2 can occur at some locations within the park. The authors recommend that workers and visitors to the park be informed of the potential for exposures.

  2. The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;

    E-Print Network [OSTI]

    Torgersen, Christian

    The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from left

  3. Newberry Volcano EGS Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    21.4m o Awardee share 22.4m o Funding for FY10 4.1m * Barriers o Institutional * Drilling cost - minor grant share for new wells, no share for existing wells * Permitting -...

  4. Volcanoes in Virginia!

    ScienceCinema (OSTI)

    Johnson, Elizabeth Baedke [James Madison University

    2014-06-25T23:59:59.000Z

    The recent earthquake may have you wondering what other surprises Virginia's geology may hold. Could there be a volcanic eruption in Virginia? Probably not today, but during the Eocene, about 35-48 million years ago, a number of mysterious eruptions occurred in western Virginia. This talk investigates the possible origins of these eruptions, and what they can tell us about the crust and mantle underneath Virginia.

  5. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    SciTech Connect (OSTI)

    Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R.; Sims, K.W.W.

    2009-10-01T23:59:59.000Z

    Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar results provide good precision even on ages as low as 19 {+-} 4 ka. Hence, the strengths and weaknesses of the U-Th/He and {sup 40}Ar/{sup 39}Ar methods are complimentary for basalts with ages of order 100-500 ka.

  6. Paleomagnetism of Paisano Volcano, Texas

    E-Print Network [OSTI]

    Ryan, David

    1988-01-01T23:59:59.000Z

    233 354 in . 302 1. 022 . 789 . 440 . 627 . 139 1. 016 af300 afloo tb300 af200 af200 af200 af200 . 708 af200 427 af300 analysis 261 256 245 320 188 249 118 (a) 31 Table 4. (continued) Sample Site PV 11 Jo D J/Jo step MDF... . 182 af100 78 8844 21 13 . 840 th300 7854 18 6 . 133 af100 61 4719 5 336 . 103 af100 52 34 Table 4. (continued) Sample Jo D J/Jo step MDF Site RC 1703 RC 1703-1 RC 1703-2 RC 1703-3 RC 1703-4 RC 1703-5 RC 1703-6 RC 1703-7 RC 1703-8 RC 1703...

  7. Shield Volcano | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShida Battery Technology Co Ltd

  8. Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian...

    Open Energy Info (EERE)

    G. Romano, E. Delcher, B. Suski, A. Revil, P. Menny, F. Di Gangi, J. Letort, A. Peltier, V. Villasante-Marcos, G. Douillet, G. Avard and M. Lelli Published Journal Journal...

  9. PALEOMAGNETIC DATING OF THE CERRO PRIETO VOLCANO

    E-Print Network [OSTI]

    Boer, Jelle De

    2009-01-01T23:59:59.000Z

    i d I LBL-9547 CERRO PRIETO-06 COkIF-7L? /COOPERATIVE PROGRAM AT THE CERRO PRIETO GEOTHERMAL FIELDOF THE QUATERNARY CERRO PRIETO, CRATER ELEGANTE, AND SALTON

  10. PALEOMAGNETIC DATING OF THE CERRO PRIETO VOLCANO

    E-Print Network [OSTI]

    Boer, Jelle De

    2009-01-01T23:59:59.000Z

    OF ENERGY Division of Geothermal Energy United States of AmEnergy, Division of Geothermal Energy, *der contract W-7405-Development I of Geothermal Energy Resources, California: Q

  11. Annotated bibliography hydrogeology of Kilauea Volcano, Hawaii

    SciTech Connect (OSTI)

    Ingebritsen, S.E.; Scholl, M.A.

    1993-10-01T23:59:59.000Z

    The report consists of report documentation and short abstracts relating to the hydrology, geology, rainfall, ground water, water table and evapotranspiration, etc. relating to the whole island.

  12. The Fluid Mechanics Inside a Volcano

    E-Print Network [OSTI]

    Gonnermann, Helge

    2007 by Annual Reviews. All rights reserved 0066-4189/07/0115-0321$20.00 Key Words bubble nucleation, bubble growth, fragmentation, volcanic eruption, magma rheology Abstract The style and evolution causes dissolved volatile species, such as water and carbon dioxide, to exsolve from the melt to form

  13. Man Against Volcano: The Eruption on Heimaey,

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    exchange agreements with 24 foreign countries, and 47 scientific exchange agreements were pending with 30's Science Institute. Also, during 1973, and in subsequent years, Ice- landic officials provided support on scientific subjects of mutual interest, such as volcanology, seismology, geothermal studies, glaciology

  14. Newberry Volcano EGS Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewState EnergyNewark NeighborsNewberry

  15. Principal Types of Volcanoes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log

  16. Haleakala Volcano Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | Open

  17. Research Article Evolution of West Rota Volcano, an extinct submarine volcano in the

    E-Print Network [OSTI]

    Stern, Robert J.

    , Commonwealth of the Northern Mariana Islands (Fig. 1). It and Esmeralda Bank to the *Correspondence. Received 8

  18. Misinterpretation of Electrical Resistivity Data in Geothermal...

    Open Energy Info (EERE)

    Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  20. aso volcano japan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Organisation Text and Picture Copyright 2004 AFP. All 473 Creating the wholesale market for electricity in Japan : what should Japan learn from major markets in the...

  1. albani volcano roman: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signals such as icequakes Julien Chaput; Julien Chaput 3 Roman Mosaics Roman, Turkey, Antioch Fission and Nuclear Technologies Websites Summary: Roman Mosaics SMART KIDS...

  2. Aster Watches The World'S Volcanoes- A New Paradigm For Volcanological...

    Open Energy Info (EERE)

    From Orbit Abstract Onboard NASA Terra spacecraft is one of the most sophisticated earth observing instruments ever flown, the Advanced Spaceborne Thermal Emission and...

  3. EVIDENCE OF MULTIPLE MAGMA RESERVOIRS AT FERNANDINA VOLCANO, GALPAGOS

    E-Print Network [OSTI]

    Geist, Dennis

    Shaded relief map of Fernandina Island and bathymetry (topography: SRTM data V4, [ Jarvis et al., 2008 seismic activity. Red and green diamonds mark average LOS surface displacement within each area

  4. Validation of Innovative Exploration Technologies for Newberry Volcano

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

  5. Geothermal Exploration of Newberry Volcano, Oregon Summary Report...

    Open Energy Info (EERE)

    Additional Info Field Value Source http:gdr.openei.orgsubmissions485 Author SMU Geothermal Laboratory Maintainer Cathy Chickering Pace bureaucode 019:20 Catalog GDR...

  6. RESEARCH ARTICLE The May 2005 eruption of Fernandina volcano, Galpagos

    E-Print Network [OSTI]

    and Simkin 2000). Fernandina perhaps best exhibits the distinctive spatial pattern of eruptive fissures caldera margins and radial fissures lower on the flanks (McBirney and Williams 1969; Simkin 1984; Chadwick

  7. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below Earth's surface, seismic tomography can be harder to interpret. "To simulate seismic data for interpretation, people have traditionally used broad layers of...

  8. Monitoring Erebus volcano's active lava lake; tools, techniques and observations

    E-Print Network [OSTI]

    Peters, Nial John

    2015-03-03T23:59:59.000Z

    are those that persistently expose magma at the Earth’s surface. In this respect, they encompass many of the popular stereo- types of volcanic activity, exhibiting sustained passive degassing, which is often ac- companied sporadically by varying degrees... serves the crater rim was replaced. The old system was approaching ten years of service, and had become overly com- plex, and unreliable. A combination of extreme winds and corrosive gases makes the crater rim of Erebus an unsuitable site for solar panels...

  9. A Strontium Isotopic Study Of Newberry Volcano, Central Oregon...

    Open Energy Info (EERE)

    of basaltic magma rising through it. Authors Gordon G. Goles and Richard St J. Lambert Published Journal Journal of Volcanology and Geothermal Research, 1990 DOI Not...

  10. 1. INTRODUCTION Volcanoes represent one of the most important natural

    E-Print Network [OSTI]

    , and physical and radiative effects, is essential for various branches of atmospheric science. Eruptions of El of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom C. Oppenheimer, and premature death. While volcanic emissions have contributed to atmospher- ic evolution throughout the history

  11. 14 | Coordinates November 2009 Many of the world's volcanoes that

    E-Print Network [OSTI]

    of 4 to 6 cm per year (Wadge et al., 2005). Furthermore, Wadge demonstrated that SAR interferometry calibration and temporal synchronisation. In this case the sensors equipped with GNSS chips calculate

  12. Rural groundwater supply for the Volcanoes National Park region, Rwanda

    E-Print Network [OSTI]

    Zoghbi, Christiane A. (Christiane Antoine)

    2007-01-01T23:59:59.000Z

    Water scarcity is a major issue faced by both developed and developing countries. According to the Millennium Development Goals set by the United Nations, the number of people that do not have access to an improved water ...

  13. Validation of Innovation Exploration Technologies for Newberry Volcano |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorizedVIAThisValerie Jarrett

  14. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasofNew Microscopy

  15. Chemistry of spring and well waters on Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water...

  16. Self Potential At Haleakala Volcano Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeegerSelden,

  17. Jan. 24 Science Series Lecturer to Discuss Volcanoes in Virginia! |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON... NoJames Morbyto:Jefferson Lab

  18. A Strontium Isotopic Study Of Newberry Volcano, Central Oregon- Structural

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfand RangeOpenOfBeyond |And

  19. Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformation CircaItaly) Revealed

  20. Alaska Plans Geothermal Leasing at Volcano | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-JulyBurden RFI | TSAlaskaAlaska

  1. Validation of Innovation Exploration Technologies for Newberry Volcano

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59CapabilityVulnerabilities|VWD-0006Validation

  2. Validation of Innovation Exploration Technologies for Newberry Volcano |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE

  3. Newberry Volcano EGS Demonstration Geothermal Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°, -122.0402399°

  4. Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin:Information AkutanInformation

  5. Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York: Energy Resources

  6. Aster Watches The World'S Volcanoes- A New Paradigm For Volcanological

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,ResourceSpainObservations

  7. Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMtMt.

  8. Validation of Innovative Exploration Technologies for Newberry Volcano

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to:Vale HotWest,Geothermal

  9. -2500 0 2500 0 100 200 300 400 500 600 700

    E-Print Network [OSTI]

    Becker, Thorsten W.

    volcanoes from Siebert L, Simkin T (2002-): Volcanoes of the World: an Illustrated Catalog of Holocene

  10. Author's personal copy Adsorbate interactions on surface lead to a flattened Sabatier volcano plot

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    intermediates and activation energies. Sensitivity analyses indicate lat- eral repulsions between surface adsorbates (``enthalpic effect'') and site competition (``entropic effect'') flatten the catalytic activity

  11. Ground deformation associated with the eruption of Lumpur Sidoarjo mud volcano, east Java, Indonesia

    E-Print Network [OSTI]

    Aoki, Yosuke

    , Indonesia Yosuke Aoki , Teguh Purnama Sidiq 1 Earthquake Research Institute, University of Tokyo, 1-1 Yayoi. With this background, the eruption of Lumpur Sidoarjo (LUSI), eastern Java Island, Indonesia, pro- vides us), which yields good coherence even in vegetated regions like Indonesia. While Rudolph et al. (2013) used

  12. 1J1? 5-1`; i : l4,7 HEAT TRANSFER IN ACTIVE VOLCANOES

    E-Print Network [OSTI]

    , the Earthwatch team, ICE employees,and Podsnational park rangersprovided field assistance. The LandDavid Robinsongaveme a bedin Wellington. PeterOtway, SteveSherburn,Dave Keen, Tony Hurst, Ray Dibble, JohnLatter all

  13. Seismic and acoustic observations at Mount Erebus Volcano, Ross Island, Antarctica, 19941998

    E-Print Network [OSTI]

    Rowe, Charlotte

    the lava lake surface; however, this depth could be exaggerated by near-field radial tilt. Seismic and Kienle, 1986; Kaminuma, 1994). Additional remote monitoring included infrasonic microphones (Dibble et al., 1984; Kaminuma et al., 1985) and, from 1986 to 1990, television surveillance of the lava lake (Dibble

  14. anorogenic acid volcano-plutonic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 8 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  15. Volcanoes and the Great Dying: The end-Permian extinction Continental Dynamics

    E-Print Network [OSTI]

    Rhoads, James

    Sul dic ocean Acid rain #12;Annually averaged pH and sulfur induce intense acid rain Black et al. (Geology, 2014) #12;CH3Cl released in lower troposphere

  16. Geochemical heterogeneity in the Hawaiian plume : constraints from Hawaiian volcanoes and Emperor seamounts

    E-Print Network [OSTI]

    Huang, Shichun

    2005-01-01T23:59:59.000Z

    The 6000-km long, age-progressive linear Hawaii-Emperor Chain is one of the best defined hotspot tracks. This hotspot track plays an important role in the plume hypothesis. In this research, geochemical data on the ...

