National Library of Energy BETA

Sample records for rse naics residual

  1. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324110," Petroleum Refineries",44,240,337696.4,4578,2... ,,"Total United States" ,"RSE Column ...

  3. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324110," Petroleum Refineries",46,152,42,126,78,35,14... ,,"Total United States" ,"RSE Column ...

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    ... that respondents indicated could have been consumed in place of residual fuel oil. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  5. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  6. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","Net

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C3.1. Number of Establishments by Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  13. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Natural Gas(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  17. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS","

  18. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  19. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  20. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... have been consumed in place of residual fuel oil. (f) Value of Shipments and Receipts ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  5. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel

  10. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  11. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",41280,"Q",17503,4123,54688,1.9 324110," Petroleum Refineries",38603,"Q...

  12. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services NAICS Codes @ Headquarters.pdf (37.93 KB) More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  13. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  14. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," "

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  20. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  2. Good-Bye, SIC - Hello, NAICS

    U.S. Energy Information Administration (EIA) Indexed Site

    you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry...

  3. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," ","Any "," "," "," "," "," "," "," "," ",," " " "," ","Combustible",,,,,,,,"RSE"

  4. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual"

  5. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  6. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  7. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal ... "produced at refineries or natural gas ...

  8. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  9. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341

  10. Level: National Data; Row: NAICS Codes; Column: Levels of Price...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ... Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ...

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ... National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ...

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  13. Level: National and Regional Data; Row: NAICS Codes, Value of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and ... 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and ...

  14. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Gasoline and Diesel Fuel Update (EIA)

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ...

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ... (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ...

  16. Level: National Data; Row: NAICS Codes; Column: Floorspace and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and ... Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and ...

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  18. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",3622,126,72,23,1006,39,"*",0,2355,5.9 324110," Petroleum Refineries",3477,11...

  19. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " ... of a purchase or transfer and consumed onsite for the" "production of heat and power. ...

  20. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " ... of a purchase or transfer and consumed onsite for the" "production of heat and power. ...

  1. Level: National and Regional Data; Row: Selected NAICS Codes...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... for any table cell, multiply the cel corresponding RSE column and RSE row factors. ... Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and ...

  2. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Oxy - Fuel Firing Computer Control of Building Wide Evironment(c Computer Control of ... for any table cell, multiply the cell's corresponding RSE column and RSE row factors. ...

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  4. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 75,673 2,403 70,987 666 1,658 Q 406 Q Q 141 3112 Grain and Oilseed

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural

  9. RSE Table 10.12 Relative Standard Errors for Table 10.12

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 10.12;" " Unit: Percents." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and

  10. RSE Table 10.13 Relative Standard Errors for Table 10.13

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 10.13;" " Unit: Percents." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and

  11. RSE Table 7.6 Relative Standard Errors for Table 7.6

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," " " "," ",,,,,,,,," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel

  12. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",34347.3,116.3,26.7,3.3 324110," Petroleum Refineries",55014,151.2,...

  13. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",3622,37059,11,4,980,10,"*",0,2355,5.9 324110," Petroleum Refineries",3477,34...

  14. Re: NBP RFI: CommunicationRse quirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CommunicationRse quirements Re: NBP RFI: CommunicationRse quirements Pepco Holdings, Inc. (PHI) is pleased to respond to the U.S Department of Energy request for comments regarding the communications requirements of electric utilities deploying the Smart Grid. Re: NBP RFI: CommunicationRse quirements (589.11 KB) More Documents & Publications Re: NBP RFI: Communications Requirements Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of Electric

  15. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  16. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  17. RSE Table 10.10 Relative Standard Errors for Table 10.10

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Relative Standard Errors for Table 10.10;" " Unit: Percents." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel

  18. RSE Table 10.11 Relative Standard Errors for Table 10.11

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 10.11;" " Unit: Percents." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel

  19. RSE Table 2.1 Relative Standard Errors for Table 2.1

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1 Relative Standard Errors for Table 2.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ","Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and

  20. RSE Table 5.1 Relative Standard Errors for Table 5.1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 5.1;" " Unit: Percents." " "," " " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," "

  1. RSE Table 5.2 Relative Standard Errors for Table 5.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End

  2. RSE Table 5.4 Relative Standard Errors for Table 5.4

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel

  3. RSE Table 7.9 Relative Standard Errors for Table 7.9

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and

  4. Level: National Data; Row: End Uses within NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. ...

  5. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel ...

  6. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. ...

  7. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  8. Level: National Data; Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  9. Level: National Data; Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  10. Level: National Data; Row: Values of Shipments within NAICS Codes...

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  11. Level: National Data; Row: Values of Shipments within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  12. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Estimate less than 0.5. WWithheld to avoid disclosing data for individual establishments. ...

  13. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," ","

  14. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal

  15. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  16. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  17. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  18. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... that respondents indicated could have been consumed in place of distillate fuel oil. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... has already been included as generating fuel (for example, coal). (d) 'Distillate Fuel ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  1. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: ...

  2. Level: National and Regional Data; Row: NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. ...

  3. Level: National and Regional Data; Row: NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. ...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  6. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  10. "RSE Table C1.1. Relative Standard Errors for Table C1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Relative Standard Errors for Table C1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," ","Any",," "," ",," "," ",," ","Shipments" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG

  11. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  12. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) LPG ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  13. Level: National Data; Row: NAICS Codes (3-Digit Only); Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Survey of Manufactures.' (d) 'Distillate Fuel Oil' includes Nos. 1, 2, and 4 fuel oils ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ... Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Coal(b) ...

  15. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  16. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) A fact sheet detailling a proposal of a biorefinery facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) (19.31 KB) More Documents & Publications Pacific Ethanol, Inc EA-1888:

  17. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  18. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  19. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  20. RSE Table N1.1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG

  1. RSE Table N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2

    U.S. Energy Information Administration (EIA) Indexed Site

    N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2;" " Unit: Percents." " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

  2. RSE Table N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  3. RSE Table N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2

    U.S. Energy Information Administration (EIA) Indexed Site

    N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  4. RSE Table N6.1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2

    U.S. Energy Information Administration (EIA) Indexed Site

    1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "Code(a)","End

  5. RSE Table N6.3 and N6.4. Relative Standard Errors for Tables N6.3 and N6.4

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and N6.4. Relative Standard Errors for Tables N6.3 and N6.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," ","

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  13. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  17. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  18. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" "

  19. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  20. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  1. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  3. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2010;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  4. Level: National Data; Row: General Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.1 Number of Establishments by Participation in General Energy-Management Activities, 2010; Level: National Data; Row: General Energy-Management Activities within NAICS Codes; Column: Participation and Source of Assistance; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) In-house Utility/Energy Suppler Product/Service Provider Federal Program State/Local Program Don't Know Total United States 311 -

  5. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  6. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  7. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  8. RSE Table 3.5 Relative Standard Errors for Table 3.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," ","

  9. RSE Table 8.2 Relative Standard Errors for Table 8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 8.2;" " Unit: Percents." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing" " "," " "NAICS"," " "Code(a)","Subsector and

  10. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million

  11. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","No Steam Used" ,,"Total United States" "

  12. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  13. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  17. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of

  18. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  19. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  20. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  1. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 466 162 Steam Distribution Losses 4 12 Nonprocess Energy 267 Electricity Generation Steam Generation 466 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 30 292 63 Generation and Transmission Losses Generation and Transmission Losses 0 136 Onsite Generation 321 306 24 330 199 0 19 0.0 12.0 12.0 1.5 1.5 12.1 22.8 2.0 26 14.3 26.3 0.6 Fuel Total Energy

  2. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 16 Nonprocess Losses 729 89 Steam Distribution Losses 13 36 Nonprocess Energy 154 Electricity Generation Steam Generation 729 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 84 223 182 Generation and Transmission Losses Generation and Transmission Losses 0 393 Onsite Generation 307 255 81 336 575 0 65 0.0 34.8 34.8 5.1 4.9 2.3 28.9 9.7 44 8.9 43.7 1.7 Fuel Total Energy Total

  3. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  4. "RSE Table E7.2. Relative Standard Errors for Table E7.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Relative Standard Errors for Table E7.2;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS",,"Consumption","per Dollar","of Value" "Code(a)","Economic Characteristic(b)","per Employee","of Value Added","of Shipments" ,,"Total United States" " 311 - 339","ALL

  5. "RSE Table N13.3. Relative Standard Errors for Table N13.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Relative Standard Errors for Table N13.3;" " Unit: Percents." " "," ","Total of" "NAICS"," ","Sales and","Utility","Nonutility" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,,"Total United States" , 311,"Food",8,9,0 311221," Wet Corn Milling",0,0,0 312,"Beverage and Tobacco

  6. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  7. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  8. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  9. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  10. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable

  11. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  12. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  13. Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Table 3.6 Relative Standard Errors for Table 3.6;" " Unit: Percents." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS","

  14. RSE Table 5.5 Relative Standard Errors for Table 5.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ",," "," ",," " " ",,,,"Distillate" " "," ",,,"Fuel Oil",,,"Coal"," " " ",,"Net","Residual","and","Natural","LPG and","(excluding Coal" "End Use","Total","Electricity(a)","Fuel

  15. RSE Table 5.6 Relative Standard Errors for Table 5.6

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural","LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel

  16. RSE Table 5.7 Relative Standard Errors for Table 5.7

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." " ",,,"Distillate" " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)"

  17. RSE Table 5.8 Relative Standard Errors for Table 5.8

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." " ",," ","Distillate"," "," " " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel

  18. RSE Table 7.4 Relative Standard Errors for Table 7.4

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  19. RSE Table 7.5 Relative Standard Errors for Table 7.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  20. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  1. table1.2_02

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE NAICS Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 230

  2. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used...

