Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

2

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

3

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

4

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

5

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

6

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

7

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

8

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

9

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

10

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

11

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

12

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

13

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

14

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

15

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

16

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

17

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

18

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

19

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

20

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

22

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

23

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

24

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

25

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" 2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

26

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" 1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

27

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

28

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

29

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

30

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

31

RSE Table 10.12 Relative Standard Errors for Table 10.12  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and...

32

Level: National and Regional Data; Row: Selected NAICS Codes...  

U.S. Energy Information Administration (EIA) Indexed Site

Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and...

33

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

34

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

35

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

36

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

37

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

38

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square...

39

"RSE Table N11.1. Relative Standard Errors for Table N11.1;...  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N11.1;" " Unit: Percents." " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and...

40

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

42

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

43

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

44

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

45

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

46

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBOT NAICS Series 213112 Support Activities for Oil and Gas Operations NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY...

47

NAICS Search | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAICS Search NAICS Search NAICS Search The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying businesses. 10000 21000 22000 23000 31000 32000 33000 42000 44000 45000 48000 49000 51000 53000 54000 56000 61000 62000 81000 92000 NAICS uses six-digit codes at the most detailed level, with the first two digits representing the largest business sector, the third designating a subsector, the fourth designating the industry group, and the fifth showing the particular industry. Use the documents below, which are labeled by series, to see Department of Energy facilities that have historically procured goods/services in that

48

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

49

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

50

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

51

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

52

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

53

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

54

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

55

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

56

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

57

NAICS Codes Description:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

58

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

59

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

60

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

62

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

63

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

64

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

65

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

66

Good-Bye, SIC - Hello, NAICS  

U.S. Energy Information Administration (EIA) Indexed Site

Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry Classification System (NAICS) of the United States, Canada, and Mexico Featured topics are: What is NAICS? Why replace the SIC system? How is NAICS better than SIC? How can data series be adjusted from SIC to NAICS? How is NAICS structured? Is there a source for more information about NAICS? What is NAICS? A new classification system has arrived for manufacturing establishments, and the Energy Information Administration (EIA) has incorporated this new

67

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

68

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

69

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

70

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

71

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

72

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

73

Metalworking Machinery Manufacturing (NAICS 3335)  

Science Conference Proceedings (OSTI)

The U.S. metalworking machinery manufacturing industry (NAICS 3335) consists of about 7,900 firms with combined annual revenues of about $29 billion. Many (75%) of these firms are small, having fewer than 20 employees. This industry consumes a large amount of electricity, with about half of their usage going to drives that are used for machine tools; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology options are available and identi...

2012-01-31T23:59:59.000Z

74

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

75

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

76

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

77

Plastic Product Manufacturing (NAICS 3261)  

Science Conference Proceedings (OSTI)

The U.S. plastics product manufacturing industry (NAICS 3261), which consists of more than 12,000 firms with combined annual revenues of about $170 billion, is one of the ten largest manufacturing industries in the country in terms of sales. A large amount of electricity is consumed by the plastics products industry, with more than half of their usage going to machine drives; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology option...

2012-01-31T23:59:59.000Z

78

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

79

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)"

80

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE...

82

RSE Table 3.2 Relative Standard Errors for Table 3.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 3.2;" 2 Relative Standard Errors for Table 3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10

83

RSE Table 5.2 Relative Standard Errors for Table 5.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 5.2;" 2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

84

RSE Table 5.4 Relative Standard Errors for Table 5.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 5.4;" 4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,3,9

85

RSE Table 7.9 Relative Standard Errors for Table 7.9  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 7.9;" 9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,4,24,21,5,23,7,0,20

86

RSE Table 1.2 Relative Standard Errors for Table 1.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2;" 2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

87

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

88

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

89

RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. RSE Pulp & Chemical, LLC (Subsidiary of Red...

90

North American Industry Classification System (NAICS) Search Tool |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related to the U.S. business economy. NAICS was developed under the auspices of the Office of Management and Budget, and adopted in 1997 to replace the Standard Industrial Classification system. Through our website, you can search for procurement opportunities using your company's NAICS code, and you can learn more about the history of purchasing for your NAICS code at the Department. Visit our Industry Information page to learn more about our procurements by

91

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" 2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat"," ",," "

92

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" 3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

93

NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes @ Headquarters Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341 $141,587,250.76 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 286 $2,204,687.38 541330 ENGINEERING SERVICES 245 $80,827,391.54 611430 PROFESSIONAL AND MANAGEMENT DEVELOPMENT TRAINING 216 -$1,452,480.09 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 206 $67,689,373.27 562910 REMEDIATION

94

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

95

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

96

RSE Table 2.1 Relative Standard Errors for Table 2.1  

U.S. Energy Information Administration (EIA) Indexed Site

2.1 Relative Standard Errors for Table 2.1;" 2.1 Relative Standard Errors for Table 2.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ","Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",31,0,91,35,0,0,0,47 311221," Wet Corn Milling",0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",1,0,0,0,0,0,0,8

97

RSE Table 10.10 Relative Standard Errors for Table 10.10  

U.S. Energy Information Administration (EIA) Indexed Site

0 Relative Standard Errors for Table 10.10;" 0 Relative Standard Errors for Table 10.10;" " Unit: Percents." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other(e)" ,,"Total United States" 311,"Food",6,18,5,0,20,85,29,20,0 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0

98

RSE Table 10.13 Relative Standard Errors for Table 10.13  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 10.13;" 3 Relative Standard Errors for Table 10.13;" " Unit: Percents." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,17,8,20,21,43,34,35,37,29 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

99

RSE Table 4.1 Relative Standard Errors for Table 4.1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1;" 1 Relative Standard Errors for Table 4.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,17 311221," Wet Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",8,11,46,45,8,57,0,0,3

100

RSE Table 7.6 Relative Standard Errors for Table 7.6  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," " " "," ",,,,,,,,," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,20 311221," Wet Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",8,11,42,45,8,57,0,0,4

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RSE Table 10.11 Relative Standard Errors for Table 10.11  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 10.11;" 1 Relative Standard Errors for Table 10.11;" " Unit: Percents." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)" ,,"Total United States" 311,"Food",20,32,21,0,16,68,65,73,0 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0

102

"RSE Table C2.1. Relative Standard Errors for Table C2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C2.1. Relative Standard Errors for Table C2.1;" C2.1. Relative Standard Errors for Table C2.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",4,0,3,0,1,0,2,6

103

"RSE Table C3.1. Relative Standard Errors for Table C3.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C3.1. Relative Standard Errors for Table C3.1;" C3.1. Relative Standard Errors for Table C3.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

104

"RSE Table C4.1. Relative Standard Errors for Table C4.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C4.1. Relative Standard Errors for Table C4.1;" C4.1. Relative Standard Errors for Table C4.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" ,

105

"RSE Table C1.1. Relative Standard Errors for Table C1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table C1.1;" .1. Relative Standard Errors for Table C1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," ","Any",," "," ",," "," ",," ","Shipments" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

106

Re: NBP RFI: CommunicationRse quirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFI: CommunicationRse quirements Pepco Holdings, Inc. (PHI) is pleased to respond to the U.S Department of Energy request for comments regarding the communications requirements of...

107

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

108

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

109

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

110

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

111

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

112

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

113

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

114

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

115

Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 17 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 35 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 95

116

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

117

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

118

table3.6_02  

U.S. Energy Information Administration (EIA) Indexed Site

m a s s Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and RSE NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Row Code(a) Subsector and...

119

RSE Table N6.3 and N6.4. Relative Standard Errors for Tables...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

120

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

"RSE Table N5.2. Relative Standard Errors for Table N5.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table N5.2;" 2. Relative Standard Errors for Table N5.2;" " Unit: Percents." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related" "Code(a)","Subsector and Industry","Black Liquor","Total(b)","Waste(c)","from Trees(d)","Processing(e)","Refuse(f)"

122

"RSE Table N11.2. Relative Standard Errors for Table N11.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table N11.2;" 2. Relative Standard Errors for Table N11.2;" " Unit: Percents." " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 311,"Food",1,1,3,3,1,1,0,0,1 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 312,"Beverage and Tobacco Products",4,4,16,41,4,22,3,0,15 313,"Textile Mills",2,2,5,14,3,5,1,0,5

123

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

124

RSE Table N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2  

U.S. Energy Information Administration (EIA) Indexed Site

N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2;" N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",1,1,2,3,1,1,0,0,1

125

RSE Table N6.1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2;" 1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

126

RSE Table N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2;" N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",1,1,2,3,1,1,0,0,1

127

RSE Table N1.1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" 1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

128

How important are NAICS and PSC to wining federal contracts? | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

important are NAICS and PSC to wining federal contracts? important are NAICS and PSC to wining federal contracts? BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Forums How important are NAICS and PSC to wining federal contracts? Submitted by Gregory James on Tue, 04/17/2012 - 12:39pm Log in to vote 3 Small business owners can improve their ability to get federal contracts if they understand the nature and use of the North American Industry Classification System (NAICS) and Product and Service Codes. The purposes of these codes are to collect, analyze and publish statistical data on economic activity in the United States, Mexico and Canada. The Federal Procurement Data System (FPDS) uses these codes to track federal procurement historyNAICS is a two through six-digit hierarchical

129

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

130

Level: National Data; Row: Employment Sizes within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006; 4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9 10.6 4.5 1000 and Over 1,415.5 5.7 2.5 Total 1,278.4 6.9 3.1 311 FOOD Employment Size Under 50 1,266.8 8.3 3.2 50-99 1,587.4 9.3 3.6 100-249 931.9 3.6 1.5 250-499 1,313.1 6.3

131

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

132

"NAICS",,"per Employee","of Value Added","of Shipments" "Code...  