  17. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  18. REDUCING THE RISK FROM VOLCANO HAZARDS Lahars of Mount Pinatubo, Philippines

    E-Print Network [OSTI]

    Torgersen, Christian

    , or the sudden failure of a natural dam, mixes with this loose volcanic material, creating mudflows that can

  19. Crater Lake Temperature Changes of the 2005 Eruption of Santa Ana Volcano, El Salvador, Central America

    E-Print Network [OSTI]

    Royer, Dana

    Division, Instituto Tecnolo´gico y de Energi´as Renovables (ITER), 38611 Granadilla de Abona, S/C de

  20. Plank et al. (G18743), p. 1 Nicaraguan volcanoes record paleoceanographic changes

    E-Print Network [OSTI]

    survived subduction and been recorded in the changing composition of Nicaraguan magmas. A uranium increase-recycling signature in these arcs, however, is weak and thus not ideal for exploring the temporal variability

  1. July 6, 2012 Atmospheric Pollution, Climate Change 1 Vog plume rising from Klauea Volcano.

    E-Print Network [OSTI]

    Businger, Steven

    Pollution and Global Warming, Pohina I Ka Uahi (Hazy with Smoke) Grades: 6-8, modifiable for 3-5, 9-12 Time surfaces, regulating temperatures and keep Earth habitable. ESS3C: Human Impacts On Earth Systems Human, are major factors in the current rise in Earth's mean surface temperature (global warming). Reducing human

  2. Correlation of Cycles in Lava Lake Motion and Degassing at Erebus Volcano, Antarctica

    E-Print Network [OSTI]

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-19T23:59:59.000Z

    the figure for clarity.314 5. Discussion Given the apparent complexity of Erebus’s shallow magmatic system [e.g. Zandomeneghi315 et al., 2013] and the sensitivity of multi-phase flows to small changes in system parameters316 [e.g. Molina et al., 2012... :24 on 17 December 2012) have been omitted from the figure for clarity. 5. Discussion Given the apparent complexity of Erebus’s shallow magmatic system [e.g., Zandomeneghi et al., 2013] and the sensitivity of multiphase flows to small changes in system...

  3. Using seafloor geodesy to monitor volcanic collapse on the south flank of Kilauea Volcano, Hawaii

    E-Print Network [OSTI]

    Phillips, Kathleen A.

    2006-01-01T23:59:59.000Z

    Photo of PXP on deck with pressure sensorPhoto of a benchmark on deck with pressure sensorII.4 Photo of PXP on deck with pressure sensor rigging.

  4. Thermodynamic stability and activity volcano for perovskite-based oxide as OER catalyst

    E-Print Network [OSTI]

    Rong, Xi, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Design of efficient and cost-effective catalysts for the oxygen evolution reaction (OER) is crucial for the development of electrochemical conversion technologies. Recent experiments show that perovskite transition-metal ...

  5. He-CO? Systematics in groundwaters at Mount Lassen Volcano , Northern Califronia

    E-Print Network [OSTI]

    Franz, Brian Paul

    2012-01-01T23:59:59.000Z

    of  mantle-­?derived  CO 2  and  He  from  springs  in  and  Rose,  T.  P.  (1999).  CO 2  degassing  in  the  and  carbonate  derived  CO 2 .   Then  we  combine  our  

  6. Magmatic Longevity of Laacher SeeVolcano (Eifel, Germany) Indicated by U^Th Dating of

    E-Print Network [OSTI]

    PUBLICATION APRIL 16, 2010 Uranium-series dating of carbonatitic ejecta clasts constrains the crystallization ¼1·7; n ¼ 24) to near-eruption age (12·9 ka). Uranium-series carbonatite ages qualitatively agree crystallized shortly before eruption, and the lack of older crystals implies crystal removal through settling

  7. Monitoring rapid temporal change in a volcano with coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Institute of Mining and Technology, Socorro, New Mexico, USA Received 29 July 2004; revised 5 November 2004^t and Roel Snieder Center for Wave Phenomena and Department of Geophysics, Colorado School of Mines, Golden, Colorado, USA Richard C. Aster and Philip R. Kyle Department of Earth and Environmental Science, New Mexico

  8. Emissions from volcanoes Christiane Textor, Hans-F. Graf, Claudia Timmreck, Alan Robock

    E-Print Network [OSTI]

    Robock, Alan

    -Seamount Farallon de Pajaros Pagan Esmeralda Bank Malinao Mayon Bulusan Taal Canlaon Dokono Gamkonora Gamalama

  9. Spectral Characterization of Volcanic Earthquakes at Nevado del Ruiz Volcano Using

    E-Print Network [OSTI]

    Duin, Robert P.W.

    Departamento de Inform´atica y Computaci´on, Universidad Nacional de Colombia Sede Manizales, km 7 v´ia al aeropuerto, Manizales (Caldas), Colombia, morozcoa@unal.edu.co 2 Information and Communication Theory Group and the interpretability of the characterization results is enhanced as well. We consider several spectral band selection

  10. Toward continuous 4D microgravity monitoring of volcanoes Glyn Williams-Jones1

    E-Print Network [OSTI]

    Williams-Jones, Glyn

    caused by starvation, disease, and economic hardship resulting from these eruptions Simkin et al., 2001;Witham,2005 .Ofthe600orsoactivevolcanoesonEarth,ap- proximately 60 erupt subaerially each year Simkin

  11. On trapdoor faulting at Sierra Negra volcano, Galapagos Sigurjon Jonssona,*, Howard Zebkerb

    E-Print Network [OSTI]

    Amelung, Falk

    and Rowland, 1996). Eleven historical eruptions have occurred on Sierra Negra since 1813 (Simkin and Siebert

  12. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR

    E-Print Network [OSTI]

    Amelung, Falk

    2006 and 2010 [Simkin and Siebert, 2002]. Most of the Indonesian volca- noes are andesitic to dacitic-related fatalities [Simkin and Siebert, 2002; Blong, 1984], the two deadliest eruptions are the 1815 eruption [Simkin and Siebert, 2002]. More recently, the 1963 eruption of Agung in Bali caused over 1,100 fatalitie

  13. APRIL 2009 FERNANDINA VOLCANO ERUPTION, GALAPAGOS ISLANDS, ECUADOR: THERMAL MAPPING OF THE LAVA FLOWS EMITTED

    E-Print Network [OSTI]

    Geist, Dennis

    , with a maximum subsidence of about 300m [Simkin and Howard,1970]. Recent activity at Fernandina includes

  14. ARTICLE IN PRESS On trapdoor faulting at Sierra Negra volcano, Galapagos

    E-Print Network [OSTI]

    Amelung, Falk

    occurred on Sierra Negra since 1813 (Simkin and Siebert, 1994). The last eruption took place in 1979 after

  15. Using seafloor geodesy to monitor volcanic collapse on the south flank of Kilauea Volcano, Hawaii

    E-Print Network [OSTI]

    Phillips, Kathleen A.

    2006-01-01T23:59:59.000Z

    seismic interpretation . . . . . . . . . . . . . . . . . . . .Figure I.16 shows the seismic interpretation from Morgan etMorgan et al. seismic interpretation. Figure from (Morgan et

  16. DISSIMILARITY-BASED CLASSIFICATION OF SEISMIC SIGNALS AT NEVADO DEL RUIZ VOLCANO

    E-Print Network [OSTI]

    Duin, Robert P.W.

    INGEOMINAS - Observatorio Vulcanológico y Sismológico de Manizales, Avenida 12 de Octubre No. 15-47, Colombia. E-mail: megarcia@ingeominas.gov.co 3 Information and Communication Theory Group, Mekelweg 4, 2628 CD

  17. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  18. acid volcano-plutonic rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mining. Operations gave rise to approximately 12.410 6 m 3 of waste rock, while the mill process generated a volume of approximately 2.3910 6 m 3 of tailings. Regardless the...

  19. The feasibility of generating low frequency volcano seismicity by flow through a deformable channel

    E-Print Network [OSTI]

    Balmforth, Neil

    or hyrothermal fluids through tabular channels in elastic rocks are a possible source of low frequency seis emanates from fluid channels encased in rock, such as fluid-filled hydrofractures, dykes and cylindrical (e.g. Kon- stantinou 2002) but the source of energy driving tremor must be sustained for minutes

  20. Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    be relatively large and well mixed, which is inconsistent with models that place this source on the margin of a radially zoned plume. Authors S. L. Quane, M. O. Garcia, H....

  1. EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to create an Enhanced Geothermal Systems (EGS) Demonstration Project involving new technology, techniques, and advanced monitoring protocols for the purpose of testing the feasibility and viability of EGS for renewable energy production.

  2. Experimental Constraints on the Deep Magma Feeding System at Stromboli Volcano, Italy

    E-Print Network [OSTI]

    Boyer, Edmond

    magmas at their storage level and discuss their petro- genesis. Fluid-present, H2O- and CO2-bearing, near analyzed by Fourier transform IR spectroscopy and their H2O and CO2 concentrations compared with those balance. They range from CO2-rich (XH2O $ 0Á2) at 400 MPa to H2O-rich (XH2O $ 0Á8) at 100 MPa.The free

  3. Numerical modelling of mud volcanoes and their ows using constraints from the Gulf of Cadiz

    E-Print Network [OSTI]

    Biggs, Juliet

    Bramley J. Murton Ã? , Juliet Biggs 1 Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH

  4. Applicability of InSAR to tropical volcanoes: insights from Central America

    E-Print Network [OSTI]

    Amelung, Falk

    . BIGGS2,3, T. A. MATHER1 & F. AMELUNG3 1 COMET+, Department of Earth Sciences, University of Oxford) or intrusive processes (e.g. dyke and sill intrusion: Hamling et al. 2009; Biggs et al. 2010), as well African Rift: Biggs et al. 2009) and at locations not obviou- sly associated with a particular volcanic

  5. Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano...

    Open Energy Info (EERE)

    explosions probably occurred due to interaction of the magma head with groundwater around the crater, and abundant very fine ash ("gray tephra") was discharged within...

  6. Research paper Impact of the eruptive activity on glacier evolution at Popocatpetl Volcano

    E-Print Network [OSTI]

    Kääb, Andreas

    , Colombia, the eruption melted, fractured and destabilized the ice cap (Thouret, 1990). On the other hand to melting processes. The most important loss occurred over 2000­2001 when 19% of the glacier-covered area and low activity. Pyroclastic flow generation, ejection of incandescent material, and tephra fall affected

  7. An unexpected journey: experimental insights into magma and volatile transport beneath Erebus volcano, Antarctica

    E-Print Network [OSTI]

    Iacovino, Kayla

    2014-06-10T23:59:59.000Z

    fugacity of the volatile component and the concentration of that volatile dissolved in the melt. Because of the poor fit of our CO2 data to a power law regression, the pure-CO2 experiments of Lesne et al. (2011b) were used to create these isobars... /mantle boundary. Seismic and gravitational investigations on and around Ross Island suggest that this boundary is ?20 km deep (Cooper et al., 1994; Finotello et al., 2011; Newhall & Dzurisin, 1989). The evolution of the Erebus cone itself is inferred to have taken...

  8. Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain 

    E-Print Network [OSTI]

    Lamarche, Amy J.

    2004-09-30T23:59:59.000Z

    of Loihi are widely varied (NRM intensities range from 1-157 A/m and susceptibilities from 1.26 x 10-3 to 3.62 x 10-2 S.I.). The average NRM intensity is 26 A/m. The size and strength of magnetic source bodies were determined by using various modeling...

  9. Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    T. Parsons; G.A. Thompson; A.H. Cogbill

    2006-05-31T23:59:59.000Z

    The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip.