  3. "RSE Table E1.1. Relative Standard Errors for Table E1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy

  4. "RSE Table N1.3. Relative Standard Errors for Table N1.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .3. Relative Standard Errors for Table N1.3;" " Unit: Percents." " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",3 "Natural Gas",1 "Net Electricity",1 " Purchases",1 " Transfers In",9 " Onsite Generation from Noncombustible Renewable Energy",15 " Sales and Transfers Offsite",3 "Coke and Breeze",2 "Residual Fuel

  5. "RSE Table N5.2. Relative Standard Errors for Table N5.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Relative Standard Errors for Table N5.2;" " Unit: Percents." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," "

  6. table3.2

    Gasoline and Diesel Fuel Update (EIA)

    ... NAICS Code(a) Subsector and Industry Total Net Electricity(b... RSE Row Factors Table 3.2 Fuel Consumption, 2002; Level: ... of Energy Markets and End Use, Energy Consumption ...

  7. table4.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Offsite-Produced Fuel Consumption, 2002; Level: National ... Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) ... of Energy Markets and End Use, Energy Consumption ...

  8. table1.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 *

  9. Table N1.1. First Use of Energy for All Purposes (Fuel and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  10. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Flat Glass",17,38,640478.2448,116,4.296030565,0 327213," Glass Containers",22,61,498895.1947,367,7.867559779,0 327310," Cements",11,195,114618.0932,1846,7.413041741,0 327410," ...

  11. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  12. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural ...

  13. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--"

  14. RSE Table E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2

    U.S. Energy Information Administration (EIA) Indexed Site

    E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel

  15. RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  16. RSE Table S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "SIC"," ",,"Net","Residual","Distillate",,"LPG

  17. RSE Table S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2

    U.S. Energy Information Administration (EIA) Indexed Site

    S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," ",," " "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel

  18. RSE Table S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2;" " Unit: Percents." " "," " "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  19. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  20. Upgrading residual oil

    SciTech Connect (OSTI)

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  1. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",73242,309,4563,11... 324,"Petroleum and Coal Products",43853,131,20015,3849,60149 324110," Petroleum Refineries",40434,94,1...

  2. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",75652,21,5666,347... 324,"Petroleum and Coal Products",48788,3722,18989,5496,66002 324110," Petroleum Refineries",46111,3685...

  3. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  4. table8.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002 Level: National Data; Row: Energy-Management Activities within NAICS Codes; Column: Participation and Source of Financial Support for Activity; Unit: Establishment Counts. RSE NAICS Row Code(a) Energy-Management Activity No Participation Participation(b) In-house Other Don't Know Factors Total United States RSE Column Factors: 0.9 1.4 0.9 0.9 1 311 - 339 ALL MANUFACTURING INDUSTRIES Participation in One or More of

  5. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  6. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  7. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  8. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  9. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  10. Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," ","

  11. Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  12. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  13. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. Characteristics RSE Column Factor: All Vehicle Types

    U.S. Energy Information Administration (EIA) Indexed Site

    or More ... 19.1 13.0 12.3 0.7 1.0 1.7 Q 2.7 Q 21.8 Below Poverty Line 100 Percent ... 12.4 9.5 8.9 0.5 Q Q Q 1.8 Q...

  15. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING

  16. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  17. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  18. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  20. Solidification process for sludge residue

    SciTech Connect (OSTI)

    Pearce, K.L.

    1998-09-10

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria.

  1. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  2. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  3. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  4. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  5. table7.9_02.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ... example, LPG and residual and distillate fuel oil) purchased, and associated ...

  6. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...rs:",0.9,0.9,1.2,1.5,0.9,1.5,0.8,0.6,1.1 , 311,"Food",1082,"W",2,3,566,1,9,"*",40,8.2 311221," Wet Corn Milling",220,"W","*","*",59,"*",6,0,9,1.1 31131," Sugar ...

  7. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",871.7,4.3,1.8 ... 324,"Petroleum and Coal Products",34542.7,35.1,5.3 324110," Petroleum Refineries",50778.2,39.5,5....

  8. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",1108,75652,2,4,56... 324,"Petroleum and Coal Products",1766,48788,1,2,956,"*",6,2,416 324110," Petroleum Refineries",1374,461...

  9. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",4,"*",3,"*","*","... 324,"Petroleum and Coal Products",4,1,3,"*",1,"*",0,"*",0,"*" 324110," Petroleum Refineries",2,"*",2,"*...

  10. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... It does not include electricity inputs from onsite" "cogeneration or generation from combustible fuels because that energy has" "already been included as generating fuel (for ...

  11. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Mills",21,"R",1161,"R","*","*",10,,"*",0,0,4 323,"Printing and Related Support",13,,1947,,"*","*",5,,"*",0,0,"*" 324,"Petroleum and Coal Products",249,,3868,"R",2,1,45,,2,"*","...

  12. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Mills",21,"R",1159,"R","*","*",10,,"*",0,0,4 323,"Printing and Related Support",13,,1947,,"*","*",5,,"*",0,0,"*" 324,"Petroleum and Coal Products",89,,4095,"R",1,1,45,,"*","*",...

  13. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,179,,23,,"*","*",52,,"*",,95,0,9 31131," Sugar Manufacturing",82,,3,,9,1,18,,"*",,31,1,20 ...","*",,"*",,"*","*",0,,0,,0,0,"*" 31131," Sugar Manufacturing",3,,"*",,0,"*",3,,"*",,0,0,"...

  14. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...17,6851,"*","*",59,"*",5,0,11,1.2 31131," Sugar ",111,725,"*","*",22,"*",2,"*",46,1 ...ng","*","W","W","W",0,0,0,0,"W",1 31131," Sugar ","W","W","*","*","W","*",0,0,"*",0.9 ...

  15. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...17,24,"*","*",61,"*",121,0,11,1.1 31131," Sugar ",74,3,2,1,22,"*",37,1,8,1 311421," Fruit ...","W","W","*","*",0,0,0,0,"*",0.9 31131," Sugar ","W","W","*","*","W","*",0,0,"*",0.9 ...

  16. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...17,7098,"*","*",59,"*",5,0,11,1.1 31131," Sugar ",74,733,"*","*",22,"*",2,"*",8,1 311421," ...","W","W","*","*",0,0,0,0,"*",0.9 31131," Sugar ","W","W","*","*","W","*",0,0,"*",0.9 ...

  17. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...17,23,"*","*",61,"*",121,0,11,1.2 31131," Sugar ",111,2,2,1,22,"*",37,1,46,1 311421," ...ng","*","W","W","W",0,0,0,0,"W",1 31131," Sugar ","W","W","*","*","W","*",0,0,"*",0.9 ...

  18. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    and",,"Coke"," ","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  19. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  20. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which payment was made," "quantities transferred in, quantities purchased and paid for by a central" "purchasing entity, and quantities for which payment was made in kind. ...

  1. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  2. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  3. " Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  4. Table 7.9 Expenditures for Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  5. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  6. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  7. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  8. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  9. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  10. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  11. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National

  12. nemsoverview_928.vp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122-2123) Blast...

  13. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","52016","115... AM" "Back to Contents","Data 1: Residual Fuel Oil Average" "Sourcekey","EMAEPPRPTANUS...

  14. Kaisheng Biomass Residue Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name: Kaisheng Biomass Residue Power Co., Ltd. Place: Nanping City, Fujian Province, China Zip: 365001 Sector:...

  15. Chemical stabilization of Hanford tank residual waste (Journal...

    Office of Scientific and Technical Information (OSTI)

    Chemical stabilization of Hanford tank residual waste Citation Details In-Document Search Title: Chemical stabilization of Hanford tank residual waste Authors: Cantrell, Kirk J. ; ...

  16. Indentation Based Techniques to Measure Residual Stresses in...

    Office of Scientific and Technical Information (OSTI)

    to Measure Residual Stresses in Engineering Ceramics. Citation Details In-Document Search Title: Indentation Based Techniques to Measure Residual Stresses in Engineering Ceramics. ...

  17. 2003 Commercial Buildings Energy Consumption - What is an RSE

    U.S. Energy Information Administration (EIA) Indexed Site

    the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to...

  18. Characteristics RSE Column Factor: All Model Years Model Year

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 19.1 1.4 2.0 2.2 5.0 4.4 2.1 0.6 Q 0.9 14.3 Below Poverty Line 100 Percent ... 12.4 Q Q 0.6 2.1 2.1 2.4 1.7...

  19. Characteristics RSE Column Factor: Households with Children Households...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 7.6 2.1 3.3 2.2 11.5 Q Q Q 1.4 6.9 2.8 18.8 Below Poverty Line 100 Percent ... 6.6 1.6 3.6 1.3 5.8 0.3 0.7...

  20. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  1. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  2. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  3. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  4. System and method for measuring residual stress

    DOE Patents [OSTI]

    Prime, Michael B.

    2002-01-01

    The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

  5. Upgrading petroleum residues and heavy oils

    SciTech Connect (OSTI)

    Gray, M.R.