U.S. Energy Information Administration (EIA) Indexed Site

Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of...

133

"NAICS",,"per Employee","of Value Added","of Shipments" "Code...  

U.S. Energy Information Administration (EIA) Indexed Site

Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of...

134

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

135

RSE Table 3.5 Relative Standard Errors for Table 3.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Gas","Coke","Black Liquor","Bark","Materials"

136

RSE Table N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2  

U.S. Energy Information Administration (EIA) Indexed Site

N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2;" N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2;" " Unit: Percents." " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 311,"Food",6,0,8,0,0,0,0,7 312,"Beverage and Tobacco Products",10,0,82,0,0,0,0,9 313,"Textile Mills",19,0,77,3,20,0,0,48 314,"Textile Product Mills",38,0,0,38,27,0,0,42

137

RSE Table 7.7 Relative Standard Errors for Table 7.7  

U.S. Energy Information Administration (EIA) Indexed Site

7 Relative Standard Errors for Table 7.7;" 7 Relative Standard Errors for Table 7.7;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,,,,,,,,," " " "," ",,,"Electricity",,,"Natural Gas",,,"Steam" " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" "NAICS"," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

138

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

139

" Row: General Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" 1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States"

140

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" 4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable Distillate","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

142

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

143

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

144

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

145

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

146

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1 12.6 31131 Sugar Manufacturing 7,755.9 32.6 13.4 3114 Fruit and Vegetable Preserving and Specialty Foods 861.3 4.8 2.2 3115 Dairy Products 854.8 3.5 1.1 3116 Animal Slaughtering and Processing 442.9 3.5 1.2 312

147

Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4 3114 Fruit and Vegetable Preserving and Specialty Foods 13 13 0 3115 Dairy Products 0 0 0 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products * * 0 3121 Beverages

148

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

149

"RSE Table N5.1. Relative Standard Errors for Table N5.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N5.1;" 1. Relative Standard Errors for Table N5.1;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

150

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

151

Table N1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

152

"RSE Table N11.3. Relative Standard Errors for Table N11.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table N11.3;" 3. Relative Standard Errors for Table N11.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" "NAICS"," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

153

"RSE Table N8.3. Relative Standard Errors for Table N8.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table N8.3;" 3. Relative Standard Errors for Table N8.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" "NAICS"," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

154

"RSE Table N11.4. Relative Standard Errors for Table N11.4;"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Relative Standard Errors for Table N11.4;" 4. Relative Standard Errors for Table N11.4;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" "NAICS"," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

155

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6 18.2 31131 Sugar Manufacturing 6,629.2 31.3 12.2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,075.3 5.5 2.8 3115 Dairy Products 956.3 4.3 1.3 3116 Animal Slaughtering and Processing 493.8 4.4 1.6 312

156

Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006; 1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing 920 54 951 7 1,919 3114 Fruit and Vegetable Preserving and Specialty Foo 9,720 1 268 13 9,976 3115 Dairy Products 10,079 0 44 0 10,123 3116 Animal Slaughtering and Processing 17,545 0 17 0 17,562 312 Beverage and Tobacco Products

157

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

158

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

159

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

160

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"RSE Table C9.1. Relative Standard Errors for Table C9.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Relative Standard Errors for Table C9.1;" C9.1. Relative Standard Errors for Table C9.1;" " Unit: Percents." " "," "," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost" "NAICS"," "," " "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Participation in One or More of the Following Types of Activities",1,2,0,0,0,0 ," Energy Audits",1,3,5,6,5,7 ," Electricity Load Control",1,3,4,7,6,7

162

"RSE Table N13.3. Relative Standard Errors for Table N13.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table N13.3;" 3. Relative Standard Errors for Table N13.3;" " Unit: Percents." " "," ","Total of" "NAICS"," ","Sales and","Utility","Nonutility" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,,"Total United States" , 311,"Food",8,9,0 311221," Wet Corn Milling",0,0,0 312,"Beverage and Tobacco Products",0,0,0 313,"Textile Mills",0,0,0 313210," Broadwoven Fabric Mills",0,0,0 314,"Textile Product Mills",90,90,0 315,"Apparel",0,0,0 316,"Leather and Allied Products",0,0,0

163

"RSE Table C10.1. Relative Standard Errors for Table C10.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table C10.1;" 1. Relative Standard Errors for Table C10.1;" " Unit: Percents." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,,," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors" "NAICS"," " "Code(a)","Subsector and Industry","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

164

"RSE Table N13.1. Relative Standard Errors for Table N13.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N13.1;" 1. Relative Standard Errors for Table N13.1;" " Unit: Percents." " "," " " "," ",,,,"Sales and","Net Demand" "NAICS"," ",,,"Total Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" , 311,"Food",1,1,1,8,1 311221," Wet Corn Milling",0,0,0,0,0 312,"Beverage and Tobacco Products",4,0,1,0,4 313,"Textile Mills",2,8,7,0,2 313210," Broadwoven Fabric Mills",3,0,22,0,3 314,"Textile Product Mills",11,73,8,90,11

165

"RSE Table E7.2. Relative Standard Errors for Table E7.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table E7.2;" 2. Relative Standard Errors for Table E7.2;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS",,"Consumption","per Dollar","of Value" "Code(a)","Economic Characteristic(b)","per Employee","of Value Added","of Shipments" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",2,2,2 ," 20-49",2,3,2 ," 50-99",3,3,2 ," 100-249",2,3,2 ," 250-499",3,3,3

166

"RSE Table N7.1. Relative Standard Errors for Table N7.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Relative Standard Errors for Table N7.1;" N7.1. Relative Standard Errors for Table N7.1;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS"," ","Consumption","per Dollar","of Value" "Code(a)","Subsector and Industry","per Employee","of Value Added","of Shipments" ,,"Total United States" , 311,"Food",1,1,1 311221," Wet Corn Milling",0,0,0 312,"Beverage and Tobacco Products",8,4,5 313,"Textile Mills",3,2,3 313210," Broadwoven Fabric Mills",3,4,3 314,"Textile Product Mills",7,5,5

167

"RSE Table C12.1. Relative Standard Errors for Table C12.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Relative Standard Errors for Table C12.1;" 2.1. Relative Standard Errors for Table C12.1;" " Units: Percents." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" "NAICS"," ","of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite" "Code(a)","Subsector and Industry","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment" ,,"Total United States" , 311,"Food",2,0,2,1,1 311221," Wet Corn Milling",0,0,0,0,0 312,"Beverage and Tobacco Products",11,0,15,14,14

168

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

" Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal...

169

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

170

"RSE Table C10.3. Relative Standard Errors for Table C10.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table C10.3;" 3. Relative Standard Errors for Table C10.3;" " Unit: Percents." "NAICS"," " "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know" ,,"Total United States" , 311,"FOOD" ," Infrared Heating",3,1,2 ," Microwave Drying",5,1,3 ," Closed-Cycle Heat Pump System Used to Recover Heat",7,1,3 ," Open-Cycle Heat Pump System Used to Produce Steam",7,1,3 ," Gas-Driven Rotary Engines and/or Turbines",20,1,3 ," Membrane Separation",3,1,2 ," Irradiation",23,1,2 ," Freeze Concentration",9,1,3 ," Membrane Hyperfiltration to Separate Water from Food Products",4,1,3

171

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

172

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

173

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

174

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

175

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

176

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 6.1;" 1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 3112," Grain and Oilseed Milling",8.2,5.8,5.6 311221," Wet Corn Milling",0,0,0 31131," Sugar Manufacturing",0,0,0 3114," Fruit and Vegetable Preserving and Specialty Foods ",7.3,6.7,6.2

177

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

178

Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

RSE Table 3.6 Relative Standard Errors for Table 3.6;" RSE Table 3.6 Relative Standard Errors for Table 3.6;" " Unit: Percents." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related" "Code(a)","Subsector and Industry","Black Liquor","Total(b)","Waste(c)","from Trees(d)","Processing(e)","Refuse(f)"

179

RSE Table 5.7 Relative Standard Errors for Table 5.7  

U.S. Energy Information Administration (EIA) Indexed Site

7 Relative Standard Errors for Table 5.7;" 7 Relative Standard Errors for Table 5.7;" " Unit: Percents." " ",,,"Distillate" " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,3,6,2,4,9 "Indirect Uses-Boiler Fuel",6,4,10,2,10,13 " Conventional Boiler Use",12,5,14,2,10,8 " CHP and/or Cogeneration Process",4,2,6,3,2,19

180

RSE Table 5.8 Relative Standard Errors for Table 5.8  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 5.8;" 8 Relative Standard Errors for Table 5.8;" " Unit: Percents." " ",," ","Distillate"," "," " " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,3,6,2,3,9 "Indirect Uses-Boiler Fuel",6,4,14,2,9,13 " Conventional Boiler Use",12,5,14,2,10,8 " CHP and/or Cogeneration Process",4,2,6,3,2,18

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RSE Table 5.6 Relative Standard Errors for Table 5.6  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 5.6;" 6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural","LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,2,3,6,2,3,9,2 "Indirect Uses-Boiler Fuel",0,11,4,14,2,9,13,0

182

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

183

RSE Table 7.4 Relative Standard Errors for Table 7.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 7.4;" 4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",8,21,14,7,9,13 " 20-49",4,6,15,4,13,4 " 50-99",3,6,4,3,6,8 " 100-249",3,8,17,2,5,7 " 250-499",4,1,9,7,1,37 " 500 and Over",1,7,4,1,1,1 "Total",2,3,7,2,1,11

184

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

185

table5.3_02  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002; 3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.4 1 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use

186

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

187

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

detailedtables20032003rsetablesfilesplainlink.css" typetextcss relstylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey...