  10. New gamma-ray observatory begins operations at Sierra Negra volcano in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User and DataNewstate of Puebla,

  11. Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations InEnergyGeocodedEnergy

  12. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002) | OpenHistory

  13. Volcanoes and ENSO over the Past Millennium JULIEN EMILE-GEAY

    E-Print Network [OSTI]

    Emile-Geay, Julien

    , Atlanta, Georgia RICHARD SEAGER, MARK A. CANE, AND EDWARD R. COOK Lamont-Doherty Earth Observatory solar activity during the well-documented Medieval Climate Anomaly. Compiling paleoclimate data from is documented. The authors propose, in particular, that the event briefly interrupted a solar

  14. Eruptions of volcanoes in Iceland: Katla and Eyjafjallojokull P.M.E.Altham, University of Cambridge.

    E-Print Network [OSTI]

    Altham, Pat

    ' was published by G.Larsen in 1993: see www.earthice.hi.is This gives the Duration of the eruption in days. In the paper, the methods applied are given on pp 247­248 of the 1966 book by D.R.Cox and P.A.W.Lewis `The

  15. A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. NationalMammalsSmithResponseHawaii |

  16. Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano, Northern

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRXRate-Making

  17. New gamma-ray observatory begins operations at Sierra Negra volcano in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible toNew app

  18. 238U Decay Series Systematics Of Young Lavas From Batur Volcano, Sunda Arc

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado School of| Open

  19. 3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado3 Phases

  20. A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe CommissionEnergyEnergy

  1. A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras Volcano,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29MakingSteam |Colombia

  2. Preliminary results from an isotope hydrology study of the Kilauea Volcano

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas- Cove Fort-Sulphurdale,area,

  3. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, search Name StratosolarInformation|

  4. Summary of Puʻu ʻOʻo - Kupaianaha Eruption, Kilauea Volcano, Hawaii |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy Information Puʻu

  5. Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:Drill Core From SOH 1

  6. Summary of Pu u O o - Kupaianaha Eruption, Kilauea Volcano, Hawaii | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault Propagation AndInformation

  7. Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to:1999)

  8. Analysis Of Multiple Scattering At Vesuvius Volcano, Italy, Using Data Of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExploration At Geothermal Wells

  9. Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,AnfuNorth,Open Energy

  10. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,Volcanic National Park |

  11. Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the PathInformationRSG)Hawaii | Open

  12. Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| Open Energy Information

  13. Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbsInformationEnergy2002) |Open|

  14. nonetrotation Illustrated

    E-Print Network [OSTI]

    Becker, Thorsten W.

    volcanoes from Siebert L, Simkin T (2002­): Volcanoes of theWorld: an Illustrated Catalog of Holocene

  15. 700065006000550050004500400035003000250020001500 nonetrotation

    E-Print Network [OSTI]

    Becker, Thorsten W.

    , Simkin T (2002­): Volcanoes of theWorld: an Illustrated Catalog of Holocene Volcanoes and their Eruptions

  16. 157Recent Events: A Perspective on Carbon Dioxide On March 21, 2010 the Eyjafjalla Volcano in Iceland erupted, and the

    E-Print Network [OSTI]

    the combustion process. Problem 1 ­ The Gulf Oil Spill is predicted to generate 200,000 gallons of crude oil if the combustion of 1 gallon of oil generates 10 kg of carbon dioxide? Problem 2 ­ Scientists have estimated are generated if the combustion of 1 gallon of oil generates 10 kg of carbon dioxide? Answer: 200,000 gallons

  17. Near-and Far-field Tsunami Hazard from the Potential Flank Collapse of the Cumbre Vieja Volcano

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Palma (Canary Islands) could result in a large tsunami hav- ing effects throughout the North Atlantic-field on neighboring Canary Islands, and their far-field coastal hazard would still be significant at some locations-submarine landslides of O(100 km3) volume around the Canary Islands (Spain). Masson et al. (2002) iden- tified at least

  18. Comment on Ra-Th disequilibria systematics: Timescale of carbonatite magma formation at Oldoinyo Lengai volcano, Tanzania

    SciTech Connect (OSTI)

    Gittins, J. (Univ. of Toronto, Ontario (Canada))

    1988-04-01T23:59:59.000Z

    This paper discusses potential flaws in study by Williams, Gill, and bruland (1986) dealing with the extreme disequilibria between uranium and thorium series nuclides in alkalic carbonatite lava specimens. It discusses the apparent discrepencies between chemical compositions of lava which were reported from the same eruption. Clarification is made on the actual timing of eruptions in this volcanic region and the effects this would have on the petrogenesis interpretation of these rocks.

  19. Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

    E-Print Network [OSTI]

    Rose, William I.

    Survey (USGS), and the Federal Aviation Administration (FAA) at Anchorage provides for the exchange of the eruptions has had a considerable impact on commercial aviation in south- central Alaska, particularly of measuring and tracking ash clouds, in order to advise the aviation community about how to avoid ash clouds

  20. The Distribution and Origin of Radon, CO2 and SO2 Gases at Arenal Volcano, Costa Rica

    E-Print Network [OSTI]

    Williams-Jones, Glyn

    caracterización geoquímica pasiva y activa de volcanes con emisiones gaseosas. Técnicas como éstas pueden proveer emisión gaseosa del volcán Arenal, un pequeño estratovolcán en el noroeste de Costa Rica. Arenal, es uno gaseosas para Arenal. Los modelos espaciales y temporales de los gases de pluma y suelo observados, se

  1. Rapid development of the great Millennium eruption of Changbaishan (Tianchi) Volcano, China/North Korea: Evidence from UTh zircon dating

    E-Print Network [OSTI]

    ,000 years) (Siebert and Simkin, 2002) with an average frequency of one every 2000 years; however, the global

  2. Atmospheric chemistry of a 3334 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling

    E-Print Network [OSTI]

    Rose, William I.

    Geological Engineering and Sciences, Michigan Technological University, Houghton, Michigan, USA. 2 Department and nitric acid promoted polar stratospheric cloud (PSC) formation at 201­203 K, yielding ice, nitric acid) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated

  3. PUBLISHED ONLINE: 9 SEPTEMBER 2012 | DOI: 10.1038/NGEO1562 Evolution of Santorini Volcano dominated by

    E-Print Network [OSTI]

    Biggs, Juliet

    dominated by episodic and rapid fluxes of melt from depth Michelle M. Parks1 , Juliet Biggs2 , Philip

  4. Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (20062009)

    E-Print Network [OSTI]

    Biggs, Juliet

    ­2009) M.M. Parks a, , J. Biggs b , T.A. Mather a , D.M. Pyle a , F. Amelung c , M.L. Monsalve d , L

  5. The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Runion Island) from tilt

    E-Print Network [OSTI]

    Barruol, Guilhem

    , 1960; Battaglia et al., 2000; Battaglia and Bachèlery, 2003; Marchetti et al., 2009]. However, caldera. Battaglia et al. [2000] already showed that RER station displays clear ultra long period signals related

  6. 40Ar-39Ar Geochronology Of Magmatic Activity, Magma Flux And Hazards At

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTAP Energy GmbH JumpSoftRuapehu

  7. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Office of Environmental Management (EM)

    DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano April 9, 2013 -...

  8. Project EARTH-12-MH1: Quantifying mafic magma: the driver for arc volcanism

    E-Print Network [OSTI]

    Henderson, Gideon

    of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat. Contrib Mineral Petrol

  9. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    E-Print Network [OSTI]

    Tian, Liyan

    2011-01-01T23:59:59.000Z

    Cai et al. , 2007; G ó mez-Tuena et al. , 2007; Straub etZitácuaro volcanic field, G ó mez-Tuena et al. , 2007). TheCai et al. , 2007; G ó mez-Tuena et al. , 2007; Straub et

  10. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    E-Print Network [OSTI]

    Aciego, S.M.

    2010-01-01T23:59:59.000Z

    High precision Th- 230/Th-232 and U- 234/U-238 measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry.

  11. Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Ticsani and Ubinas volcanoes, Southern Peru.

    E-Print Network [OSTI]

    and temperature of the hot springs together with the water table position given by self-potential data can be used-volcanic hydrothermal systems. Keywords: self-potential mapping, hydrothermal system, hot springs, temperature 1 by fu- marolic activity and hot springs on the flanks of the edifice, high electric conductivity

  12. THE 2000 ERUPTION OF BEZYMIANNY VOLCANO CAPTURED WITH ASTER: A PROPOSAL TO INTEGRATE HIGH-RESOLUTION REMOTE SENSING DATA INTO REAL-TIME ERUPTION

    E-Print Network [OSTI]

    Ramsey, Michael

    /pixel), multi- spectral coverage (VNIR to TIR wavelengths), tunable gain settings (for monitoring hot targets

  13. OCEAN VOLCANO CAUGHT ON FILM Footage of a volcanic eruption nearly 1,200 metres under the sea was unveiled on 17 December at a meeting of

    E-Print Network [OSTI]

    Rosenberg, Noah

    that lava has been caught flowing on the deep sea floor. Jason, the remotely operated vehicle that took `knowledge innovation communities' (KICs). The scheme is meant to foster greater research collaboration Solar going public: Solyndra, a photovoltaics manufacturer based in Fremont, California, filed

  14. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 20042006 Edited by David R. Sherrod, William E. Scott, and Peter H. Stauffer

    E-Print Network [OSTI]

    not deployed specifically for photogrammetric purposes. Quantitative analysis of oblique terrestrial imagery photographs sufficient to make quantitative (photogrammetric) measurements of static features or dynamic scientists to unnecessary risk and to pro- vide ancillary information on conditions in the crater (such

  15. SOEST Publications List (7000 on) 7000 Garcia, M.O., E.H. Haskins, E.M. Stolper, and M. Baker, 2007, Anatomy of a Hawaiian shield volcano,

    E-Print Network [OSTI]

    , A combined remote Raman and fluorescence spectrometer system for detecting inorganic and biological materials, and S.M. Clegg, 2007, Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals throughflow: A heat and freshwater conveyor, Geophys. Res. Lett., 33, L23617, doi:10.1029/2006GL028350, IPRC

  16. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    E-Print Network [OSTI]

    Tian, Liyan

    2011-01-01T23:59:59.000Z

    from Ferrari [2004]. SPC: San Pedro - Ceboruco graben; MGVF:that were investigated [SPC: Petrone et al. , 2003; 2006;et al. , 2007]. Samples from SPC are divided into alkalic (

  17. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    E-Print Network [OSTI]

    Tian, Liyan

    2011-01-01T23:59:59.000Z

    and D. R. Hilton (2011), Petrology and Sr-Nd-Pb-He isotopeinvestigation of the petrology and geochemistry of basaltsF. Lonsdale (2008), Petrology and geochemistry of abandoned

  18. Reactive halogens (BrO and OClO) detected in the plume of Soufrière Hills Volcano during an eruption hiatus

    E-Print Network [OSTI]

    Donovan, Amy; Tsanev, Vitchko; Oppenheimer, Clive; Edmonds, Marie

    2014-08-20T23:59:59.000Z

    published data from petrological studies of SHV. Pumiceous clasts with high vesicularity at SHV have higher Cl and Br content than dome rocks, and both spe- cies appear to have similar degassing behaviors [Villemant et al., 2008] (using whole-rock Br content... , the work of Bobrowski et al. [2003] and that of Villemant et al. [2008], and compare this with results from the experimental petrology literature. The decrease of Br relative to Cl suggests that the relative partition- ing of Cl and Br into the fluid phase...

  19. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    E-Print Network [OSTI]

    Aciego, S.M.

    2010-01-01T23:59:59.000Z

    to Mineralogy and Petrology 84(4), 390-405. Frey F. A. ,to Mineralogy and Petrology 100, 383-397. Williams A.J. ,series lavas. Journal of Petrology 38(7), 911-939. Dunai T.

  20. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    E-Print Network [OSTI]

    Tian, Liyan

    2011-01-01T23:59:59.000Z

    compositions, Contrib. Minearl Petrol. , 135, Zindler, A. ,seamounts, Contrib. Mineral. Petrol. , 99(4), 446–463. Hahm,regions? , Contrib. Mineral Petrol. , 106, 129-141, doi:

  1. Petrogenesis of intraplate lavas from isolated volcanoes in the Pacific : implications for the origin of the enriched mantle source of OIB

    E-Print Network [OSTI]

    Tian, Liyan

    2011-01-01T23:59:59.000Z

    Location a Sample no. Mathematician Ridge area smt.smt.smt. AMD11-3 AMD11-4 AMD11-6 Galapagos Rise area EPR seg.