    1994-01-01

    Here is an in-depth look at current techniques for converting heavy oils and residues into more valuable distillates. It examines the chemistry of heavy hydrocarbon feeds and their properties which are important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics.

  6. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the

  7. Residual Viremia in Treated HIV+ Individuals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  8. Residual Viremia in Treated HIV+ Individuals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore »activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  9. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J.; Kelly, Fredrick R.; Haas, Jeffrey S.; Andresen, Brian D.

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  10. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  11. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","5... "Back to Contents","Data 1: U.S. Residual Fuel Oil Refiner Sales Volumes" ...

  12. In-Situ Method for Treating Residual Sodium

    DOE Patents [OSTI]

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  13. In-situ method for treating residual sodium

    DOE Patents [OSTI]

    Sherman, Steven R. (Idaho Falls, ID); Henslee, S. Paul (Idaho Falls, ID)

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  14. Characterization of welding residual stresses with neutron diffraction

    SciTech Connect (OSTI)

    Wang, X.L.; Spooner, S.; Hubbard, C.R.; Taljat, B.; Feng, Z.

    1998-03-01

    Welding residual stresses are a key concern in the fabrication and use of structural components containing welds. Residual stresses in welds are caused by non-uniform expansion and shrinkage of differently heated zones during the thermal transient of a weld pass. In some alloys, solid state phase transformations occurring during the welding transient contribute additional residual stresses. Manufacturing problems arising from welding residual stresses include cracking and dimensional distortion. During use, tensile stresses in the welded zone limit the fatigue resistance of the component under cyclic loading. In an aggressive environment, tensile welding residual stresses also create a necessary condition for stress-corrosion cracking to take place.

  15. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  16. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  17. Thermal upgrading of residual oil to light product and heavy residual fuel

    SciTech Connect (OSTI)

    Yan, T.Y.; Shu, P.

    1986-08-05

    The method is described of upgrading residual oil boiling in the range of 1050/sup 0/F+ comprising: thermally cracking the residual oil at a temperature of 650/sup 0/-900/sup 0/F, a pressure of 0-100 psig, and a residence time of 0.1 to 5 hours at the highest severity in the range between about 1,000-18,000 seconds, as expressed in equivalent reaction time at 800/sup 0/F, sufficient to convert at least about 50 wt% of the residual oil to light products, substantially without the formation of solid coke; recovering separate fractions of light product and emulsifiable heavy bottom product which has a fusion temperature below about 150/sup 0/C and a quinoline-insoluble content between about 10 wt% and 30 wt% and wherein the highest severity is determined by a functional relationship between the asphaltene content of the residual oil feedstock and the heavy bottom product yield and quinoline-insoluble content.

  18. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  19. Minimal residual method stronger than polynomial preconditioning

    SciTech Connect (OSTI)

    Faber, V.; Joubert, W.; Knill, E.

    1994-12-31

    Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.

  20. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  1. Waste minimization for selected residuals in the petroleum refining industry

    SciTech Connect (OSTI)

    1996-12-01

    This technical report on residuals in the petroleum refining industry provides an industry overview, process description, and process flow diagrams. It presents residual descriptions for each of the 29 petroleum refining residuals of concern and what source reduction option exist. It reviews the data sources - RCRA Section 2007 surveys, site visits, and journal articles. It also describes major findings and evaluates the quantity and quality of waste minization information for each source.

  2. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  3. Differential Impact of [beta] and [gamma] Residue Preorganization...

    Office of Scientific and Technical Information (OSTI)

    Differential Impact of beta and gamma Residue Preorganization on alphabetagamma-Peptide Helix Stability in Water Citation Details In-Document Search Title: Differential ...

  4. Residual orientation in micro-injection molded parts

    SciTech Connect (OSTI)

    Healy, John; Edward, Graham H.; Knott, Robert B. (Monash); (ANSTO)

    2008-06-30

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  5. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect (OSTI)

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  6. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Type Ia Supernova Hubble Residuals and ... as distinguished from previous works that use magnitude corrections as a ...

  7. Simulation of Distortion and Residual Stress Development During...

    Office of Scientific and Technical Information (OSTI)

    Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel ... Available experimental steel casting heat treatment data was determined to be of ...

  8. Improvement of the management of residual waste in areas without...

    Office of Scientific and Technical Information (OSTI)

    management scenarios for residual waste were compared by life cycle assessment (LCA). ... On the contrary the quality of the recyclables extracted can significantly modify the eco ...

  9. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  10. Potential solubility controls for Iodine-129 in residual tank waste

    SciTech Connect (OSTI)

    Denham, M. E.

    2015-08-03

    This report documents a scoping analysis of possible controls on the release of 129I from tank 12H residual waste.

  11. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Advanced Logistical Systems and Focused Bioenergy Harvesting Technologies to Supply Crop Residues and Energy Crops in a Densified Large Square Bale Format OBP WBS: ...

  12. Overcoming residual stresses and machining distortion in the...

    Office of Scientific and Technical Information (OSTI)

    in the production of aluminum alloy satellite boxes. Citation Details In-Document Search Title: Overcoming residual stresses and machining distortion in the production of ...

  13. RESIDUAL STRESSES IN ADDITIVELY MANUFACTURED INCONEL 718 ENGINE...

    Office of Scientific and Technical Information (OSTI)

    Title: RESIDUAL STRESSES IN ADDITIVELY MANUFACTURED INCONEL 718 ENGINE MOUNT Authors: Watkins, Thomas R 1 ; Cornwell, Paris A 1 ; Dehoff, Ryan R 1 ; Nangia, Vinod 2 ; ...

  14. Status Report: Characterization of Weld Residual Stresses on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status Report: Characterization of Weld Residual Stresses on Full Diameter SNF Interim ... and results of initial stress (and stress corrosion cracking, SCC) characterization work. ...

  15. Comparison of residual stresses in Inconel 718 simple parts made...

    Office of Scientific and Technical Information (OSTI)

    SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Subject: Inconel 718; residual stess; electron beam melting; direct laser metal ...

  16. Residual Stresses for Structural Analysis and Fatigue Life Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual Stresses for Structural Analysis and Fatigue Life ...

  17. table1.4_02

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  18. table2.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  19. Level: National and Regional Data; Row: Values of Shipments and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... refineries (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  20. Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... fuel use comprises the remaining 14% of primary energy consumption. ... fuel is consumed onsite in order to generate additional electricity and steam for the manufacturing end uses. ...

  1. Food and Beverage Sector (NAICS 311 and 312) Combustion Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    ... Offsite electricity losses, which consume 607 TBtu, are the single greatest portion of electricity consumption. Offsite generated electricity provides 275 TBtu to direct end uses ...

  2. Level: National Data; Row: NAICS Codes; Column: Reasons that...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels(d Reason H, I, J, and K Don't Know Total United States 311 Food 850 549 ... Fuels(d Reason H, I, J, and K Don't Know Reasons that Made LPG Unswitchable ...

  3. Level: National Data; Row: NAICS Codes; Column: Reasons that...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels(d Reason H, I, J, and K Don't Know Total United States 311 Food 73,551 ... Fuels(d Reason H, I, J, and K Don't Know Reasons that Made Electricity ...

  4. Level: National Data; Row: NAICS Codes; Column: Reasons that...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels(d Reason H, I, J, and K Don't Know Total United States 311 Food 6,603 ... Fuels(d Reason H, I, J, and K Don't Know Reasons that Made Coal Unswitchable ...

  5. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Gasoline and Diesel Fuel Update (EIA)

    11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 ...

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet Corn Milling 47 W 39 W W 0 W W 0 0 31131 Sugar ...

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112 Grain and Oilseed Milling 445 90 322 0 49 13 3 28 0 7 311221 Wet Corn Milling 44 11 36 0 W 0 3 4 0 W ...

  8. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Subbituminous Coal Petroleum Electricity from Local ... Total United States 311 Food 9.22 161.2 0 1.93 1.82 1.95 0 10.4 ... 5.49 324110 Petroleum Refineries 8.15 0 0 3.11 0 3.11 0 ...

  9. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed ... * 0 0 0 0 0 324 Petroleum and Coal Products 7 1 5 * 2 * * 0 0 * 324110 Petroleum Refineries 7 1 4 * 2 * * 0 ...

  10. Level: National and Regional Data; Row: NAICS Codes; Column:...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling ... Support 0 0 0 324 Petroleum and Coal Products 3,849 757 3,092 324110 Petroleum Refineries 3,373 567 2,806 ...

  11. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed ... Q Q 0 * 324 Petroleum and Coal Products 20,015 19,665 0 349 324110 Petroleum Refineries 19,389 19,074 0 ...

  12. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed ... 0 0 0 0 0 0 324 Petroleum and Coal Products 4 1 3 * 1 * 0 * 0 * 324110 Petroleum Refineries 2 * 2 * * 0 0 * ...

  13. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 8 2 7 * 1 * * * * 3112 Grain and Oilseed ... 0 0 0 0 0 0 0 324 Petroleum and Coal Products 1 * * 0 * 0 0 0 0 324110 Petroleum Refineries * * * 0 * 0 0 0 0 ...

  14. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Distribution Losses 0 0 84 0 2 0 1 0 5 0 0 0 245 206 31 0 0 1 Conventional Boilers 3 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Electro-Chemical ...