188

"RSE Table E1.1. Relative Standard Errors for Table E1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table E1.1;" .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

189

"RSE Table N1.3. Relative Standard Errors for Table N1.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

.3. Relative Standard Errors for Table N1.3;" .3. Relative Standard Errors for Table N1.3;" " Unit: Percents." " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",3 "Natural Gas",1 "Net Electricity",1 " Purchases",1 " Transfers In",9 " Onsite Generation from Noncombustible Renewable Energy",15 " Sales and Transfers Offsite",3 "Coke and Breeze",2 "Residual Fuel Oil",4 "Distillate Fuel Oil",5 "Liquefied Petroleum Gases and Natural Gas Liquids",1 "Other",2 " Asphalt and Road Oil (a)",0 " Lubricants (a)",0 " Naphtha < 401 Degrees (a)",0

190

"RSE Table E2.1. Relative Standard Errors for Table E2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

E2.1. Relative Standard Errors for Table E2.1;" E2.1. Relative Standard Errors for Table E2.1;" " Unit: Percents." " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",9,87,48,26,1,85,16,25 " 20-49",11,32,28,5,63,20,3,21 " 50-99",8,23,38,2,22,49,42,4

191

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41222 41222 Boat Dealers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 441229 All Other Motor Vehicle Dealers CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com LOS ALAMOS LAB

192

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53210 53210 Office Supplies and Stationery Stores BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NEW BRUNSWICK LAB NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PRINCETON PLASMA LAB Arlene White (609) 243-2080

193

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41219 41219 Other Accounting Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671

194

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11410 11410 Business and Secretarial Schools EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 611420 Computer Training ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov

195

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

621420 621420 Outpatient Mental Health and Substance Abuse Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 621493 Freestanding Ambulatory Surgical and Emergency Centers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov

196

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21213 21213 Engineered Wood Member (except Truss) Manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 321920 Wood Container and Pallet manufacturing BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512

197

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21119 21119 Other Electric Power Generation Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 221121 Electric Bulk Power Transmission and Control BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 221122 Electric Power Distribution BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

198

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91110 91110 Postal Service EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov STRATEGIC PETROLEUM RESERVE Sally Leingang (504) 734-4362 sally.leingang@spr.doe.gov 492110 Couriers and Express Delivery Services EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen

199

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11110 11110 Newspaper Publishers EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov 511120 Periodical Publishers AMES LAB Lisa Rodgers (515) 294-4191 rodgers@ameslab.gov ARGONNE LAB Karl Duke (630) 252-8842 sblo@anl.gov BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov BROOKHAVEN LAB Jill Clough-Johnston (631) 344-3173 clough@bnl.gov CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov FEMI LAB Joe Collins (630) 840-4169 jcollins@fnal.gov GOLDEN FIELD OFFICE

200

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23110 23110 Automobile and Other Motor Vehicle Merchant Wholesalers BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NEVADA SITE OFFICE Anita Ross (702) 295-5690 rossal@nv.doe.gov NEVADA TEST SITE Trudy Rocha (702) 295-0557 rocha@nv.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 423120 Motor Vehicle Supplies and New Parts Merchant Wholesalers

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31112 31112 Electrometallurgical Ferroalloy Product Manufacturing EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com 331210 Iron and Steel Pipe and Tube Manufacturing from Purchased Steel EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov PANTEX PLANT Brad Beck (806) 477-6192 bbrack@pantex.com RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 331221 Rolled Steel Shape Manufacturing

202

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61110 61110 Office Administrative Services BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov KANSAS CITY PLANT C. J. Warrick (816) 997-2874 cwarrick@kcp.com NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OHIO FIELD OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov PORTSMOUTH PADUCAH OFFICE Pam Thompson (859) 219-4056 pam.thompson@lex.doe.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov ROCKY FLATS ROCKY MOUNTAIN OILFIELD CENTER Jenny Krom (307) 233-4818 jenny.krom@rmotc.doe.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

203

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31110 31110 Lessors of Residential Buildings and Dwellings CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov IDAHO LAB Stacey Francis (208) 526-8564 stacey.francis@inl.gov IDAHO OPERATIONS Maria Mitchell (208) 526-8600 mitchemm@id.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER

204

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

113110 Timber tract operations 113110 Timber tract operations BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN Gary Bridges (918) 595-6671 gary.bridges@swpa.gov WESTERN POWER ADMIN Cheryl Drake (720) 962-7154 drake@wapa.gov 113310 Cutting and transporting timber BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov SOUTHEASTERN POWER ADMIN Ann Craft (706) 213-3823 annc@sepa.doe.gov SOUTHWESTERN POWER ADMIN

205

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83111 83111 Deep Sea Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 483211 Inland Water Freight Transportation EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov RIVER PROTECTION Susan Johnson (509) 373-7914 susan_c_johnson@orp.doe.gov 484110 General Freight Trucking, Local BONNEVILLE POWER ADMIN Greg Eisenach (360) 418-8063 gaeisenach@bpa.gov EM BUSINESS CENTER

206

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

Only","Other than","and","Any","from Only","Other than","and" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

207

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

than","and","Any","from Only","Other than","and","Row" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

208

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13312 13312 Textile and Fabric Finishing (except Broadwoven Fabric) Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314991 Rope, Cordage, and Twine Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov Y-12 SITE Gloria Mencer (865) 576-2090 mencergd@y12.doe.gov 314999 All Other Miscellaneous Textile Product Mills EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov

209

SBOT NAICS Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

922120 922120 Police Protection CARLSBAD FIELD OFFICE Roland Taylor roland.taylor@wipp.ws CHICAGO OPERATIONS Larry Thompson (630) 252-2711 larry.thompson@ch.doe.gov EM BUSINESS CENTER Karen Bahan (513) 246-0555 karen.bahan@emcbc.doe.gov GOLDEN FIELD OFFICE Karen Downs (720) 356-1269 karen.downs@go.doe.gov HEADQUARTERS PROCUREMENT Michael Raizen (202) 287-1512 michael.raizen@hq.doe.gov LOS ALAMOS LAB Dennis Roybal (505) 667-4419 dr@lanl.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NATIONAL ENERGY TECHNOLOGY LAB Larry Sullivan (412) 386-6115 larry.sullivan@netl.doe.gov NNSA SERVICE CENTER Gregory Gonzales (505) 845-5420 ggonzales@doeal.gov OAK RIDGE LAB Cassandra McGee Stu (865) 576-3560 mcgeecm@ornl.gov OAK RIDGE OPERATIONS Freda Hopper (856) 576-9430

210

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

211

ICME for Residual Stress  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... Application of ICME to Weld Process Innovations and Residual Stress ... Incorporation of Residual Stresses into Design of Ni-Base Superalloy...

212

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

213

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

214

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

215

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

216

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

217

table10.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Distillate and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.9 1.4 1.9 0.6 1.5 0.6 0.6 0.9 0 0.7 311 Food 2,125 1,411 508 0 819 W W Q 0 Q 11.1 311221 Wet Corn Milling 61 W 45 0 0 W 0 0 0 0 0.8 31131 Sugar 346 193 98 0 169 0 W 0 0 0 0.7 311421 Fruit and Vegetable Canning 153 29 Q 0 29 * 0 0 0 0 24.6 312 Beverage and Tobacco Products

218

table10.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Distillate and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 1.3 1 1.5 0.7 1 0.8 0.6 1.2 1.4 0.8 311 Food 274 183 108 0 119 72 W Q 0 15 15.2 311221 Wet Corn Milling 3 W W 0 0 W 0 0 0 0 0.9 31131 Sugar 18 9 9 0 9 0 W 0 0 0 1 311421 Fruit and Vegetable Canning 38 26 30 0 26 W 0 0 0 0 8.1 312 Beverage and Tobacco Products 35 17 Q 0 17 6 W 0 0 0 8

219

table2.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; 4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources; Unit: Establishment Counts. Any Combustible RSE NAICS Energy Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 1.5 0.6 1.1 1 1.1 0.7 1 1.4 311 Food 406 W 152 185 0 0 4 83 9.6 311221 Wet Corn Milling W 0 W 0 0 0 0 W 0.8 31131 Sugar 6 0 W W 0 0 4 W 0.9 311421 Fruit and Vegetable Canning 14 W 6 0 0 0 0 9 5.6 312 Beverage and Tobacco Products 31 W 5 W 0 0 0 15 12.4 3121 Beverages Q W 5 0 0 0 0 12 31.9 3122 Tobacco W 0 0 W 0 0 0 W 0.8