  2. UTh systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab

    E-Print Network [OSTI]

    for investigating the mechanism of dispersed continental volcanism using short-lived uranium-series isotopes. We China. Jingbohu lavas display variable extents of 230 Th excesses (10 to 28%) and moderately depleted Nd and slightly depleted Nd isotopic compositions (Nd = + 0.5 to + 0.7). The Tianchi lavas display moderate (12

  3. Listen to the lightning storms of Mars and the 'ice volcanoes' of Saturn's moon Titan: Scientists simulate sounds of solar system | Mail Online http://www.dailymail.co.uk/sciencetech/article-2124052/Listen-lightning-storms-Mars-ice-volcanoes-Saturns-moon-

    E-Print Network [OSTI]

    Sóbester, András

    danger levels at stricken Fukushima nuclear reactor It's a bird! It's a plane! It's a... sedan?: Flying

  4. Stratigraphic Relations and Lithologic Variations in the Jemez...

    Open Energy Info (EERE)

    rhyolite volcanism from >13 to 6 Ma, (3) hypabyssal and volcanic rocks of the Cochiti mining district probably represent the exhumed interior of a Keres Group volcano(s), (4)...

  5. letters to nature 996 NATURE |VOL 407 |26 OCTOBER 2000 |www.nature.com

    E-Print Network [OSTI]

    Morel, François M. M.

    ). 8. Simkin, T. & Siebert, L. Volcanoes of the World 2nd edn (Geoscience, Tucson, 1994). 9. Bonafede. Petrol. 39, 953±971 (1998). 18. Allen, J. F. & Simkin, T. Fernandina Volcano's evolved, well

  6. Living in the shadow of Mauna Loa

    E-Print Network [OSTI]

    Hirji, Zahra R. (Zahra Rafik)

    2013-01-01T23:59:59.000Z

    One of Hawaii's most dangerous natural hazards is sitting in plain sight: Mauna Loa volcano. The mighty mountain makes up more than fifty percent of the island and is the largest volcano on Earth. Since 1843, when people ...

  7. Results Of An Experimental Drill Hole At The Summit Of Kilauea...

    Open Energy Info (EERE)

    Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano,...

  8. LiveScience.com: Life's Little Mysteries -How Do Post Office Machine... 8/27/2007 12:19 PM http://www.livescience.com/mysteries/070816_letter_reader.html 1 of 2

    E-Print Network [OSTI]

    Warming | Environment News | Climate Weather | Volcanoes | Tornadoes | Earthquakes | Hurricanes | Tsunami | DNA Evolution | Dinosaurs | Inventions | Nanotechnology | Robots | Memory | Cloning | Viruses

  9. Apply online at: www.avianbiology.uga.edu

    E-Print Network [OSTI]

    Navara, Kristen

    and fantastic views of the volcano itself. Additionally, Arenal is home to La Fortuna Falls. Students have

  10. GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 8, PAGES 1077-1080, APRIL 15, 1999 A Shallow-Dipping Dike fed the 1995 Flank Eruption at

    E-Print Network [OSTI]

    Segall, Paul

    volcano, with a maximum subsidence of about 300 m [Simkin and Howard, 1970]. The most recent activity

  11. An InSAR-based survey of volcanic deformation in the southern Andes M. E. Pritchard

    E-Print Network [OSTI]

    ], with about 60 active in the Holocene [Simkin and Siebert, 1994]. The AVZ has seven recognized volcanoes

  12. Non-Volcanic Stratospheric Aerosol Trends: 1971 2004

    E-Print Network [OSTI]

    Deshler, Terry

    , generally volcano explosivity index (VEI) 4 [Carn et al., 2003; Newhall and Self, 1982; Simkin and Siebert

  13. Nat. Hazards Earth Syst. Sci., 8, 559571, 2008 www.nat-hazards-earth-syst-sci.net/8/559/2008/

    E-Print Network [OSTI]

    Kääb, Andreas

    frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interac- tions Hazards and Earth System Sciences Assessing lahars from ice-capped volcanoes using ASTER satellite data reservoirs are supposed to be a more realistic scenario for lahar genera- tion than sudden ice melting

  14. Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill

    E-Print Network [OSTI]

    Geist, Dennis

    Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic

  15. Tkalcic, H., D.S. Dreger, G.R. Foulger, B.R. Julian, A. Fichtner, A seismological portrait of the anomalous 1996 Bardarbunga volcano, Iceland, earthquake (invited poster), EOS Trans. AGU, Fall Meet. Suppl.,

    E-Print Network [OSTI]

    Foulger, G. R.

    in the Global Centroid Moment Tensor catalog. An earthquake with Mw 5.6 and a strong non-double-couple radiation was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. Several hypotheses were proposed to explain the seismically observed displacement field and the sequence of observed events

  16. Geologic map of the Gulkana B-1 quadrangle, south-central Alaska

    SciTech Connect (OSTI)

    Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

    1989-01-01T23:59:59.000Z

    The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

  17. active dashgil mud: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: eruption The Lusi mud volcano devastates the landscape in Sidoarjo, Indonesia. In the distance, steam rises eventually Steam rises from Lusi's eruption site,...

  18. arctic intertidal mud: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: eruption The Lusi mud volcano devastates the landscape in Sidoarjo, Indonesia. In the distance, steam rises eventually Steam rises from Lusi's eruption site,...

  19. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    E-Print Network [OSTI]

    Zhang, Haijiang

    2012-01-01T23:59:59.000Z

    We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

  20. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    methane from near-surface gas hydrates. Chem Geol 205:291–volcanoes and associated gas hydrates. Mar Geol 167:29–42

  1. A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea...

    Open Energy Info (EERE)

    Volcano, HawaiiThesisDissertation Author Catherine King Skokan Organization Colorado School of Mines Published Publisher Not Provided, 1974 DOI Not Provided Check for DOI...

  2. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Energy Savers [EERE]

    Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled...

  3. alturas del pico: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    correlation between the obtained forecasts and the occurrence of (Volcano-)Tectonic seismic events a clear indication of a relationship between the continuous seismic noise...

  4. aarnos jenni kavn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in color bleeding are the predominant Hinrichs, Klaus 276 The fast response of volcano-seismic activity to intense precipitation: Triggering of primary volcanic activity by...

  5. The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina Johan C. Varekamp

    E-Print Network [OSTI]

    Royer, Dana

    The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina Johan C (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano

  6. Jefferson Lab Hosts Series of Public Lectures in the Coming Months...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire." Iceland is a land of great contrasts, especially in its physical geography and geology. Glaciers and volcanoes abound in this geologically dynamic land that sits astride...

  7. PMEL Science Review Aug.26-28, 2008 Vents Program The PMEL Vents Program

    E-Print Network [OSTI]

    and hydrothermal activity creates and sustains biological and mineral resources Volcanoes are an important natural to understand globally important biogeochemical processes Utilize acoustics to monitor and understand

  8. Factors influencing the large-scale distribution of Hgo in the Mexico City area and over the North Pacific

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    coal burning, refineries, and volcanoes. Our analysis of MexicoMexico City and Honolulu compared to higher latitudes might reflect less con- tribution from coal-

  9. Impacts of atmospheric nutrient inputs on marine biogeochemistry

    E-Print Network [OSTI]

    Krishnamurthy, Aparna; Moore, J. Keith; Mahowald, Natalie; Luo, Chao; Zender, Charles S

    2010-01-01T23:59:59.000Z

    biomass burning, and biofuels) dominate P inputs [Olmez etburning, fossil fuels, biofuels, volcanoes, sea salts whichburning, fossil fuels, biofuels) G01006 of total P are

  10. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  11. Reflection Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  12. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  13. Refraction Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  14. Ground Magnetics At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  15. Validation of Innovation Exploration Technologies for Newberry...

    Broader source: Energy.gov (indexed) [DOE]

    Newberry EGS Demonstration Newberry Volcano EGS Demonstration Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems...

  16. Validation of Innovative Exploration Technologies for Newberry...

    Open Energy Info (EERE)

    Validation of Innovative Exploration Technologies for Newberry Volcano Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Validation of...

  17. A Multidisciplinary Approach To Detect Active Pathways For Magma...

    Open Energy Info (EERE)

    the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite...

  18. Dispersin de los sedimentos y fluctuaciones en temperatura de la erupcin del volcn Copahue en mayo 2013

    E-Print Network [OSTI]

    Gilbes, Fernando

    sismos volcano-tectónicos, emisiones de y otros gases volcánicos (OVDAS 2013). Esta investigación es

  19. C. R. Acad. Sc., Paris, t.308, srie II ; 1547-1552, 1989, manuscrit. Tphrostratigraphie -Extension de la datation par thermoluminescence une

    E-Print Network [OSTI]

    Boyer, Edmond

    thermoluminescence : Cler TL 114 = 8700 ± 900 avant 1980. Cette date, la première obtenue sur de telles tephra, fixe'application. Abstract : A trachy-andesitic ash-fall attributed to the Puy de Pariou volcanoe is dated by TL : Cler TL for an eruption of this volcano and confirms the previous datings. Thus, TL is a wide range tephrostratigraphic

  20. 66 million years agopresent25266 million years ago541252 million years ago PRECAMBRIAN ERA

    E-Print Network [OSTI]

    Birmingham, University of

    display will be based around four key themes: evolution of life, active Earth, mineral wealth and continental drift. Evolution of lifeIntroduction Active Earth n Why do we have volcanoes and earthquakes? n, volcanoes, earthquakes, tsunamis, the formation of mountains and the rock cycle. Our collections

  1. FAR-FIELD TSUNAMI IMPACT ON THE U.S. EAST COAST FROM AN EXTREME FLANK COLLAPSE OF THE

    E-Print Network [OSTI]

    Kirby, James T.

    VOLCANO (CANARY ISLANDS) BY ANNETTE R. GRILLI AND STEPHAN T. GRILLI DEPT. OF OCEAN ENGINEERING, UNIVERSITY that the potential en masse flank collapse of the Cumbre Vieja Volcano (CVV) on La Palma (Canary Islands, Spain) could cause a large tsunami dramatically impacting both the Canary Islands and the Northwest African

  2. Intelligent Robotic Systems Jana Kosecka, 4444 Research II

    E-Print Network [OSTI]

    Kosecka, Jana

    Systems AGV's - automated guided vehicles AUV's - automated unmanned vehicles #12;Applications - Space for samples of meteorites · Volcanos ­ analyze gas samples from volcanos #12;Applications: Underwater robotics ­ length about 25 cm · Sensors ­ color camera ­ stereo microphone 1 #12;#12;APPLICATIONS ­ Unmanned Aerial

  3. Contrib Mineral Petrol (1984) 86:159 169 Contributions to

    E-Print Network [OSTI]

    Stern, Robert J.

    1984-01-01T23:59:59.000Z

    -Verlag1984 Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc Robert J Abstract. Esmeralda Bank is the southernmost active vol- cano in the Izu-.Volcano-Mariana Arc 27 km 3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recov- ered fresh

  4. Structural and Morphologic Study of Shatsky Rise Oceanic Plateau in the Northwest Pacific Ocean from 2D Multichannel Seismic Reflection and Bathymetry Data and Implications for Oceanic Plateau Evolution

    E-Print Network [OSTI]

    Zhang, Jinchang

    2014-04-10T23:59:59.000Z

    and shallow flank slopes (<0.5o-1.5o), characterized by lava flows emanating from the volcano center and extending hundreds of kilometers down smooth, shallow flanks to the surrounding seafloor. Ori Massif is another large volcano that is similar, but smaller...

  5. Volatile contents in subduction-related basaltic magmas from Central Mexico: considerations on mantle enrichment processes and low pressure magma degassing during basaltic eruptions 

    E-Print Network [OSTI]

    Cervantes, Pablo

    1999-01-01T23:59:59.000Z

    Melt inclusions in olivine phenocrysts from primitive lavas from five different volcanoes in the Sierra Chichinautzin (Central Mexico) were analyzed by infrared spectroscopy and electron microprobe to determine their major ...

