Sample records for rse row factor

  1. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    of the Excel tables (access from main detailed tables page) or in PDF format here: Building Characteristics for All Buildings (Tables A1-A8) RSE Tables: PDF, 16 pages, 312KB...

  2. Characteristics RSE Column Factor: Total

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4.. U.S.

  3. RSE Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product:Anatolia JumpRSE Wind Jump to:

  4. 2003 Commercial Buildings Energy Consumption - What is an RSE

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of...

  5. Characteristics RSE Column Factor: All Vehicle Types

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4. Fuel.6.

  6. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2010-02-23T23:59:59.000Z

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  7. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2012-02-07T23:59:59.000Z

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  8. homeoffice_household2001.pdf

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1...

  9. S:\\VM3\\RX97\\TBL_LIST.WPD [PFP#201331587

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1997 Home Office Equipment RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than 10,000...

  10. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1997 Home Office Equipment RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than 10,000...

  11. Characteristics RSE Column Factor: All Model Years Model Year

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4. Fuel.

  12. Characteristics RSE Column Factor: Households with Children Households Without Children

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4.

  13. S:\\VM3\\RX97\\TBL_LIST.WPD

    Gasoline and Diesel Fuel Update (EIA)

    than 10 households were sampled. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. * Because of rounding, data may...

  14. 2003 Commercial Buildings Energy Consumption - What is an RSE

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility 2002 ManufacturingTechnical

  15. Katherine Rowe September 29, 2006

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    pavements, namely porous asphalt, porous concrete, and numerous modular paver systems. Both a construction particles allows water to drain through quickly. Porous concrete also consists of an open-graded coarseKatherine Rowe ECOL 8710 September 29, 2006 Short Memo: Aspects & Impacts of Porous Pavements

  16. Stability of tube rows in crossflow. [LMFBR

    SciTech Connect (OSTI)

    Chen, S.S.; Jendrzejczyk, J.A.

    1982-10-01T23:59:59.000Z

    A mathematical model for the instability of tube rows subjected to crossflow is examined. The theoretical model, based on the fluid-force data for a pitch-to-diameter ratio of 1.33, provides additional insight into the instability phenomenon. Tests are also conducted for three sets of tube rows. The effects of mass ratio, tube pitch, damping, detuning and finned tubes are investigated. Theoretical results and experimental data are in good agreement.

  17. Effects of various inefficiencies in rowing on shell speed

    E-Print Network [OSTI]

    Young, Stephen F., Jr

    2009-01-01T23:59:59.000Z

    First order predictions were made in determining the effects of various sources of inefficiency in rowing on shell speed. These predictions were then tested using a MATLAB model of the rowing stroke. The model simulates ...

  18. Propulsive Efficiency of Rowing Oars David S. Cabrera1

    E-Print Network [OSTI]

    Ruina, Andy L.

    Propulsive Efficiency of Rowing Oars David S. Cabrera1 Andy L. Ruina2 Department of Theoretical Is the common folklore, that oars are less efficient at propulsion than propellers, correct? Here we examine the propulsive efficiency of the oars used in competitive rowing. We take the propulsive efficiency of rowing

  19. CSLC ROW Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility Jump to:ROW Forms Jump to:

  20. Homogenisation of a Row of Dislocation Dipoles

    E-Print Network [OSTI]

    Stephen Jonathan Chapman; Yang Xiang; Yichao Zhu

    2015-04-27T23:59:59.000Z

    Conventional discrete-to-continuum approaches have seen their limitation in describing the collective behaviour of the multi-polar configurations of dislocations, which are widely observed in crystalline materials. The reason is that dislocation dipoles, which play an important role in determining the mechanical properties of crystals, often get smeared out when traditional homogenisation methods are applied. To address such difficulties, the collective behaviour of a row of dislocation dipoles is studied by using matched asymptotic techniques. The discrete-to-continuum transition is facilitated by introducing two field variables respectively describing the dislocation pair density potential and the dislocation pair width. It is found that the dislocation pair width evolves much faster than the pair density. Such hierarchy in evolution time scales enables us to describe the dislocation dynamics at the coarse-grained level by an evolution equation for the slowly varying variable (the pair density) coupled with an equilibrium equation for the fast varying variable (the pair width). The time-scale separation method adopted here paves a way for properly incorporating dipole-like (zero net Burgers vector but non-vanishing) dislocation structures, known as the statistically stored dislocations (SSDs) into macroscopic models of crystal plasticity in three dimensions. Moreover, the natural transition between different equilibrium patterns found here may also shed light on understanding the emergence of the persistent slip bands (PSBs) in fatigue metals induced by cyclic loads.

  1. Optimization of row spacing and nitrogen fertilization for cotton

    E-Print Network [OSTI]

    Clawson, Ernest Leslie

    2004-09-30T23:59:59.000Z

    rows. One recommendation is to achieve between 247,100 to 395,360 plants per hectare for UNR cotton (BASF Corporation, 1999). In conventional cotton 74,176 to 123,550 plants per hectare has been recommended in California (Hake et al., 1996a... recommendation, not directed toward a particular state, is 247,097 to 395,355 plants ha-1 (BASF, 1999). The 76-cm row spacing plant population means in this study fell within the recommendations for conventional rows, and the 19-cm means were within...

  2. ECG-edit function in multidetector-row computed tomography coronary arteriography for patients with arrhythmias.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    multi- detector row computed tomography for the evaluationwith multislice computed tomography. J Am Coll Cardiol 2001;multi- detector-row computed tomography: Results in 102

  3. Optimization Online - Simultaneous Column-and-Row Generation ...

    E-Print Network [OSTI]

    Ibrahim Muter

    2010-11-14T23:59:59.000Z

    Nov 14, 2010 ... Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale ...

  4. Roswell International Air Center Airport (ROW) Pavement Condition and Analysis

    E-Print Network [OSTI]

    Cal, Mark P.

    Roswell International Air Center Airport (ROW) Pavement Condition and Analysis Submitted to: Jane M in December, 2009 18 .......................................4. Predicted Pavement Conditions Assuming No Maintenance 18 ...............Table 5. Predicted Pavement Conditions (PCI) Assuming no Maintenance After 2010

  5. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to7.1999Principal Building

  6. FINDING ROWS OF PEOPLE IN GROUP IMAGES Andrew C. Gallagher

    E-Print Network [OSTI]

    Chen, Tsuhan

    People are among the most popular subjects in photography, and in many social settings, images of groupsFINDING ROWS OF PEOPLE IN GROUP IMAGES Andrew C. Gallagher Carnegie Mellon University Department of people are captured. People often arrange themselves in a very struc- tured manner in these group images

  7. Row Buffer Locality Aware Caching Policies for Hybrid Memories

    E-Print Network [OSTI]

    strengths · A hybrid memory system (DRAM-PCM) aims for best of both · Problem: How to place data between static energy (no refresh) 6 DRAM PCM CPU MC MC #12;Hybrid Memory · Design direction: DRAM as a cache memory devices? 8 DRAM PCM CPU MC MC #12;Outline · Background: Hybrid Memory Systems · Motivation: Row

  8. Effects of row spacing on diseases, herbicide persistence, and qualitative characteristics of peanut

    E-Print Network [OSTI]

    Besler, Brent Alan

    2005-08-29T23:59:59.000Z

    white mold (57%) and rust (58%). Azoxystrobin also controlled white mold (58%) and controlling rust (44%). Both fungicides reduced leaf spot severity in the conventional and twin rows when compared to untreated plots. Twin rows showed a 10% yield...

  9. RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

    E-Print Network [OSTI]

    RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization Processor MemoryChannel Limited bandwidth High energy Carnegie Mellon University Intel Pittsburgh #12;RowClone: Fast and Energy-Efficient University Intel Pittsburgh #12;RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

  10. Spacing of Rows in Corn and Its Effect Upon Grain Yield.

    E-Print Network [OSTI]

    Conner, A. B. (Arthur Benjamin)

    1918-01-01T23:59:59.000Z

    cornpal-sble and applicable in the field under the systems of planting used. 'igure 2.-Spacing of rows three fiet apart with individual stalks36 inches apart in the row. This distribution rairies 4840 stalks to th? acre. Figure 3.-Spacing of rows s...

  11. The phase diagram of the staggered row model for magnetism

    E-Print Network [OSTI]

    Zhang, Weimin

    1991-01-01T23:59:59.000Z

    to frustration, ' ' and make spin systems exhibit rich phase structure and critical phenomena. One example is Villain's model of fully frustrated XY spins on the square lattice. ' In this model each plaquette has three ferromagnetic and one antiferro... goes in an antiferromagnetic state with ferromagnetic rows whose direction alternates as one moves vertically. In analogy to the generalization by Berge et al. of Villain's fully-frustrated model of XY spins on a square lattice, G. Parker, W. Saslow...

  12. File:UtilityROW.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf JumpUsgs.9.2010.Fig01.pdf JumpUtilityROW.pdf Jump to:

  13. The Opie Compiler from Row-major Source to Morton-ordered Matrices

    E-Print Network [OSTI]

    Wise, David Stephen

    The Opie Compiler from Row-major Source to Morton-ordered Matrices Steven T. Gabriel Computer The Opie Project aims to develop a compiler to transform C codes written for row-major matrix the formalism behind the Opie com- piler for C, its status: now compiling several standard Level- 2 and Level-3

  14. High Fidelity Modeling of Blade Row Interaction in a Transonic Compressor

    E-Print Network [OSTI]

    Cincinnati, University of

    High Fidelity Modeling of Blade Row Interaction in a Transonic Compressor Michael G. List in a transonic compressor, a time-accurate simulation of a transonic compressor rig was developed. Initially on the compressor. Three dierent axial spacings between the rotor and the upstream blade row have been simulated

  15. Clamping of Solid Tungsten Components for the Bulk W Divertor Row in JET – Precautionary Design for a Brittle Material

    E-Print Network [OSTI]

    Clamping of Solid Tungsten Components for the Bulk W Divertor Row in JET – Precautionary Design for a Brittle Material

  16. Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

    E-Print Network [OSTI]

    Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

  17. Effect of tillage systems, row configuration-spacing and plant population on soil physical properties, evapotranspiration and dryland sorghum yields 

    E-Print Network [OSTI]

    Salinas-Garcia, Jaime Roel

    1981-01-01T23:59:59.000Z

    in the convencional plots (101. 6-cm rows). The increase in yield was due primarily to the larger number of heads at harvest as compared with the conventional row-spacing. Clegg et al. (1972) observed that variation of row width can be used in greater utilization...

  18. Fact #777: April 29, 2013 For the Second Year in a Row, Survey...

    Energy Savers [EERE]

    777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle Fact 777: April 29, 2013 For the Second...

  19. A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding

    E-Print Network [OSTI]

    Cincinnati, University of

    A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding Mark G. Turner = circulation = trailing edge thickness = shock angle = density I. Introduction ransonic compressor stages AIAA. Research Scientist, Compressor Aerodynamic Research Laboratory, Associate Fellow AIAA

  20. Economic Implications of New Crops, Row Damming and Land Clearing in the Texas Winter Garden

    E-Print Network [OSTI]

    Muncrief, G.E.; Lacewell, R. D.; Cornforth, G. C.; Pena, J. G.

    TR- 123 1983 Economic Implications of New Crops, Row Damming and Land Clearing in the Texas Winter Garden G.E. Muncrief R.D. Lacewell G.C. Cornforth J.G. Pena Texas Water Resources Institute...

  1. Quarter Annulus Simulations of Blade Row Interaction at Several Gaps and Discussion of

    E-Print Network [OSTI]

    Cincinnati, University of

    annulus simulations to investigate the physics involved in the rotor bow shock interaction with a highly loaded upstream blade row and its eect on the compressor. Three dierent axial spacings between the rotor

  2. A Column-Row-Parallel ASIC architecture for 3D wearable / portable medical ultrasonic imaging

    E-Print Network [OSTI]

    Chen, Kailiang

    2014-01-01T23:59:59.000Z

    This work presents a scalable Column-Row-Parallel ASIC architecture for 3D wearable / portable medical ultrasound. It leverages programmable electronic addressing to achieve linear scaling for both hardware interconnection ...

  3. Analysis of conventional and plutonium recycle unit-assemblies for the Yankee (Rowe) PWR

    E-Print Network [OSTI]

    Mertens, Paul Gustaaf

    1971-01-01T23:59:59.000Z

    An analysis and comparison of Unit Conventional UO2 Fuel-Assemblies and proposed Plutonium Recycle Fuel Assemblies for the Yankee (Rowe) Reactor has been made. The influence of spectral effects, at the watergaps -and ...

  4. Effects of row spacing, seed rate and maturity group on late planted soybean under irrigated and dryland

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    to decrease. This purpose of this study is determine the best planting strategies in regards to row spacing. Edwardsville, KS). Plots with 7.5 and 15 in row spacing were planted with a Great Plains Drill model 3P600, and pest management practices were conducted according to Oklahoma State University recommended practices

  5. Row spacing effects on the canopy light extinction coefficient of upland cotton

    E-Print Network [OSTI]

    Steglich, Evelyn Marie

    2000-01-01T23:59:59.000Z

    coefficient (k) in cotton (Gossypium hirsutum). Treatments consisted of four row spacings (0.19-m, 0.38-m, 0.76-m, and 1.00-m) and four plant densities [148, 222, 296, 445 (1998) and 371 (1999) thousand plants ha-1] with each treatment replicated three times...

  6. Japan may take nuclear option in fusion row By David Pilling in Tokyo

    E-Print Network [OSTI]

    Japan may take nuclear option in fusion row By David Pilling in Tokyo Published: November 20 2004 the joint project, Japan's chief negotiator has warned. The European Union says it has the financial and scientific clout to build and run a reactor in France, without Japan's support. Tokyo says it will fund more

  7. Detecting and Defending against Web-Server Fingerprinting Dustin Lee, Jeff Rowe, Calvin Ko, Karl Levitt

    E-Print Network [OSTI]

    California at Davis, University of

    Detecting and Defending against Web-Server Fingerprinting Dustin Lee, Jeff Rowe, Calvin Ko, Karl of web servers and suggests possible defenses to the probing activity. General concepts of finger- printing and their application to the identification of Web servers, even where server information has been

  8. Shelley J. Row, P.E., PTOE Director, ITS Joint Program Office

    E-Print Network [OSTI]

    Minnesota, University of

    since January 2007. As JPO Director, Ms. Row manages a $110 million annual budget to advance research in FHWA's Headquarters managing ITS Early Deployment Planning and Outreach, Shelley returned to the field as Engineering Systems Manager in the Georgia Division office, where she was responsible for ITS project

  9. First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo

    E-Print Network [OSTI]

    Anderson, James B.

    First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo Arne Lu, Pennsylvania 16802 Received 20 May 1996; accepted 24 July 1996 Accurate ground state energies comparable FN-DQMC method. The residual energy, the nodal error due to the error in the nodal structure

  10. MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE

    E-Print Network [OSTI]

    1099 MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE in intensively (>80%) cultivated areas. From January 2001 to August 2002, we monitored movements of 77 (61 adult of seasonal migration, whereas crop emergence and harvest had minimal effects. Four deer (8%) dispersed a mean

  11. An Economic Comparison of Conventional and Narrow-Row Cotton Production--Southern Plains of Texas.

    E-Print Network [OSTI]

    Young, Kenneth B.; Adams, James R.

    1977-01-01T23:59:59.000Z

    JUN ~ 3 1977 Texas A&M University June 19' An Economic Comparison of Coventional and Narrow-Row -- Cotton Production-Southern High Plains of Texas The Texas Agricultural Experiment Station, J. E. Miller, Director' The Texas A&M University.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 Yield Comparisons .......................................... 4 Differences in Inputs Used ............... :................... 6 Fertil izer and Irrigation Inputs . . .......................... 6 Seeding rate...