220

table10.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002; 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Distillate Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 1.1 0.7 1.2 1.1 1.1 1.2 1.1 0.9 1.1 311 Food 12,018 2,210 10,674 532 1,170 413 75 862 3 25 9.9 311221 Wet Corn Milling 47 16 39 4 6 W W 6 0 W 1 31131 Sugar 62 23 51 W 4 13 4 0 W 0 1 311421 Fruit and Vegetable Canning 416 113 337 4 67 49 W 32 W W 5.5 312 Beverage and Tobacco Products

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

table10.10_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2002; 0 Capability to Switch Coal to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. RSE NAICS Total Not Electricity Natural Distillate Residual Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Factors Total United States RSE Column Factors: 1.4 1.1 1.5 0.7 1.1 0.8 1.2 1.5 0.5 311 Food 8,290 1,689 7,112 0 1,410 Q 212 313 7 8.5 311221 Wet Corn Milling 5,462 771 5,201 0 766 0 0 249 6 0.9 31131 Sugar 1,648 388 1,260 0 243 0 W 0 2 0.9 311421 Fruit and Vegetable Canning 0 0 0 0 0 0 0 0 0 0 312 Beverage and Tobacco Products

222

table3.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002; 4 Number of Establishments by Fuel Consumption, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any RSE NAICS Energy Net Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal and Breeze Other(g) Factors Total United States RSE Column Factors: 0.7 0.7 1.3 1.1 0.9 1.2 1.2 1 1.2 311 Food 15,089 15,045 274 2,418 12,018 3,159 91 19 1,858 5.1 311221 Wet Corn Milling 49 49 3 20 47 14 19 0 15 1 31131 Sugar 77 77 18 40 62 31 24 19 44 1 311421 Fruit and Vegetable Canning 468 468 38 123 416 229 0 0 146 7.8 312 Beverage and Tobacco Products 1,595 1,595 35 251 1,132 630 17 0 184 11 3121 Beverages 1,517 1,517

223

table5.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002; 2 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE NAICS Net Residual and Natural LPG and (excluding Coal Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.3 1 NF TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel -- 12 127 25 2,162 8 776 -- 5.5 Conventional Boiler Use -- 9 76 25 1,306 8 255 -- 5.6 CHP and/or Cogeneration Process -- 4 51 10 857 * 521 -- 3.7 Direct Uses-Total Process

224

table10.13_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002; 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Distillate Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.8 0.6 0.9 0.7 0.8 1 2.8 2.7 0.7 311 Food 3,159 793 2,492 570 533 147 225 22 20 21 21.9 311221 Wet Corn Milling 14 W W W W 0 0 0 0 W 1.4 31131 Sugar 31 W W W 0 0 0 W 0 W 1.1 311421 Fruit and Vegetable Canning 229 15 215 11 4 W W 0 0 0 5.3 312 Beverage and Tobacco Products

225

table10.8_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.7 1.6 1.7 0.9 1.5 0.6 0.7 1.7 0.3 0.8 311 Food 3,177 986 767 Q 297 Q 1 Q 0 Q 10.4 311221 Wet Corn Milling 14 4 10 * 3 0 1 2 0 * 0.8 31131 Sugar 169 W 143 W W 0 0 0 0 0 0.7 311421 Fruit and Vegetable Canning 242 Q 121 0 Q 0 0 0 0 * 27.1 312 Beverage and Tobacco Products

226

table1.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE NAICS Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 230 13 19 582 5 184 1 89 0 6.8 311221 Wet Corn Milling 217 23 * * 61 * 121 0 11 0 1.1 31131 Sugar 112 2 2 1 22 * 37 1 46 0 0.9 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 0 11 312 Beverage and Tobacco Products 105 26 2 2 46 1 17 0 11

227

table10.9_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 1 1.3 1 0.9 1.2 1 0.8 1.3 0.8 0.9 311 Food 2,418 789 1,899 129 447 176 W 280 0 40 12.4 311221 Wet Corn Milling 20 7 15 W 4 0 W W 0 W 1 31131 Sugar 40 W W W W 0 0 0 0 0 0.9 311421 Fruit and Vegetable Canning 123 6 117 0 5 0 0 0 0 W 6.9 312 Beverage and Tobacco Products 251 30 227

228

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

229

table10.11_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002; 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. RSE NAICS Total Not Electricity Natural Distillate Residual Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Factors Total United States RSE Column Factors: 1.5 1.2 1.5 0.7 1.1 0.8 1.1 1 0.5 311 Food 91 50 92 0 26 Q Q W W 10.7 311221 Wet Corn Milling 19 8 17 0 7 0 0 W W 0.9 31131 Sugar 24 13 22 0 11 0 4 0 W 0.9 311421 Fruit and Vegetable Canning 0 0 0 0 0 0 0 0 0 0 312 Beverage and Tobacco Products 17 8 12 0 7 W 5 0 0 5.3 3121 Beverages 9 5 5 0 W W W 0 0 8.5

230

table4.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 233 13 19 575 5 184 1 50 8 311221 Wet Corn Milling 217 24 * * 61 * 121 0 11 1.1 31131 Sugar 74 3 2 1 22 * 37 1 8 1 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 12.4 312 Beverage and Tobacco Products 104 27 2 2 46 1 17 0 9 4.3 3121 Beverages 84 22 1 2 42 1 8 0 9 5.9 3122 Tobacco 19 5 1 * 4 * 10 0 * 0.9 313 Textile Mills 206 87 4 2 74 2

231

table5.4_02  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002; 4 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE NAICS for Residual and Natural LPG and (excluding Coal Row Code(a) End Use Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.3 1 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127 25 2,162 8 776 5.5 Conventional Boiler Use 11 76 25 1,306 8 255 5.6 CHP and/or Cogeneration Process 12 51 10 857 * 521 3.7 Direct Uses-Total Process 2,624

232

table10.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2002; 6 Capability to Switch Electricity to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke RSE NAICS Total Not Natural Distillate Residual and Row Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Factors Total United States RSE Column Factors: 0.9 1.4 0.9 1.6 1.7 0.6 0.8 1.7 0.5 0.9 311 Food 68,230 2,270 49,890 239 2,125 17 9 72 0 Q 12.2 311221 Wet Corn Milling 7,098 77 6,062 77 0 0 0 0 0 0 0.9 31131 Sugar 733 21 602 * 11 9 9 0 0 * 1 311421 Fruit and Vegetable Canning 1,987 Q 1,764 Q Q 0 0 25

233

table10.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002; 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke RSE NAICS Total Not Electricity Distillate Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 0.8 1 0.9 1.6 1 1 1.1 1.1 0.5 1.3 311 Food 560 155 298 20 70 40 2 63 * Q 12 311221 Wet Corn Milling 59 11 41 3 3 3 * 4 0 * 2 31131 Sugar 22 7 10 * 2 5 * 0 * 0 1 311421 Fruit and Vegetable Canning 35 10 19 2 6 2 * 1 * * 5.5 312 Beverage and Tobacco Products

234

table2.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * Q 7 0 0 * * 10.2 311221 Wet Corn Milling * 0 * 0 0 0 0 * 0.7 31131 Sugar * 0 * * 0 0 * * 0.9 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 1.7 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 2.3 3121 Beverages * * * 0 0 0 0 * 28.9 3122 Tobacco 1 0 0 * 0 0 0 1 0.8 313 Textile Mills 1 0 * 1 0 0 0 * 0.8 314 Textile Product Mills * 0 0 * 0 * 0 * 2 315 Apparel

235

table7.9_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002; 9 Expenditures for Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 0.9 0.9 1.1 1.5 0.9 1.4 0.8 0.7 1.2 311 Food 6,943 3,707 58 135 2,546 38 276 8 175 8 311221 Wet Corn Milling 683 252 2 1 237 * 165 0 26 1.1 31131 Sugar 224 39 11 8 84 * 63 8 10 1 311421 Fruit and Vegetable Canning 333 139 5 8 168 Q 0 0 4 13.5 312 Beverage and Tobacco Products 780 479 8 18 201 9 40 0 25 5.8 3121 Beverages 665 413 4 Q 182 8 16 0 25 5.6 3122 Tobacco 115

236

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

237

table10.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Natural Distillate Residual and Row Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 0.6 1.2 0.6 1.2 1.3 1 0.8 1.4 1.3 1.2 311 Food 15,045 582 14,905 185 437 30 W 170 0 55 11.4 311221 Wet Corn Milling 49 W W W 0 0 0 0 0 0 1.2 31131 Sugar 77 8 74 W 4 W W 0 0 W 1.1 311421 Fruit and Vegetable Canning 468 37 443 Q 34 0 0 13 0 0 10.4 312 Beverage and Tobacco Products 1,595 70 1,556

238

RSE Table N8.1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" 1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,," "

239

RSE Table S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2  

U.S. Energy Information Administration (EIA) Indexed Site

S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2;" S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Major Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

240

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 8.4;" 4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--" ,"Measure and Monitor Steam Used (d)",0.8,4.1,3.3,8 ,"Dedicated Staff that Performs Insulation Inspections (e)",0.9,4.5,3.3,8.3 ,"Formal Steam Maintenance Program that Includes the Following:" ," Annual Testing of All Steam Traps",0.9,3.7,3.1,8