  6. Piggyback Tectonics- Long-Term Growth Of Kilauea On The South...

    Open Energy Info (EERE)

    of Kilauea Volcano and the long-term geometric evolution of its rift zones. Sulfur-rich glass rinds on pillow lavas and volcaniclastic sediments derived from them document early...

  7. altered volcanic ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near the volcano. Major eruptions are much rarer. They can eject both ash and gases like sulfur dioxide high into the atmosphere-- 80,000 feet or more. Although much of...

  8. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01T23:59:59.000Z

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  9. Emissions of crustal material in air quality forecast systems: Use of satellite observations

    E-Print Network [OSTI]

    Menut, Laurent

    Emissions of crustal material in air quality forecast systems: Use of satellite observations) Natural (dust, fires, volcanos) Meteorology: Transport, turbulence Clouds and radiation, precipitations Chemistry-transport model Gas and particles concentrations Use of model outputs: Analysis Direct: model vs

  10. National Aeronautics and Space Administration goddardviewVolume 6 Issue 2

    E-Print Network [OSTI]

    Christian, Eric

    For the Better ­ 6 Reviews Clear Way for New Tracking and Data Relay Satellites ­ 7 Into a Volcano to Test for help in solving the Mylar mystery. He received additional assistance in the form of testing from four

  11. Implementation of the Integrated Planning Concept to Strengthen Indonesian Radiation Emergency Response Capabilities

    E-Print Network [OSTI]

    Volia, Merinda Fitri

    2014-07-30T23:59:59.000Z

    Nuclear power has been included in Indonesian national plan as an alternative solution for electricity production. However, Indonesia lies within the Pacific Ring of Fire with around 129 active volcanoes along its region. In addition, the Indonesian...

  12. CESM Community Earth System Model MODEL Meteorological

    E-Print Network [OSTI]

    ) ­ Anthropogenic: POET, with REAS over Asia (time-varying for 1997-2010; 1997 used for 1992-1996). ­ Biomass. ­ Biogenic, soil, ocean, volcano: POET, GEIA, etc. as described in Emmons et al., 2010. Emissions in trop

  13. The Evolutionary History and a Systematic Revision of Woodrats of the Neotoma lepida Group

    E-Print Network [OSTI]

    Patton, James L.; Huckaby, David G.; Álvarez-Castañeda, Sergio Ticul

    2014-01-01T23:59:59.000Z

    part of Baja California (Cerro Prieto, 20 mi. SSE Mexicali;coastal morph; those from Cerro Prieto represent the desertwash W of Ciudad Cedros Cerro Prieto, near Volcano Lake (

  14. Sequence stratigraphy of the late Pleistocene - Holocene deposits on the northwestern margin of the South Caspian Basin

    E-Print Network [OSTI]

    Rahmanov, Ogtay Rasim

    2004-11-15T23:59:59.000Z

    Quaternary, which nicely correlates with the period of active subsidence of the SCB (Lebedev et al., 1987). In Azerbaijan the debris from the volcanoes contains clasts with ages from Cretaceous through Neogene. The main source for muds is predominantly...

  15. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  16. THE CO-EVOLUTION OF THE NITROGEN, CARBON AND OXYGEN CYCLES IN THE PROTEROZOIC OCEAN

    E-Print Network [OSTI]

    (H2, CO, H2S from volcanoes and Fe2 from hydrothermal inputs at oceanic ridges) exceeded the net rapidly removed fixed inorganic nitrogen from the oceans. Denitrification would have imposed a strong

  17. Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology...

    Open Energy Info (EERE)

    Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Okueyama Volcano-Plutonic Complex, Southwest Japan Jump to: navigation, search OpenEI Reference LibraryAdd...

  18. Heave Compensator stopsHeave Compensator stopsHeave Compensator stopsDrillingDrilling Displacement (bottom)Displacement (bottom)

    E-Print Network [OSTI]

    hazards reduc- tion programs, geomagnetic and space weather programs, energy and mineral resources included coastal and marine research, global change and climate history, earth- quake, volcano, landslide of the Tasmanian Gateway Drove Global Cenozoic Paleocli

  19. (Geohazards) http://www.munichre.com/

    E-Print Network [OSTI]

    Losses$USMillions Other Floods Volcanoes Storms Earthquakes 1992 Hurricane Andrew, >$25 billion, ~60 fatalities 1993,000 fatalities 2005 Hurricane Katrina, >200 billion, 100's fatalities (US revenue/expenses~$1500 billion; US debt

  20. MODERATELY TO POORLY WELDED TUFF, BISHOP, CALIFORNIA: GEOPHYSICAL AND GEOLOGICAL CHARACTERIZATION TO DETERMINE THE SOURCE OF RADAR SCATTERING.

    E-Print Network [OSTI]

    Stillman, David E.

    . Stillman2 , 1 Dept. of Earth, Material, and Planetary Sci- ences, Southwest Research Institute,® 6220- bleland, Bishop, California (Fig. 1), as an analog [1] because some Martian volcanoes and the Stealth

  1. TAO, Vol. 16, No. 2, 331-343, June 2005 A Refined Historical Record of Volcanic Eruptions around Taiwan

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    . 2. RESULTS Five historical submarine eruptions around offshore Taiwan have been reported (Simkin in the Volcanoes of the World (Simkin and Siebert 1994). The refined results of five historical records around

  2. doi: 10.1130/G34305.1 2013;41;851-854Geology

    E-Print Network [OSTI]

    Lev, Einat

    volcanoes that are cur- rently covered by ice or seasonal snow (Siebert and Simkin, 2002; World Glacier, ongoing) have produced supra­ice/snow lava flows (Siebert and Simkin, 2002), several of which caused local

  3. REMOVAL PROCESSES OF VOLCANIC ASH PARTICLES FROM THE ATMOSPHERE Gregg J.S. Bluth and William I. Rose, Michigan Technological University

    E-Print Network [OSTI]

    Bluth, Gregg

    . Rose, Michigan Technological University INTRODUCTION The use of satellite techniques provides valuable and liquids) -the atmosphere (water/ice, dust, sea salt, gases) -products from volcano-atmosphere reactions with coating of water or ice; parti

  4. Application Of High-Resolution Thermal Infrared Sensors For Geothermal...

    Open Energy Info (EERE)

    Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on...

  5. america central america: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: volcanoes: insights from Central AmericaQ1 S. K. EBMEIER1*, J. BIGGS2,3, T. A. MATHER1 & F. AMELUNG3 1 COMET.ebmeier@earth.ox.ac.uk) Abstract: Measuring...

  6. Master's opportunities at Queens College, City University of New York Master's research projects are available for motivated students in the Volcanology, Petrology, and Tectonics research

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    , Petrology, and Tectonics research group at Queens College, City University of New-based structural mapping and data collection, microstructural and petrological analysis volcanoes. Projects may involve fieldwork and petrological analysis of volcanic

  7. Graduate Studies in Volcanology, Igneous Petrology & Economic Geology For more information

    E-Print Network [OSTI]

    Kurapov, Alexander

    Graduate Studies in Volcanology, Igneous Petrology & Economic Geology VIPER For more information Volcanology, Igneous Petrology and Economic geology Research group Interested in Volcanoes? Magmas? Ore available. Adam Kent (igneous petrology, geochemistry) Anita Grunder (igneous petrology, crustal petrology

  8. Subduction zones Melt formation and crustal growth

    E-Print Network [OSTI]

    Siebel, Wolfgang

    of eruption columns 3. Explosive disruption of a lava dome 4. Lateral blast after sector collapse) droplets - Scatters sun light ­ temperature drops (1-2°C) (effect lasts 2­5 years) - CO2 from volcanoes

  9. Inferring Ground Truth from Subjective Labelling of Venus Images

    E-Print Network [OSTI]

    Smyth, Padhraic

    examine the images and provide a subjective noisy estimate of the truth. Calibrating the reliability on this topic in the context of detecting small volcanoes in Magellan SAR images of Venus. Empirical results

  10. A Model For Syn-Eruptive Groundwater Flow During The Phreatoplinian...

    Open Energy Info (EERE)

    Syn-Eruptive Groundwater Flow During The Phreatoplinian Phase Of The 28-29 March 1875 Askja Volcano Eruption, Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. Chemosynthetic endosymbioses: adaptations to oxicanoxic interfaces

    E-Print Network [OSTI]

    Stewart, Frank

    in anoxic vent effluent mix with oxygenated seawater, chemo- synthetic bacteria flourish. Although free.g. hydrocarbon cold seeps, coastal sediments, mud volcanoes, whale falls) were shown to support chemosyn- thetic

  12. B25606 page 1 of 15 For permission to copy, contact editing@geosociety.org

    E-Print Network [OSTI]

    Hansen, Vicki

    of ~15,000,000 km2 (0­25N/90­150E) using 225 m/pixel and 75 m/ pixel NASA Magellan SAR (synthetic, shields, resurfacing, flood lava, mud volcano, partial melt. INTRODUCTION Understanding processes

  13. Geology 102 --Earth, Life, and Time University of Tennessee --Fall 2011

    E-Print Network [OSTI]

    Perfect, Ed

    -- tornados, hurricanes, volcanoes, earthquakes, tsunamis, and the constant threat of global warming. Yet interactions throughout the geologic past. Finally, we will examine the geologic record to determine the causes

  14. 5, 52235252, 2005 Size-resolved source

    E-Print Network [OSTI]

    Boyer, Edmond

    , gasoline vehicle, diesel vehicle, copper smelter, and volcano emission. PMF analysis of size% in the fine size range (0.56­2.5 µm). The diesel vehicle source contributed the most in the ultra-fine size

  15. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  16. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  17. Department of Earth Sciences Syracuse University

    E-Print Network [OSTI]

    Segraves, Kari A.

    in Gas Hydrate Fields: Implications for the Transport of Iodine and Methane in Active Margins" Advisor, Comparison of iodine dates from mud volcanoes and gas hydrate occurrences: relevance for the movement Waters from the Gas Hydrate Occurrence Offshore

  18. Abstract The Holocene Parinacota Volcanic Debris Av-alanche (ca. 8,000 years B.P.) is located in the central An-

    E-Print Network [OSTI]

    Huppert, Herbert

    that material that travelled further broke up and had an initial greater kinetic energy. Keywords Debris Andes Volcanic Zone of northern Chile (Figs. 1 and 2). Parinacota Volcano is located on the Chile­Bolivia

  19. 21. C. Penland and P. D. Sardeshmukh, J. Clim. 8, 1999 22. B. P. Kirtman and P. S. Schopf, J. Clim. 11, 28043

    E-Print Network [OSTI]

    Tackley, Paul J.

    within the mantle. There has been rapid progress on these two problems, with the emergence of the first, volcanoes, and mountain building (3). Mantle convection and plate tectonics are one system, because oceanic and the mantle is powered by radio- genic heating and by the slow cooling of our planet over its 4.5-billion

  20. Noname manuscript No. (will be inserted by the editor)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the medium starts deform- ing, with the onset of small-scale instabilities and pip- hal-00845894,version1 fluidization or liquefaction of the granular matrix. The shape of the fluidized zone, in- ferred from are encountered worldwide and at different scales, from kilometers (kimberlite pipes [5], mud volcanoes [6

  1. Hydrologic responses to earthquakes and a general metric CHI-YUEN WANG AND MICHAEL MANGA

    E-Print Network [OSTI]

    Manga, Michael

    to earthquakes, including liquefaction, changes in stream and spring discharge, changes in the properties to relate and compare the various hydrologic responses. We show that liquefaction, eruption of mud volcanoes seismicity may respond to seismic energy density as small as 10)3 and 10)4 J m)3 , respectively. Com- paring

  2. Impact Crater ejecta blanket

    E-Print Network [OSTI]

    Jurdy, Donna M.