  12. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  13. Effects of plant density and row spacing on the ratooning of sorghum (Sorghum bicolor (L.) Moench)

    E-Print Network [OSTI]

    Priwin A., Ricardo A

    1977-01-01T23:59:59.000Z

    and Row Width Sorghum, as all other crops, requires optimum spacing for efficient utilization of nutrients, solar energy and soil moisture. The effect of optimum spacing can be measured by the components which make up yield per unit area and per plant.... If the stand was not adequate, plants were trans- planted to insure a correct stand. The parent and ratoon crops were cultivated to maintain the plots free of weedy species. 20 After harvesting the grain from the parent crop, the plants were cut 8 cm...

  14. File:03AKBRightOfWaysROWs.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to: navigation, search FileAKBRightOfWaysROWs.pdf Jump to:

  15. Dense LU Factorization on Multicore Supercomputer Nodes

    SciTech Connect (OSTI)

    Lifflander, Jonathan [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Miller, Phil [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Venkataraman, Ramprasad [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Arya, Anshu [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Jones, Terry R [ORNL] [ORNL; Kale, Laxmikant V [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

    2012-01-01T23:59:59.000Z

    Dense LU factorization is a prominent benchmark used to rank the performance of supercomputers. Many implementations, including the reference code HPL, use block-cyclic distributions of matrix blocks onto a two-dimensional process grid. The process grid dimensions drive a trade-off between communication and computation and are architecture- and implementation-sensitive. We show how the critical panel factorization steps can be made less communication-bound by overlapping asynchronous collectives for pivot identification and exchange with the computation of rank-k updates. By shifting this trade-off, a modified block-cyclic distribution can beneficially exploit more available parallelism on the critical path, and reduce panel factorization's memory hierarchy contention on now-ubiquitous multi-core architectures. The missed parallelism in traditional block-cyclic distributions arises because active panel factorization, triangular solves, and subsequent broadcasts are spread over single process columns or rows (respectively) of the process grid. Increasing one dimension of the process grid decreases the number of distinct processes in the other dimension. To increase parallelism in both dimensions, periodic 'rotation' is applied to the process grid to recover the row-parallelism lost by a tall process grid. During active panel factorization, rank-1 updates stream through memory with minimal reuse. In a column-major process grid, the performance of this access pattern degrades as too many streaming processors contend for access to memory. A block-cyclic mapping in the more popular row-major order does not encounter this problem, but consequently sacrifices node and network locality in the critical pivoting steps. We introduce 'striding' to vary between the two extremes of row- and column-major process grids. As a test-bed for further mapping experiments, we describe a dense LU implementation that allows a block distribution to be defined as a general function of block to processor. Other mappings can be tested with only small, local changes to the code.

  16. Bootstrapping dielectronic recombination from second-row elements and the Orion Nebula

    E-Print Network [OSTI]

    Badnell, N R; Gorczyca, T W; Nikolic, D; Wagle, G A

    2015-01-01T23:59:59.000Z

    Dielectronic recombination (DR) is the dominant recombination process for most heavy elements in photoionized clouds. Accurate DR rates for a species can be predicted when the positions of autoionizing states are known. Unfortunately such data are not available for most third and higher-row elements. This introduces an uncertainty that is especially acute for photoionized clouds, where the low temperatures mean that DR occurs energetically through very low-lying autoionizing states. This paper discusses S$^{2+} \\rightarrow$ S$^+$ DR, the process that is largely responsible for establishing the [S~III]/[S~II] ratio in nebulae. We derive an empirical rate coefficient using a novel method for second-row ions, which do have accurate data. Photoionization models are used to reproduce the [O~III] / [O~II] / [O~I] / [Ne~III] intensity ratios in central regions of the Orion Nebula. O and Ne have accurate atomic data and can be used to derive an empirical S$^{2+} \\rightarrow$ S$^+$ DR rate coefficient at $\\sim 10^{4}$...

  17. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect (OSTI)

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China); Yang, J.; Zhang, Y. [China Nuclear Power Technology Research Inst., Yitian Road, ShenZhen, GuangDong, 518026 (China)

    2012-07-01T23:59:59.000Z

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  18. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil

    E-Print Network [OSTI]

    Vermont, University of

    -crop agriculture in Brazil Gillian L. Galford a,b,, John F. Mustard a , Jerry Melillo b , Aline Gendrin a Nuclear na Agricultura, Universidade de São Paulo, Brazil e Escola Superior de Agricultura Luiz de Queiroz from natural vegetation and pastures to row-crop agricultural with the potential to affect regional

  19. Jeffrey R. Row Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

    E-Print Network [OSTI]

    Row, Jeffrey R.

    , N2L 3G1 Website: http://jeffrow.ca · Email: jeff.row@me.com · Phone: 1-416-399-3066 1 Education 2006 and population structure of foxsnakes across spatial and temporal scales. 2003-2005 M.Sc. Biology, University (Lampropeltis triangulum). 1997-2001 B.Sc. Environmental Biology, Queen's University, Kingston, Ontario. 2

  20. Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts

    SciTech Connect (OSTI)

    Sylvain, D.C.

    1996-10-01T23:59:59.000Z

    In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting the average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.

  1. The influence of mechanical summer pruning, row direction, and tree spacing on yield and quality of peach, Prunus persica (L.) Batsch

    E-Print Network [OSTI]

    Raseira, Ailton

    1985-01-01T23:59:59.000Z

    peach orchard densities were tested in peaches of cv. Redglobe. The trees were all winter pruned and then pruned 20 days before harvest (ESP, early summer pruning), after harvest (LSP, late summer pruning), or not pruned at summer time (WP, winter... pruning only) . The different spacing between plants within the row were: 2. 3 m, 3. 1 m and 4. 6 m, while the same space was maintained between rows. This research was designed to study the combined effect of plant spacing, summer pruning, and row...

  2. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, J.; Rote, D.M.

    1996-05-21T23:59:59.000Z

    A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

  3. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, Jianliang (Naperville, IL); Rote, Donald M. (Lagrange, IL)

    1996-01-01T23:59:59.000Z

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

  4. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    SciTech Connect (OSTI)

    Padama, Allan Abraham B. [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-06-28T23:59:59.000Z

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrence of reconstructed surface.

  5. Effect of plant populations and row spacings on plant and ear characters and grain yield of corn hybrids 

    E-Print Network [OSTI]

    Silapapun, Anek

    1976-01-01T23:59:59.000Z

    break- age and barren stalks increased with increase in population densities. Allessi and Power (2) also found that number of barren stalks increased and ear weight decreased with increased plant population. Bleasdale (7) proposed that if a crop...EFFECT OF PLANT POPULATIONS AND ROW SPACINGS ON PLANT AND EAR CHARACTERS AND GRAIN YIELD OF CORN HYBRIDS A Thesis by ANEK SILAPAPUN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  6. Effect of tillage systems, row configuration-spacing and plant population on soil physical properties, evapotranspiration and dryland sorghum yields

    E-Print Network [OSTI]

    Salinas-Garcia, Jaime Roel

    1981-01-01T23:59:59.000Z

    EFFECT OF T ILLAGE SYSTEMS & R01I CONF IGURAT I ON SPACING AND PLANT POPULATION ON SOIL PHYSICAL PROPERTIES, EVAPOTRANSPIRATION AND DRYLAND SORGHUM YIELDS A Thesis by JAIME ROEL SALINAS-GARCIA Submitted to the Graduate College of Texas ASM... AND DRYLAND SORGHUM YIELDS A Thesis by JAIME ROEL SALINAS-GARCIA Approved as to style and content by: (Co-Chairman of Committ. ee) ( o-Chairman of Committee) (Member) (Head of Department) December 1981 ABSTRACT Effect of Tillage Systems, Row...

  7. Factors Affecting the Performance of Mechanical Cotton Harvesters (Stripper Type), Extractors and Cleaners.

    E-Print Network [OSTI]

    Jones, D. L. (Don L.); Killough, D. T. (David Thornton); Smith, H. P. (Harris Pearson)

    1946-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR College Station, Texas ULLETIN NO. 686 DECEMBER, 1946 FACTORS AFFECTING THE PERFORMANCE OF MECHANICAL COTTON HARVESTERS (STRIPPER TYPE), EXTRACTORS AND CLEANERS H. P. SMITH, D. T... stripping machines during the past five years. Several concerns are now building two-row tractor mounted machines for the commercial trade. The performance of the stripper type cotton harvester is influenced by a number of factors, Tests to determine...

  8. 1 Copyright 2011 by ASME FLOWFIELD MEASUREMENTS IN A SINGLE ROW OF

    E-Print Network [OSTI]

    Thole, Karen A.

    for cooling the trailing edge of gas turbine airfoils. While much research has been devoted to the heat D pin-fin diameter Dh hydraulic diameter f friction factor fk vortex shedding frequency fo baseline value INTRODUCTION Modern gas turbine engines operate with turbine inlet temperatures exceeding

  9. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    SciTech Connect (OSTI)

    Bankston, C.P.; Back, L.H.

    1982-02-01T23:59:59.000Z

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchange system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl conbustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Non-dimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  10. Row by row methods for semidefinite programming

    E-Print Network [OSTI]

    Zaiwen Wen

    2009-04-28T23:59:59.000Z

    Apr 28, 2009 ... ... is supported by the Mathematical Programming Society and by the Optimization Technology Center. Mathematical Programming Society.

  11. ROW BY ROW METHODS FOR SEMIDEFINITE PROGRAMMING ...

    E-Print Network [OSTI]

    2009-04-28T23:59:59.000Z

    Apr 28, 2009 ... than 5.25 minutes and nuclear norm matrix completion SDPs involving matrices of size 1000 × 1000 in less than 1 minute on a 3.4 GHZ ...

  12. An Automatic Brain Tumor Segmentation Tool Idanis Diaz1,4, Pierre Boulanger1, Russell Greiner1,2, Bret Hoehn1,2, Lindsay Rowe3, and Albert Murtha3

    E-Print Network [OSTI]

    Alberta, University of

    ,2, Bret Hoehn1,2, Lindsay Rowe3, and Albert Murtha3 Abstract-- This paper introduces an automatic brain and B. Hoehn are with the Department of Computing Science, University of Alberta. 2 R. Greiner and B. Hoehn are also with the Alberta Innovates Centre for Machine Learning. 3L. Rowe and A. Murtha

  13. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells Jeremy Kua and William A. Goddard III* Contribution from functional theory (B3LYP)], we calculated the 13 most likely intermediate species for methanol oxidation

  14. ABOUT THE TALK: Has anyone ever put the whole picture of Cannery Row, Monterey, together for you? Don't feel alone if that's the case. ere are few resources easily accessed to get to it all. e PowerPoint archival photographic

    E-Print Network [OSTI]

    McPhee-Shaw, Erika

    PowerPoint archival photographic historical presentation by Cannery Row historian Michael Kenneth Hemp: Berkeley born and UC Educated, Michael Kenneth Hemp became Cannery Row's career historian in a scenario Friends at (831) 771-4464 PHOTO BY RALPH W. SCHARDT An evening with Cannery Row Historian Michael Hemp

  15. Re: NBP RFI: CommunicationRse quirements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |DDOERue,Consumers and thePepco

  16. Basal area growth response to competition among improved families of loblolly pine (Pinus taeda L.) in a 20-year-old row plot progeny trial

    E-Print Network [OSTI]

    Lee, Joel Talbot

    1989-01-01T23:59:59.000Z

    T. Sprinz Or. Michael G. Messina In two plantations, over two tsme intervals, tne average basal area growth of individual loblolly pine trees in a row plot progeny trial was modeled as a function of the Area Potentially Available (APA...) competition index, a crown pos1tion 1ndex, and the tree's basal area at the start of the interval. Hypothesis tests for differences in individual tree basal area growth response to competit1on amon9 genetically-1mproved families were performed. When...

  17. Computing modified Newton directions using a partial Cholesky factorization

    SciTech Connect (OSTI)

    Forsgren, A. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Mathematics; Gill, P.E. [California Univ., San Diego, La Jolla, CA (United States); Murray, W. [Stanford Univ., CA (United States). Systems Optimization Lab.

    1993-03-01T23:59:59.000Z

    The effectiveness of Newton`s method for finding an unconstrained minimizer of a strictly convex twice continuously differentiable function has prompted the proposal of various modified Newton inetliods for the nonconvex case. Linesearch modified Newton methods utilize a linear combination of a descent direction and a direction of negative curvature. If these directions are sufficient in a certain sense, and a suitable linesearch is used, the resulting method will generate limit points that satisfy the second-order necessary conditions for optimality. We propose an efficient method for computing a descent direction and a direction of negative curvature that is based on a partial Cholesky factorization of the Hessian. This factorization not only gives theoretically satisfactory directions, but also requires only a partial pivoting strategy, i.e., the equivalent of only two rows of the Schur complement need be examined at each step.

  18. Computing modified Newton directions using a partial Cholesky factorization

    SciTech Connect (OSTI)

    Forsgren, A. (Royal Inst. of Tech., Stockholm (Sweden). Dept. of Mathematics); Gill, P.E. (California Univ., San Diego, La Jolla, CA (United States)); Murray, W. (Stanford Univ., CA (United States). Systems Optimization Lab.)

    1993-03-01T23:59:59.000Z

    The effectiveness of Newton's method for finding an unconstrained minimizer of a strictly convex twice continuously differentiable function has prompted the proposal of various modified Newton inetliods for the nonconvex case. Linesearch modified Newton methods utilize a linear combination of a descent direction and a direction of negative curvature. If these directions are sufficient in a certain sense, and a suitable linesearch is used, the resulting method will generate limit points that satisfy the second-order necessary conditions for optimality. We propose an efficient method for computing a descent direction and a direction of negative curvature that is based on a partial Cholesky factorization of the Hessian. This factorization not only gives theoretically satisfactory directions, but also requires only a partial pivoting strategy, i.e., the equivalent of only two rows of the Schur complement need be examined at each step.

  19. Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis

    SciTech Connect (OSTI)

    Andrzejewski, D M

    2011-09-12T23:59:59.000Z

    The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary matrices with an unbounded number of columns. This construct can be used, for example, to model a fixed numer of observed data points (rows) associated with an unknown number of latent features (columns). Markov Chain Monte Carlo (MCMC) methods are often used for IBP inference, and in this technical note, we provide a detailed review of the derivations of collapsed and accelerated Gibbs samplers for the linear-Gaussian infinite latent feature model. We also discuss and explain update equations for hyperparameter resampling in a 'full Bayesian' treatment and present a novel slice sampler capable of extending the accelerated Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of real-valued latent features.

  20. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  1. 4.8 Row Space

    E-Print Network [OSTI]

    PRETEX (Halifax NS) #1 1054 1999 Mar 05 10:59:16

    2010-02-12T23:59:59.000Z

    Feb 16, 2007 ... For Problems 26–31, find the change-of-basis matrix PB?C from the given basis C to the given basis B of the vector space V . 26. V , B, and C ...

  2. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  3. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  4. FGF growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2012-07-24T23:59:59.000Z

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  5. Electromagetic proton form factors

    E-Print Network [OSTI]

    M Y Hussein

    2006-10-31T23:59:59.000Z

    The electromagnetic form factors are crucial to our understanding of the proton internal structure, and thus provide a strong constraint of the distributions of the charge and magnetization current within the proton. We adopted the quark-parton model for calculating and understanding the charge structure of the proton interms of the electromagnetic form factors. A remarkable agreement with the available experimental evidence is found.