  15. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Distribution Losses 0 0 88 0 0 0 0 0 2 0 0 0 197 140 48 0 0 0 Conventional Boilers 1 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Electro-Chemical ...

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    ... for which payment was made, quantities transferred in, quantities purchased and paid for by a central purchasing entity, and quantities for which payment was made in kind. ...

  17. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which payment was made, quantities transferred in, quantities purchased and paid for by a central purchasing entity, and quantities for which payment was made in kind. ...

  18. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... for which payment was made, quantities transferred in, quantities purchased and paid for by a central purchasing entity, and quantities for which payment was made in kind. ...

  19. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... It includes those quantities for which payment was made, quantities transferred in, ... Energy Sources(b) purchasing entity, and quantities for which payment was made in kind. ...

  20. Level: National and Regional Data; Row: NAICS Codes; Column...

    Gasoline and Diesel Fuel Update (EIA)

    ... for which payment was not made, quantities purchased centrally within the company but separate from the reporting establishment, and quantities for which payment was made ...

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... establishments that should probably be classified in other industries within 324. Their ... relatively much higher energy intensities of correctly classified petroleum refineries. ...

  2. Thermoacoustic method for relaxation of residual stresses in welded joints

    SciTech Connect (OSTI)

    Koshovyi, V.V.; Pakhn`o, M.I.; Tsykhan, O.I.

    1995-01-01

    We propose a thermoacoustic method for the relaxation of residual stresses in welded joints, present a block diagram of a generator of local thermoacoustic pulses designed for implementation of this method, and describe our experiment aimed at relaxation of residual tensile stresses.

  3. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  4. A manual for implementing residual radioactive material guidelines

    SciTech Connect (OSTI)

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  5. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0

  6. EERE Success Story-California: Agricultural Residues Produce...

    Broader source: Energy.gov (indexed) [DOE]

    California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-source...

  7. Improvement of coke quality by utilization of hydrogenation residue

    SciTech Connect (OSTI)

    Meckel, J.F. ); Wairegi, T. )

    1993-01-01

    Hydrogenation residue is the product left over when petroleum residue feedstocks (or coal) are treated by, e.g. the Veba Combi Cracking (VCC) process. Many tests in semitechnical and full-sized coke ovens were carried out with hydrogenation residue (HR) as an additive in coking coal blends for the production of blast furnace coke or foundry coke. The results of the investigations reported in this paper demonstrate that HR is a very promising alternative for enlarging the coking coal basis compared to other processes or the use of other additives. The application of HR on an industrial scale did not indicate any negative impact on the handling of the hydrogenation residue or on the operation of the coke oven battery.

  8. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not ...

  9. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  10. Method for residual stress relief and retained austenite destabilization

    DOE Patents [OSTI]

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  11. Residual stresses and stress corrosion cracking in pipe fittings

    SciTech Connect (OSTI)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

  12. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel

  13. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG

  14. Released: December 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Residual Fuel Oil to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total

  15. Released: July 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual"

  16. Released: June 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Percent of Establishments by Levels of Lowest Price Difference that Would Cause Fuel Switching from Residual Fuel Oil to a Less Expensive Substitute, 2006; Level: National Data; Row: NAICS Codes; Column: Levels of Lowest Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided

  17. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,"Coke" ,,,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze" "NAICS",,"Total","Fuel Oil","Fuel

  18. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG

  19. Hanford tank residual waste contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable

  20. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  1. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Sales to End Users 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0 1983-2016 Sales for Resale 9,292.6 9,338.0 9,180.7 8,984.8 9,875.7 8,936.2

  2. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect (OSTI)

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  3. Characterization of Residual Medium Peptides from Yersinia pestis Cultures

    SciTech Connect (OSTI)

    Clowers, Brian H.; Wunschel, David S.; Kreuzer, Helen W.; Engelmann, Heather E.; Valentine, Nancy B.; Wahl, Karen L.

    2013-04-03

    Using a range of common microbial medium formulations (TSB, BHI, LB, and G-media), two attenuated strains of Y. pestis (KIM D27 (pgm-) and KIMD1 lcr-) were cultivated in triplicate. These cellular suspensions were used to develop a method of extracting residual medium peptides from the final microbial preparation to assess their relative abundance and identity. Across the conditions examined, which included additional cellular washing and different forms of microbial inactivation, residual medium peptides were detected. Despite the range of growth medium sources used and the associated manufacturing processes used in their production, a high degree of peptide similarity was observed for a given medium recipe. These results demonstrate that residual medium peptides are retained using traditional microbial cultivation techniques and may be used to inform forensic investigations with respect to production deduction.

  4. Study on rheological characteristics of petroleum coke residual oil slurry

    SciTech Connect (OSTI)

    Shou Weiyi; Xu Xiaoming; Cao Xinyu

    1997-07-01

    We have embarked on a program to develop petroleum coke residual oil slurry (POS) as an alternative fuel for existing oil-fired boilers. The industrial application of petroleum coke residual oil slurry requires full knowledge of its flow behavior. This paper will present the results of an experimental investigation undertaken to study the Theological properties using a rotating viscometer at shear rate up to 996 s{sup -1}. The effects of temperature, concentration, particle size distribution and additives are also investigated. The experiments show that petroleum coke residual oil slurry exhibits pseudoplastic behavior, which has favorable viscosity property under a certain condition and has broad prospect to be applied on oil-fired boilers.

  5. Residual strain mapping of Roman styli from Iulia Concordia, Italy

    SciTech Connect (OSTI)

    Salvemini, Filomena; Grazzi, Francesco; Angelini, Ivana; Davydov, Vadim; Vontobel, Peter; Vigoni, Alberto; Artioli, Gilberto; Zoppi, Marco

    2014-05-01

    Iulia Concordia is an important Roman settlement known for the production of iron objects and weapons during the Roman Empire. A huge number of well-preserved styli were found in the past century in the bed of an old channel. In order to shed light about the production processes used by Roman for stylus manufacturing, a neutron diffraction residual strain analysis was performed on the POLDI materials science diffractometer at the Paul Scherrer Institut in Switzerland. Here, we present results from our investigation conducted on 11 samples, allowing to define, in a non-invasive way, the residual strain map related to the ancient Roman working techniques. - Highlights: • We examined 11 Roman styli from the settlement of Iulia Concordia, Italy. • We performed a neutron diffraction residual strain analysis on POLDI at PSI (CH). • We identified the production processes used by Roman for stylus manufacturing. • We clarified the way and direction of working applied for different classes of styli.

  6. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    SciTech Connect (OSTI)

    Garten, Lauren M. Trolier-McKinstry, Susan

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  7. Modeling of residual stresses by HY-100 weldments

    SciTech Connect (OSTI)

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  8. Evidence for residual elastic strain in deformed natural quartz

    SciTech Connect (OSTI)

    Kunz, Martin; Chen, Kai; Tamura,Nobumichi; Wenk, Hans-Rudolf

    2009-01-30

    Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron x-rays. The measurements with a resolution of one micrometer allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress in the order of {approx} 50 MPa.

  9. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  10. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  11. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  12. Residual stresses in weld overlay tubes: A finite element study

    SciTech Connect (OSTI)

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Feng, Z.; Jirinec, M.J.

    1997-01-03

    Residual stresses and strains in a tube with circumferential weld overlay were analyzed by the finite element (FE) method. The objective of this work was to develop and verify a FE model, to determine the magnitude and distribution of residual stresses in the weld overlay tube, and to evaluate the significance of two contributing factors to residual stress: (1) difference in material properties between tube and weld material, and (2) thermal gradients in the weld. An axisymmetric FE model was developed to simulate the circumferential two-layer welding process of alloy 625 overlay on SA210 tube. The first layer was modeled as a gas metal arc welding process with filler metal, whereas the autogenous gas tungsten arc welding process was modeled for the second layer. Neutron diffraction technique was used to experimentally determine residual elastic strains in the weld overlay tube. Comparison with the FE results shows overall good agreement. Both the experimental and FE results show high compressive stresses at the inside tube surface and high tensile stresses in the weld overlay. This suggests that weld overlay may be used to relieve tensile or produce compressive stresses at the inside tube surface, which is significant for applications where crack initiation is found at the root pass of the joining weld.

  13. Residual oil upgrading utilizing fixed bed hydroprocessing technology

    SciTech Connect (OSTI)

    Hohnholt, J.; Fausto, C.

    1985-01-01

    Saber Refinery embarked upon major residual oil upgrading project in an effort to convert heavy atmospheric resids into gasoline and other marketable products. Selection of resid hydroprocessing as an HOC feed preparation unit was necessary for removal of impurities which include organic metallic compounds, nitrogen and sulfur, while enhancing feedstock crackability.

  14. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect (OSTI)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  15. A residual stress study in similar and dissimilar welds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; Coules, Harry E.; Bunn, Jeffrey R; Achuthan, A.

    2016-04-01

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less

  16. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  17. Residual Oxygen on Nb Heated to 500 C

    SciTech Connect (OSTI)

    Kirby, R.; King, F.K.; Padamsee, H.; /Cornell U., LEPP

    2005-06-10

    The superconducting accelerating cavities for the International Linear Collider will be constructed of high-residual resistivity ratio (RRR) niobium sheet. Excessive oxygen within the skin depth (several microns) will reduce the RRR and increase resistive losses. We measure the thickness of this oxide layer, following bakeout simulation, to be about 0.5 nm thick. The results suggest that this layer will very slowly disappear from the top five nm at 500 C.