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

242

Agriculture Residues Recycling  

E-Print Network (OSTI)

Abstract: Saudi Arabia, as well as other countries in the Near East region, is characterized by erratic weather conditions, limited area of fertile arable lands, and with acute water shortage. Although agricultural residues (AGR) production in the region is huge (more than 440 million tons), most of these residues are either burned in the field or utilized in an inefficient way. Utilization of AGR as compost may contribute to expansion of arable lands through its use for reclamation of soil and reduce irrigation requirements. This study was conducted at Al Khalidiah farm, Riyadh, Saudi Arabia to assess compost production at large commercial scale using several types of agricultural and animal by-products with addition of a BZTCompost Activator (based mainly on microorganism, enzymes and yeast). In this study, two types of compost piles were made at the farm. The first pile of compost was made of different agriculture residues, namely: animal wastes (quail, goat and sheep manure), brownian agricultural wastes (windbreaks residues, date trees, citrus and olive trees pruning) and green landscape grasses (50%, 25 % and 25%, respectively) and was treated with a tested compost activator. The same agriculture residues combination was also made for the second pile as traditional compost

M. W. Sadik; H. M. El Shaer; H. M. Yakot

2010-01-01T23:59:59.000Z

243

RSE Table S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2  

U.S. Energy Information Administration (EIA) Indexed Site

S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2;" S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," ",," " "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 20,"Food and Kindred Products",5,0,8,0,0,0,0,7 21,"Tobacco Products",0,0,0,0,0,0,0,0

244

RSE Table E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2  

U.S. Energy Information Administration (EIA) Indexed Site

E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2;" E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)" ,"Total United States" "TOTAL FUEL CONSUMPTION",1,1,4,4,1,3,4,2 "Indirect Uses-Boiler Fuel",0,3,4,5,1,2,5,0

245

RSE Table S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2  

U.S. Energy Information Administration (EIA) Indexed Site

S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2;" S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2;" " Unit: Percents." " "," " "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 20,"Food and Kindred Products",1,1,3,5,1,6,1,0,1 21,"Tobacco Products",4,5,23,53,10,24,1,0,32 22,"Textile Mill Products",2,2,4,16,3,7,1,0,4

246

RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2  

U.S. Energy Information Administration (EIA) Indexed Site

E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,18,10,7,3,8 " 20-49",2,19,5,3,11,8 " 50-99",2,14,6,2,17,10 " 100-249",1,11,4,2,1,12 " 250-499",2,1,10,2,0,1 " 500 and Over",1,1,1,1,0,1

247

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

248

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

249

Residual Stresses and Numerical Simulation  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Advances in Hydroelectric Turbine Manufacturing and Repair: Residual Stresses and Numerical Simulation Sponsored by: Metallurgical...

250

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

251

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... 5) T. Gnaupel-Herold, HJ Prask, AV Clark, CS Hehman, TN Nguyen, A Comparison of Neutron and Ultrasonic Determinations of Residual Stress ...

252

BT8 Residual Stress Diffractometer  

Science Conference Proceedings (OSTI)

... Residual Stresses and Mechanical Damage in Gas Pipelines. ... Pressure in a pipeline superimposes a stress on ... are exceeded in pipelines with low ...

253

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress-relaxation techniques using electric

254

Techniques for Measuring Residual Stresses  

Science Conference Proceedings (OSTI)

Table 1   Classification of techniques for measuring residual stress...stress A-1 Stress relaxation techniques using electric

255

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

256

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

257

"NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 8.1;" 1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Participation in One or More of the Following Types of Activities",1.3,1.7,"--","--","--","--","--","--" ," Energy Audit or Assessment",0.7,2.6,3.9,4.9,6.3,16.5,12.3,6.8

258

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

and Industry Total Net Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE Row Factors Total United States RSE Column...

259

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Code a Industry Groups and Industry Total Residual Fuel Oil Distillate Fuel Oil b Natural Gas c LPG Coal Coke and Breeze Other d RSE Row Factors Total United States RSE Column...

260

Residual Circulation and Tropopause Structure  

Science Conference Proceedings (OSTI)

The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied ...

Thomas Birner

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Crop residues as feedstock for renewable fuels  

Science Conference Proceedings (OSTI)

Nutrient removal and net costs weigh on decisions to use crop residues as biofuel feedstocks. Crop residues as feedstock for renewable fuels Inform Magazine Biofuels and Bioproducts and Biodiesel Inform Archives Crop residues as feedstock for rene

262

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

263

table1.4_02  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2002 4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2002 Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate Natural LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States RSE Column Factors: 0.7 0.7 1.4 1.2 0.9 1.3 1.1 1.2 1.3 0.5 311 Food 15,089 15,045 275 2,536 12,106 3,159 91 23 1,911 0 311221 Wet Corn Milling 49 49 3 20 47 14 19 0 15 0 31131 Sugar 77 77 18 41 63 31 24 23 45 0 311421 Fruit and Vegetable Canning 468 468 40 128 416 229 0 0 153 0 312

264

Chemistry of combined residual chlorination  

DOE Green Energy (OSTI)

The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

Leao, S.F.; Selleck, R.E.

1982-01-01T23:59:59.000Z

265

Vitrification of NAC process residue  

Science Conference Proceedings (OSTI)

Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

Merrill, R.A.; Whittington, K.F.; Peters, R.D.

1995-09-01T23:59:59.000Z

266

Transforms for prediction residuals in video coding  

E-Print Network (OSTI)

Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

Kam??l?, Fatih

2010-01-01T23:59:59.000Z

267

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

'2010 Manufacturing Energy Consumption" "Survey,' and Office of Petroleum and Biofuels Statistics, Form EIA-810," "Monthly Refinery Report' for 2010." "Released: July 2013...

268

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

'2010 Manufacturing Energy" "Consumption Survey,' and Office of Petroleum and Biofuels Statistics," "Form EIA-810, 'Monthly Refinery Report' for 2010." "Released: July 2013...

269

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

l","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Fact...

270

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1,"*","*",5,"*",4,"*",23 327420," Gypsum",85,1845,"*","*",74,"*",0,0,2 327993," Mineral Wool",50,3978,0,"*",33,"*",0,"*","*" 331,"Primary Metals",1910,133236,3,1,610,1,17,9,133...

271

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

and",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","...

272

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

sidual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural...

273

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

sold and" "transferred out. It does not include electricity inputs from onsite" "cogeneration or generation from combustible fuels because that energy has" "already been...

274

" Row: NAICS Codes; Column: Energy-Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

3314," Nonferrous Metals, except Aluminum",2522.1,5.7,2 331419," Primary Smelting and Refining of Nonferrous Metals, except Copper and Aluminum",8897.6,18.1,9.2 3315,"...

275

Identifying Technology Flows and Spillovers Through NAICS ...  

Science Conference Proceedings (OSTI)

... Refrigeration LNG for Vehicular Fuel ... 2 Storage Battery Manufacturing 2 ... 1 Military Armored Vehicle, Tank, and Tank Component Manufacturing 2 ...

2006-05-04T23:59:59.000Z

276

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

277

RESIDUAL STRESSES IN 3013 CONTAINERS  

SciTech Connect

The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

Mickalonis, J.; Dunn, K.

2009-11-10T23:59:59.000Z

278

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

279

Residual stresses in IN 718 Turbine Disks  

Science Conference Proceedings (OSTI)

the thermally induced residual stresses in plate-like components during cooling. The plate is. 527 ... cooled down symmetrically with respect to its middle plane.

280

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Iogen Biorefinery Partners, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the flexibility to process a wide range of agricultural residues into cellulose ethanol. Iogen Biorefinery Partners, LLC More Documents & Publications RSE Pulp & Chemical,...

282

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) SIC Code a Industry Groups and Industry Residual Fuel Oil Alternative Types of Energy b RSE Row Factors Total Consumed c Switchable Not Switchable Electricity...

283

A Benchmark Study on Casting Residual Stress  

Science Conference Proceedings (OSTI)

Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.

Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

2012-01-01T23:59:59.000Z

284

Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues  

Science Conference Proceedings (OSTI)

This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

Murray, A.M.

1999-02-10T23:59:59.000Z

285

RECOVERY OF URANIUM VALUES FROM RESIDUES  

DOE Patents (OSTI)

A process is described for the recovery of uranium from insoluble oxide residues resistant to repeated leaching with mineral acids. The residue is treated with gaseous hydrogen fluoride, then with hydrogen and again with hydrogen fluoride, preferably at 500 to 700 deg C, prior to the mineral acid leaching.

Schaap, W.B.

1959-08-18T23:59:59.000Z

286

Costing forest residue recovery through simulation  

Science Conference Proceedings (OSTI)

The search for alternative energy sources has renewed interest in the energy potential of wood. Supplies of wood residue seem to be a likely source of material and the greatest volumes of residue are located in the forest. Methods are needed to more ...

Leonard R. Johnson; Edward L. Fisher

1978-12-01T23:59:59.000Z

287

Process for treatment of residual gas  

SciTech Connect

A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

Nolden, K.

1980-01-01T23:59:59.000Z

288

SAR impulse response with residual chirps.  