    , Australia Meteor Crater, Arizona #12;Venus as a Planet Diameter = 12,104 km Density = 5 2 g/cm3Density = 5C = 733 K = 860o F Ave. Distance from Sun = 81.08 x 108 km #12;Introduction: Venus Elevation, unimodal = -3.9 to 12 km Mostly flat plains with some topographic swells, volcanoes dune fields rift valleys

  3. Thermo Tracer Infrared Thermal Imager

    E-Print Network [OSTI]

    Walker, D. Greg

    such as production lines, electric power facilities, petrochemical plants and public institutions, etc. by thermal-range area G Environment monitoring Volcano, ecology, vegetation, global warming, pollution G R&D Evaluation Production line monitoring Quality anomalies in production processes G Facility monitoring Anomalies

  4. Geothermics, Vol. 21, No. 4, pp. 425-446, 1992. Printed in Great Britain.

    E-Print Network [OSTI]

    as a promising indication of developable geothermal energy in the Tecuamburro area (OLADE, 1982; Giggenbach, 1988.00 Pergamon Press Ltd CNR. GEOLOGY AND GEOTHERMAL POTENTIAL OF THE TECUAMBURRO VOLCANO AREA, GUATEMALA W. A Estudios Geologicos de America Central, Apartado 468, Guatemala City, Guatemala; § U.S. Geological Survey

  5. Figure 1. A user remotely operates a four degree-of-freedom robotic arm using our touch screen interface.

    E-Print Network [OSTI]

    , including urban search and rescue, extreme exploration (space, deep-sea, volcanoes, etc.), remote surgery, and high-cost industrial inspections (e.g., with nuclear reactors) [1­4]. For designing robotic control and workload, thus reducing stress, fatigue and error rates, and improving safety and operator health [5

  6. A WEB-BASED ATLAS INFORMATION SYSTEM FOR VOLCANIC MONITORING

    E-Print Network [OSTI]

    Jenny, Bernhard

    @erdw.ethz.ch) ABSTRACT Quiescent but active volcanoes represent a severe hazard and risk potential. Early warning systems and to develop a prototype of an early warning system. The system is an entirely web-based Atlas Information councils and civil protection agencies will use it as an early warning system. It includes the necessary

  7. Anderson-Gregory; Constable-Steven; Orcutt-John; Staudigel-Hubert; Tolstoy-Maya; Wyatt-Frank-K, Observing seafloor tilt on Axial Segment, Juan de Fuca Ridge. Eos, Transactions, American Geophysical

    E-Print Network [OSTI]

    Menke, William

    -Frank-K, Observing seafloor tilt on Axial Segment, Juan de Fuca Ridge. Eos, Transactions, American Geophysical Union de Fuca Ridge. Geophysical Research Letters.22; 2, Pages 147-150. 1995. Baker-Edward-T; Fox eruption of Axial Volcano, Juan de Fuca Ridge. Geophysical Research Letters.26; 23, Pages 3445-3448. 1999

  8. Save With Solar, Fall 1998, Vol. 1, No. 3

    SciTech Connect (OSTI)

    Eiffert, P.

    1998-12-30T23:59:59.000Z

    This issue of Save with Solar highlights awards for federal renewable energy projects in FY 1998, the Million Solar Roofs Initiative, a special exhibition in New York City featuring solar technologies, PV systems working in Volcanoes National Park, and PV Super ESPC contracts.

  9. GEOL 474/674 Instructors Notes Fall 2006 I. Introduction

    E-Print Network [OSTI]

    Ahmad, Sajjad

    ) developing c) allocating between users d) protecting (1) contamination (2) safe extraction rate e activity releases water, gases 1. water was chemically bound in minerals 2. produces atmosphere, oceans/entry from cycle 1. juvenile water from volcanoes 2. chemically bound into minerals 3. currently these two

  10. Kenya & Tanzania: a ClassiC safari

    E-Print Network [OSTI]

    Connor, Ed

    Kenya & Tanzania: a ClassiC safari A Special Departure August 15 ­ 27, 2012 for Johns Hopkins volcano; Bilila Lodge Serengeti in the heart of the northern Serengeti; the Fairmont Mount Kenya SafariMartinCenter,2ndFloor 3400N.CharlesStreet Baltimore,Maryland21218 Johns Hopkins Reservation Form ­ Kenya

  11. Climate Threat to the Planet* Implications for Energy Policy

    E-Print Network [OSTI]

    Hansen, James E.

    Climate Threat to the Planet* Implications for Energy Policy Jim Hansen 4 July 2008 United Nations's Paleoclimate History 2. On-Going Climate Changes 3. Climate Models #12;#12;Green Triangle = Volcano; Red Box;#12;Observations: Domingues, C.M. et al., Nature 453, 1090-1093, 2008. Model: Hansen, J. et al., Science 308, 1431

  12. The development of a robust, autonomous sensor network platform for environmental monitoring.

    E-Print Network [OSTI]

    Marshall, Ian W.

    advantages in applications covering large, hostile environments such as: glaciers, volcanoes or off-shore sea of environmental impact on a coastal sea bed of a wind farm. Wind farms are seen as a key feature negative, environmental impacts. The complex interplay between the: oceans currents; wind; coast line

  13. Climate forcing Climate forcing

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    parameters (solar distance factors) solar luminosity moon orbit volcanoes and other geothermal sources,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols forcings are shown on the right hand axes of the large panels. {Figure 6.4} !"#$#%&'(!&#)$&*$+#$,-.$/0

  14. Physics of Aquatic Systems II, 8. Dating young waters Universitt HeidelbergInstitut fr Umweltphysik Physics of Aquatic Systems II

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    HeidelbergInstitut für Umweltphysik 4 Principles of transient trace gas dating methods 0 1 2 3 4 5 6 1970 · Small natural production in volcanoes (?) · Long-lived, strong ozone destroyers in stratosphere by 1995) · Stable in oxic water, at least F-11 degrades under anoxic conditions · Analysis: GC-ECD (Gas

  15. Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene

    E-Print Network [OSTI]

    Thygesen, Kristian

    Electrochemical CO2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene Vladimir-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane to this problem is to reduce CO instead of CO2. Volcano plots were constructed on the basis of scaling relations

  16. Natural Hazards and Effects on Local Populations: Applications of NSF MARGINS research to hazards mitigation in Central America

    E-Print Network [OSTI]

    Marshall, Jeffrey S.

    , with less attention directed toward the behavior of quiescent volcanoes, or to the long term evolution. Earthquake & tsunami hazards: Considerable scientific attention has been focused on large plate boundary, and tsunamigenic events on the subduction thrust. MARGINS research can help advance earthquake and tsunami hazards

  17. Following more than 30 years of seismic and volcanic quiescence, the Canary Islands

    E-Print Network [OSTI]

    Sleeman, Reinoud

    Following more than 30 years of seismic and volcanic quiescence, the Canary Islands region located History Several eruptions have taken place in the Canary Islands in the last 500 years, all of them, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 61,65 Monitoring the Reawakening of Canary Islands'Teide Volcano

  18. Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic reflection data in their flexural moat

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic the seismic stratigraphy of the flexural moat that flanks the Canary Islands. The moat stratigraphy has been the volcanoes that make up the Canary Islands progressively load the underlying lithosphere from east to west

  19. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  20. NATURE GEOSCIENCE | VOL 7 | MARCH 2014 | www.nature.com/naturegeoscience 169 news & views

    E-Print Network [OSTI]

    Carlson, Anders

    among the glaciers that cover the volcano. Radar measurements and photographs were also used, but also track shorter-term fluctuations in eruption rate in fine detail. The constant proportionality, enlarging bubbles. It has also been postulated that crystallization could accelerate the escape of volatiles

  1. Submitted February 20, 2014 Published March 15, 2014 Propos le 20 fvrier 2014 Publi le 15 mars 2014

    E-Print Network [OSTI]

    Har?El, Zvi

    often, a volcano." [3] Indeed, Borderie's list traces a straight line through the plot of a magnificent steam ship, which then departs from Liverpool for an unknown northern destination. Disguised agents. The crew discontent that breaks out at a low-70s latitude forces the captain to reveal all

  2. Extremes in climate science Andreas Sterl (KNMI)

    E-Print Network [OSTI]

    Stoffelen, Ad

    (non-deterministic) influences: sun, volcanoes, anthropogenic effects (GHG emissions) => deterministic Sterl, PhysMathClim Climate change GHG concentrations increase => Temperature increases => other weather;31.01.2012, Utrecht Andreas Sterl, PhysMathClim EVT - 1 Extremes: tail of a distribution => few observations => tail

  3. Structure of the Upper Crust in Japan from S-Wave Attenuation Tomography

    E-Print Network [OSTI]

    Sun, Youshun

    , vol- canoes, and/or temperature distribution in a region under- going active deformation. Data, Zhongxiong Cui, Youshun Sun, M. Nafi Toksöz, Charlotte A. Rowe, Xing Gao, Junmeng Zhao, Hongbing Liu, Jiankun Japanese islands, with almost the same distribution as volcanoes, while high Q-values exist mainly between

  4. Geography and Environment

    E-Print Network [OSTI]

    , synthe- size, and analyze data at the Soltis Center and on a two-week field trip to La Fortuna, Liberia Fortuna, Are- nal area. The following two weeks will be traveling to Costa Rican cities and towns walk in rainforest Arenal Volcano hike Visit town of La Fortuna Hydroelectric dam tour Visits to La

  5. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell BRUNO KIEFFER1, ETHIOPIA 4 DEEPARTEMENT DES SCIENCES DE LA TERRE ET DE L'ENVIRONNEMENT, UNIVERSITEE LIBRE DE BRUXELLES 50 the shield volcanoes. KEY WORDS: Ethiopia; flood basalts; shield volcanism; superswell INTRODUCTION According

  6. Aquarterly publication for educatorsandthe pul~li.c-contemporarygeological topics, issues andevents _

    E-Print Network [OSTI]

    Dunbar, Nelia W.

    NewMexico Bureau of Mines and Mineral Resources #12;Haveyou ever wondered... .About OIl ProductlonBriefs--VolcanonearMexicoCity heatsup-again! Haveyoueverwondered...AboutOil Productionin NewMexico? How much do we consume- Mines and Mineral Resources (NMBM&MR), EarthBriefs Popocat~petl Volcano: past eruptionsmfuture dangers

  7. Corresponding author: Huosheng Hu E-mail: hhu@essex.ac.uk

    E-Print Network [OSTI]

    Hu, Huosheng

    in the environment[4­7] . Farrell et al. used an unmanned underwater vehicle to locate the source of pollution using pollution sources. Patterson et al. used unmanned aerial vehicles to monitor the activities of volcanoes behaviour of the male moth to control an automated underwater vehicle in tracing a plume and subsequently

  8. Summary Much attention is focused today on predicting how plants will respond to anticipated changes in atmospheric

    E-Print Network [OSTI]

    Ehleringer, Jim

    isotope ratio, global change, intercellular carbon dioxide. Gases released by volcanoes, including H2S, NH that are eventually removed from solution by carbonate pre- cipitation. In addition, photosynthesis removed CO2 from are the processes resulting in long-term removal of carbon from the atmosphere to the lithosphere. Although

  9. For more information about North Carolina Solar Center programs, go to www.ncsc.ncsu.edu

    E-Print Network [OSTI]

    For more information about North Carolina Solar Center programs, go to www.ncsc.ncsu.edu Geothermal Energy Inside the earth is a large heat source that can be used for geothermal energy. Evidence of this heat and energy is steam or lava that comes out of volcanoes. In locations where this heat source

  10. Global Emergence of Frontier Knowledge November 2013

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    , Infrastructure, Medical and Biologi- cal Engineering, Mineral Resources, Nano Physics, SustainabilityGlobal Emergence of Frontier Knowledge November 2013 Nov. 7th U.Católica (Casa Central) 09:00 Doors, Culture & Body, Earthquakes, Tsunami & Volcanoes, Element & Material Sciences, Food Resource

  11. Moderately to Poorly Welded Tuff, Bishop, California: Geophysical and Geological Characterization to Determine the Source of Radar

    E-Print Network [OSTI]

    Stillman, David E.

    of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio@swri.org) , Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San in the Volcanic Tableland (Bishop, California) as an analog site because some Martian volcanoes and the Stealth

  12. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    E-Print Network [OSTI]

    Robock, Alan

    the incoming shortwave radiation (SW) and also absorbs solar near infrared (NIR) radiation and upwelling long] For a volcano to have a significant long-term impact on the climate it must inject a sufficient amount of sulfur wave (LW) radiation from the surface and atmosphere below [Stenchikov et al., 1998; Ramachandran et al

  13. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Coupled Model Intercomparison Project 5 (CMIP5)1

    E-Print Network [OSTI]