  18. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  19. Tensile residual stress fields produced in austenitic alloy weldments

    SciTech Connect (OSTI)

    Hornbach, D.J.; Prevey, P.S.

    1997-07-01

    Residual stresses developed by prior machining and welding may either accelerate or retard stress corrosion cracking (SCC), austenitic alloys, depending upon their magnitude and sign. A combined x-ray diffraction (XRD) and mechanical technique was used to determine the axial and hoop residual stress and yield strength distributions into the inside diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage was calculated from the line broadening distributions. Tension as high as +700 MPa was observed in both the axial and hoop directions at the inside diameter adjacent to the weld heat affected zone (HAZ). Stresses exceeding the bulk yield strength develop due to the combined effects of cold working of the surface layers during initial machining, and subsequent weld shrinkage. Cold working produced by prior machining was found to influence the final residual stress state developed by welding.

  20. Residual Stress Evaluation within a Crimped Splice Connector Assembly

    SciTech Connect (OSTI)

    Wang, Jy-An John; An, Ke; Lara-Curzio, Edgar; Hubbard, Camden R; King Jr, Thomas J; Graziano, Joe; Chan, John

    2006-01-01

    In power transmission, connectors play an important role in the efficiency and reliability of the system. Due to the increase of power demand and lack of new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than the original design criteria. However, this had led to the accelerated aging and degradation of splice connectors, which has been manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection of transmission lines operating at elevated temperatures. The implications of connector aging is two-fold: (1) significant increase in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reduction in the connector clamping strength, which ultimately results in separation of the power transmission line at the joint. Therefore, the splice connector has become the weakest link in the electric power transmission infrastructure. The compressive residual stresses induced by the crimping process within the splice provide the clamping forces to secure the conductor and therefore, the determination of the state of residual stresses in splice connectors is a necessary requirement to provide an accurate estimate of their service lifetime. This paper presents a protocol of utilizing finite-element analysis and neutron scattering experiments for evaluating the residual stress fields within a crimped single-stage splice connector assembly.

  1. Fate of asphaltenes during hydroprocessing of heavy petroleum residues

    SciTech Connect (OSTI)

    Stanislaus, A.; Absi-Halabi, M.; Khan, Z.

    1994-12-31

    Formation of coke like sediments or particulates is a serious problem in the hydroprocessing of heavy residues for high conversion. The sediments can cause both operability problems and rapid catalyst deactivation. The macromolecules of the heavy feedstocks such as asphaltenes are believed to contribute significantly to sediment formation and coke deposition. As part of an extensive research program on the factors which influence sludge or solids formation during residue hydroprocessing, the authors have examined the nature of changes that take place in the characteristics of the asphaltenic fraction of Kuwait vacuum residue under different operating conditions. The studies revealed that sediment formation is the result of reduction in solubilization efficiency of asphaltenes in the product medium compared with feedstock. Molecular size distribution of the product asphaltenes showed that operating at high temperatures enhanced depolymerization and fragmentation of asphaltenes to low molecular weight materials. A portion of the low molecular weight asphaltene fragments with relatively low H/C ratio resisted further cracking even at high temperatures and led to the formation of coke like sediments. Large pore catalysts were observed to reduce the problem of sediments formation. The role of catalyst pore size on asphaltenes conversion is discussed.

  2. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    SciTech Connect (OSTI)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  3. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  4. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  5. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of ...

  6. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries Transportation Total (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Military ...

  7. Residuals in steel products -- Impacts on properties and measures to minimize them

    SciTech Connect (OSTI)

    Emi, Toshihiko; Wijk, O.

    1996-12-31

    The effect of major residual elements on the properties of steel products is summarized. Measures to minimize these elements are discussed including the pretreatment of raw materials, innovative refining processes and environmental issues. This paper addresses (1) scrap situation, (2) upper limit of residual concentrations acceptable for processing and product quality, (3) possible means to reduce the residuals, and (4) consideration on the practicable measures to solve the residuals problem in a systematic way. 52 refs.

  8. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect (OSTI)

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  9. The value of post-extracted algae residue

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry; Gogichaishvili, Ilia; Anderson, David; Richardson, James; Sawyer, Jason; Wickersham, Tryon; Drewery, Merritt

    2012-07-26

    This paper develops a hedonic pricing model for post-extracted algae residue (PEAR), which can be used for assessing the economic feasibility of an algal production enterprise. Prices and nutritional characteristics of commonly employed livestock feed ingredients are used to estimate the value of PEAR based on its composition. We find that PEAR would have a value lower than that of soybean meal in recent years. The value of PEAR will vary substantially based on its characteristics. PEAR could have generated algal fuel co-product credits that in recent years would have ranged between $0.95 and $2.43 per gallon of fuel produced.

  10. System Study: Residual Heat Removal 1998–2013

    SciTech Connect (OSTI)

    Schroeder, John Alton

    2015-02-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RHR results.

  11. Definite Integrals, Some Involving Residue Theory Evaluated by Maple Code

    SciTech Connect (OSTI)

    Bowman, Kimiko o [ORNL

    2010-01-01

    The calculus of residue is applied to evaluate certain integrals in the range (-{infinity} to {infinity}) using the Maple symbolic code. These integrals are of the form {integral}{sub -{infinity}}{sup {infinity}} cos(x)/[(x{sup 2} + a{sup 2})(x{sup 2} + b{sup 2}) (x{sup 2} + c{sup 2})]dx and similar extensions. The Maple code is also applied to expressions in maximum likelihood estimator moments when sampling from the negative binomial distribution. In general the Maple code approach to the integrals gives correct answers to specified decimal places, but the symbolic result may be extremely long and complex.

  12. Integrating the Clearance in NPP Residual Material Management

    SciTech Connect (OSTI)

    Garcia-Bermejo, R.; Lamela, B.

    2008-01-15

    Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could

  13. "RSE Table C10.1. Relative Standard Errors for Table C10.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    Know" ,,"Total United States" , 311,"Food",3,1,4,2,1,2... 324110," Petroleum Refineries",15,10,36,15,25,44,15,3... Know" ,,"Total United States" , ...

  14. "RSE Table N5.1. Relative Standard Errors for Table N5.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ","FurnaceCoke"," ","Petroleum","or","Wood ... ,,"Total United States" , 311,"Food",2,0,1,0,0,0... 324110," Petroleum Refineries",4,0,3,6,0,0,24 ...

  15. "RSE Table N7.1. Relative Standard Errors for Table N7.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shipments" ,,"Total United States" , 311,"Food",1,1,1 311221," ... Printing",4,5,4 324,"Petroleum and Coal Products",4,3,3 324110," Petroleum Refineries",3,3,3 ...

  16. "RSE Table C2.1. Relative Standard Errors for Table C2.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" , 311,"Food",4,0,3,0,1,0... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  17. "RSE Table E2.1. Relative Standard Errors for Table E2.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    by petroleum" "refineries (e.g., crude oil ... ,"Total United States" "Value of Shipments and ... Examples of Liquefied Petroleum Gases '(LPG)' are ...

  18. "RSE Table N11.2. Relative Standard Errors for Table N11.2;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... by" "petroleum refineries, rather than purchased ... ,,"Total United States" , 311,"Food",1,1,3,3,1,1... 324,"Petroleum and Coal ...

  19. "RSE Table C12.1. Relative Standard Errors for Table C12.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" , 311,"Food",2,0,2,1,1 ... 324110," Petroleum Refineries",4,0,15,5,12 ... Establishment" ,,"Total United States" , ...

  20. "RSE Table C4.1. Relative Standard Errors for Table C4.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" , 311,"Food",0,0,3,4,1,3... 324,"Petroleum and Coal ... "produced at refineries or natural gas ...

  1. RSE Table 1.1 Relative Standard Errors for Table 1.1

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10,0 311221," Wet Corn ...

  2. RSE Table 1.2 Relative Standard Errors for Table 1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10,0 311221," Wet Corn ...

  3. RSE Table 4.2 Relative Standard Errors for Table 4.2

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  4. RSE Table 7.10 Relative Standard Errors for Table 7.10

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",1,1,0,3,0,4,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  5. RSE Table 7.7 Relative Standard Errors for Table 7.7

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",0,0,0,3,0,3,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  6. RSE Table 7.3 Relative Standard Errors for Table 7.3

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",0,0,0,3,0,3,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  7. RSE Table 3.1 Relative Standard Errors for Table 3.1

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",1,2,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  8. RSE Table 3.2 Relative Standard Errors for Table 3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",1,2,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  9. RSE Table 4.1 Relative Standard Errors for Table 4.1

    U.S. Energy Information Administration (EIA) Indexed Site

    Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ... Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and ...

  10. "RSE Table C10.3. Relative Standard Errors for Table C10.3;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," Membrane Hyperfiltration to Separate Water from Food Products",4,1,3 311221," Wet ... ," Membrane Hyperfiltration to Separate Water from Food Products",0,0,0 312,"BEVERAGE ...

  11. "RSE Table C3.1. Relative Standard Errors for Table C3.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... and Office of Oil and Gas, Petroleum" "Supply Division, Form EIA-810, 'Monthly Refinery Report' for 1998." ... and",,"Coke"," " "Code(a)","Subsector and ...