  6. RSE Table 1.1 Relative Standard Errors for Table 1.1

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:

  7. RSE Table 1.2 Relative Standard Errors for Table 1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:2

  8. RSE Table 10.10 Relative Standard Errors for Table 10.10

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:20

  9. RSE Table 10.11 Relative Standard Errors for Table 10.11

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:201

  10. RSE Table 10.12 Relative Standard Errors for Table 10.12

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:2012

  11. RSE Table 10.13 Relative Standard Errors for Table 10.13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" " Unit:20123

  12. RSE Table 2.1 Relative Standard Errors for Table 2.1

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "

  13. RSE Table 3.1 Relative Standard Errors for Table 3.1

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1 Relative

  14. RSE Table 3.2 Relative Standard Errors for Table 3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1 Relative2

  15. RSE Table 3.5 Relative Standard Errors for Table 3.5

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1 Relative25

  16. RSE Table 4.1 Relative Standard Errors for Table 4.1

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1

  17. RSE Table 4.2 Relative Standard Errors for Table 4.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12 Relative

  18. RSE Table 5.1 Relative Standard Errors for Table 5.1

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12 Relative1

  19. RSE Table 5.2 Relative Standard Errors for Table 5.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12

  20. RSE Table 5.4 Relative Standard Errors for Table 5.4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "124 Relative

  1. RSE Table 5.5 Relative Standard Errors for Table 5.5

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "124

  2. RSE Table 5.6 Relative Standard Errors for Table 5.6

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1246

  3. RSE Table 5.7 Relative Standard Errors for Table 5.7

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12467

  4. RSE Table 5.8 Relative Standard Errors for Table 5.8

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "124678

  5. RSE Table 7.10 Relative Standard Errors for Table 7.10

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1246780

  6. RSE Table 7.3 Relative Standard Errors for Table 7.3

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12467803

  7. RSE Table 7.4 Relative Standard Errors for Table 7.4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "124678034

  8. RSE Table 7.5 Relative Standard Errors for Table 7.5

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "1246780345

  9. RSE Table 7.6 Relative Standard Errors for Table 7.6

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "12467803456

  10. RSE Table 7.7 Relative Standard Errors for Table 7.7

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;" "124678034567

  11. RSE Table 7.9 Relative Standard Errors for Table 7.9

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"

  12. RSE Table 8.2 Relative Standard Errors for Table 8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 Relative Standard

  13. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P URFIof Clean

  14. Multi-factor authentication

    DOE Patents [OSTI]

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21T23:59:59.000Z

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  15. Factors Affecting Photosynthesis!

    E-Print Network [OSTI]

    Kudela, Raphael M.

    Factors Affecting Photosynthesis! Temperature Eppley (1972) Light Sverdrup's Critical Depth-493, but the general concept is still valid! ! #12;PB opt & Temperature! #12;Photosynthesis & Temperature! Remember: in the laboratory, we can measure photosynthesis versus irradiance (PvsE) and calculate Ek, Pmax, and alpha

  16. Public Health FAT FACTORS

    E-Print Network [OSTI]

    Qian, Ning

    : THE UNITED STATES SPENDS MORE ON HEALTH CARE THAN ANY OTHER COUNTRY. YET WE CONTINUE TO FALL FAR BEHIND States spends an astonishing percent of our gross domestic product on health care--significantly moreColumbia Public Health HOT TOPIC Climate Change FAT FACTORS Obesity Prevention BOOK SMART

  17. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index Journal Cited Half-Life 2012 JCR Science Edition Journal: CZECHOSLOVAK MATHEMATICAL JOURNAL Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items

  18. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01T23:59:59.000Z

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  19. All row, planar fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23T23:59:59.000Z

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  20. Sport Scholarship programme Rowing at Birmingham

    E-Print Network [OSTI]

    Heinke, Dietmar

    included Silver at the World Cup in Linz 2007; 5th at the World Cup in Amsterdam 2007; 4th at Lucerne 2007, winning gold in Bled, silver in Munich and bronze in Lucerne. She has already been selected for the women

  1. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  2. CSLB ROW Forms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility Jump to: navigation,

  3. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4

  4. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of47

  5. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of478

  6. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4787

  7. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of47878

  8. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses

  9. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses8 End

  10. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1

  11. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace

  12. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace3

  13. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace31

  14. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed

  15. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.1 Enclosed

  16. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.1

  17. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1.4 Number468143

  18. BLM ROW Grant Template | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | OpenBLMROW

  19. Update rows? | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitilMichigan JumpWaterloo UWrows?

  20. CHAPTER XVIII ENVffiONMENTAL FACTORS AFFECTING OYSTER POPULATIONS

    E-Print Network [OSTI]

    thrive above the bottom attached t~ rocks and underwater structures, branches and trunks of fallen trees populations are important to man as a source of FISHERY BULLETIN: VOLUME 64, CHAPTER XVIII 7aa-.aal () sa 26 by the greatest number of individuals which can ~row to maturity subject to the conditions which surround them

  1. Building a completely positive factorization

    E-Print Network [OSTI]

    2010-03-14T23:59:59.000Z

    Aug 19, 2009 ... Abstract. Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions.

  2. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index 2012 JCR Science Edition Journal: Applications of Mathematics Mark Journal Title ISSN Total- life APPL MATH-CZECH 0862-7940 240 0.222 0.549 0.054 37 7.3 >10.0 Cited Journal Citing Journal Source

  3. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  4. Vector and scalar form factors for K- and D-meson semileptonic decays from twisted mass fermions with Nf = 2

    E-Print Network [OSTI]

    S. Di Vita; B. Haas; F. Mescia; V. Lubicz; S. Simula; C. Tarantino

    2009-10-26T23:59:59.000Z

    We present lattice results for the form factors relevant in the K -> pion and D -> pion semileptonic decays, obtained from simulations with two flavors of dynamical twisted-mass fermions and pion masses as light as 260 MeV. For K -> pion decays we discuss the estimates of the main sources of systematic uncertainties, including the quenching of the strange quark, leading to our final result f+(0) = 0.9560 (57) (62). Combined with the latest experimental data, our value of f+(0) implies for the CKM matrix element |Vus| the value 0.2267 (5) (20) consistent with the first-row CKM unitarity. For D -> pion decays the application of Heavy Meson Chiral Perturbation Theory allows to extrapolate our results for both the scalar and the vector form factors at the physical point with quite good accuracy, obtaining a nice agreement with the experimental data. In particular at zero-momentum transfer we obtain f+(0) = 0.64 (5).

  5. Risk factors for equine laminitis

    E-Print Network [OSTI]

    Polzer, John Patrick

    1995-01-01T23:59:59.000Z

    logistic regression to assess age, breed, sex, and seasonality as risk factors for equine laminitis. There were 70 acute cases, 183 chronic cases, and 779 controls. No statistical association was found between age, breed, sex, or seasonality...

  6. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for ...

  7. Factors Affecting Option Premium Values

    E-Print Network [OSTI]

    Johnson, Jason; Smith, Jackie; Dhuyvetter, Kevin C.; Waller, Mark L.

    1999-06-23T23:59:59.000Z

    Factors Affecting Option Premium Values Jason Johnson, Jackie Smith, Kevin Dhuyvetter and Mark Waller* Put Options Hedging in the futures market with options is much like buying an insurance policy to protect commodity sellers against declining...

  8. Electrical and Production Load Factors

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  9. Integer factorization is in P

    E-Print Network [OSTI]

    owner

    2014-04-07T23:59:59.000Z

    can be solved by a deterministic Turing machine in polynomial time(see e.g.. Cormen et al. (2009)). Theorem 5. Integer factorization is in FP. Algorithm 2 can be ...

  10. Automatic Test Factoring for Java

    E-Print Network [OSTI]

    Saff, David

    2005-06-08T23:59:59.000Z

    Test factoring creates fast, focused unit tests from slow system-widetests; each new unit test exercises only a subset of the functionalityexercised by the system test. Augmenting a test suite with factoredunit tests ...

  11. Human Factors of Reporting Systems

    E-Print Network [OSTI]

    Johnson, C.W.

    Johnson,C.W. P. Carayon (ed.), A Handbook of Human Factors and Ergonomics in Healthcare and Patient Safety, Lawrence Erlbaum, London, UK. pp 715-750 Lawrence Erlbaum Associates

  12. Radiant-interchange configuration factors

    E-Print Network [OSTI]

    Reddin, Thomas Edward

    1965-01-01T23:59:59.000Z

    an important role in any situation involving radiant interchange. The engineer desiring to compute the radiant heat transfer in a system is usually discouraged from performing more than a superficial estimation because of the excessive amount of time... Monitor System using the Fortran IV Compiler and the Macro Assembly Program. Listings of the programs appear in the appendices. CHAPTER II THE GEOMETRY OF THE BLACK BODY CONFIGURATION FACTOR 2. 1 Derivation of the Configuration Factor To evaluate...

  13. Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer work 2 RSE/STFC Enterprise Fellowships 3 RSE/STFC Enterprise Fellowships

    E-Print Network [OSTI]

    in a wide number of areas including; to improve air purification in hospital intensive care wards, produce, and help manufacturers to develop or improve new and existing products. STFC Innovations Ltd has a long successfully established 15 spin-out companies which have raised more than £25m of external investment between

  14. Optimization Online - Integer Factorization is in P

    E-Print Network [OSTI]

    Yuly Shipilevsky

    2012-08-31T23:59:59.000Z

    Aug 31, 2012 ... Integer Factorization is in P. Yuly Shipilevsky (yulysh2000 ***at*** yahoo.ca). Abstract: A polynomial-time algorithm for integer factorization, ...

  15. Transcription factor-based biosensor

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  16. TsKgel ReVeRseD PhAse Tosoh biosCienCe GMbh

    E-Print Network [OSTI]

    Lebendiker, Mario

    for a broad range of applications in R&D, quality control or reaction monitoring. TSKgel ODS-80, ODS-100 and ODS-120 silica based RPC columns offer high resolution power for various applications. For high-speed separations we recommend the porous, silica-based TSKgel Super and ODS-140HTP series or the nonporous

  17. 22 RSE n 5 juillet-aot 2010 www.rsemag.com Les PME face aux risques

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    marginal et, il faut bien le dire, circonscrit à la littérature anglo- saxonne. Hasle et Limborg en 2006

  18. "RSE Table C1.1. Relative Standard Errors for Table C1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434.1.

  19. "RSE Table C10.1. Relative Standard Errors for Table C10.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434.1.1.

  20. "RSE Table C10.2. Relative Standard Errors for Table C10.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B

  1. "RSE Table C10.3. Relative Standard Errors for Table C10.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3. Relative

  2. "RSE Table C11.3. Relative Standard Errors for Table C11.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3. Relative1.3.

  3. "RSE Table C12.1. Relative Standard Errors for Table C12.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3.

  4. "RSE Table C2.1. Relative Standard Errors for Table C2.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3.C2.1. Relative

  5. "RSE Table C3.1. Relative Standard Errors for Table C3.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3.C2.1.

  6. "RSE Table C4.1. Relative Standard Errors for Table C4.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3.C2.1.C4.1.

  7. "RSE Table C9.1. Relative Standard Errors for Table C9.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B3.C2.1.C4.1.C9.1.

  8. "RSE Table E1.1. Relative Standard Errors for Table E1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data

  9. "RSE Table E13.1. Relative Standard Errors for Table E13.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative Standard Errors

  10. "RSE Table E13.2. Relative Standard Errors for Table E13.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative Standard

  11. "RSE Table E13.3. Relative Standard Errors for Table E13.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative Standard3.

  12. "RSE Table E2.1. Relative Standard Errors for Table E2.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative Standard3.E2.1.

  13. "RSE Table E7.1. Relative Standard Errors for Table E7.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative

  14. "RSE Table E7.2. Relative Standard Errors for Table E7.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2. Relative

  15. "RSE Table N1.3. Relative Standard Errors for Table N1.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2. Relative.3.

  16. "RSE Table N11.1. Relative Standard Errors for Table N11.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2. Relative.3.1.

  17. "RSE Table N11.2. Relative Standard Errors for Table N11.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.

  18. "RSE Table N11.3. Relative Standard Errors for Table N11.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3. Relative

  19. "RSE Table N11.4. Relative Standard Errors for Table N11.4;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3. Relative4.

  20. "RSE Table N13.1. Relative Standard Errors for Table N13.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.

  1. "RSE Table N13.3. Relative Standard Errors for Table N13.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.3. Relative

  2. "RSE Table N5.1. Relative Standard Errors for Table N5.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.3.

  3. "RSE Table N5.2. Relative Standard Errors for Table N5.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.3.2.

  4. "RSE Table N7.1. Relative Standard Errors for Table N7.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.3.2.N7.1.

  5. "RSE Table N8.3. Relative Standard Errors for Table N8.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1. Relative2.3.3.2.N7.1.3.

  6. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  7. An analysis of factors contributing to train-involved crashes

    E-Print Network [OSTI]

    Cooner, Scott Allen

    1995-01-01T23:59:59.000Z

    analyzed for the contributing factors. The contributing factors were classified into four categories: railroad factors, environmental factors, roadway factors, and driver/passenger factors. The accident data was analyzed using one and two-way classification...

  8. Nonlinear relationships between individual IEQ factors and overall workspace satisfaction

    E-Print Network [OSTI]

    Kim, Jungsoo; de Dear, Richard

    2011-01-01T23:59:59.000Z

    in dissatisfaction. So for Bonus Factors, the absolute valuemarketing literature), (2) Bonus Factors (synonyms include “for occupants’ satisfaction. Bonus Factors: Bonus Factors go

  9. Dissecting Soft Radiation with Factorization

    E-Print Network [OSTI]

    Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

    2015-02-10T23:59:59.000Z

    An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the primary hard interaction. It includes soft radiation from the primary hard partons, secondary multiple parton interactions (MPI), and factorization-violating effects. The invariant mass spectrum of the leading jet in $Z$+jet and $H$+jet events is directly sensitive to these effects, and we use a QCD factorization theorem to predict its dependence on the jet radius $R$, jet $p_T$, jet rapidity, and partonic process for both the perturbative and nonperturbative components of primary soft radiation. We prove that the nonperturbative contributions involve only odd powers of $R$, and the linear $R$ term is universal for quark and gluon jets. The hadronization model in PYTHIA8 agrees well with these properties. The perturbative soft initial state radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event, but this degeneracy is broken by dependence on the jet $p_T$. The size of this soft ISR contribution is proportional to the color state of the initial partons, yielding the same positive contribution for $gg\\to Hg$ and $gq\\to Zq$, but a negative interference contribution for $q\\bar q\\to Z g$. Hence, measuring these dependencies allows one to separate hadronization, soft ISR, and MPI contributions in the data.

  10. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  11. Guidelines for Power Factor Improvement Projects

    E-Print Network [OSTI]

    Massey, G. W.

    Power factor is an indication of electrical system efficiency. Low power factor, or low system efficiency, may be due to one or more causes, including lightly loaded transformers, oversized electric motors, and harmonic-generating non-linear loads...

  12. Cone Penetrometer N Factor Determination Testing Results

    SciTech Connect (OSTI)

    Follett, Jordan R.

    2014-03-05T23:59:59.000Z

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  13. Factors for Bioenergy Market Development

    SciTech Connect (OSTI)

    Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

    1998-10-04T23:59:59.000Z

    Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

  14. Infrared Scales and Factorization in QCD

    E-Print Network [OSTI]

    Aneesh V. Manohar

    2005-12-14T23:59:59.000Z

    Effective field theory methods are used to study factorization of the deep inelastic scattering cross-section. The cross-section is shown to factor in QCD, even though it does not factor in perturbation theory for some choices of the infrared regulator. Messenger modes are not required in soft-collinear effective theory for deep inelastic scattering as x -> 1.

  15. Prime Factorization in the Duality Computer

    E-Print Network [OSTI]

    Wan-Ying Wang; Bin Shang; Chuan Wang; Gui Lu Long

    2006-07-04T23:59:59.000Z

    We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms are polynomial in the input size.

  16. Journal influence factors6 Massimo Franceschet

    E-Print Network [OSTI]

    Franceschet, Massimo

    Journal influence factors6 Massimo Franceschet Department of Mathematics and Computer Science of journal influence, namely 2- year impact factor, 5-year impact factor, eigenfactor and article influence. These indicators have been recently added by Thomson Reuters to the Journal Citation Reports, in both science

  17. Factor Analysis for Skewed Data and Skew-Normal Maximum Likelihood Factor Analysis

    E-Print Network [OSTI]

    Gaucher, Beverly Jane

    2013-04-04T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7.1 The Factor Analysis Model . . . . . . . . . . . . . . . . . 28 v 2.8 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.8.1 The Akaike Information Criterion . . . . . . . . . . . . . . 30 2.8.2 The Bayesian... Information Criterion . . . . . . . . . . . . . 31 2.9 Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.10 Non-uniqueness of Factor Loadings . . . . . . . . . . . . . . . . . . 32 2.10.1 The Rotation of Factor Loadings...