SciTech Connect

A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

Doerry, Armin Walter

2009-06-01T23:59:59.000Z

289

Gasification of in-Forest Biomass Residues.  

E-Print Network (OSTI)

??Described is a laboratory-scale continuous-feed supercritical water gasification (SCWG) system. The system is operated using real-world Ponderosa Pine sawmill residues at high biomass loadings, short (more)

Faires, Kenneth B.

2013-01-01T23:59:59.000Z

290

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

291

Residual Circulations Due to Bottom Roughness Variability under Tidal Flows  

Science Conference Proceedings (OSTI)

Tidal flows over irregular bathymetry are known to produce residual circulation flows due to nonlinear interaction with gradients of depth. Using the depth-averaged vorticity equations, the generation of residual vorticity and residual flows due ...

Thomas F. Gross; Francisco E. Werner

1994-07-01T23:59:59.000Z

292

The Neutron Residual Stress Mapping Facility at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Residual Stress Mapping Facility at HFIR Neutron Residual Stress Mapping Facility (HB-2B) Neutron Residual Stress Mapping Facility (HB-2B). The HB-2B beam port is optimized...

293

Animal Performance and Diet Quality While Grazing Corn Residue.  

E-Print Network (OSTI)

??Grazing cattle on corn residue as a winter feed source has become an integral part of many Nebraska producers management plans. Utilizing corn residues extends (more)

Gigax, Jennifer A

2011-01-01T23:59:59.000Z

294

EA-1120: Solid Residues Treatment, Repackaging and Storage at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage...

295

EIS-0277: Management of Certain Plutonium Residues and Scrub...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site EIS-0277: Management of Certain Plutonium Residues and Scrub...

296

Potential for biogas production fromslaughter houses residues in Bolivia.  

E-Print Network (OSTI)

?? Residues from slaughter houses offer an abundant resource in Bolivia. The residues can beused for biogas production with biofertilizer as a bi-product. These resources (more)

Tesfaye Tefera, Tadious

2011-01-01T23:59:59.000Z

297

table11.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of RSE NAICS Sales and Utility Nonutility Row Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Factors Total United States RSE Column Factors: 1 0.9 1 311 Food 708 380 328 31 311221 Wet Corn Milling 248 W W 20.1 31131 Sugar 8 8 0 1 311421 Fruit and Vegetable Canning 28 W W 1 312 Beverage and Tobacco Products W W W 1 3121 Beverages W W W 1 3122 Tobacco W W 0 1 313 Textile Mills W W W 1.8 314 Textile Product Mills 0 0 0 0 315 Apparel 0 0 0 0 316 Leather and Allied Products

298

table8.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002 1 Number of Establishments by Participation in Energy-Management Activity, 2002 Level: National Data; Row: Energy-Management Activities within NAICS Codes; Column: Participation and Source of Financial Support for Activity; Unit: Establishment Counts. RSE NAICS Row Code(a) Energy-Management Activity No Participation Participation(b) In-house Other Don't Know Factors Total United States RSE Column Factors: 0.9 1.4 0.9 0.9 1 311 - 339 ALL MANUFACTURING INDUSTRIES Participation in One or More of the Following Types of Activities 120,362 80,348 -- -- -- 1 Energy Audits 165,216 35,494 14,845 15,890 4,760 2.3 Direct Electricity Load Control 171,940 28,770 13,652 9,986 5,132 2.5 Special Rate Schedule (c)

299

table7.10_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources RSE NAICS Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than Row Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Factors Total United States RSE Column Factors: 0.9 1 1.3 1 1.4

300

table9.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002; 1 Enclosed Floorspace and Number of Establishment Buildings, 2002; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite RSE NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Row Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Factors Total United States RSE Column Factors: 0 0 0 0 0 311 Food 751 15,089 102,589.2 26,438 3.0 0 311221 Wet Corn Milling 5 49 239,993.7 428 13.0 0 31131 Sugar 17 77 418,497.0 821 15.2 0

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reclamation of plutonium from pyrochemical processing residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) have jointly developed a process to recover plutonium from molten salt extraction residues. These NaCl, KCL, and MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved plutonium and up to 2 wt % americium. The overall objective was to develop a process to convert these residues to a pure plutonium metal product and discardable waste. To meet this objective a combination of pyrochemical and aqueous unit operations was used. The first step was to scrub the salt residue with a molten metal (aluminum and magnesium) to form a heterogeneous ''scrub alloy'' containing nominally 25 wt % plutonium. This unit operation, performed at RFP, effectively separated the actinides from the bulk of the chloride salts. After packaging in aluminum cans, the ''scrub alloy'' was then dissolved in a nitric acid - hydrofluoric acid - mercuric nitrate solution at SRP. Residual chloride was separated from the dissolver solution by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifuging. Plutonium was then separated from the aluminum, americium and magnesium using the Purex solvent extraction system. The /sup 241/Am was diverted to the waste tank farm, but could be recovered if desired.

Gray, L.W.; Gray, J.H.; Holcomb, H.P.; Chostner, D.F.

1987-04-01T23:59:59.000Z

302

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

303

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

304

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

305

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE  

Office of Legacy Management (LM)

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE FOR THE NFSS CENTRAL DRAINAGE DITCH DECEMBER 1986 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-81OR20722 By Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 I 1.0 INTRODUCTION AND SUMMARY 1.1 OBJECTIVE AND SCOPE The objective of this report is to describe the methodology used for establishing a supplemental residual contamination guideline for the NFSS vicinity property known as the Central Drainage Ditch (CDD). Supplemental guidelines may exceed authorized guidelines if the resultant dose will not exceed the DOE radiation protection standard of 100 mrem/yr (Ref. 1). This evaluation is based on realistic exposure pathways that were

306

System and method for measuring residual stress  

DOE Patents (OSTI)

The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

Prime, Michael B. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

307

Study on Residual Current Protective Strategy Based on Network  

Science Conference Proceedings (OSTI)

Residual current protective devices play an important role in electrical safety engineering. When dangerous residual current occurs, automatic disconnection of power supply can prevent dangerous residual currents which may cause burns, fires and electrocution. ... Keywords: residual current device, discrimination protection, fieldbus, protective strategy

Yue Dawei; Li Kui; Wang Yao; Wang Jibo

2009-11-01T23:59:59.000Z

308

2005 RSE's - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Eileen O'Brien Eileen.O'Brien@eia.doe.gov Survey Manager Phone: (202) 586-1122 FAX: (202) 586-0018 ...

309

A critical review of residual stress technology  

Science Conference Proceedings (OSTI)

The current technology for evaluating residual in materials has been critically reviewed from the perspective of LLNL needs. The primary technique available continues to be x-ray diffraction (XRD). Substantial analytical and experimental refinements have been made in the past decade. An especially promising development in XRD is the use of energy dispersive spectroscopy for evaluating triaxial stress. This would provide an alternative to neutron diffraction, a technique limited to a relatively small number of outside laboratories. Recent research in residual stress measurement using ultrasonics have concentrated on shear wave techniques. Substantial progress has been made in the use of electromagnetic acoustic transducers (EMAT's), surface waves, corrections for texture, and, of special interest to LLNL, the ability to characterize interfacial stress. Strain gages and related technologies continue to be actively used in field measurements of residual stress, although there is generally some destructive nature to those techniques. An increased use of multiple technique approaches to residual stress evaluation is occurring for the purposes of both verification and complementary measurements. Among a number of miscellaneous techniques found in the recent literature are several involving the use of stress-sensitive magnetic properties and an especially promising use of the thermoelastic effect for noncontact stress mapping. Recommendations for LLNL activity include energy dispersive XRD, ultrasonics characterization of anisotropy and interfacial stress, and investigation of the thermoelastic effect. 57 refs.

Shackelford, J.F.; Brown, B.D.

1987-09-30T23:59:59.000Z

310

Immobilization of Rocky Flats Graphite Fines Residues  

SciTech Connect

The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

Rudisill, T. S.

1998-11-06T23:59:59.000Z

311

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," ",," ",," "," "," ",," ",," "," "," " " "," "," ",,,," "," ",,," ",," ",," ",,"Shipments" "NAICS"," ",,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke and"," ",,"of Energy Sources"

312

Recovery of recyclable materials from shredder residue  

SciTech Connect

Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

1994-01-01T23:59:59.000Z

313

Residual stress determination using strain gage measurements  

Science Conference Proceedings (OSTI)

A strain gage technique, which relates the prior residual stress state in a material to the strain data obtained by fixing a strain gage on one surface and grinding off the other, has been proposed previously. In the current work, a generalized solution for obtaining an arbitrary residual stress profile from strain gage data is presented. Numerical analysis using the solution indicates that the formulation is insensitive to random errors of 10% or less in the experimental data. Based on the results of the analysis, a procedure for determining stress profiles from strain gage data is outlined. Experimental data for tempered glass was analyzed using the technique proposed. The stress profiles predicted are in good agreement with independent observations using indentation and strength data.

Tandon, R.; Green, D.J. (Dept. of Materials Science and Engineering, Pennsylvania State Univ., University Park, PA (US))

1990-09-01T23:59:59.000Z

314

Controlling Residual Stresses by Heat Sink Welding  

Science Conference Proceedings (OSTI)

Results are described of a combined finite element and pipe welding study in which the welding and heat sink parameters required to optimize fast pass heat sink welding (LPHSW) were identified and evaluated in analytic and experimental tasks. Also discussed is the application of an elastic-plastic finite element computer code model to evaluate and optimize the LPHSW process and to verify the results through residual stress measurements on LPHSW pipes.