  12. "RSE Table E13.1. Relative Standard Errors for Table E13.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  13. "RSE Table N11.3. Relative Standard Errors for Table N11.3;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  14. "RSE Table C11.3. Relative Standard Errors for Table C11.3;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  15. "RSE Table N11.1. Relative Standard Errors for Table N11.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... office offsite, and quantities for which payment" "is made in-kind." " Source: Energy ... by a central purchasing office offsite, and quantities for which payment" "is made in-kind

  16. "RSE Table N11.4. Relative Standard Errors for Table N11.4;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  17. "RSE Table N8.3. Relative Standard Errors for Table N8.3;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  18. "RSE Table N13.1. Relative Standard Errors for Table N13.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  19. "RSE Table C9.1. Relative Standard Errors for Table C9.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," U.S. Environmental Protection Agency's Energy Star Program",1,10,0,0,0,0 ," U.S. Environmental Protection Agency's Green Lights Program",1,9,0,0,0,0 ," U.S. Department of ...

  20. Estimation of uncertainty for contour method residual stress measurements

    SciTech Connect (OSTI)

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 76 mm, the estimated uncertainty was approximately 5 MPa (?/E = 7 10??) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (?/E = 14 10??).

  1. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect (OSTI)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  2. Estimation of uncertainty for contour method residual stress measurements

    SciTech Connect (OSTI)

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).

  3. Estimation of uncertainty for contour method residual stress measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  4. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y.

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  5. Comparison of unimodal versus bimodal pore catalysts in residues hydrotreating

    SciTech Connect (OSTI)

    Absi-Halabi, M.; Stanislaus, A.; Al-Zaid, H.

    1994-12-31

    Catalyst pore structure is a critical factor influencing the performance of residues hydroprocessing catalysts. The effect is reflected in both hydrodesulfurization activity of the catalyst and its rate of deactivation. In this paper, the pore size distributions of two categories of catalysts, unimodal and bimodal, were systematically varied. Performance evaluation tests in a fixed bed reactor using vacuum residues under conditions comparable to typical refinery operations were conducted. Two series of unimodal and bimodal catalyst extrudates were prepared starting from boehmite gel, whereby the pore structure was systematically varied using hydrothermal treatment and organic additives. For the unimodal catalysts, the pore maxima ranged between 50 and 500 {angstrom} with 70--80% of the pore volume in the desired pore diameter range. The bimodal catalysts had narrow pores with pore diameters less than 100 {angstrom} and wide pres with pore diameter around 5,000 {angstrom}. For bimodal catalyst, an increase in the average wide pore diameter, while maintaining the narrow pore constant, had no significant effect on the catalyst performance. For monomodal catalyst, the activity of the catalyst was noted to have an optimum between 150--350 {angstrom} diameter. Furthermore, the performance of the catalyst concerning its desulfurization activity and deactivation was superior to that of the bimodal catalysts.

  6. Quarry residuals RI/FS scoping document. [Weldon Spring quarry

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The purpose of this document is to serve as a planning tool for the implementation of the Quarry Residual Remedial Investigation/Feasibility Study (RI/FS) process and to provide direct input to revising and updating the 1988 Work Plan for the Weldon Spring Site Remedial Action Project (WSSRAP) Remedial Investigation/Feasibility Study-Environmental Impact Statement for the Weldon Spring Site (RI/FS-EIS) (Peterson et al. 1988) for this effort. The scoping process is intended to outline the tasks necessary to develop and implement activities in compliance with the Comprehensive Environmental Response, Compensation and Liability Act-National Environmental Policy Act (CERCLA-NEPA) process from detailed planning through the appropriate decision document. In addition to scoping the entire process, this document will serve as the primary tool for planning and accomplishing all activities to be developed in the Quarry Residual RI/FS Work Plan. Subsequent tasks are difficult to plan at this time. 10 refs., 5 figs., 5 tabs.

  7. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  8. State-of-the-art report summarizing techniques to determine residual oil saturation and recommendations on the requirements for residual oil saturation research and development

    SciTech Connect (OSTI)

    Chang, M.M.; Maerefat, N.L.

    1986-05-01

    An investigation was conducted on the residual oil saturation (ROS) measurement techniques developed during the last fifteen years. Knowledge of precise ROS measurements is required for EOR project planning. The advantages, limitations, and problems of each one of the techniques are presented in tabulated form. Also, some of the possible improvements in the measurement techniques for the residual oil saturation are summarized. The following residual oil saturation techniques are discussed: core analyses, well logging, backflow tracer tests, material balance and well testing, newly developed gravity log methods, and interwell residual oil saturation measurements. Several aspects left to be improved in both instrumentations and data interpretation on pressure coring, back-flow tracer tests, well logging, material balance calculations, well testing, and interwell ROS measurements are presented. A nuclear magnetism log-inject-log method is proposed in which the need for porosity measurement for determining residual oil saturation is eliminated. 91 refs., 3 tabs.

  9. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect (OSTI)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  10. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.

    2014-11-15

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  11. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  12. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  13. System Study: Residual Heat Removal 1998-2014

    SciTech Connect (OSTI)

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  14. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  15. Program for Numerical Simulation of Beam Losses due to Interaction with Residual Gas

    SciTech Connect (OSTI)

    Karamysheva, G.; Skripka, G.

    2010-01-05

    Program for estimation of the beam losses of light ions due to interaction with the residual gas has been written. The loss of beam intensity is determined by the cross sections for loss processes respecting different ion energies and depends on the pressure of the residual gas. The beam losses due to interaction with the residual gas by the example of C400 cyclotron (IBA, Belgium) were done.

  16. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Citation Details In-Document Search Title: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized

  17. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  18. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  19. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  20. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  1. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect (OSTI)

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a

  2. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect (OSTI)

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-03-15

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity

  3. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  4. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  5. Vitrified magnesia dissolution and its impact on plutonium residue processing

    SciTech Connect (OSTI)

    Keith W. Fife; Jennifer L. Alwin; Coleman A. Smith; Michael D. Mayne; David A. Rockstraw

    2000-03-01

    Aqueous chloride operations at the Los Alamos Plutonium Facility cannot directly dispose of acidic waste solutions because of compatibility problems with existing disposal lines. Consequently, all hydrochloric acid must be neutralized and filtered prior to exiting the facility. From a waste minimization standpoint, the use of spent magnesia pyrochemical crucibles as the acid neutralization agent is attractive since this process would take a stream destined for transuranic waste and use it as a reagent in routine plutonium residue processing. Since Los Alamos National Laboratory has several years of experience using magnesium hydroxide as a neutralizing agent for waste acid from plutonium processing activities, the use of spent magnesia pyrochemical crucibles appeared to be an attractive extension of this activity. In order to be competitive with magnesium hydroxide, however, size reduction of crucible shards had to be performed effectively within the constraints of glovebox operations, and acid neutralization time using crucible shards had to be comparable to neutralization times observed when using reagent-grade magnesium hydroxide. The study utilized non-plutonium-contaminated crucibles for equipment evaluation and selection and used nonradioactive acid solutions for completing the neutralization experiments. This paper discusses experience in defining appropriate size reduction equipment and presents results from using the magnesia crucibles for hydrochloric acid neutralization, a logical precursor to introduction into glovebox enclosures.

  6. Hidden values in bauxite residue (red mud): Recovery of metals

    SciTech Connect (OSTI)

    Liu, Yanju; Naidu, Ravi

    2014-12-15

    Highlights: • Current iron recovery techniques using red mud are depicted. • Advantages and disadvantages exist in different recovering processes. • Economic and environmental friendly integrated usage of red mud is promising. - Abstract: Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud.

  7. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect (OSTI)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  8. Rare earth patterns in shergottite phosphates and residues

    SciTech Connect (OSTI)

    Laul, J.C.

    1987-03-30

    Leaching experiments with 1M HCl on ALHA 77005 power show that rare earth elements (REE) are concentrated in accessory phosphate phases (whitlockite, apatite) that govern the REE patterns of bulk shergottites. The REE patterns of whitlockite are typically light REE depleted with a negative Eu anomaly and show a hump at the heavy REE side, while the REE pattern of apatite (in Shergotty) is light REE enriched. Parent magmas are calculated from the model compositions of residues of ALHA 77005, Shergotty, and EETA 79001. The parent magmas lack a Eu anomaly, indicating that plagioclase was a late-stage crystallizing phase and it probably crystallized before the phosphates. The parent magmas of ALHA 77005 and Shergotty have similar REE patterns with a subchondritic Nd/Sm ratio. However, the Sm/Nd isotopics require a light REE depleted source for ALHA 77005 (if the crystallization age is <600 m.y.) and a light REE enriched source for Shergotty. Distinct Nd and Sr isotopic signatures may suggest different source regions for shergottites. copyright American Geophysical Union 1987

  9. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Beasley, G.A.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Validation Specimen for Contour Method Extension to Multiple Residual Stress Components

    SciTech Connect (OSTI)

    Pagliaro, Pierluigi; Prime, Michael B; Zuccarello, B; Clausen, Bjorn; Watkins, Thomas R

    2007-01-01

    A new theoretical development of the contour method, that allow the user to measure the three normal residual stress components on cross sections of a generic mechanical part, is presented. To validate such a theoretical development, a residual stress test specimen was properly designed, fabricated and then tested with different experimental techniques.