  18. Synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23T23:59:59.000Z

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  19. Human factors methods in DOE nuclear facilities

    SciTech Connect (OSTI)

    Bennett, C.T.; Banks, W.W. (Lawrence Livermore National Lab., CA (United States)); Waters, R.J. (Department of Energy, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle.

  20. Factorization for hadronic heavy quarkonium production

    E-Print Network [OSTI]

    Jian-Wei Qiu

    2006-10-31T23:59:59.000Z

    We briefly review several models of heavy quarkonium production in hadronic collisions, and discuss the status of QCD factorization for these production models.

  1. Vitiligo: A good prognostic factor in melanoma?

    E-Print Network [OSTI]

    Cunha, Daniela; Pacheco, Fernando Assis; Cardoso, Jorge

    2009-01-01T23:59:59.000Z

    with intermediate to thick melanomas (>1 mm) with the use ofgood prognostic factor in melanoma? Daniela Cunha, Fernandoimmunologic therapy for melanoma is generally regarded as a

  2. Optimization Online - Building a completely positive factorization

    E-Print Network [OSTI]

    Immanuel Bomze

    2009-08-21T23:59:59.000Z

    Aug 21, 2009 ... Abstract: Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions ...

  3. Photon impact factor in the NLO

    SciTech Connect (OSTI)

    Balitsky, Ian [JLAB

    2013-04-01T23:59:59.000Z

    The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k{sub T}-factorization formula for the structure functions of small-x deep inelastic scattering.

  4. Aviation Human Factors Division Institute of Aviation

    E-Print Network [OSTI]

    AHFD Aviation Human Factors Division Institute of Aviation University of Illinois at Urbana Systems Monitoring and Control Gavin R. Essenberg, Douglas A. Wiegmann, Aviation Human Factors Division experiments with more difficult path selection tasks might reveal if there are advantages for motion. Overall

  5. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  6. A Reliability and Validity Study of the Protective Factors Survey to Assess Protective Factors in Families

    E-Print Network [OSTI]

    Counts, Jacqueline Marie

    2010-04-29T23:59:59.000Z

    and caregivers. Confirmatory factor analyses were conducted with a sample of 1,078 participants, who completed a parent education program in Nevada. Results provide psychometric data that support a valid and reliable four-factor solution, consisting of family...

  7. Background Bayes Factor Simulation Study BF And PPP Using Bayes Factors for Model Selection in

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Background Bayes Factor Simulation Study BF And PPP Using Bayes Factors for Model Selection in High Study BF And PPP Model Comparison in Astrophysics Nested models (line detection in spectral analysis" to formally compare or select a model. #12;Background Bayes Factor Simulation Study BF And PPP Spectral

  8. Synthetic heparin-binding factor analogs

    DOE Patents [OSTI]

    Pena, Louis A. (Poquott, NY); Zamora, Paul O. (Gaithersburg, MD); Lin, Xinhua (Plainview, NY); Glass, John D. (Shoreham, NY)

    2010-04-20T23:59:59.000Z

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  9. Assessment of International Work on Organizational Factors

    SciTech Connect (OSTI)

    Wall, Ian

    2002-06-01T23:59:59.000Z

    This report describes the concept of organizational factors and includes a consensus definition. It summarizes existing methods for assessing organizations from a safety culture perspective, for analyzing past incidents at plants to assess the role of safety culture, and for using such incident analysis to provide a database supporting organizational factors models. It describes existing methods that potentially could be extended to quantify organizational factors in a Probabilistic Safety Analysis. It concludes that no method is clearly superior for this purpose and recommends the organization of a workshop to clarify important issues prior to selecting a method.

  10. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  11. Decision making process and factors routing

    E-Print Network [OSTI]

    Sun, Yichen, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This research studies the decision-making process and the factors that affect truck routing. The data collection involved intercept interviews with truck drivers at three rest area and truck stops along major highways in ...

  12. Crop Management Factors: What is Important?

    E-Print Network [OSTI]

    Kastens, Terry L.; Dhuyvetter, Kevin C.; Nivens, Heather; Klinefelter, Danny A.

    1999-09-29T23:59:59.000Z

    Crop Management Factors: What is Important? Terry L. Kastens, Kevin C. Dhuyvetter, Heather Nivens and Danny Klinefelter* Defining Good Farm Management Economically, a well-managed farm is one that consistently makes greater prof- its than similarly...

  13. GPDs, form factors and Compton scattering

    E-Print Network [OSTI]

    P. Kroll

    2002-07-09T23:59:59.000Z

    The basic theoretical ideas of the handbag factorization and its application to wide-angle scattering reactions are reviewed. With regard to the present experimental program carried out at JLab, wide-angle Compton scattering is discussed in some detail.

  14. Factors affecting mother-child play

    E-Print Network [OSTI]

    Welch, Jennifer Colleen

    1993-01-01T23:59:59.000Z

    , factors that affect parents' ability to play with their children have not been widely addressed in the literature. As Webster-Stratton (1990) points out, little effort has been made to understand "the factors that influence parents' perceptions... support of competent parenting" (p. 215). Although there is not sufficient evidence to date to support this claim, it is clear that marital satisfaction and marital conflict should not be overlooked when researching parenting (e. g. , Brody, Pellegrini...

  15. Pion form factor with chirally improved fermions

    E-Print Network [OSTI]

    Stefano Capitani; Christof Gattringer; C. B. Lang

    2005-09-12T23:59:59.000Z

    We present results for Monte Carlo calculations of the electromagnetic vector and scalar form factors of the pion in a quenched simulation. We work at a lattice spacing of 0.15 fm and use two lattice volumes up to a spatial size of 2.4 fm. The pion form factors in the space-like region are determined for pion masses down to 340 MeV.

  16. On geometric factors for neutral particle analyzers

    SciTech Connect (OSTI)

    Stagner, L.; Heidbrink, W. W. [University of California-Irvine, Irvine, California 92697-4575 (United States)

    2014-11-15T23:59:59.000Z

    Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, “Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry,” J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, “Geometric factor and directional response of single and multi-element particle telescopes,” Nucl. Instrum. Methods 95(1), 5–11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.

  17. Odd orders in Shor's factoring algorithm

    E-Print Network [OSTI]

    Thomas Lawson

    2015-01-13T23:59:59.000Z

    Shor's factoring algorithm (SFA) finds the prime factors of a number, $N=p_1 p_2$, exponentially faster than the best known classical algorithm. Responsible for the speed-up is a subroutine called the quantum order finding algorithm (QOFA) which calculates the order -- the smallest integer, $r$, satisfying $a^r \\mod N =1$, where $a$ is a randomly chosen integer coprime to $N$ (meaning their greatest common divisor is one, $\\gcd(a, N) =1$). Given $r$, and with probability not less than $1/2$, the factors are given by $p_1 = \\gcd (a^{\\frac{r}{2}} - 1, N)$ and $p_2 = \\gcd (a^{\\frac{r}{2}} + 1, N)$. For odd $r$ it is assumed the factors cannot be found (since $a^{\\frac{r}{2}}$ is not generally integer) and the QOFA is relaunched with a different value of $a$. But a recent paper [E. Martin-Lopez: Nat Photon {\\bf 6}, 773 (2012)] noted that the factors can sometimes be found from odd orders if the coprime is square. This raises the question of improving SFA's success probability by considering odd orders. We show that an improvement is possible, though it is small. We present two techniques for retrieving the order from apparently useless runs of the QOFA: not discarding odd orders; and looking out for new order finding relations in the case of failure. In terms of efficiency, using our techniques is equivalent to avoiding square coprimes and disregarding odd orders, which is simpler in practice. Even still, our techniques may be useful in the near future, while demonstrations are restricted to factoring small numbers. The most convincing demonstrations of the QOFA are those that return a non-power-of-two order, making odd orders that lead to the factors attractive to experimentalists.

  18. Installing a Subsurface Drip Irrigation System for Row Crops (Spanish) 

    E-Print Network [OSTI]

    Enciso, Juan

    2004-09-07T23:59:59.000Z

    cinta en el suelo con el lado de los emisores hacia arriba para evitar taponamien- tos condici?n que se presenta cuando el riego termina y las particulas se sedimentan. Los rollos traen indicadores que muestran la direc- ci?n de los emisores. 5. Poco...-45049-01149. La informaci?n presentada aqu? es solamente para prop?sitos educativos. Las referencias a productos o marcas comerciales se han hecho bajo el entendimiento que esto no implica que Texas AgriLife Extension Service tenga la intenci?n de discriminar o...

  19. Installing a Subsurface Drip Irrigation System for Row Crops

    E-Print Network [OSTI]

    Enciso, Juan

    2004-09-07T23:59:59.000Z

    This publication describes the components of a subsurface drip irrigation system and the procedure for installing such a system. Each step is outlined and illustrated. Steps include tape injection, trenching, connecting drip lines, back...

  20. Tabu search for the single row facility layout problem using ...

    E-Print Network [OSTI]

    2012-01-13T23:59:59.000Z

    Jan 13, 2012 ... show that the speed up techniques are effective, and our tabu search implementations are ...... We copy the first permutation as a template for the permutation. We then ..... Advances in Production Engineering & Management,.

  1. A Semidefinite Optimization Approach to the Parallel Row Ordering ...

    E-Print Network [OSTI]

    2015-03-17T23:59:59.000Z

    problem in which one wishes to minimize the total material flow cost. .... ing system [33], balancing hydraulic turbine runners [39], numerical analysis [14], optimal ...

  2. A competitive genetic algorithm for single row facility layout

    E-Print Network [OSTI]

    2012-02-22T23:59:59.000Z

    Feb 22, 2012 ... quality solutions. ... ate selection of genetic operators can yield high quality solutions in spite of ..... uk/staff/letchfoa/articles/SRFLP-rev.pdf.

  3. Installing a Subsurface Drip Irrigation System for Row Crops (Spanish)

    E-Print Network [OSTI]

    Enciso, Juan

    2004-09-07T23:59:59.000Z

    cinta en el suelo con el lado de los emisores hacia arriba para evitar taponamien- tos condici?n que se presenta cuando el riego termina y las particulas se sedimentan. Los rollos traen indicadores que muestran la direc- ci?n de los emisores. 5. Poco...-45049-01149. La informaci?n presentada aqu? es solamente para prop?sitos educativos. Las referencias a productos o marcas comerciales se han hecho bajo el entendimiento que esto no implica que Texas AgriLife Extension Service tenga la intenci?n de discriminar o...

  4. Scatter search algorithms for the single row facility layout problem

    E-Print Network [OSTI]

    2012-03-22T23:59:59.000Z

    Mar 22, 2012 ... [11] F. Glover, Heuristics for integer programming using surrogate constraints, ... [

  5. Energy Conservation Analysis of Three-Row-Hole Hollow Blocks

    E-Print Network [OSTI]

    Chen, G.; Li, H.; Liu, Z.

    2006-01-01T23:59:59.000Z

    In recent years, solid clay blocks have been forbidden in large and middle cities with the wall reformation policy issued in China. Many kinds of new wall materials have appeared in the market, but little research has been done on these new...

  6. Computing Globally Optimal Solutions for Single-Row Layout ...

    E-Print Network [OSTI]

    includes linear programming problems as a special case, namely when the .... fact that for any assignment of ±1 to the entries of X, the entries Xp1,p2 , Xp1,p3 ...

  7. A Polyhedral Approach to the Single Row Facility Layout Problem

    E-Print Network [OSTI]

    2011-01-20T23:59:59.000Z

    problem of arranging facilities on a line, while minimizing a weighted sum of the ... Facility Layout Problem (SRFLP) asks for a layout of the facilities, i.e., a.

  8. Row-Reduced Column Generation for Degenerate Master Problems

    E-Print Network [OSTI]

    2013-02-06T23:59:59.000Z

    Feb 5, 2013 ... node of a search tree, and often produces strong dual bounds. ... In linear algebra terms, we work with a projection ... enter the current basis.

  9. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First4

  10. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First44

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.544.42.4

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability

  13. Improving Data Center Efficiency with Rack or Row Cooling Devices |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy Implementing

  14. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for613.1.3.13.1.

  15. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for613.1.3.13.1.1

  16. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy

  17. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:6

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:66

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:666

  1. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number of833A6.3.

  2. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number

  3. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number4

  4. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number44

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End2.

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End1

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3 End

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.312

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3123

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31234

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of Fuel

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4 End

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number of

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number of1.

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number1

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number12

  6. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number124

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number1241

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number12412

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.

  10. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number1

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number12

  13. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.41

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.412

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.4

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.41

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.412

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel2

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel24.4

  3. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11.1.1.

  4. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11.1.1.2.

  5. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.11.1.1.2.1.

  6. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.

  7. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1. Offsite-Produced

  8. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1.

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number of2.4

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.41

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.413

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4133

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of9

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of91

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number3

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.5

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.57

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47

  4. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.479.1 Enclosed

  5. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fielded in 2015 Table 8.43

  6. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fielded in 2015 Table 8.433

  7. NMSLO Affidavit of Completion of ROW Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriation and Use ofNMSLO Affidavit

  8. NMSLO Application for ROW Easement | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriation and Use ofNMSLOState

  9. NMSLO Surface Division ROW FAQs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriation and UsePacket forSurface

  10. Improving Data Center Efficiency with Rack or Row Cooling Devices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam Casting ProcessEnergy7,

  11. Hadronic form factors in kaon photoproduction

    SciTech Connect (OSTI)

    Syukurilla, L., E-mail: tmart@fisika.ui.ac.id; Mart, T., E-mail: tmart@fisika.ui.ac.id [Department Fisika, FMIPA, Universitas Indonesia, Depok, 164242 (Indonesia)

    2014-09-25T23:59:59.000Z

    We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the K?N vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.

  12. Invariant Form of BK-factorization and its Applications

    E-Print Network [OSTI]

    E. Kartashova; O. Rudenko

    2006-07-24T23:59:59.000Z

    Invariant form of BK-factorization is presented, it is used for factorization of the LPDOs equivalent under gauge transformation and for construction of approximate factorization simplifying numerical simulsations with corresponding LPDEs of higher order

  13. Towards Controlling the Acceptance Factors for a Collaborative Platform in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Controlling the Acceptance Factors for a Collaborative Platform in Engineering Design factor which are supposed to influence future users of a collaborative KM platform (Dimocode). At the end management systems (KMS) deployment. Keywords: acceptance factors, collaborative, platforms, engineering

  14. From Saudi Arabia to Venezuela: Energy Resources, Market Factors & ConflictsEnergy Resources, Market Factors & Conflicts

    E-Print Network [OSTI]

    O'Donnell, Tom

    (Brazil, Russia, India and China) will end U.S. supremacy in the dollar based oil market? Lastly, weFrom Saudi Arabia to Venezuela: Energy Resources, Market Factors & ConflictsEnergy Resources, Market Factors & Conflicts Dr. Tom O'Donnell Friday, 12:00 ­ 2:48 PM Room 125, Mendenhall Laboratory

  15. Photon impact factor and k{sub T} factorization in the next-to-leading order

    SciTech Connect (OSTI)

    Ian Balitsky

    2012-12-01T23:59:59.000Z

    The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k{sub T}-factorization formula for the structure functions of small-x deep inelastic scattering.

  16. Quantitative Finance To apear Efficient Factor GARCH Models and Factor-DCC Models

    E-Print Network [OSTI]

    Jegelka, Stefanie

    Quantitative Finance To apear Efficient Factor GARCH Models and Factor-DCC Models Kun Zhang KZHANG of Hong Kong Hong Kong Abstract We reveal that in the estimation of univariate GARCH or multivariate generalized or- thogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making

  17. Organizational Culture andOrganizational Culture and Human Factors in HealthcareHuman Factors in Healthcare

    E-Print Network [OSTI]

    Organizational Culture andOrganizational Culture and Human Factors in HealthcareHuman Factors;TEAMWORK!TEAMWORK! #12;OverviewOverview ·· Organizational culture and adaptationOrganizational cultureKey Objectives ·· Compare error response in differentCompare error response in different organizational

  18. Form factors in finite volume I: form factor bootstrap and truncated conformal space

    E-Print Network [OSTI]

    B. Pozsgay; G. Takacs

    2007-07-02T23:59:59.000Z

    We describe the volume dependence of matrix elements of local fields to all orders in inverse powers of the volume (i.e. only neglecting contributions that decay exponentially with volume). Using the scaling Lee-Yang model and the Ising model in a magnetic field as testing ground, we compare them to matrix elements extracted in finite volume using truncated conformal space approach to exact form factors obtained using the bootstrap method. We obtain solid confirmation for the form factor bootstrap, which is different from all previously available tests in that it is a non-perturbative and direct comparison of exact form factors to multi-particle matrix elements of local operators, computed from the Hamiltonian formulation of the quantum field theory. We also demonstrate that combining form factor bootstrap and truncated conformal space is an effective method for evaluating finite volume form factors in integrable field theories over the whole range in volume.