1981-12-01T23:59:59.000Z

315

1-D Transforms for the Motion Compensation Residual  

E-Print Network (OSTI)

Transforms used in image coding are also commonly used to compress prediction residuals in video coding. Prediction residuals have different spatial characteristics from images, and it is useful to develop transforms that ...

Kamisli, Fatih

316

Scientists detect residue that has hindered efficiency of promising...  

NLE Websites -- All DOE Office Websites (Extended Search)

detect residue that has hindered efficiency of promising type of solar cell By Jared Sagoff * May 3, 2013 Tweet EmailPrint LEMONT, Ill. - Drivers who have ever noticed a residue on...

317

Directional wavelet transforms for prediction residuals in video coding  

E-Print Network (OSTI)

Various directional transforms have been developed recently to improve image compression. In video compression, however, prediction residuals of image intensities, such as the motion compensation residual or the resolution ...

Kamisli, Fatih

318

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

319

In-Situ Method for Treating Residual Sodium  

DOE Patents (OSTI)

A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

Sherman, Steven R.; Henslee, S. Paul

2005-07-19T23:59:59.000Z

320

Residual Stress Tensor in a Compact Tension Weld Specimen  

Science Conference Proceedings (OSTI)

Presentation Title, Residual Stress Tensor in a Compact Tension Weld Specimen ... austenitic stainless steel (Esshete 1250) compact tension weld specimen.

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

322

Kaisheng Biomass Residue Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Kaisheng Biomass Residue Power Co Ltd Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name Kaisheng Biomass Residue Power Co., Ltd. Place Nanping City, Fujian Province, China Zip 365001 Sector Biomass Product Chinese developer of a CDM registered biomass plant. References Kaisheng Biomass Residue Power Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Kaisheng Biomass Residue Power Co., Ltd. is a company located in Nanping City, Fujian Province, China . References ↑ "[ Kaisheng Biomass Residue Power Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Kaisheng_Biomass_Residue_Power_Co_Ltd&oldid=347879" Categories: Clean Energy Organizations

323

A NSGA-II algorithm for the residue-residue contact prediction  

Science Conference Proceedings (OSTI)

We present a multi-objective evolutionary approach to predict protein contact maps. The algorithm provides a set of rules, inferring whether there is contact between a pair of residues or not. Such rules are based on a set of specific amino acid properties. ... Keywords: contact map, multi-objective evolutionary computation, protein structure prediction

Alfonso E. Mrquez-Chamorro; Federico Divina; Jess S. Aguilar-Ruiz; Jaume Bacardit; Gualberto Asencio-Corts; Cosme E. Santiesteban-Toca

2012-04-01T23:59:59.000Z

324

Measurement and correlation of conditions for entrapment and mobilization of residual oil. Final report  

Science Conference Proceedings (OSTI)

Six tasks are reported: capillary number relationships for rock samples, residual oil saturation near wellbore, residual oil structure, effect of gravity on residual saturation, magnitude of residual oil saturation, and effects of wettability on capillary number relationships. (DLC)

Morrow, N.R.

1981-10-01T23:59:59.000Z

325

TRUPACT-II residue pipe payload container  

SciTech Connect

This paper summarizes the project to develop, test and certify a new payload container for the TRUPACT-II, a Type B packaging for the shipment of transuranic waste. The new payload container will provide segregation of plutonium waste materials within the TRUPACT-II. This segregation of fissile contents will support a new criticality safety analysis that may allow an increase in the TRUPACT-II Pu-239 Fissile Gram Equivalent (FGE) limit from 325 grams to 2800 grams. The need for this project was brought about by the end of the Cold War and the resulting shift in value of plutonium residues from providing recoverable Defense Program material to being considered disposable waste. This paper will not cover many of the details of the project but will instead aim to provide a general picture of all the project activities.

Geinitz, R. [Rocky Flats Environmental Technology Site, Golden, CO (United States); Gregory, P. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1995-06-01T23:59:59.000Z

326

Leaching hierarchies in co-combustion residues  

Science Conference Proceedings (OSTI)

The leaching propensities from co-combustion residues of 10 trace elements (Be, V, Cr, Zn, As, Se, Cd, Ba, Hg, Pb) were evaluated. Eight fuels varying from coal blends to coal and secondary fuel mixtures to ternary mixtures were co-combusted in two reactor configurations and at two temperatures (850 and 950{sup o}C). The ash was subjected to a miniaturized toxicity characteristic leaching procedure (TCLP) developed for this study, and the trace element content in the leachate was analyzed, andpercentage retentions of elements in the ashes and leachates were calculated. Hg and Se were almost completely volatilized during combustion and, therefore, were largely absent from the ashes, in all cases. For the other trace elements, it was not possible to establish a hierarchy of relative trace-element retention. Retention was primarily a function of the combustion method, with no clear effect of temperature retention being observed. The measured trace-element retentions were compared to those predicted by thermodynamic equilibrium modeling, using the MTDATA software. The model successfully predicted the measured values in many cases; however, many anomalies were also noted. From trace-element analysis in the leachates, an extent-of-leaching hierarchy could be established. The elements that underwent low degrees of leaching were Zn, Hg, Pb, low to moderate leaching were Be, Cr, and Cd, and thoseleached to a greater extent were V, As, Se, and Ba. This hierarchy was observed for all fuels and conditions studied. Leaching was found to be a strong function of the combustion temperature and combustion method. When assessing the potential toxicity of leachate from co-combustion residues, Zn, Hg, and Pb may be deemed of least concern, while a greater emphasis should be placed in mitigating the release of the remaining elements. 18 refs., 7 tabs.

A. George; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering and Chemical Technology

2008-05-15T23:59:59.000Z

327

California's program converts biomass residues to energy  

SciTech Connect

This paper provides a brief introduction to the emerging biomass fuel industry in California and includes descriptions of California's biomass potential, California's biomass development program, and legislation that expands the state's developmental efforts in biomass commercialization. California's agriculture and forest industries residues were discussed. These residues can be converted to energy, and now, through California's aggressive development program, more residues will be converted. (DP)

Ward, P.F.

1980-01-01T23:59:59.000Z

328

Residual Stress Determination in Cast Bi-Metallic Joints  

Science Conference Proceedings (OSTI)

In-Situ Neutron Diffraction and Crystal Plasticity Modeling of a-Uranium In-Situ Studies of the ... Thermal Residual Stresses and Strains in Depleted Uranium.

329

Hot Isostatic Pressing of Chlorine-Containing Plutonium Residues ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Some of the plutonium residues wastes at Sellafield contain ... Effect of Alloy Composition on the Environmental cracking of Nickel Alloys in...

330

Investigation of carbon residue from pyrolyzed scrap tires.  

E-Print Network (OSTI)

??The objectives of this study are: (1) Blending the Conrad residue with coal-derived pitches and its effect on the pitch properties. (2) The activation of (more)

Bandlamudi, Bhagat Chandra.

1999-01-01T23:59:59.000Z

331

Wet Gasification of Ethanol Residue: A Preliminary Assessment  

DOE Green Energy (OSTI)

A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

Brown, Michael D.; Elliott, Douglas C.

2008-09-22T23:59:59.000Z

332

Wisconsin Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

333

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier ...

334

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

335

Implementing Residue Chippers On Harvesting Operation for Biomass Recovery.  

E-Print Network (OSTI)

??Three operations that implemented a small residue chipper on their conventional logging operations were studied in 2006. Two of the jobs were thinning operations, the (more)

Aulakh, Jaspreet

2008-01-01T23:59:59.000Z

336

Plastic Strain and Residual Stress Distributions in an AISI 304 ...  

Science Conference Proceedings (OSTI)

Effect of DH Concentration on Crud Deposition on Heated Zircaloy-4 in .... and Residual Stress Distributions in an AISI 304 Stainless Steel BWR Pipe Weld.

337

Intergranular Thermal Residual Strain in Rolled and Texture-free ? ...  

Science Conference Proceedings (OSTI)

In this study, the intergranular thermal residual strains are determined from ... rolled and texture-free ?-uranium measured by neutron diffraction during cooling.

338

Ohio Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

339

Pilot Test of Bauxite Residue Carbonation With Flue Gas  

Science Conference Proceedings (OSTI)

... of bauxite residue in water with flue gas, produced from direct oil burning. ... New Development Model for Bauxite Deposits - Dedicated Compact Refinery.

340

Potential of biomass residue availability; The case of Thailand  

SciTech Connect

An acute shortage of fuel wood and charcoal prevails in many developing countries. A logical approach to the problem places emphasis on the development of alternative energy sources, including use of biomass residues. An assessment of the potential of biomass residues for energy and other uses calls for an estimation of their annual production. Also, because the residues are normally bulky they should be utilized near their place of origin whenever possible to avoid high transportation costs. Thus knowledge of the total national generation of residues per year does not provide enough information for planning residue utilization. This article illustrates a method of residue estimation that takes the case of Thailand as an example. It presents the annual generation of nine agricultural resides (paddy husk, paddy straw, bagasse, cotton stalk, corn cob, groundnut shell, cassava stalk and coconut husk and shell) and one forestry residue (sawdust) in different agroeconomic zones and regions of Thailand. The methodology used for the investigation of crop-to-residue ratios is outlined. The annual generation figures for the different residues along with observations about their traditional uses are presented.