  11. A process for treatment of APC residues from municipal solid waste incinerators: Preliminary results

    SciTech Connect (OSTI)

    Hjelmar, O.; Birch, H.

    1997-12-01

    The problem of environmentally safe management of the residues from air pollution control (APC) systems at municipal solid waste (MSW) incinerators, particularly the residues from the semidry/dry acid gas cleaning processes (dry scrubber residues), has not yet been solved in a satisfactory and sustainable manner. These residues are in many cases simply stored indefinitely in big bags or they are landfilled under conditions that in the long term may not be able to prevent potentially harmful constituents from leaching and leaking into the environment. The APC residues, including fly ash, are in many countries classified as hazardous or special waste due to their high contents of soluble salts (particularly calcium chloride) and trace elements/heavy metals. The semidry/dry APC residues are strongly alkaline due to a content of excess lime, and the high pH favours the leaching of several contaminants, particularly lead. This paper presents preliminary results of a study of a process for treatment of semidry/dry APC residues and fly ash from MSW incinerators. In the process the contaminants are partly removed, partly immobilized thus improving the above mentioned situation and allowing for subsequent safe management (i.e. utilization or landfilling) of the treated residues.

  12. Neutron diffraction measurements of residual stresses in friction stir welding: a review

    SciTech Connect (OSTI)

    Woo, Wan Chuck [ORNL; Feng, Zhili [ORNL; Wang, Xun-Li [ORNL; David, Stan A [ORNL

    2011-01-01

    Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

  13. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-30

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

  14. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect (OSTI)

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  15. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  16. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  17. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect (OSTI)

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  18. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect (OSTI)

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  19. Evidence of the Participation of Remote Residues in the Catalytic Activity of Co-Type Nitrile Hydratase from Pseudomonas putida

    SciTech Connect (OSTI)

    Brodkin, Heather R.; Novak, Walter R.P.; Milne, Amy C.; D’Aquino, J. Alejandro; Karabacak, N.M.; Goldberg, Ilana G.; Agar, Jeffrey N.; Payne, Mark S.; Petsko, Gregory A.; Ondrechen, Mary Jo; Ringe, Dagmar

    2011-09-28

    Active sites may be regarded as layers of residues, whereby the residues that interact directly with substrate also interact with residues in a second shell and these in turn interact with residues in a third shell. These residues in the second and third layers may have distinct roles in maintaining the essential chemical properties of the first-shell catalytic residues, particularly their spatial arrangement relative to the substrate binding pocket, and their electrostatic and dynamic properties. The extent to which these remote residues participate in catalysis and precisely how they affect first-shell residues remains unexplored. To improve our understanding of the roles of second- and third-shell residues in catalysis, we used THEMATICS to identify residues in the second and third shells of the Co-type nitrile hydratase from Pseudomonas putida (ppNHase) that may be important for catalysis. Five of these predicted residues, and three additional, conserved residues that were not predicted, have been conservatively mutated, and their effects have been studied both kinetically and structurally. The eight residues have no direct contact with the active site metal ion or bound substrate. These results demonstrate that three of the predicted second-shell residues ({alpha}-Asp164, {beta}-Glu56, and {beta}-His147) and one predicted third-shell residue ({beta}-His71) have significant effects on the catalytic efficiency of the enzyme. One of the predicted residues ({alpha}-Glu168) and the three residues not predicted ({alpha}-Arg170, {alpha}-Tyr171, and {beta}-Tyr215) do not have any significant effects on the catalytic efficiency of the enzyme.

  20. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  1. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  2. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect (OSTI)

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  3. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  4. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect (OSTI)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  5. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    SciTech Connect (OSTI)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  6. Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  7. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  8. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  9. Table 7.9 Expenditures for Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107

  10. Table B-1: Analytical Results Statistical Mean Upper Confidence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  11. Table 3. Annual commercial spent fuel discharges and burnup

    Gasoline and Diesel Fuel Update (EIA)

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  12. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,186 251 26 16 638 3 147 1 105 * 3112 Grain and Oilseed Milling 318 53 2 1 120

  13. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  14. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable

  15. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  16. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,186 251 26 16 635 3 147 1 107 3112 Grain and Oilseed Milling 317 53 2 1 118 * 114 0 30 311221 Wet Corn Milling 179 23 * * 52 * 95 0 9 31131 Sugar Manufacturing 82 3 9 1 18 * 31 1 20

  17. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  18. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Total United States 311 Food 1,124 251 26 16 635 3 147 1 3112 Grain and Oilseed Milling 316 53 2 1 118 * 114 0 311221 Wet Corn Milling 179 23 * * 52 * 95 0 31131 Sugar Manufacturing 67 3 9 1 18 * 31 1 3114 Fruit

  19. Released: June 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG

  20. Released: May 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG

  1. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  2. Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  3. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    SciTech Connect (OSTI)

    Iman, R.L.; Anderson, D.J.; Burress, R.V.

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  4. Disposal of tritium residues at the Los Alamos National Laboratory. Audit repost

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The objective of this audit was to determine whether Los Alamos disposed of wastewater containing tritium residues in a safe and cost-effective manner subsequent to an October 1991 report reviewing tritium facility management practices.

  5. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  6. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  7. Residual and applied stress analysis of an alloy 600 row 1 U-bend: Final report

    SciTech Connect (OSTI)

    Ruud, C.O.

    1987-09-01

    Residual stresses in Inconel alloy 600, row 1, U-bend tubes, used in heat exchanges in nuclear reactors, were studied using an advanced x-ray diffraction instrument. Both axial and circumferential (hoop) stresses on the extrados, intrados, and flanks on the O.D. surface of several U-bends were mapped. The I.D. surface residual stresses at the extrados of the U-bend were mapped on one tube and subsurface stress measurements were made on the I.D. and O.D. surfaces of that tube. Service loads were simulated on one tube to ascertain combined effect of residual and applied stresses. Data from wall thickness and profilometry measurements were also correlated with residual stress measurements. 21 refs., 42 figs.

  8. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  9. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  10. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involvedmore » in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.« less

  11. Determination of nonuniform residual stress using the ring-core method

    SciTech Connect (OSTI)

    Ajovalasit, A.; Petrucci, G.; Zuccarello, B.

    1996-04-01

    This paper considers residual stress analysis using the ring-core method. In particular, the so-called integral equation method is applied to evaluate nonuniform residual stress fields. The proposed method overcomes typical drawbacks of the incremental strain method which lead to incorrect results for strongly varying stress fields. The experimental results obtained with a specimen subjected to a bending load confirm the theoretical predictions.

  12. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  13. Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples

    SciTech Connect (OSTI)

    Stroud, Mary Ann; Prime, Michael Bruce; Veirs, Douglas Kirk; Berg, John M.; Clausen, Bjorn; Worl, Laura Ann; DeWald, Adrian T.

    2015-12-08

    This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.

  14. Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key industrial enzyme, the Trichoderma reesei Family 6 cellulase (Cel6A), predict that aromatic residues near the enzyme's active site and at the entrance and exit tunnel perform different functions in substrate binding and catalysis, depending on their location in the enzyme. These results suggest that nature employs aromatic-carbohydrate interactions with a wide variety of binding affinities for diverse functions. Outcomes also suggest that protein engineering strategies in which mutations are made around the binding sites may require tailoring specific to the enzyme family. Cellulase enzymes ubiquitously exhibit tunnels or clefts lined with aromatic residues for processing carbohydrate polymers to monomers, but the molecular-level role of these aromatic residues remains unknown. In silico mutation of the aromatic residues near the catalytic site of Cel6A has little impact on the binding affinity, but simulation suggests that these residues play a major role in the glucopyranose ring distortion necessary for cleaving glycosidic bonds to produce fermentable sugars. Removal of aromatic residues at the entrance and exit of the cellulase tunnel, however, dramatically impacts the binding affinity. This suggests that these residues play a role in acquiring cellulose chains from the cellulose crystal and stabilizing the reaction product, respectively. These results illustrate that the role of aromatic-carbohydrate interactions varies dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, the results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for

  15. U.S. Department of Energy Guidelines for Residual Radioactive Material at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites | Department of Energy U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department

  16. Removal of aqueous rinsable flux residues in a batch spray dishwater

    SciTech Connect (OSTI)

    Slanina, J.T.

    1992-02-01

    An alkaline detergent solution used in an industrial dishwasher was evaluated to remove aqueous rinsable flux residues on printed wiring boards (PWBs) after hot air solder leveling and hot oil solder dip and leveling. The dishwasher, a batch cleaning process, was compared to an existing conveyorized aqueous cleaning process. The aqueous soluble flux residues from both soldering processes were removed with a solution of a mild alkaline detergent dissolved in hot deionized (DI) water.

  17. Field kit and method for testing for the presence of gunshot residue

    DOE Patents [OSTI]

    Rodacy, Philip J.; Walker, Pamela K.

    2003-09-02

    A field test kit for gunshot residue comprises a container having at least compartments separated by a barrier. A surface is tested by wiping it with a swab and placing the swab in a first compartment. The barrier is then breached, permitting reagent in the second compartment to flow onto the swab. The first compartment is transparent, and a color change will be observed if the reagent reacts with gunshot residue.