  19. affecting critical factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    social responsibility implementation: an emphasis on values 5 Factors affecting wild turkey distribution and numbers Texas A&M University - TxSpace Summary: FACTORS AFFECTING...

  20. Measured and Modeled Humidification Factors of Fresh Smoke Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measured and Modeled Humidification Factors of Fresh Smoke Particles From Biomass Burning: Role of Inorganic Constituents. Measured and Modeled Humidification Factors of Fresh...

  1. annihilation factor analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Correlated Bayesian Factor Analysis CiteSeer Summary: Factor analysis is a method in multivariate statistical analysis that can help scientists determine which variables to...

  2. Technology and Organizational Factors in the Notebook Industry Supply Chain

    E-Print Network [OSTI]

    Foster, William; Cheng, Zhang; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01T23:59:59.000Z

    Technical and Organizational Solutions to Supply Chain18 III. Organizational Factors and the Notebook Industry4: Technology and Organizational Factors in the Notebook

  3. Current advances in using neurotrophic factors to treat neurodegenerative disorders

    E-Print Network [OSTI]

    Weissmiller, April M; Wu, Chengbiao

    2012-01-01T23:59:59.000Z

    neurotrophic factors to treat neurodegenerative disorders.neurotrophic factors to treat neurodegenerative disordersCNS diseases are difficult to treat due to the Page 3 of 9

  4. DYNAMIC INTERACTION FACTORS FOR FLOATING PILE GROUPS

    E-Print Network [OSTI]

    Entekhabi, Dara

    DYNAMIC INTERACTION FACTORS FOR FLOATING PILE GROUPS By George Gazetas,1 Ke Fan,2 Amir Kaynia,3 at the head of each pile. These readily applicable graphs have been developed with a rigorous analytical- portional to depth) and three pile separation distances (3,5, and 10 pile-diamctcrs). A wide range of values

  5. Structure Functions, Form Factors, and Lattice QCD

    E-Print Network [OSTI]

    Walter Wilcox; B. Andersen-Pugh

    1993-12-07T23:59:59.000Z

    We present results towards the calculation of the pion electric form factor and structure function on a $16^3\\times 24$ lattice using charge overlap. By sacrificing Fourier transform information in two directions, it is seen that the longitudinal four point function can be extracted with reasonable error bars at low momentum.

  6. Federal Aviation Administration Human Factors Team

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Federal Aviation Administration Human Factors Team Report on: The Interfaces Between Flightcrews Générale de l'Aviation Civile (France), Douglas Aircraft Company, Federal Aviation Administration, European was produced by a team of highly qualified individuals from the FAA and the European Joint Aviation Authorities

  7. Factored Language Models for Statistical Machine Translation

    E-Print Network [OSTI]

    Koehn, Philipp

    Factored Language Models for Statistical Machine Translation Amittai E. Axelrod TH E U N I V E R . . . . . . . . . . . . . . . . . . . . . 10 2.4.3 Log-Linear, Phrase-Based Translation Models . . . . . . . . . 11 3 Statistical Language S ITY OF E D I N B U R G H Master of Science by Research Institute for Communicating and Collaborative

  8. Factors Influencing Succession: Lessons from Large, Infrequent

    E-Print Network [OSTI]

    Turner, Monica G.

    intense disturbances of large and small extent. Key words: disturbance frequency; disturbance intensityFactors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances Monica G ABSTRACT Disturbance events vary in intensity, size, and fre- quency, but few opportunities exist to study

  9. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  10. ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS

    E-Print Network [OSTI]

    Minnesota, University of

    ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS: COLLECTIVE RESPONSIBILITY IN FREEWAY REAR accident report: Happened on I-94 in downtown Minneapolis Happened during the afternoon peak period Vehicle" is a "condition or event" such that "had the condition or event been prevented...the accident would not occur

  11. Nucleon and $?$ elastic and transition form factors

    E-Print Network [OSTI]

    Jorge Segovia; Ian C. Cloet; Craig D. Roberts; Sebastian M. Schmidt

    2014-09-03T23:59:59.000Z

    We compute nucleon and Delta elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a vector-vector contact-interaction. The comparison emphasises that experiment is sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: $G_E^p(Q^2)/G_M^p(Q^2)$ possesses a zero at $Q^2=9.5GeV^2$; any change in the interaction which shifts a zero in the proton ratio to larger $Q^2$ relocates a zero in $G_E^n(Q^2)/G_M^n(Q^2)$ to smaller $Q^2$; and there is likely a value of momentum transfer above which $G_E^n>G_E^p$. Regarding the $\\Delta(1232)$-baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the $\\Delta(1232)$ Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the N-to-Delta transition, the momentum-dependence of the magnetic transition form factor, $G_M^\\ast$, matches that of $G_M^n$ once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations.

  12. Transcription factor-based biosensors for detecting dicarboxylic acids

    DOE Patents [OSTI]

    Dietrich, Jeffrey; Keasling, Jay

    2014-02-18T23:59:59.000Z

    The invention provides methods and compositions for detecting dicarboxylic acids using a transcription factor biosensor.

  13. Nucleon Axial Form Factor from Lattice QCD

    E-Print Network [OSTI]

    Liu, K F; Draper, T; Wu, J M; Wilcox, W

    1994-01-01T23:59:59.000Z

    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched $16^{3} \\times 24$ lattice at $\\beta= 6.0$ with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the $q^2$ dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant $g_A$ calculated for the local and the point-split currents is about 6\\% and 12\\% smaller than the experimental value respectively.

  14. Fully relativistic form factor for Thomson scattering

    SciTech Connect (OSTI)

    Palastro, J. P.; Ross, J. S.; Pollock, B.; Divol, L.; Froula, D. H.; Glenzer, S. H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-03-15T23:59:59.000Z

    We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, beta->=v->/c. The form factor is compared to a previously derived expression where the lowest order electron velocity, beta->, corrections are included [J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)]. The beta-> expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra.

  15. Fermionic greybody factors in dilaton black holes

    E-Print Network [OSTI]

    Jahed Abedi; Hessamaddin Arfaei

    2014-09-17T23:59:59.000Z

    In this paper the question of emission of fermions in the process of dilaton black hole evolution and its characters for different dilaton coupling constants $\\alpha$ is studied. The main quantity of interest, the greybody factors are calculated both numerically and in analytical approximation. The dependence of rates of evaporation and behaviour on the dilaton coupling constant is analyzed. Having calculated the greybody factors we are able to address the question of the final fate of the dilaton black hole. For that we also need to make dynamical treatment of the solution by considering the backreaction which will show a crucial effect on the final result. We find a transition line in $(Q/M, \\alpha)$ plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable.

  16. Human Factors Aspects of Advanced Process Control

    E-Print Network [OSTI]

    Shaw, J. A.

    HUMAN FACTORS ASPECTS OF ADVANCED PRO?CESS CONTROL John A. Shaw Combustion Engineering Taylor Instrument Division Rochester, New York ABSTRACT Energy conservation practices, such as heat recovery and integration, require that many... chemical and related processes use advanced control systems. Many of the more advanced process control strategies and algorithms can cause operator confusion, leading to incorrect operator actions and negating the advantages of the advanced control...

  17. $?$ and $?'$ transition form factors from Padé approximants

    E-Print Network [OSTI]

    Pablo Sanchez-Puertas; Pere Masjuan

    2014-11-17T23:59:59.000Z

    We employ a systematic and model-independent method to extract, from space- and time-like data, the $\\eta$ and $\\eta'$ transition form factors (TFFs) obtaining the most precise determination for their low-energy parameters and discuss the $\\Gamma_{\\eta\\rightarrow\\gamma\\gamma}$ impact on them. Using TFF data alone, we also extract the $\\eta-\\eta'$ mixing parameters, which are compatible to those obtained from more sophisticated and input-demanding procedures.

  18. Measurement of the ??*?? and ??*??' transition form factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu.?G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Botov, A. A.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu.?I.; Solodov, E. P.; Todyshev, K.?Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.

    2011-09-01T23:59:59.000Z

    We study the reactions e?e??e?e??(') in the single-tag mode and measure the ??*??(') transition form factors in the momentum-transfer range from 4 to 40 GeV². The analysis is based on 469 fb?¹ of integrated luminosity collected at PEP-II with the BABAR detector at e?e? center-of-mass energies near 10.6 GeV.

  19. Scalable tensor factorizations with missing data.

    SciTech Connect (OSTI)

    Morup, Morten (Technical University of Denmark); Dunlavy, Daniel M.; Acar, Evrim (Turkish National Research Institute of Electronics and Cryptology); Kolda, Tamara Gibson

    2010-04-01T23:59:59.000Z

    The problem of missing data is ubiquitous in domains such as biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, and communication networks|all domains in which data collection is subject to occasional errors. Moreover, these data sets can be quite large and have more than two axes of variation, e.g., sender, receiver, time. Many applications in those domains aim to capture the underlying latent structure of the data; in other words, they need to factorize data sets with missing entries. If we cannot address the problem of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP), and formulate the CP model as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) using a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes.

  20. Heavy to light baryon transition form factors

    SciTech Connect (OSTI)

    Guo, X. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil] [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil; [Institute of High Energy Physics, Academia Sinica, Beijing 100039, People`s Republic of (China); Huang, T. [CCAST (World Laboratory) P.O. Box 8730, Beijing 100080, People`s Republic of (China)] [CCAST (World Laboratory) P.O. Box 8730, Beijing 100080, People`s Republic of (China); [Institute of High Energy Physics, Academia Sinica, Beijing 100039, People`s Republic of (China); Li, Z. [Institute of High Energy Physics, Academia Sinica, Beijing 100039, People`s Republic of (China)] [Institute of High Energy Physics, Academia Sinica, Beijing 100039, People`s Republic of (China)

    1996-05-01T23:59:59.000Z

    Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}

  1. Scalable tensor factorizations with incomplete data.

    SciTech Connect (OSTI)

    Morup, Morten (Technical University of Denmark); Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM); Acar, Evrim (Information Technologies Institute, Turkey); Kolda, Tamara Gibson

    2010-07-01T23:59:59.000Z

    The problem of incomplete data - i.e., data with missing or unknown values - in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing data, CP can be formulated as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 x 1000 x 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process.

  2. Human factors engineers as change agents

    SciTech Connect (OSTI)

    Hallbert, B.P.; Harbour, G.L.; Caccamise, D.J.; Francis, L.C.

    1992-01-01T23:59:59.000Z

    This presentation describes a case study and the lessons learned when a Human Factors Engineering (HFE) Department was enlisted as technical experts but gradually assumed a much larger role as change agents in transforming outdated job practices into streamlined processes that promoted a safety culture. At Rocky Flats Nuclear Weapons processing plant in Colorado, a workforce of over 7000 people support or directly operate a myriad of processes that range from laboratory analysis to typical foundry activities, greatly complicated by the presence of fissile, radioactive materials. Safe handling of these materials was governed by detailed discussions contained in Nuclear Material Safety limits (NMSLs). In spite of this rather extensive documentation, operators were committing an unacceptable number of safety infractions. Analysis revealed NMSLs were difficult to comprehend and not practical for use in operational settings. New job performance aids, called Criticality Safety Operating Limits (CSOLs) were developed to solve these problems. However, the solution involved more than applying good human factors principles to this job-aid. Following the classic Lewin Force Field Model of Change, safety infractions made change imperative; the forces operating against it were tradition, and perceived irrelevance of new expertise. Historically, Criticality Engineering dictated safety limits to Operations. In the course of Human Factoring'' the CSOLs, the HFE, through an iterative process, became the team integrator of this development process. Using Quality concepts such as buy-in, empowerment, and ownership, HFE was able to instantiate and receive enthusiastic acceptance of their products.

  3. Effects of friction factor and slip factor on the performance of a centrifugal slurry pump

    E-Print Network [OSTI]

    Sheth, Ketankumar Kantilal

    1985-01-01T23:59:59.000Z

    in dredging operations, chemical plants, power plants, and for handling coal slurries. For higher discharge pressure requirements, centrifugal slurry pumps are operated in series with up to six stages, 800 horsepower on each stage, and discharge pressures...EFFECTS OF FRICTION FACTOR AND SLIP FACTOR ON THE PERFORMANCE OF A CENTRIFUGAL SLURRY PUMP A Thesis by KETANKUMAR KANTILAL SHETH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements...

  4. 3.5. EFFICIENCY FACTORS 63 3.5 Efficiency factors

    E-Print Network [OSTI]

    Bailey, R. A.

    3.5. EFFICIENCY FACTORS 63 3.5 Efficiency factors For comparison we consider a complete) and the variance of the estimator of x is (x L-x)2 CBD, which is equal to r-1x x2 CBD. Definition The efficiency to a complete-block design with variance 2 CBD and the same replication is x x rx L-x 2 CBD 2 and the efficiency

  5. RSE Table E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 Relative

  6. RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 RelativeE8.1 and

  7. RSE Table N1.1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 RelativeE8.1 and1

  8. RSE Table N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 RelativeE8.1

  9. RSE Table N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2 RelativeE8.1N3.1

  10. RSE Table N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"2

  11. RSE Table N6.1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and N6.2.

  12. RSE Table N6.3 and N6.4. Relative Standard Errors for Tables N6.3 and N6.4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and N6.2.3 and

  13. RSE Table N8.1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and N6.2.3 and1

  14. RSE Table S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and N6.2.3

  15. RSE Table S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and N6.2.3S2.1

  16. RSE Table S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21 and

  17. Prime number generation and factor elimination

    E-Print Network [OSTI]

    Vineet Kumar

    2014-10-06T23:59:59.000Z

    We have presented a multivariate polynomial function termed as factor elimination function,by which, we can generate prime numbers. This function's mapping behavior can explain the irregularities in the occurrence of prime numbers on the number line. Generally the different categories of prime numbers found till date, satisfy the form of this function. We present some absolute and probabilistic conditions for the primality of the number generated by this method. This function is capable of leading to highly efficient algorithms for generating prime numbers.

  18. Lorentz Coherence and the Proton Form Factor

    E-Print Network [OSTI]

    Kim, Young S

    2015-01-01T23:59:59.000Z

    The dipole cutoff behavior for the proton form factor has been and still is one of the major issues in high-energy physics. It is shown that this dipole behavior comes from the coherence between the Lorentz contraction of the proton size and the decreasing wavelength of the incoming photon signal. The contraction rates are the same for both cases. This form of coherence is studied also in the momentum-energy space. The coherence effect in this space can be explained in terms of two overlapping wave functions.

  19. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778×10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  20. Lorentz Coherence and the Proton Form Factor

    E-Print Network [OSTI]

    Young S. Kim

    2015-02-28T23:59:59.000Z

    The dipole cutoff behavior for the proton form factor has been and still is one of the major issues in high-energy physics. It is shown that this dipole behavior comes from the coherence between the Lorentz contraction of the proton size and the decreasing wavelength of the incoming photon signal. The contraction rates are the same for both cases. This form of coherence is studied also in the momentum-energy space. The coherence effect in this space can be explained in terms of two overlapping wave functions.