    Robock, Alan

    the incoming shortwave radiation28 (SW) and also absorbs solar near infrared (NIR) radiation and upwelling long For a volcano to have a significant long-term impact on the climate it must inject a24 sufficient amount wave (LW)29 radiation from the surface and atmosphere below [Stenchikov et al., 2006] (S06 hereafter

  14. ILLUSTRATIONS. GOLDEN TROUT OF TilE SOUTHERN HIGH SIERRAS: Facing page.

    E-Print Network [OSTI]

    trout of Volcano Creek, Salmo roosevelt!................. 3 II. (1) Marble Fork of Kaweah River, (2 River. (5) First series of Ialls in Little Kern River. (6) Upper part of first series of falls in Little third falls. (18) Broder Falls, Coyote Creek. (19) Fonrth falls In Coyote Creek

  15. Editorial responsibility: T. Koyaguchi David S. Stevenson (Y)

    E-Print Network [OSTI]

    convection, the conduit radius to the fourth power, and inversely proportional to the degassed mag- ma is proportional to the flow rate of the over- turning magmas (proportional to the density difference driving convection 7 Volcano monitoring Introduction Persistent volcanism involves prolonged high thermal

  16. Curriculum vitae Axel K. Schmitt Curriculum vitae

    E-Print Network [OSTI]

    Young Dr E Los Angeles CA 90095 phone: +1 310 206 5760 fax: +1 310 825 2779 email: axel@oro.ess for teaching chemistry at secondary school level), University of Giessen, Germany Teaching experience ESS19 Volcanoes (UCLA, 2013) ESS5 Environmental Geology of Los Angeles (UCLA, 2012) ESS51 Mineralogy (UCLA, 2012

  17. Course Syllabus: W12 The Planets Course Information

    E-Print Network [OSTI]

    Jacobs, Lucia

    Astronomy, 6th edition Jeffrey O. Bennett, University of Colorado, Boulder Megan Donahue, Michigan State University Nicholas Schneider, University of Colorado, Boulder Mark Voit, Michigan State University ISBN-10, volcanoes, and ice floes? What makes the Earth hospitable for life? Is the Earth a common type of planet

  18. C o u r s e S y l l a b u s : W 1 2 T h e P l a n e t s Course Information

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    with MasteringAstronomy, 6th edition Jeffrey O. Bennett, University of Colorado, Boulder Megan Donahue, Michigan State University Nicholas Schneider, University of Colorado, Boulder Mark Voit, Michigan State, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes

  19. C o u r s e S y l l a b u s : W 1 2 T h e P l a n e t s Course Information

    E-Print Network [OSTI]

    Walker, Matthew P.

    of Colorado, Boulder Megan Donahue, Michigan State University Nicholas Schneider, University of Colorado, Boulder Mark Voit, Michigan State University ISBN-10: 0321642678 ISBN-13: 9780321642677 Publisher: Addison, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes

  20. C o u r s e S y l l a b u s : W 1 2 T h e P l a n e t s Course Information

    E-Print Network [OSTI]

    Walker, Matthew P.

    edition Jeffrey O. Bennett, University of Colorado, Boulder Megan Donahue, Michigan State University Nicholas Schneider, University of Colorado, Boulder Mark Voit, Michigan State University ISBN-10 some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life

  1. C o u r s e S y l l a b u s : W 1 2 T h e P l a n e t s Course Information

    E-Print Network [OSTI]

    Militzer, Burkhard

    Megan Donahue, Michigan State University Nicholas Schneider, University of Colorado, Boulder Mark Voit, Michigan State University ISBN-10: 0321642678 ISBN-13: 9780321642677 Publisher: Addison-Wesley Copyright some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life

  2. Regional climate models, spatial data and extremes

    E-Print Network [OSTI]

    Nychka, Douglas

    density function. f(y) = eg(y) or g(y) = log(f(y)) we are interested in the (simple) behavior of g when p from five clim forcings due to solar activity and volcanoes. Red shaded bands show the 5­95% range greenhouse gases ­ without Summary figure from Intergovernmental Panel on Climate Change, Fourth Assessement

  3. Cold Weather I usually start my climate presentations with a chart showing maps of the surface temperature

    E-Print Network [OSTI]

    Hansen, James E.

    ­ La Nina cycle), although an occasional large volcano can have a cooling effect that lasts a few years. Undoubtedly, the cooling trend through the year was due to the strengthening La Nina, and the unusual coolness (University of Alabama at Huntsville)2 and RSS (Remote Sensing Systems). The reason to show these is to expose

  4. Interactive Visualization of Modeled Atmospheric Trace Constituents Carmen M. Benkovitz

    E-Print Network [OSTI]

    directly as particles, for example from industrial activities, biomass burning, mineral dust sources biogenic ocean and land processes, SO from volcanoes (degassing 2and erupting), SO from biomass burning emissions in Europe and Asia are prominent on this date. The softwar

  5. Architecture is frozen music. Bragdon This publication accompanies the traveling exhibition Pulse Dome Project: Art &

    E-Print Network [OSTI]

    Kunkle, Tom

    a form of sustainable architecture that was in harmony with natural processes--a structure he calledpulse dome #12;Architecture is frozen music. Bragdon #12;This publication accompanies the traveling architecture, wombs, and such natural forms as caves, tunnels, and volcanoes to learn what had been done

  6. Atmos. Chem. Phys., 12, 86638677, 2012 www.atmos-chem-phys.net/12/8663/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    , Stockholm University, 11418 Stockholm, Sweden 3Netherlands Organisation for Applied Scientific Research TNO. Fountoukis et al.: Simulating ultrafine particle formation in Europe natural sources e.g. sea spray, fires, volcanoes, and wind- borne dust. Secondary particles are formed through nucle- ation and condensation of gas-

  7. Geophysical Research Abstracts, Vol. 10, EGU2008-A-10654, 2008

    E-Print Network [OSTI]

    Belousov, Alexander

    "toreva blocks". Well-known examples are torevas of Socompa (Chile) and Jocotit- lan (Mexico) volcanoes of a traveling debris avalanche some kind of natural lubricant is forming #12;(possibly in the form of dust cloud of strongly agitated particles). Being drugged under the traveling avalanche the lubricant reduces basal

  8. Query Optimization as a Datalog Program Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo

    E-Print Network [OSTI]

    Loo, Boon Thau

    Query Optimization as a Datalog Program Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo University is that of specifying the transformation rules and search process of a query optimizer [1]. In certain emerging domains universally understood than the languages used in transformational optimizers like those generated by Volcano

  9. iEMSs 2008:International Congress on Environmental Modelling and Software Integrating Sciences and Information Technology for Environmental Assessment and Decision Making

    E-Print Network [OSTI]

    Nikolenko, Sergey

    in mountainous area in a temperate climatic zone implies ice caps topping mountains including active volcanoes process in the same place (ice melt- ing). Otherwise, (ii) a lahar should travel long enough from i, or a regional earthquake may trigger ice avalanches turning into lahars downslope, which become yet more

  10. Subglacial lakes and jokulhlaups in Iceland Helgi Bjornsson*

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    by melting of the conduits. Normally jo¨kulhlaups do not lead to glacier surges but eruptions in ice-capped and hydrothermal systems underlie ice caps in Iceland. Glacier­volcano interactions produce meltwater that either lower than the ice overburden in conduits that expand slowly due to melting of the ice walls

  11. Evolution and future of the Lusi mud eruption inferred from ground deformation

    E-Print Network [OSTI]

    Manga, Michael

    Evolution and future of the Lusi mud eruption inferred from ground deformation M. L. Rudolph,1,2 M] The ongoing eruption of the Lusi mud volcano in East Java, Indonesia offers the unprecedented opportunity deformation obtained from multitemporal interferometric analysis of L-band synthetic aperture radar data

  12. RESEARCH ARTICLE Shallow seismicity, triggered seismicity, and ambient noise

    E-Print Network [OSTI]

    West, Michael

    -dormant Uturuncu Volcano, Bolivia Jennifer A. Jay & Matthew E. Pritchard & Michael E. West & Douglas Christensen (APVC) of the central Andes in SW Bolivia (22°16S, 67°11W), southeast of the town of Quetena Chico. 39 Calixto, La Paz, Bolivia M. Sunagua SERGEOTECMIN, La Paz, Bolivia Bull Volcanol (2012) 74:817­837 DOI 10

  13. DEM GENERATION FROM ASTER SATELLITE DATA FOR GEOMORPHOMETRIC ANALYSIS OF CERRO SILLAJHUAY, CHILE/BOLIVIA

    E-Print Network [OSTI]

    Bolch, Tobias

    DEM GENERATION FROM ASTER SATELLITE DATA FOR GEOMORPHOMETRIC ANALYSIS OF CERRO SILLAJHUAY, CHILE/BOLIVIA, a volcano in the Andes of Chile/Bolivia, was developed from ASTER (Advanced Spaceborne Thermal Emission ASTER satellite data of the Cerro Sillajhuay in the Andes of Chile/Bolivia. Fieldwork at the Cerro

  14. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    SciTech Connect (OSTI)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03T23:59:59.000Z

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of volcanic surfaces, and failure to account for this resulted in previous erroneous interpretation that the volcano is polycyclic (eruptions separated by 1,000s-10,000s of years). Lathrop Wells volcano provides an example of the wide range of eruptive processes that can occur with little change in major element composition; the variation in explosive and effusive processes, including their simultaneous occurrence, must result entirely from fluid dynamic, crystallization, and degassing processes in the ascending multiphase magma. The volcano also provides key analog information regarding processes that are important for volcanic risk assessment at the proposed Yucca Mountain radioactive waste repository, {approx}18 km north of the volcano.

  15. Who farted? Hydrogen sulphide transport from Bardarbunga to Scandinavia

    E-Print Network [OSTI]

    Grahn, Håkan; Brännström, Niklas

    2015-01-01T23:59:59.000Z

    On September 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on September 10 in the interior parts of county V\\"asterbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO_2, contents in the atmosphere surrounding Iceland to estimate flux of SO_2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO_2 concentration measurements from Muonio, Finland.

  16. Making space for reconciliation in Canada's planning system

    E-Print Network [OSTI]

    Galbraith, Lindsay

    2014-10-07T23:59:59.000Z

    ........................................................................................................................................................................... 293 Making space for reconciliation in Canada's planning system viii CHAPTER 1. INTRODUCTION Haida Gwaii is an island, lodged in the northeast corner of the Pacific Ocean. It's an isolated archipelago of forest, muskeg and ocean, shaped like a bear... was formed by ancient upheavals, volcanoes, sediments, ice flows and runoff. The surrounding ocean climate is warmer than the neighboring mainland, so during the ice ages some parts of the islands remained free of glaciers. Most of the modern Hecate Strait...

  17. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01T23:59:59.000Z

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  18. Animal representations and animal remains at Çatalhöyük

    E-Print Network [OSTI]

    Russell, Nerissa; Meece, Stephanie

    2006-01-01T23:59:59.000Z

    (Level VII). Volcano above town plan, leopard skin above geometric design, or other representations? Level VI paintings lack fully convinc­ ing animal depictions. A patch of painting on the east wall of building VIA.66 includes a number of geomet­ ric... the centrepieces of the north walls of two rather similar buildings. In a sense they parallel the situation in the faunal assemblage, where cattle are not terribly common, but figure prominently in cer­ emonial consumption (see Russell & Martin, Volume 4...

  19. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  20. Natural gas seeps in the northern Gulf of Mexico: A geological investigation.

    E-Print Network [OSTI]

    Tinkle, Anthony Robert

    1973-01-01T23:59:59.000Z

    ruptured by faulting and folding. 4) Oil Seeps along unconformi. ties 5) Seeps associated with intrusions, such as mud volcanoes, igneous intrusions and piercement salt domes. L-'nk also noted that seepages are most numerous . 'n areas of young... attention more and more towards offshore explor- ation, as the present census of major oil fields in the United States today is generally believed to be close to the probable maximum. At the same time, tho para, llel growth '. n ecological consciousness...