  18. Numerical analysis of residual stress distribution in tubes with spiral weld cladding

    SciTech Connect (OSTI)

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Swindeman, R.W.; Feng, Z.; Jirinec, M.J.

    1998-08-01

    Residual stresses and strains in a tube with spiral weld cladding were analyzed by the finite element (FE) method. The objective of this work was to determine the residual stress-strain state in the weld clad tube and verify the developed FE model, which might serve for future parametric sensitivity studies of various welding parameters on residual stresses in such tubes. An axisymmetric FE model was developed to simulate the circumferential weld cladding process of Alloy 625 on SA210 carbon steel tube and to analyze the residual stress-strain state. The analysis was uncoupled in that the thermal and mechanical analyses were conducted in two separate runs. The results show high tensile residual stresses in the weld cladding and at the interface with a gradual transition to compressive stresses at the inner tube surface. A neutron diffraction technique was used to experimentally determine residual elastic strains in the clad tube. Comparison with the FE results shows good overall agreement. The agreement is excellent in radial and axial elastic strain components, whereas the calculated tangential elastic strain overpredicted the measured value. The difference is discussed, and certain conclusions are given. Finally, some attempts on how to prevent or relieve high tensile stresses in the weld cladding are presented and discussed in this paper.

  19. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  20. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui; Buck, Edgar C.

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  1. Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater

    SciTech Connect (OSTI)

    Dilmore, R.M.; Lu, Peng; Allen, D.E.; Soong, Yee; Hedges, S.W.; Fu, J.K.; Dobbs, C.L.; DeGalbo, A.D.; Zhu, Chen

    2008-01-01

    Experiments were conducted to explore the concept of beneficially utilizing mixtures of caustic bauxite residue slurry (pH 13) and produced oil-field brine to sequester carbon dioxide from flue gas generated from industrial point sources. Data presented herein provide a preliminary assessment of the overall feasibility of this treatment concept. The Carbonation capacity of bauxite residue/brine mixtures was considered over the full range of reactant mixture combinations in 10% increments by volume. A bauxite residue/brine mixture of 90/10 by volume exhibited a CO2 sequestration capacity of greater than 9.5 g/L when exposed to pure CO2 at 20 °C and 0.689 MPa (100 psig). Dawsonite and calcite formation were predicted to be the dominant products of bauxite/brine mixture carbonation. It is demonstrated that CO2 sequestration is augmented by adding bauxite residue as a caustic agent to acidic brine solutions and that trapping is accomplished through both mineralization and solubilization. The product mixture solution was, in nearly all mixtures, neutralized following carbonation. However, in samples (bauxite residue/brine mixture of 90/10 by volume) containing bauxite residue solids, the pH was observed to gradually increase to as high as 9.7 after aging for 33 days, suggesting that the CO2 sequestration capacity of the samples increases with aging. Our geochemical models generally predicted the experimental results of carbon sequestration capacities and solution pH.

  2. All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.

    SciTech Connect (OSTI)

    Duranceau, C. M.; Spangenberger, J. S.

    2011-09-26

    A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing

  3. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect (OSTI)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and

  4. table1.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE Economic Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.8 0.9 1.4 2.7 0.8 0.6 2 1.4 1.1

  5. table2.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Breeze Other(e) Factors Total United States RSE Column Factors: 1 0.4 6.4 0.6 0.5 1.1 1.7 0.8 Value of Shipments and Receipts (million dollars) Under 20 94 * 6 19 W W W W 9 20-49 135 19 3 8 W W

  6. table7.4_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate Natural LPG and RSE Economic Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Row Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts

  7. Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Offsite electricity losses account for 58% of electricity generation energy consumption (731 TBtu). Offsite generated electricity provides 326 TBtu to direct end uses (excludes ...

  8. "NAICS",,"per Employee","of Value Added","of Shipments"

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 ... 324,"Petroleum and Coal Products",5.2,1.6,0.9 324110," Petroleum Refineries",0,0,0 324199," ...

  9. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    Energy Performance | Department of Energy At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy's Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program. Manufacturers joining the Accelerator include the 3M Company, Cummins Inc., General Dynamics OTS, Nissan, Schneider Electric, and Volvo Group North America. Utilities joining the program include the Bonneville

  10. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    5 Nonprocess Losses 603 134 Steam Distribution Losses 3 7 Nonprocess Energy 118 Electricity Generation Steam Generation 603 3 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 16 250 152 Generation and Transmission Losses Generation and Transmission Losses 1 329 Onsite Generation 265 255 18 273 481 4 13 0.3 29.0 29.3 1.0 1.0 5.0 33.0 1.6 36 6.3 35.6 0.3 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  11. Manufacturing Energy and Carbon Footprint - Sector: Cement (NAICS 327310), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    0 Nonprocess Losses 471 154 Steam Distribution Losses 4 5 Nonprocess Energy 341 Electricity Generation Steam Generation 471 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 14 353 41 Generation and Transmission Losses Generation and Transmission Losses 0 89 Onsite Generation 367 345 37 382 130 0 26 0.0 7.8 7.8 3.4 3.4 27.2 34.1 1.1 39 30.8 38.6 0.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source: 2006

  12. Manufacturing Energy and Carbon Footprint - Sector: Chemicals (NAICS 325), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    461 Nonprocess Losses 4,513 813 Steam Distribution Losses 282 89 Nonprocess Energy 2,138 Electricity Generation Steam Generation 4,513 540 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 253 2,198 517 Generation and Transmission Losses Generation and Transmission Losses 201 1,118 Onsite Generation 2,452 1,690 1,505 3,195 1,635 740 1,044 46.9 98.7 145.6 95.6 93.3 34.0 159.4 19.8 275 129.2 274.8 1.9 Fuel Total Energy Total Primary Energy Use: Total Combustion

  13. Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    9 Nonprocess Losses 708 127 Steam Distribution Losses 8 38 Nonprocess Energy 248 Electricity Generation Steam Generation 708 6 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 88 293 143 Generation and Transmission Losses Generation and Transmission Losses 2 309 Onsite Generation 381 356 41 397 452 8 33 0.5 27.3 27.8 2.4 2.2 8.8 30.3 8.4 41 13.3 41.1 2.3 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  14. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    34 Nonprocess Losses 1,934 524 Steam Distribution Losses 111 63 Nonprocess Energy 928 Electricity Generation Steam Generation 1,934 86 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 166 884 281 Generation and Transmission Losses Generation and Transmission Losses 32 607 Onsite Generation 1,051 677 618 1,295 888 118 485 7.5 53.7 61.1 39.7 38.5 14.7 63.2 14.3 117 56.1 117.2 2.9 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e

  15. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    04 Nonprocess Losses 3,559 1,079 Steam Distribution Losses 300 94 Nonprocess Energy 2,381 Electricity Generation Steam Generation 3,559 80 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 256 1,738 338 Generation and Transmission Losses Generation and Transmission Losses 30 731 Onsite Generation 1,994 717 2,082 2,799 1,069 110 1,581 7.0 64.6 71.5 52.1 49.8 15.4 76.5 11.3 140 68.4 139.9 3.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu

  16. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    281 65 Steam Distribution Losses 1 11 Nonprocess Energy 101 Electricity Generation Steam Generation 281 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 26 130 57 Generation and Transmission Losses Generation and Transmission Losses 0 123 Onsite Generation 157 154 4 158 180 0 3 0.0 10.9 10.9 0.2 0.2 4.1 13.3 2.6 16 5.2 16.1 0.9 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source: 2006 MECS (with

  17. Manufacturing Energy and Carbon Footprint - Sector: Machinery (NAICS 333), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    6 Nonprocess Losses 444 51 Steam Distribution Losses 4 39 Nonprocess Energy 92 Electricity Generation Steam Generation 444 1 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 91 103 111 Generation and Transmission Losses Generation and Transmission Losses 0 240 Onsite Generation 194 178 26 204 351 1 20 0.1 21.2 21.3 1.6 1.4 1.6 13.8 10.9 26 5.1 26.3 2.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data source:

  18. Manufacturing Energy and Carbon Footprint - Sector: Petroleum Refining (NAICS 324110), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    45 Nonprocess Losses 3,546 641 Steam Distribution Losses 145 20 Nonprocess Energy 2,994 Electricity Generation Steam Generation 3,546 110 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 62 2,779 127 Generation and Transmission Losses Generation and Transmission Losses 41 275 Onsite Generation 2,840 2,304 927 3,231 402 151 682 9.6 24.3 33.8 64.7 64.3 144.5 176.0 3.0 244 209.8 243.6 1.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT

  19. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    21 Nonprocess Losses 472 107 Steam Distribution Losses 17 23 Nonprocess Energy 162 Electricity Generation Steam Generation 472 9 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 52 175 94 Generation and Transmission Losses Generation and Transmission Losses 3 203 Onsite Generation 227 167 98 265 297 12 77 0.8 18.0 18.7 6.7 6.5 2.9 16.8 5.2 29 10.0 28.7 0.7 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data

  20. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    4 Nonprocess Losses 904 106 Steam Distribution Losses 11 82 Nonprocess Energy 278 Electricity Generation Steam Generation 904 7 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 196 258 195 Generation and Transmission Losses Generation and Transmission Losses 3 422 Onsite Generation 455 415 65 480 617 9 51 0.6 37.2 37.8 4.2 3.8 6.4 29.4 19.6 53 15.3 53.2 5.2 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data