  1. Factors for design of dips for roadways 

    E-Print Network [OSTI]

    McCasland, William Richard

    1957-01-01T23:59:59.000Z

    limit is sub]ect to mot1on which may cause considerable discomfort to be experienced by the oocupants. If a dip is particularly critical, the vehicle may even incur damages. The most important consideration, however, 1s the fact that the driver may... lose control of the vehicle momentarily and be involved in a traffic accident. These three factors indicate the need for all dips in roadways to be nrop- erly designed, whether they are to be temporary or oermanent. The use of dips as speed checks...

  2. Factors for design of dips for roadways

    E-Print Network [OSTI]

    McCasland, William Richard

    1957-01-01T23:59:59.000Z

    limit is sub]ect to mot1on which may cause considerable discomfort to be experienced by the oocupants. If a dip is particularly critical, the vehicle may even incur damages. The most important consideration, however, 1s the fact that the driver may... lose control of the vehicle momentarily and be involved in a traffic accident. These three factors indicate the need for all dips in roadways to be nrop- erly designed, whether they are to be temporary or oermanent. The use of dips as speed checks...

  3. Factors Affecting Auction Market Operating Costs.

    E-Print Network [OSTI]

    Wootan, Charley V.; McNeely, John G.

    1966-01-01T23:59:59.000Z

    Factors Affecting Auction Market Operating Costs Texas Summary and Conclusions T THE TIME THE DATA for this study were collected A there were 178 livestock auctions operating in Texas; 140 were included in this analysis. They ranyed in size... from just over 5,000 animal units per year to alinost 350,000. It has been sl~own that opera- - tional efficiency, measured in terms of average cost per unit marketed, increases directly with firm size and that efficiency gains were most marked...

  4. Dynamic structure factors of a dense mixture

    E-Print Network [OSTI]

    Supurna Sinha

    2005-05-22T23:59:59.000Z

    We compute the dynamic structure factors of a dense binary liquid mixture. These describe dynamics on molecular length scales, where structural relaxation is important. We find that the presence of a few large particles in a dense fluid of small particles slows down the dynamics considerably. We also observe a deep narrowing of the spectrum for a disordered mixture composed of a nearly equal packing of the two species. In contrast, a few small particles diffuse easily in the background of a dense fluid of large particles. We expect our results to describe neutron scattering from a dense mixture.

  5. Factor CO2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiency Incentives andFVE BS sroFaconFactor

  6. EcoFactor Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump to:

  7. Human factors engineering program review model

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  8. Helium Compton Form Factor Measurements at CLAS

    SciTech Connect (OSTI)

    Voutier, Eric J.-M. [Laboratoire de Physique Subatomique et Cosmologie

    2013-07-01T23:59:59.000Z

    The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.

  9. Factors that influence follow-up after an abnormal mammogram 

    E-Print Network [OSTI]

    Copeland, Valerie Anne

    2009-05-15T23:59:59.000Z

    The focus of this study was to explore women’s experiences with follow-up after an abnormal mammogram, and factors that influence follow-up. Factors, including health status, found in the cancer screening and treatment ...

  10. analyzing sociodemographic factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 He(e; e 0 n)scattering J, Arizona, USA k Dept. of Physics, University of Zagreb, Croatia Abstract The charge form factor factor, FinalStateInteraction PACS: 21.45.+v,...

  11. affect postprandial factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may influence the decision Cheng, Yvonne 2011-01-01 3 Factors affecting wild turkey distribution and numbers Texas A&M University - TxSpace Summary: FACTORS AFFECTING...

  12. Factors Inhibiting Personal Growth When Teaching Academically Diverse Classes

    E-Print Network [OSTI]

    Lenz, B. Keith; Melvin, Jeff; Kissam, Brenda; Bulgren, Janis; Roth, Janet

    1992-08-01T23:59:59.000Z

    This study seeks to identify the factors that inhibit personal growth in teaching as teachers work to meet the needs of all students in academically diverse groups of learners. To identify these factors, researchers worked ...

  13. Dispersion modeling for prediction of emission factors for cattle feedyards

    E-Print Network [OSTI]

    Parnell, Sarah Elizabeth

    1994-01-01T23:59:59.000Z

    of state air pollution regulatory agencies will require accurate EPA AP-42 emission factors. A protocol was developed so that accurate emission factors can be determined using both source sampling data and dispersion modeling. In this study, an emission...

  14. EVALUATING NATIONAL ENVIRONMENTAL SUSTAINABILITY: PERFORMANCE MEASURES AND INFLUENTIAL FACTORS FOR

    E-Print Network [OSTI]

    development, industrial structure, energy prices, environmental governance, pollution abatement and control, environmental governance, and energy prices are major influential factors, with energy prices the most important components factor analysis to help build subindices measuring waste and pollution, sustainable energy

  15. New Blind Signatures Equivalent to Factorization (Extended Abstract)

    E-Print Network [OSTI]

    Pointcheval, David

    New Blind Signatures Equivalent to Factorization (Extended Abstract) David Pointcheval Jacques Stern Abstract In this paper, we present new blind signature schemes based on the factorization problem. They are the first blind sig- nature schemes proved secure relatively to factorization. By security, we mean

  16. REALIZING TWO-FACTOR AUTHENTICATION FOR THE BITCOIN PROTOCOL

    E-Print Network [OSTI]

    REALIZING TWO-FACTOR AUTHENTICATION FOR THE BITCOIN PROTOCOL Christopher Mann and Daniel Loebenberger 15 August 2014 Abstract. We show how to realize two-factor authentication for a Bitcoin wal- let a prototypic implementation of a Bitcoin wallet that offers both: two-factor authentication and verification

  17. SUCCESS FACTORS IN INFORMATION SECURITY IMPLEMENTATION IN ORGANIZATIONS

    E-Print Network [OSTI]

    Williamson, John

    SUCCESS FACTORS IN INFORMATION SECURITY IMPLEMENTATION IN ORGANIZATIONS Maryam Al-Awadi University This paper will explore and identify success factors related to the implementation of information security was to identify those factors required to ensure successful implementation of information security, particularly

  18. Human Factors Aspects of Power System Flow Animation

    E-Print Network [OSTI]

    is to present the results of human factors experiments looking at the power system flow animation. IIHuman Factors Aspects of Power System Flow Animation Douglas A. Wiegmann, Gavin R. Essenberg experimental results associated with human factors aspects of using animation to display electric power system

  19. Factors Contributing to Ideal Instructional Interactivity Michael Yacci

    E-Print Network [OSTI]

    Yacci, Michael

    Factors Contributing to Ideal Instructional Interactivity Michael Yacci Paul Hyman Information are the factors that contribute to "ideal" instructional interactivity? In this study, subjects observed different and paralanguage. Introduction The purpose of this project was to determine factors that contribute to an "ideal

  20. "1. Carbon Dioxide Emission Factors for Stationary Combustion1"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996.......... 2.4Origin andFuel ExpendituresFuel

  1. Commissioning of output factors for uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2011-04-15T23:59:59.000Z

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

  2. Fractionation studies on the unidentified growth factor(s) in distillers dried solubles

    E-Print Network [OSTI]

    Dannenburg, Warren Nathaniel

    1955-01-01T23:59:59.000Z

    ried solubles oan be preoipitate4 froa volu- tion with baaio lea4 acetate and tuagstic aoid, but SA ethyl alcohol does not precipitate the factor, In these axperiaents, vitaain Si~ was not found to be i4entioal with the factor extracted bg netlg... t iii Jrieil; ue j ~ out llut in vrrr un ll , ri, ', I'ei l' . r. vii. , t . . ' CJ, cuti et Jl ~ ( r r) u, , rr li- . . I t I'J urrr sa . r 166 ur. . lxrli J . . eal in a gui'll'ieu rrrtlun arrJ u ucrV6J t. rt 1 i:: re, uri 6 Obt Jiired, rit. r C...

  3. Chemical factors that control lignin polymerization

    SciTech Connect (OSTI)

    Sangha, Amandeep K [ORNL] [ORNL; Davison, Brian H [ORNL] [ORNL; Standaert, Robert F [ORNL] [ORNL; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Smith, Jeremy C [ORNL] [ORNL; Parks, Jerry M [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S) and p- hydroxyphenyl (H). It is known that increasing the relative abundance of H subunits results in lower molecular-weight lignin polymers, and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di- and trilignols, calculated using density functional theory, which points to a requirement of strong p- electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages ( - or -5) react poorly and tend to cap the polymer. In general, -5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

  4. A review of electrochromic window performance factors

    SciTech Connect (OSTI)

    Selkowitz, S.E.; Rubin, M.; Lee, E.S.; Sullivan, R.; Finlayson, E.; Hopkins, D.

    1994-04-01T23:59:59.000Z

    The performance factors which will influence the market acceptance of electrochromic windows are reviewed. A set of data representing the optical properties of existing and foreseeable electrochromic window devices was generated. The issue of reflective versus absorbing electrochromics was explored. This data was used in the DOE 2.1 building energy model to calculate the expected energy savings compared to conventional glazings. The effects of several different control strategies were tested. Significant energy and peak electric demand benefits were obtained for some electrochromic types. Use of predictive control algorithms to optimize cooling control may result in greater energy savings. Initial economic results considering annual savings, cooling equipment cost savings, and electrochromic window costs are presented. Calculations of thermal and visual comfort show additional benefits from electrochromics but more work is needed to quantify their importance. The design freedom and aesthetic possibilities of these dynamic glazings should provide additional market benefits, but their impact is difficult to assess at this time. Ultimately, a full assessment of the market viability of electrochromics must consider the impacts of all of these issues.

  5. Human Factors Aspects of Operating Small Reactors

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.; Deem, R. (BNL); Xing, J.; DAgostino, A. (NRC)

    2010-11-07T23:59:59.000Z

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

  6. Atrial natriuretic factor increases vascular permeability

    SciTech Connect (OSTI)

    Lockette, W.; Brennaman, B. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-12-01T23:59:59.000Z

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  7. Dose factor entry and display tool for BNCT radiotherapy

    DOE Patents [OSTI]

    Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

    1999-01-01T23:59:59.000Z

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  8. Spectrum of local boundary operators from boundary form factor bootstrap

    E-Print Network [OSTI]

    M. Szots; G. Takacs

    2007-03-26T23:59:59.000Z

    Using the recently introduced boundary form factor bootstrap equations, we map the complete space of their solutions for the boundary version of the scaling Lee-Yang model and sinh-Gordon theory. We show that the complete space of solutions, graded by the ultraviolet behaviour of the form factors can be brought into correspondence with the spectrum of local boundary operators expected from boundary conformal field theory, which is a major evidence for the correctness of the boundary form factor bootstrap framework.

  9. Regions of influence for several methods of factoring polynomials

    E-Print Network [OSTI]

    Schulze, Tommy Joe

    1965-01-01T23:59:59.000Z

    , or if preferred, over the field of complex numbers be denoted n n-1 f(x) = x + a x + + a x + a n-1 n' Let a factor of the above be (2) III m-1 g(x) x + p x +'''+ p x + p m-1 Ill If an iterative technique is used to find the factor (2) then iteration must... factors of any degree, it is [Sj presented in this section for quadratic factors only, to permit easy comparison with Bairstow's Method. 2 Let f(x) be as in (1), and let g(x) = x + plx + p be any 2 quadratic expression. Then the process of long...

  10. Factors Affecting the Battery Performance of Anthraquinone-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

  11. Factors Affecting HCCI Combustion Phasing for Fuels with Single...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004...

  12. apoptosis inducing factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent cathepsins tumor necrosis factor Lasse Foghsgaard; Dorte Wissing; Daniel Mauch; Ulrik Lademann; Lone Bastholm; Marianne Boes; Folmer Elling; Marcel Leist;...

  13. Factors driving wind power development in the United States

    E-Print Network [OSTI]

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-01-01T23:59:59.000Z

    geothermal, digester and landfill gas, small hydro, andenergy sources, such as landfill gas. Market Factors Theenergy sources, such as landfill gas. Integrated Resource

  14. adp ribosylation factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B -> K Jpsi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties...

  15. anthracis edema factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B -> K Jpsi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties...

  16. anthracis lethal factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B -> K Jpsi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties...

  17. alfa como factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B -> K Jpsi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties...

  18. Article Published on LED Lumen Maintenance and Light Loss Factors...

    Broader source: Energy.gov (indexed) [DOE]

    of a comprehensive lifetime rating - as well as the problematic relationship between SSL lifetime and lumen maintenance - determining an appropriate LLD factor for LED products...

  19. Factors influencing photocurrent generation in organic bulk heterojunc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing photocurrent generation in organic bulk heterojunction solar cells: interfacial energetics and blend microstructure April 29, 2009 at 3pm36-428 Jenny Nelson...

  20. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    At Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

  1. Billing Factors for Operating Reserves September 30, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are effective on October 1, 2014. This implements the FERC approved standard BAL-002-WECC-2. Operating Reserve - Spinning Reserve: The Billing Factor for the rates specified in...

  2. angiogenesis regulatory factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Earnhart, Dietrich H. 2006-03-13 6 Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation Texas A&M University - TxSpace...

  3. Geothermal: Sponsored by OSTI -- Geothermal Plant Capacity Factors

    Office of Scientific and Technical Information (OSTI)

    Plant Capacity Factors Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  4. Understanding Free and Complexed Enzyme Mechanisms and Factors...

    Office of Scientific and Technical Information (OSTI)

    Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation) Re-direct Destination: Fungal free enzymes and bacterial...

  5. Nucleon Electromagnetic Form Factors: Free Space and Medium Modifications

    SciTech Connect (OSTI)

    Wally Melnitchouk

    2003-10-01T23:59:59.000Z

    We review recent developments in the study of electromagnetic form factors of the nucleon, both in free space and in the nuclear medium. For the free nucleon case, we discuss the ratio of electric to magnetic proton form factors, and the influence of two-photon exchange on the form factor extraction. For the bound nucleon, we examine the implications of the small but non-zero modification of proton form factors in the nuclear medium suggested by recent data on polarized proton knockout reactions off He-4, and discuss constraints which it could place on models of the nuclear EMC effect.

  6. Impact of different building ventilation modes on occupant expectations of the main IEQ factors

    E-Print Network [OSTI]

    Kim, Jungsoo; de Dear, Richard

    2012-01-01T23:59:59.000Z

    Occupants satisfied Bonus Factor Proportional Factor Highthat Basic, Proportional and Bonus Factors have with overallNO Prop. YES Basic YES Bonus NO Prop. NO Prop. Satisfied

  7. Gray, W. D. (2003). Cognitive factors in homeland defense: The role of human factors in the novel intelligence from massive data (NIMD) project, Human Factors and Ergonomics Society (pp. 1017-1018). Santa Monica, CA: Human

    E-Print Network [OSTI]

    Gray, Wayne

    2003-01-01T23:59:59.000Z

    intelligence from massive data (NIMD) project, Human Factors and Ergonomics Society (pp. 1017-1018). Santa Monica, CA: Human Factors and Ergonomics Society. COGNITIVE FACTORS IN HOMELAND DEFENSE: THE ROLE

  8. Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware

    E-Print Network [OSTI]

    Gaj, Krzysztof

    Bachimanchi1 1 Dept. of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030-exponential factoring algorithm, with expected run time of O(exp(c log p log log p) M(N)) where c > 0, p is a factor we aim to find, and M(N) denotes the cost of multiplication (mod N). ECM is the best method to perform

  9. FRIGERATION OF FISH -PART 3 FACTORS TO BE CONSIDERED

    E-Print Network [OSTI]

    FRIGERATION OF FISH - PART 3 FACTORS TO BE CONSIDERED IN THE FREEZING AND COLD STORAGE. REFRIGERATION OF FISH - PART THREE FACTORS TO BE CONSIDERED IN THE FREEZING AND COLD STORAGE OF FISHERY PRODUCTS Taking Place During Cold Storage of Fish Section 3 - Protective Coverings for Frozen Fish · · Pages 1

  10. Optimizing Thermoelectric Power Factor by Means of a Potential Barrier

    E-Print Network [OSTI]

    1 Optimizing Thermoelectric Power Factor by Means of a Potential Barrier Neophytos Neophytou}@iue.tuwien.ac.at Abstract Large efforts in improving thermoelectric energy conversion are devoted to energy filtering design, ~40% improvement in the thermoelectric power factor can be achieved if the following conditions

  11. ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES

    E-Print Network [OSTI]

    Park, Yong-Lae

    ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES Richard J. Black1 , David Zare1 , Levy Oblea1 , Yong-Lae Park1 , Behzad Moslehi1 , and Craig Neslen2 1 Intelligent Fiber Optic Systems of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1

  12. Nucleon Form Factors experiments with 12 GeV CEBAF

    SciTech Connect (OSTI)

    Wojtsekhowski, Bogdan

    2008-11-01T23:59:59.000Z

    A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

  13. Multi-Factor Energy Price Models Exotic Derivatives Pricing

    E-Print Network [OSTI]

    Jaimungal, Sebastian

    Multi-Factor Energy Price Models and Exotic Derivatives Pricing by Samuel Hikspoors A thesis of Statistics University of Toronto c Copyright by Samuel Hikspoors 2008 #12;Multi-Factor Energy Price Models and practitioners alike recently started to develop the tools of energy derivatives pricing

  14. Scaling Factor Inconsistencies in Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    S. Cowell

    2005-12-05T23:59:59.000Z

    The modern theory of neutrinoless double beta decay includes a scaling factor that has often been treated inconsistently in the literature. The nuclear contribution to the decay half life can be suppressed by 15-20% when scaling factors are mismatched. Correspondingly, $$ is overestimated.