  1. 4.10 Earthquake Hydrology M. Manga and C.-Y. Wang, University of California Berkeley, Berkeley, CA, USA

    E-Print Network [OSTI]

    Manga, Michael

    4.10 Earthquake Hydrology M. Manga and C.-Y. Wang, University of California Berkeley, Berkeley, CA, USA ª 2007 Elsevier B.V. All rights reserved. 4.10.1 Introduction 293 4.10.2 Hydrologic Response.10.3.3 Mud Volcanoes 310 4.10.3.4 Geysers 311 4.10.4 Feedback between Earthquakes and Hydrology 312 4

  2. Role of adsorption in catalysis: applications of NMR relaxometry

    E-Print Network [OSTI]

    Arias Vecino, Pablo

    2015-06-09T23:59:59.000Z

    for the desired products. A successful example is the three-way catalyst, which effectively reduces pollution from car engines (Niemantsverdriet, 2000). Other important processes involving heterogeneous catalysts include the Haber-Bosch process for ammonia... against the %d-character, defined as the contribution of the d-electrons to the spd hybrid orbitals in Resonance Band Valence Theory. The figure shows a volcano-shaped plot, indicative of the differences between weak adsorption vs. hindered desorption...

  3. -A Science Service Feature Released on receipt

    E-Print Network [OSTI]

    sky, during heavy " , of rapidly moving p a r a l l e l arcs of l i g h t and shade. They wore gonerally seen against a background of clouds, but sometimes swept across t h e blue sky. the great guns luminous r i n g matching the cloud of smoke flashed outward and upward from t h e volcano and disappeared

  4. The facts on file. Dictionary of geology and geophysics

    SciTech Connect (OSTI)

    Lapidus, D.F.; Coates, D.R.

    1987-01-01T23:59:59.000Z

    This reference to the basic vocabulary of geology and geophysics has more than 3,000 clear and concise entries defining the entire range of geological phenomena. This book covers such areas as types of rocks and rock formations, deformation processes such as erosion and plate tectonics, volcanoes, glaciers and their effects on topography, geodesy and survey methods, earthquakes and seismology, fuels and mineral deposits.

  5. Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 1: Mean structure and diurnal cycle

    E-Print Network [OSTI]

    Rahn, David A.; Garreaud, René D.

    2010-01-01T23:59:59.000Z

    - ica Bight (Painemal and Zuidema, 2009). Contributions to higher aerosol come from coastal copper smelters, power plants, and other anthropogenic activities along the Chile- Peru coast (Huneeus et al., 2006) as well as natural sources such as volcanoes... et al., 2009), and one fully instrumented ocean buoy at 20? S, 85? W (Whelan et al., 2009). Meteorological data has also been obtained in a handful of scientific cruises transecting the region (Garreaud et al., 2001; Bretherton et al., 2004; Kollias...

  6. Science and technology review, April 1997

    SciTech Connect (OSTI)

    Upadhye, R.

    1997-04-01T23:59:59.000Z

    This month's issue has the following articles: (1) The Laboratory in the News; (2) Commentary by Tom Isaacs--Shaping Nuclear Materials Policy; (3) Dealing with a Dangerous Surplus from the Cold War--Since the end of the Cold War, the Laboratory has been spearheading studies on the disposition of surplus weapons plutonium; (4) Volcanoes: A Peek into Our Planet's Plumbing; and (5) Optical Networks: The Wave of the Future.

  7. Iowa Lakes Lakota Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open

  8. JD Products LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |

  9. Jordan-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind

  10. Juniper Canyon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |

  11. Karges-Faulconbridge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,

  12. Knowledge Strategies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii

  13. Lakefield | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,

  14. Lighthouse Solar Laguna Beach | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront

  15. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  16. Cascade geothermal drilling/corehole N-1

    SciTech Connect (OSTI)

    Swanberg, C.A.; Combs, J. (Geothermal Resources International, Inc., San Mateo, CA (USA)); Walkey, W.C. (GEO Operator Corp., Bend, OR (USA))

    1988-07-19T23:59:59.000Z

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  17. Cascade geothermal drilling/corehole N-3

    SciTech Connect (OSTI)

    Swanberg, C.A.

    1988-07-19T23:59:59.000Z

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  18. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    E-Print Network [OSTI]

    Kevin Jourde; Dominique Gibert; Jacques Marteau; Jean de Bremond d'Ars; Serge Gardien; Claude Girerd; Jean-Christophe Ianigro

    2015-04-09T23:59:59.000Z

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring of the volcano's activity since muon tomography provides continuous data taking, provided the muon detectors are sufficiently well designed and autonomous. Recent measurements on La Soufri\\`ere of Guadeloupe (Lesser Antilles, France) show, over a one year period, large modulations of the crossing muon flux, correlated with an increase of the activity in the dome. In order to firmly establish the sensitivity of the method and of our detectors and to disentangle the effects on the muon flux modulations induced by the volcano's hydrothermal system from those induced by other sources, e.g. atmospheric temperature and pressure, we perform a dedicated calibration experiment inside a water tower tank. We show how the method is fully capable of dynamically following fast variations in the density.

  19. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect (OSTI)

    None

    1981-06-01T23:59:59.000Z

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  20. Shallow meteoric alteration and burial diagenesis of massive dolomite in the Castle Reef Formation, northwest Montana

    E-Print Network [OSTI]

    Whitsitt, Philip Mark

    1989-01-01T23:59:59.000Z

    ), Sawmill Creek (SC), Half Dome Crag (HDC), Morningstar Mountain (MM), Mount Field (MF), Gateway Pass (GP), North Fork of Dupuyer Creek (NFD), South Fork of Dupuyer Creek (SFD), Volcano Reef (VR), North Fork of Teton River (NFT), Teton River (TR), Cave...SHALLOW METEORIC ALTERATION AND BURIAL DIAGENESIS OF MASSIVE DOLOM I TE I N THE CASTLE REEF FORMAT I ON ~ NORTHWEST MONTANA A Thesis by PHILIP MARK WHITSITT Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  1. Shining On: A primer on solar radiation data

    SciTech Connect (OSTI)

    Dunlap, M.A.; Cook, G. [eds.; Marion, B.; Riordan, C.; Renne, D.

    1992-05-01T23:59:59.000Z

    This document is a primer on solar radiation data. General uses of solar energy are presented. The manner in which solar radiation data is used to aid engineers in optimizing the use of solar thermal conversion and photovoltaic conversion is discussed. Methods for acquiring and assimilating the solar radiation data are illustrated. This would include the design and use of pyranometers and pyrheliometers. Seasonal and geographical variations in solar flux reaching the earth are evaluated. Other uses of compiled data include the determination of meteorological impacts of atmospheric disturbances such as volcano eruptions.

  2. Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers to Scale-up |ParkVolcano

  3. Accio Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers to Scale-up |ParkVolcanoAccio

  4. Active System For Monitoring Volcanic Activity- A Case Study Of The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,BarriersIzu-Oshima Volcano, Central

  5. Active and Passive Remote Sensing Diagram | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,BarriersIzu-Oshima Volcano,

  6. Activity Stream - Mapping and Assessment of the United States Ocean Wave

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,BarriersIzu-Oshima Volcano,Energy

  7. Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Information Puna Ridge-

  8. International Atomic Energy Agency Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Information Puna Ridge-source

  9. International Center for Environmental, Social, and Policy Studies | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Information Puna

  10. International Centre for Integrated Mountain Development (ICIMOD) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Information PunaEnergy

  11. International Clean Energy Analysis en Español | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Information

  12. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource History View

  13. International Energy Agency (IEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource History

  14. International Energy Agency Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource

  15. International Fuel Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy InformationsourceSt. Louis,

  16. International Fund for Agricultural Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy InformationsourceSt.

  17. International Geothermal Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy

  18. International Green Power IGP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to: navigation, search

  19. International Institute for Applied Systems Analysis | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to: navigation,

  20. International Masonry Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to: navigation,Masonry

  1. International Oil and Gas Board International Oil and Gas Board Address

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to: navigation,MasonryOil

  2. International Partnership for Hydrogen Energy IPHE | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to:

  3. International Renewable Energy Agency (IRENA) Feed | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to:Information IRENA)

  4. International Transport Forum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to:Information

  5. International Truck | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to:InformationTruck

  6. International Turbine Research Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump

  7. International experience with REDD+ and national forest funds | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformation experience

  8. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformation

  9. Interpretation of chemical analyses of waters collected from two geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwells at

  10. Interpretation of earth tide response of three deep, confined aquifers |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwells atOpen

  11. Interpretation of electromagnetic soundings in the Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwells

  12. Interpretation of self-potential measurements during injection tests at

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwellsRaft

  13. Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP

  14. Intevac | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to: navigation,

  15. Intrepid Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:

  16. Intrepid Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:Wind Farm Jump

  17. Intrinergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:Wind Farm

  18. Introduction to Framework | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:Wind

  19. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:WindStudy)

  20. Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:WindStudy)Study)

  1. Invasive, Nonnative Species | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump

  2. Invener | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener Jump to:

  3. Invenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener Jump

  4. Inversion of synthetic aperture radar interferograms for sources of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener

  5. Invert/EE-Lab Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvenerInvert/EE-Lab

  6. Invisible Entries | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac

  7. Invisible Solar Energy Collection | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisible Solar Energy

  8. Inyokern, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisible Solar

  9. Iowa Association of Municipal Utilities Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisible

  10. Iowa Association of Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisibleIowa Association

  11. Iowa Distributed Wind Generation Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisibleIowa

  12. Iowa Lakes Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevacInvisibleIowaCommunity

  13. Iowa Lakes Superior Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm Jump to: navigation,

  14. Iowa Stored Energy Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm Jump to:

  15. Iowa's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm Jump to:Information

  16. Iowa's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm Jump

  17. Iowa's 5th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm JumpInformation LLC

  18. Iowa/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm JumpInformation

  19. Iowa/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind Farm

  20. Iowa/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/Wind Resources/Full

  1. Ipswich | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/Wind

  2. Iran Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/WindIran Oil and

  3. Iran: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/WindIran Oil

  4. Ironwood I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/WindIran

  5. Is the hourly data I get from NREL's PV Watts program adjusted for daylight

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/WindIransavings

  6. Isleton, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind

  7. Isotope Geothermometry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpen Energy

  8. Isotope Transport and Exchange within the Coso Geothermal System | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpen EnergyEnergy

  9. Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpen EnergyEnergyEnergy

  10. Isotopic Analysis At Geysers Area (Kennedy & Truesdell, 1996) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpen

  11. Isotopic Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpenInformation 1992)

  12. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpenInformation

  13. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior WindOpenInformationSuemnicht,

  14. Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al., 1987) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior

  15. Isotopic Analysis At Newberry Caldera Area (Goles & Lambert, 1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy Information Goles &

  16. Isotopic Analysis At Reese River Area (Henkle & Ronne, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy Information Goles

  17. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy Information GolesOpen

  18. Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy Information

  19. Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergy

  20. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen Energy Information

  1. Isotopic Analysis- Fluid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen Energy

  2. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl., 1988) | Open

  3. Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl., 1988) |

  4. Isotopic Analysis- Rock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl., 1988)

  5. Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl.,

  6. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl.,Open Energy

  7. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen EnergyAl.,Open

  8. Iteknowledgies International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen

  9. Ithaca, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°, -76.4966071°

  10. Itron (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°,

  11. Itron (New York) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°,Itron (New

  12. Itron (Washington) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°,Itron

  13. J.D. Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°,ItronJ.D.

  14. JCS Kvazar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen4406284°,ItronJ.D.JCS

  15. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name JD

  16. JD Wind 10 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name JD0

  17. JD Wind 11 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name

  18. JD Wind 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name2

  19. JD Wind 3 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name23

  20. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name234

  1. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search Name2345

  2. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search

  3. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7 Wind

  4. JD Wind 8 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7 Wind8

  5. JD Wind 9 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7 Wind89

  6. JEA Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7

  7. JEDI Models | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7JEDI

  8. JJN Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation, search7JEDIJJN

  9. JP SCOPE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation,

  10. JP Sercel Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation,Sercel

  11. JSX Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation,SercelJSX Energy

  12. JV between Brehon Far East and Top Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to: navigation,SercelJSX

  13. JV between Paratransit Inc and Hybrid Technologies Inc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:

  14. Jackson County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon: Energy Resources

  15. Jackson National Fish Hatchery Aquaculture Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon: Energy

  16. Jackson, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon: EnergyJackson,

  17. Jacksonville Electric Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:

  18. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:Jadoo Power Systems

  19. Jaffrey, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:Jadoo Power

  20. Jakarta, Indonesia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm Jump to:Oregon:Jadoo PowerJakarta,