  15. Scaling factor inconsistencies in neutrinoless double beta decay

    SciTech Connect (OSTI)

    Cowell, S. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2006-02-15T23:59:59.000Z

    The modern theory of neutrinoless double beta decay includes a scaling factor that has often been treated inconsistently in the literature. The nuclear contribution to the decay half-life can be suppressed by 15%-20% when scaling factors are mismatched. Correspondingly, is overestimated.

  16. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic

  17. Using computational tools to factor wind into architectural environment design

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    and an acceptable thermal comfort level, by means of passive cooling or natural ventilation. On the other hand, wind tools to factor wind into architectural environment design," Energy and Buildings, 36, 1197-1209. #121 Using computational tools to factor wind into architectural environment design Qingyan (Yan) Chen

  18. Journal Diffusion Factors a measure of diffusion? Tove Faber Frandsen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Journal Diffusion Factors ­ a measure of diffusion? Tove Faber Frandsen Royal School of Library In this paper we show that the measure of diffusion introduced by Ian Rowlands called the Journal Diffusion Factor (JDF) is highly negatively correlated with the number of citations, leading highly cited journals

  19. Matrix Factorizations for Information Retrieval Dianne P. O'Leary

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Matrix Factorizations for Information Retrieval Dianne P. O'Leary Computer Science Dept that is predominantly linear algebra · Conclusions A Catalog of Matrix Factorizations c 2006 Dianne P. O'Leary 1 or oscillation · understanding Markov chains c 2006 Dianne P. O'Leary 2 University of Maryland, College Park #12

  20. The effects of growth factors on testicular germ cell apoptosis in the stallion

    E-Print Network [OSTI]

    Donnelly, Casey Leanne

    2002-01-01T23:59:59.000Z

    recombinant growth factors, stem cell factor (SCF), leukemia inhibiting factor (LIF), granulocyte macrophage-colony stimulating factor (GM-CSF), and one hormone, estradiol (E?), alone or in combination, to prevent apoptosis of germ cells in short-term equine...

  1. Photon impact factor and k{sub T}-factorization for DIS in the next-to-leading order

    SciTech Connect (OSTI)

    Ian Balitsky, Giovanni Chirilli

    2013-01-01T23:59:59.000Z

    The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as an NLO k{sub T}-factorization formula for structure functions of small-x deep inelastic scattering.

  2. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30T23:59:59.000Z

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  3. Twisted mass QCD for the pion electromagnetic form factor

    SciTech Connect (OSTI)

    Abdel-Rehim, Abdou M.; Lewis, Randy [Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2005-01-01T23:59:59.000Z

    The pion form factor is computed using quenched twisted mass QCD and the GMRES-DR matrix inverter. The momentum averaging procedure of Frezzotti and Rossi is used to remove leading lattice spacing artifacts, and numerical results for the form factor show the expected improvement with respect to the standard Wilson action. Although some matrix inverters are known to fail when applied to twisted mass QCD, GMRES-DR is found to be a viable and powerful option. Results obtained for the pion form factor are consistent with the published results from other O(a) improved actions and are also consistent with the available experimental data.

  4. Dual chain synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY)

    2012-04-24T23:59:59.000Z

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  5. Dual chain synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY)

    2009-10-06T23:59:59.000Z

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  6. Quality factors and dynamical tunneling in annular microcavities

    E-Print Network [OSTI]

    Arnd Bäcker; Roland Ketzmerick; Steffen Löck; Jan Wiersig; Martina Hentschel

    2009-06-02T23:59:59.000Z

    The key characteristic of an optical mode in a microcavity is its quality factor describing the optical losses. The numerical computation of this quantity can be very demanding for present-day devices. Here we show for a certain class of whispering-gallery cavities that the quality factor is related to dynamical tunneling, a phenomenon studied in the field of quantum chaos. We extend a recently developed approach for determining dynamical tunneling rates to open cavities. This allows us to derive an analytical formula for the quality factor which is in very good agreement with full solutions of Maxwell's equations.

  7. Exact Bivariate Polynomial Factorization in Q by Approximation of Roots

    E-Print Network [OSTI]

    Feng, Yong; Zhang, Jingzhong

    2010-01-01T23:59:59.000Z

    Factorization of polynomials is one of the foundations of symbolic computation. Its applications arise in numerous branches of mathematics and other sciences. However, the present advanced programming languages such as C++ and J++, do not support symbolic computation directly. Hence, it leads to difficulties in applying factorization in engineering fields. In this paper, we present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coefficients. Our method can be directly implemented in efficient programming language such C++ together with the GNU Multiple-Precision Library. In addition, the numerical computation part often only requires double precision and is easily parallelizable.

  8. Cementation factor and water saturation exponent in low porosity sandstones

    E-Print Network [OSTI]

    Owen, Stephen Douglas

    1984-01-01T23:59:59.000Z

    and cementation factor when porosity was below 0. 15, and a linear relationship was found between cementa- tion factor and clay content. No relationship was found between porosity and water saturat1on exponent, or cementation factor and water saturat1on... granular formations in the absence of laboratory analysis. In 1977, Bush and Jenkins~~ suggested a simple method for deter- mining clay content, which was used in this study. 103 102 z 0 M 0 10 2 3 4 5678910 2 3 4 5 6 7 8 1p2 POROSITY Fig. I...

  9. Noisy Independent Factor Analysis Model for Density Estimation and Classification

    E-Print Network [OSTI]

    Amato, U.

    2009-06-09T23:59:59.000Z

    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the ...

  10. aspects risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 51 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  11. additional risk factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 47 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  12. agroecological risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 47 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  13. atherosclerosis risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 58 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  14. adolescent risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 77 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  15. adulthood risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 52 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  16. atherosclerotic risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 48 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  17. acquired risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universit de 45 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  18. analyzing risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 74 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  19. additional risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 47 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  20. aureus risk factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-01-01 58 Review Epidemiology, risk factors, and lifestyle modifications for gout CiteSeer Summary: Gout affects more than 1 % of adults in the USA, and it is the most...

  1. activated transcription factors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vijaya L. Krishnan; Ian M. Adcock; Peter J. Barnes; K. Fan Chung 1998-01-01 4 The Turkey Transcription Factor Pit-1GHF-1 Can Activate the Turkey Prolactin and Growth Hormone...

  2. adverse survival factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat treatment pH, recovery1 Survival curves of heated bacterial spores:1 Effect of environmental factors on Weibull heat13 resistance for non-log linear survival curves. One...

  3. Key Factors in Displacement Ventilation Systems for Better IAQ

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  4. Study on Influencing Factors of Night Ventilation in Office Rooms

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01T23:59:59.000Z

    A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort are simulated using Airpak software. Some main influencing factors of night ventilation in office rooms...

  5. Extended correlations of porosity, permeability, and formation resistivity factor

    E-Print Network [OSTI]

    Ellis, Keith Wade

    1987-01-01T23:59:59.000Z

    obtained through a literature search, and the remainder were obtained through donations by Shell and Tenneco. The complete data set consists of permeability, porosity and formation factor measurements for twenty formations. Of the twenty data sets, seven...

  6. Factors that influence exercise participation amoung older adults

    E-Print Network [OSTI]

    Murphey, Kristina Kile

    2001-01-01T23:59:59.000Z

    The purpose of this study was to survey adults age 60 and older to measure their levels of exercise self-efficacy, attitudes toward exercise and health, and perceived exercise control beliefs. Participants also defined other intrapersonal factors...

  7. Rare $B$ decays using lattice QCD form factors

    E-Print Network [OSTI]

    Horgan, R R; Meinel, S; Wingate, M

    2015-01-01T23:59:59.000Z

    In this write-up we review and update our recent lattice QCD calculation of $B \\to K^*$, $B_s \\to \\phi$, and $B_s \\to K^*$ form factors [arXiv:1310.3722]. These unquenched calculations, performed in the low-recoil kinematic regime, provide a significant improvement over the use of extrapolated light cone sum rule results. The fits presented here include further kinematic constraints and estimates of additional correlations between the different form factor shape parameters. We use these form factors along with Standard Model determinations of Wilson coefficients to give Standard Model predictions for several observables [arXiv:1310.3887]. The modest improvements to the form factor fits lead to improved determinations of $F_L$, the fraction of longitudinally polarized vector mesons, but have little effect on most other observables.

  8. Rare $B$ decays using lattice QCD form factors

    E-Print Network [OSTI]

    R. R. Horgan; Z. Liu; S. Meinel; M. Wingate

    2015-03-20T23:59:59.000Z

    In this write-up we review and update our recent lattice QCD calculation of $B \\to K^*$, $B_s \\to \\phi$, and $B_s \\to K^*$ form factors [arXiv:1310.3722]. These unquenched calculations, performed in the low-recoil kinematic regime, provide a significant improvement over the use of extrapolated light cone sum rule results. The fits presented here include further kinematic constraints and estimates of additional correlations between the different form factor shape parameters. We use these form factors along with Standard Model determinations of Wilson coefficients to give Standard Model predictions for several observables [arXiv:1310.3887]. The modest improvements to the form factor fits lead to improved determinations of $F_L$, the fraction of longitudinally polarized vector mesons, but have little effect on most other observables.

  9. Linewidth enhancement factor. cap alpha. in semiconductor injection lasers

    SciTech Connect (OSTI)

    Vahala, K.; Chiu, L.C.; Margalit, S.; Yariv, A.

    1983-04-15T23:59:59.000Z

    A simple model for the linewidth enhancement factor ..cap alpha.. and its frequency dependence in semiconductor lasers is presented. Calculations based on this model are in reasonable agreement with experimental results.

  10. SciTech Connect: Industrial Power Factor Analysis Guidebook.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factor is a way of measuring the percentage of reactive power in an electrical system. Reactive power represents wasted energy--electricity that does no useful work because the...

  11. Socialization and resources: factors relating to spouse abuse

    E-Print Network [OSTI]

    Brown, Mary Melissa

    1980-01-01T23:59:59.000Z

    SOCIALIZATION AND P SOURCES: FACTORS RELATING TO SPOUSE ABUSE A Thesis by MARY MELISSA BRONN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December...

  12. astrophysical s170 factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is predicted to be 10.1 10-20 keV b, a factor of five larger than the standard-solar-model value. The P-wave transitions are found to be important, contributing about 40 %...

  13. Flavor decomposition of the elastic nucleon electromagnetic form factors

    SciTech Connect (OSTI)

    C.D. Cates, C.W. Jager, S. Riordan, B. Wojtsekhowski

    2011-06-01T23:59:59.000Z

    The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn , GMn , GpE , and GpM . Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark component drops continuously with increasing Q2.

  14. Early career development in the sport industry: factors affecting employment

    E-Print Network [OSTI]

    Hutchinson, Michael Daniel

    2009-05-15T23:59:59.000Z

    The purpose of this study is to identify the processes and factors contributing to employment in the sport industry. In order to completely address the sport industry as a whole, sport management has been pragmatically divided into five sub...

  15. Factors influencing the efficiency of arsenic extraction by phosphate

    E-Print Network [OSTI]

    Yean, Su Jin

    2005-11-01T23:59:59.000Z

    , phosphate concentration, principal counterion, reaction pH, and reaction time. The extraction efficiency was impacted by the influence of these individual factors on reaction kinetics and accessibility of arsenic adsorption sites for ligand exchange...

  16. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    E-Print Network [OSTI]

    Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada Ralph L. Seiler sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water indicates that W exhibits Tungsten con- centrations are strongly and positively correlated

  17. Diagnostic relapse in Borderline Personality Disorder: risk and protective factors

    E-Print Network [OSTI]

    Quigley, Brian David

    2004-11-15T23:59:59.000Z

    throughout their lifetimes and they may repeatedly return for psychological treatment. Whereas previous studies have attempted to identify various factors related to relapse in other chronically recurring disorders such as depression, schizophrenia...

  18. Role of Hepatocyte Nuclear Factor 4 alpha in Hepatocyte Proliferation

    E-Print Network [OSTI]

    Walesky, Chad Michael

    2014-05-31T23:59:59.000Z

    Hepatocyte Nuclear Factor 4 alpha (HNF4?) is the master regulator of hepatocyte differentiation. It is involved in the up-regulation of genes involved in many classic hepatic functions including: bile acid metabolism, ...

  19. Geography: Critical Factors in the Analysis of Complex Systems

    E-Print Network [OSTI]

    Welch, Ivan

    2012-05-31T23:59:59.000Z

    Geography is a disciple of discovery and exploration. From earliest human endeavor until today, it remains the key to understanding human interaction with the landscape. A conceptual framework of geographic factors provides ...

  20. Light, Nearwork, and Visual Environment Risk Factors in Myopia

    E-Print Network [OSTI]

    Alvarez, Amanda Aleksandra

    2012-01-01T23:59:59.000Z

    of time outdoors and light levels as risk factors for myopiaH. C. (1995). Constant light produces severe cornealNg, H. , & Phillips, J. (2011) Light exposure patterns in

  1. Human factors survey of advanced instrumentation and controls

    SciTech Connect (OSTI)

    Carter, R.J.

    1989-01-01T23:59:59.000Z

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  2. Campus Environmental Factors Influencing Student Leadership Development and Civic Engagement

    E-Print Network [OSTI]

    Boren, Laura

    2012-02-14T23:59:59.000Z

    for the study. The researcher determined from participant responses that peer and mentor relationships, community identity, personal identity, and democratic experiences were key environmental factors influencing student leadership development and civic...

  3. attenuating factor phage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of America, Vol. 87, No. 4, pp. 961-970, August 1997 A Bayesian Nonlinear Inversion of Seismic Body-Wave Attenuation Factors Geosciences Websites Summary: A Bayesian Nonlinear...

  4. Characterizing and engineering antibodies against the epidermal growth factor receptor

    E-Print Network [OSTI]

    Chao, Ginger

    2008-01-01T23:59:59.000Z

    Epidermal growth factor receptor (EGFR) signaling leads to cellular proliferation and migration, and thus EGFR dysregulation can significantly contribute to the survival of tumor cells. Aberrant EGFR signaling due to ...

  5. Nucleon axial form factors from two-flavour Lattice QCD

    E-Print Network [OSTI]

    P. M. Junnarkar; S. Capitani; D. Djukanovic; G. von Hippel; J. Hua; B. Jäger; H. B. Meyer; T. D. Rae; H. Wittig

    2014-11-21T23:59:59.000Z

    We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with $m_\\pi = 340 \\ \\text{MeV}$ and lattice spacing $a \\sim 0.05 \\ \\text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s \\sim 0.6 \\ \\text{fm}$ to $t_s \\sim \\ 1.4 \\ \\text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.

  6. Key Factors in Displacement Ventilation Systems for Better IAQ 

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  7. antitumor necrosis factor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single-nucleo- tide polymorphisms (SNPs) or haplotypes in the TNF Nyholt, Dale R. 10 Maximum-entropy network analysis reveals a role for tumor necrosis factor in peripheral...

  8. Factor Demand Linkages, Technology Shocks and the Business Cycle

    E-Print Network [OSTI]

    Holly, Sean; Petrella, I

    . In this paper we consider the implications of factor demand linkages for the econometric analysis of the e¤ect of technology shocks on hours. A contemporaneous technology shock to all sectors in manufacturing then implies a positive aggregate response in both... output and hours. The positive aggregate response is directly related to the role of factor demand linkages in the transmission of shocks. When sectoral interactions are ignored we ?nd a negative correlation as with much of the literature. This 4 suggests...

  9. Two-phase compressibility factors for retrograde gases

    E-Print Network [OSTI]

    Rayes, Daniel George

    1989-01-01T23:59:59.000Z

    of a liquid phase. Gas compressibility factors are used in the gas material balance equations. These equations are used to estimate initial gas in place and reserves. Normally gas compressibility factors are used when a reservoir fluid depletion.... 0 on a material balance plot. Dake's equation has limited usefulness because the initial gas in place G is an unknown in the field. Also note that Gp at the abandonment pressure is the ultimate reserves of the reservoir. We can also derive...

  10. Factors influencing food selection by students in a university foodservice

    E-Print Network [OSTI]

    Clement, Camille Therese

    1989-01-01T23:59:59.000Z

    In food seleotlon considered most Important by males and females. 17 60 40 20 CV CO CO ~ MAlES Q FEMAlE SENSORy OCNVENENCE NUTRIENT KCALORIE FOOD SELECTION FACTORS RG. 3. Comparison of factors In food selection considered least Important... that I could achieve it, and the opportunity to do so. I loveyou. TABLE OF CONTENTS vl Page ABSTRACT s . o o ~ o o ~ ~ ~ o o o ~ s o e o ~ ACKNOWLEDGMENTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ v TABLE OF CONTENTS . . . . . . . . . . . ~ ~ ~ ~ . . vi...

  11. Factors affecting attitudinal patterns toward education in the Dominican Republic

    E-Print Network [OSTI]

    Carpenter, Edwin Hugh

    1968-01-01T23:59:59.000Z

    FACTORS AF'FECTING ATTITUDINAL PATTERNS TOWARD EDUCATION IN THE DOHINICAN REPUBLIC A Thesi. s by EDWIN HUGH CARPENTER Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree... of NASTER OF SCIENCE August 1968 Major Sub)sot: Sociology FACTORS AFFECTING ATTITUDINAL PATTERNS TOWARD EDUCATION IN THE DOMINICAN REPUBLIC A Thesis by EDWIN HUGH CARPENTER Approved as to style and content by: (Chairman gf Commit tee) (Head...

  12. Density matrix renormalization group and wave function factorization for nuclei

    E-Print Network [OSTI]

    T. Papenbrock; D. J. Dean

    2005-07-15T23:59:59.000Z

    We employ the density matrix renormalization group (DMRG) and the wave function factorization method for the numerical solution of large scale nuclear structure problems. The DMRG exhibits an improved convergence for problems with realistic interactions due to the implementation of the finite algorithm. The wave function factorization of fpg-shell nuclei yields rapidly converging approximations that are at the present frontier for large-scale shell model calculations.

  13. Panel Data Analysis of Regulatory Factors Shaping Environmental Performance

    E-Print Network [OSTI]

    Earnhart, Dietrich H.

    2006-03-13T23:59:59.000Z

    and the influence of regulatory factors in general, this paper examines a specific demonstration of environmental perfor- mance: biological oxygen demand (BOD) wastewater dis- charges by large (“major”) municipal wastewater treatment plants in Kansas during... example, limit levels). To analyze the effects of these regulatory factors on envi- ronmental performance, this particular empirical analysis examines the wastewater discharges by large municipal wastewater treatment facilities in the state of Kansas...

  14. An economic analysis of factors affecting the Texas potato market

    E-Print Network [OSTI]

    Asgill, Oladimagi Winsome

    1989-01-01T23:59:59.000Z

    AN ECONOMIC ANALYSIS OF FACTORS AFFECTING THE TEXAS POTATO MARKET A Thesis OLADIMAGI WINSOME ASGILL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Agricultural Economics AN ECONOMIC ANALYSIS OP FACTORS AFFECTING THE TEXAS POTATO MARKET A Thesis OLADIMAGI WINSOME ASGILL Approved as to style and content by: H. L. Goodwin (Chair of Committee) S. W. Fuller (Member...

  15. Nonspecific transcription factor binding reduces variability in transcription factor and target protein expression

    E-Print Network [OSTI]

    Mohammad Soltani; Pavol Bokes; Zachary Fox; Abhyudai Singh

    2015-04-14T23:59:59.000Z

    Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.

  16. Nuclear mass form factors from coherent photoproduction of $?^0$ mesons

    E-Print Network [OSTI]

    B. Krusche

    2005-09-01T23:59:59.000Z

    Data for coherent photoproduction of $\\pi^0$ mesons from nuclei ($^{12}$C, $^{40}$Ca, $^{93}$Nb, $^{nat}$Pb), recently measured with the TAPS detector at the Mainz MAMI accelerator, have been analyzed in view of the mass form factors of the nuclei. The form factors have been extracted in plane wave approximation of the $A(\\gamma ,\\pi^0)A$ reaction and corrected for final state interaction effects with the help of distorted wave impulse approximations. Nuclear mass rms-radii have been calculated from the slope of the form factors for $q^2\\to 0$. Furthermore, the Helm model (hard sphere form factor folded with Gaussian) was used to extract diffraction radii from the zeroes of the form factor and skin thicknesses from the position and height of its first maximum. The diffraction radii from the Helm model agree with the corresponding charge radii obtained from electron scattering experiments within their uncertainties of a few per cent. The rms-radii from the slope of the form factors are systematically lower by up to 5% for PWIA and up to 10% for DWIA. Also the skin thicknesses extracted from the Helm model are systematically smaller than their charge counter parts.

  17. 2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors

    E-Print Network [OSTI]

    2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors: Methodology Paper for Transport Emission Factors Contents I. INTRODUCTION 3 II. AVIATION 4 Previous Approach 4 New Passenger Air Transport Emission Factors 5 New Freight Air Transport Emission Factors 10 Other

  18. Human factors evaluation of teletherapy: Literature review. Volume 5

    SciTech Connect (OSTI)

    Henriksen, K.; Kaye, R.D.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-07-01T23:59:59.000Z

    A series of human factors evaluations were undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. A team of human factors specialists, assisted by a panel of radiation oncologists, medical physicists, and radiation therapists, conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. A function and task analysis was performed initially to guide subsequent evaluations in the areas of workplace environment, system-user interfaces, procedures, training, and organizational practices. To further acquire an in-depth and up-to-date understanding of the practice of teletherapy in support of these evaluations, a systematic literature review was conducted. Factors that have a potential impact on the accuracy of treatment delivery were of primary concern. The present volume is the literature review. The volume starts with an overview of the multiphased nature of teletherapy, and then examines the requirement for precision, the increasing role of quality assurance, current conceptualizations of human error, and the role of system factors such as the workplace environment, user-system interfaces, procedures, training, and organizational practices.

  19. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect (OSTI)

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01T23:59:59.000Z

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  20. Evaluation of vitrification factors from DWPF's macro-batch 1

    SciTech Connect (OSTI)

    Edwards, T.B.

    2000-01-25T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ``glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015.

  1. Giant g-factors of natural impurities in synthetic quartz

    SciTech Connect (OSTI)

    Goryachev, Maxim; Farr, Warrick G.; Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2013-12-23T23:59:59.000Z

    We report the observation of g-factors of natural paramagnetic impurities in a pure synthetic quartz crystal at milli-Kelvin temperatures. Measurements are made by performing spectroscopy using multiple high-Q whispering gallery modes sustained in the crystal. Extreme sensitivity of the method at low temperatures allows the determination of natural residual impurities introduced during the crystal growth. We observe g-factors that significantly differ from integer multiples of the electron g-factor in vacuum, and with values of up to 7.6, which reveals much stronger coupling between impurities and the crystal lattice than in previous studies. Both substitutional and interstitial ions are proposed as candidates for the observed interactions.

  2. The Proton Form Factor Ratio Measurements at Jefferson Lab

    SciTech Connect (OSTI)

    Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)

    2014-03-01T23:59:59.000Z

    The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above #25;~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

  3. The nucleon electromagnetic form factors from Lattice QCD

    E-Print Network [OSTI]

    Alexandrou, C; Negele, J W; Tsapalis, A

    2006-01-01T23:59:59.000Z

    We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.

  4. Human factors evaluation of the engineering test reactor control room

    SciTech Connect (OSTI)

    Banks, W.W.; Boone, M.P.

    1981-03-01T23:59:59.000Z

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation.

  5. Fast controller for a unity-power-factor PWM rectifier

    SciTech Connect (OSTI)

    Eissa, M.O.; Leeb, S.B.; Verghese, G.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Electromagnetic and Electronic Systems] [Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Electromagnetic and Electronic Systems; Stankovic, A.M. [Northeastern Univ., Boston, MA (United States)] [Northeastern Univ., Boston, MA (United States)

    1996-01-01T23:59:59.000Z

    This paper presents an analog implementation of a fast controller for a unity-power-factor (UPF) PWM rectifier. The best settling times of many popular controllers for this type of converter are on the order of a few line cycles, corresponding to bandwidths under 20 Hz. The fast controller demonstrated in this paper can exercise control action at a rate comparable to the switching frequency rather than the line frequency. In order to accomplish this while maintaining unity power factor during steady-state operation, the fast controller employs a ripple-feedback cancellation scheme.

  6. Gamma N Delta Form Factors and Wigner Rotations

    E-Print Network [OSTI]

    Milton Dean Slaughter

    2008-10-28T23:59:59.000Z

    For more than 50 years the Delta N gamma form factors have been studied experimentally, theoretically, and phenomenologically. Although there has been substantial progress in understanding their behavior, there remains much work to be done. A major tool used in many investigations is the Jones-Scadron Delta rest frame parametrization of the three Delta N gamma form factors. We point out that many studies utilizing this parametrization may not account for Wigner rotations and the consequent helicity mixing that ensues when the Delta is not at rest.

  7. Performance analysis of parallel supernodal sparse LU factorization

    SciTech Connect (OSTI)

    Grigori, Laura; Li, Xiaoye S.

    2004-02-05T23:59:59.000Z

    We investigate performance characteristics for the LU factorization of large matrices with various sparsity patterns. We consider supernodal right-looking parallel factorization on a bi-dimensional grid of processors, making use of static pivoting. We develop a performance model and we validate it using the implementation in SuperLU-DIST, the real matrices and the IBM Power3 machine at NERSC. We use this model to obtain performance bounds on parallel computers, to perform scalability analysis and to identify performance bottlenecks. We also discuss the role of load balance and data distribution in this approach.

  8. Factors Influencing the Prices Received for Texas Turkeys.

    E-Print Network [OSTI]

    Halpin, R. B.; Parnell, E. D.; Mountney, G. J.

    1954-01-01T23:59:59.000Z

    1952 300- 'j HENS 250 -Ae THANKSGIVING L 20 27 4 11 18 25 1 8 15 22 29 6 S E PT. OCT. N OV. DEC. i Figure 3. Average number of No. 1 live turkeys pu:. chased per transaction by sex by weeks, six plants, Texci 1951-52. I FALL MARKETING SEASON...Factors Influencing the Prices Received for Texas Turkeys TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION. TEXAS DIGEST A study was conducted during 1950-53 of the factors influencing the market quality a1 received...

  9. 1) The overhead view of the chimney looks like this: Six bricks are needed to create each row, and there are five rows, so there are 65

    E-Print Network [OSTI]

    Kunkle, Tom

    the BMW Roadster would increase. Explanation: If the first door you picked had the BMW Roadster behind not been opened, you get the BMW roadster. So you would have a two out of three chance of getting the BMW

  10. Characterization of Two Sigma Factors in Plant Pathogenesis by Pseudomonas syringae pv. syringae B728a 

    E-Print Network [OSTI]

    Basu Thakur, Poulami

    2012-07-11T23:59:59.000Z

    function (ECF) sigma (?) factors serve as important regulatory factors in responding to various environmental signals. Bioinformatic analysis of the B728a genome has revealed 10 ECF sigma factors, five of which have high levels of sequence similarity...

  11. Children's resiliency, adjustment, and coping: cancer-related, family context, and within-child factors

    E-Print Network [OSTI]

    Newton, Katherine Michele

    2009-05-15T23:59:59.000Z

    ; family context factors of parenting stress and family psychosocial risk; and within-child factors of personal resiliency. These factors were assessed among 37 children with leukemia or lymphoma, one of their caretakers (29 mothers, 7 fathers, 1...

  12. `Perfect ventilation, good sewerage and effective water closets': Urban factors in the development

    E-Print Network [OSTI]

    `Perfect ventilation, good sewerage and effective water closets': Urban factors in the development sanitation ``Perfect ventilation, good sewerage and effective water closets': Urban factors ventilation, good sewerage and effective water closets': Urban factors in the development of modern nursing

  13. Economic investigation of discount factors for agricultural greenhouse gas emission offsets

    E-Print Network [OSTI]

    Kim, Man-Keun

    2005-08-29T23:59:59.000Z

    approaches to discount factors, estimation and incorporation of discount factors procedures are developed. Discount factors would be imposed by credit purchasers due to noncompliance with regulatory program of the credits with GHG program including...

  14. Nitrous Oxide Nitrification and Denitrification 15N Enrichment Factors from Amazon Forest Soils

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    M. Wahlen. 1997. Stable isotope enrichment in stratosphericthat we know the isotope enrichment factors for nitri?cationmethod for measuring N isotope enrichment factors for nitri?

  15. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

  16. Impact of individual, environmental, and policy level factors on healthcare utilization among United States farmworkers

    E-Print Network [OSTI]

    Hoerster, Katherine D.

    2010-01-01T23:59:59.000Z

    of Individual, Environmental, and Policy Level Factors onof Individual, Environmental, and Policy Level Factors onindividual, environmental, and policy level correlates of

  17. Factor analysis of Galactic globular clusters on structural parameters

    E-Print Network [OSTI]

    O. Eigenson; O. Yatsyk

    2000-11-08T23:59:59.000Z

    Principal component method is used to study galactic globular clusters in 7- and 8-axis space of structural parameters. It is shown that the manifold properties of clusters with this set of parameters is determined mainly by two independent factors. This result may be useful for the theory of formation and evolution of clusters.

  18. Mechanism Based Anticancer Drugs that Degrade Sp Transcription Factors

    E-Print Network [OSTI]

    Chadalapaka, Gayathri

    2013-03-14T23:59:59.000Z

    4 transcription factors. Similar results were observed for a structurally-related triterpenoid, methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me), which is currently in clinical trials for treatment of leukemia. Celastrol, a naturally...

  19. Factors Affecting Cotton Producers' Choice of Marketing Outlet

    E-Print Network [OSTI]

    Pace, Jason 1979-

    2012-08-16T23:59:59.000Z

    Studies 4 Adoption Studies Employing Multinomial Logistic Regression ?.. 5 Hedging Studies ?????????????????????.. 8 Marketing Studies ????????????????????... 12 Non-cotton and General Commodity Marketing Studies ????. 12 Cotton Marketing Studies... Employing Multinomial Logistic Regression This paper will model the factors that influence several qualitative choices (cash marketing outlets) among cotton producers. The objective of qualitative choice modeling is to determine each explanatory...

  20. Factors Influencing Productivity and Operating Cost of Demand Responsive Transit

    E-Print Network [OSTI]

    Dessouky, Maged

    Factors Influencing Productivity and Operating Cost of Demand Responsive Transit Kurt Palmer Maged of the Americans with Disabilities Act in 1991 operating expenses for Demand Responsive Transit have more than and practices upon productivity and operating cost. ii #12;1 Introduction Demand Responsive Transit (DRT