Bhattacharya, S.C.; Shrestha, R.M.; Ngamkajornvivat, S. (Energy Technology Div., Asian Institute of Technology, Bangkok 10501 (TH))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vermont Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

342

Midwest (PADD 2) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

343

Investigation of Residual Stress in Key-Hole Laser Formed ...  

Science Conference Proceedings (OSTI)

Residual strain/stress measurements in weldments produced using the fibre ... Dislocation Densities, Burgers Vector Populations and Slip System Activity in...

344

NRC/EPRI Welding Residual Stress Validation Program (Phase III)  

Science Conference Proceedings (OSTI)

The NRC/EPRI weld residual stress (WRS) program currently consists of four phases, with each phase increasing in complexity from lab size specimens to...

345

Logging and Agricultural Residue Supply Curves for the Pacific Northwest  

DOE Green Energy (OSTI)

This report quantified the volume of logging residues at the county level for current timber harvests. The cost of recovering logging residues was determined for skidding, yearding, loading, chipping and transporting the residues. Supply curves were developed for ten candidate conversion sites in the Pacific Northwest Region. Agricultural field residues were also quantified at the county level using five-year average crop yields. Agronomic constraints were applied to arrive at the volumes available for energy use. Collection costs and transportation costs were determined and supply curves generated for thirteen candidate conversion sites.

Kerstetter, James D.; Lyons, John Kim

2001-01-01T23:59:59.000Z

346

Michigan Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

347

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

348

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

Gasoline and Diesel Fuel Update (EIA)

0 W 0 0 0 0 W 327410 Lime 4 0 W 0 4 0 0 W 327420 Gypsum 0 0 0 0 0 0 0 0 327993 Mineral Wool 9 0 W W 4 0 0 W 331 Primary Metals 299 W 5 59 64 35 30 153 331111 Iron and Steel Mills...

349

Microsoft Word - QA NAICS Code 15Jan09  

NLE Websites -- All DOE Office Websites (Extended Search)

provides a general description of the services as follows: "The personnel security program work involves numerous and varied personnel security access authorization...

350

Progress in recycling of automobile shredder residue  

DOE Green Energy (OSTI)

At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

1996-03-01T23:59:59.000Z

351

Tangential residual as error estimator in the boundary element method  

Science Conference Proceedings (OSTI)

In this paper a new error estimator based on tangential derivative Boundary Integral Equation residuals for 2D Laplace and Helmholtz equations is shown. The direct problem for general mixed boundary conditions is solved using standard and hypersingular ... Keywords: Adaptivity, Boundary Integral Equation residual, Boundary element method, Error estimation, Mesh adaptation, Mesh refinement, Nodal sensitivity

Alejandro E. Martnez-Castro; Rafael Gallego

2005-04-01T23:59:59.000Z

352

Modeling Sustainable Agricultural Residue Removal at the Subfield Scale  

Science Conference Proceedings (OSTI)

This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

2012-05-02T23:59:59.000Z

353

Residual fuel outlook - 1981 through 1995. Final report  

SciTech Connect

This report forecasts the future availability of residual fuel and its implications to the marine industry. The results are based on the completion of three separate tasks. The first examines past trends and recent developments in worldwide supply and demand markets for residual and other fuels, while the second investigates upgrading and expansion activities by the refining industry. The combination of these efforts produces an overview of the worldwide residual market and a complete understanding of refiners' economic and technical decision factors determining final product mix production. The last task utilizes information gained in previous tasks to review available longterm forecasts and their underlying assumptions. The forecasts completed by the National Petroleum Council (NPC) were utilized for a depiction of residual availability in 1985, while the Department of Energy's (DOE) Midterm Energy Forecasting System (MEFS) was utilized and adjusted to provide estimates of residual availability in 1990 and 1995.

Varndell, T.B.

1982-03-01T23:59:59.000Z

354

Conversion of direct process high-boiling residue to monosilanes  

DOE Patents (OSTI)

A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

2000-01-01T23:59:59.000Z

355

Crop residues as a fuel for power generation  

DOE Green Energy (OSTI)

Crop residues could serve as an alternative energy source for producing electric power and heat in agricultural regions of the United States. Nearly 2 quads of residues are estimated to be available as a sustainable annual yield. These can substitute for up to one quad of conventional fuels used to generate electricity and up to an additional quad of petroleum and natural gas currently used for producing heat. The most promising routes to residue conversion appear to be regional generators sized in the megawatt range, and the mixing of residues with coal for burning in coal power plants. Costing farmers from $0.70 to $1.25 per million Btu, to harvest and prepare for use as a fuel, residues can be a competitive renewable energy supply.

Bhagat, N.; Davitian, H.; Pouder, R.

1979-07-01T23:59:59.000Z

356

A manual for implementing residual radioactive material guidelines  

Science Conference Proceedings (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

1989-06-01T23:59:59.000Z

357

An urban infill : a residual site in Boston  

E-Print Network (OSTI)

This thesis is concerned with the treatment of residual sites in the context of the urban environment and in particular with the wounds inflicted by the passage of the Massachusetts Turnpike through the city of Boston. The ...

Savvides, Andreas L. (Andreas Loucas)

1996-01-01T23:59:59.000Z

358

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

359

Generation of residual energy in the turbulent solar wind  

SciTech Connect

In situ observations of the fluctuating solar wind flow show that the energy of magnetic field fluctuations always exceeds that of the kinetic energy, and therefore the difference between the kinetic and magnetic energies, known as the residual energy, is always negative. The same behaviour is found in numerical simulations of magnetohydrodynamic turbulence. We study the dynamics of the residual energy for strong, anisotropic, critically balanced magnetohydrodynamic turbulence using the eddy damped quasi-normal Markovian approximation. Our analysis shows that for stationary critically balanced magnetohydrodynamic turbulence, negative residual energy will always be generated by nonlinear interacting Alfven waves. This offers a general explanation for the observation of negative residual energy in solar wind turbulence and in the numerical simulations.

Gogoberidze, G. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Institute of Theoretical Physics, Ilia State University, 3/5 Cholokashvili Ave., 0162 Tbilisi (Georgia); Chapman, S. C.; Hnat, B. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom)

2012-10-15T23:59:59.000Z

360

Asphalt landscape after all : residual suburban surface as public infrastructure  

E-Print Network (OSTI)

The thesis proposes a hybridized commercial retail strip inserted into a residual suburban condition as a manner of investigating the latent potential of suburban logic, both its constituent elements and its formal rules ...

O'Connor, Joseph Michael, M. Arch. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nondestructive Evaluation: Nondestructive Evaluation and Measurement of Residual Stress  

Science Conference Proceedings (OSTI)

This report summarizes the results of nondestructive evaluation (NDE) techniques for residual stress measurements conducted on Alloy 600 samples that have undergone changes in material properties resulting from simulated operating conditions, including heat treatment, three-point bending load, cracking, and repair. The overall objective was to identify suitable NDE techniques that would augment the existing and proven surface residual stress measurements by X-ray diffraction (XRD) and extend the measurem...

2009-12-01T23:59:59.000Z

362

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

363

Characterization and stabilization of arsenic in water treatment residuals  

E-Print Network (OSTI)

The characterization of water treatment residuals containing arsenic was investigated in the first study. Arsenic desorption and leachability from the residuals were the focus of this study. Arsenic leaching from water treatment residuals was found to be underestimated by the toxicity characteristic leaching test (TCLP) due to the pH of the leachates being favorable for As(V) adsorption. Competitive desorption of arsenic with phosphate was significant because phosphate tends to compete with As(V) on the surface of the metal hydroxide for adsorption sites. However, arsenic desorption by the competition of sulfate and chloride was found to be negligible. The pH in the leachate was a critical variable in controlling arsenic stability in the residuals. The release of arsenic from the residuals was elevated at low and high pH due to the increase dissolution of the adsorbents such as Fe and Al hydroxides. In the second phase of the study, the stabilization techniques for arsenic contained residuals and were examined to develop methods to suitably stabilize arsenic to eliminate and/or minimize leaching. A decrease of arsenic leaching was achieved by the addition of lime to the residuals and believed to be due to the formation of less soluble and stable calcium-arsenic compounds. However, it is suggested that the ordinary Portland cement (OPC) should be added with the lime for the long term stabilization because lime can be slowly consumed when directly exposed to atmospheric CO2. The solidification and stabilization (S/S) technique with lime and OPC was shown to be successfully applied by the immobilization of a wide variety of arsenic tainted water treatment residuals.

Wee, Hun Young

2003-08-01T23:59:59.000Z

364

Residual stresses and stress corrosion cracking in pipe fittings  

Science Conference Proceedings (OSTI)

Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

Parrington, R.J.; Scott, J.J.; Torres, F.

1994-06-01T23:59:59.000Z

365

Hanford tank residual waste contaminant source terms and release models  

Science Conference Proceedings (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

366

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE...

367

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

368

Analyzing strategic behaviors in electricity markets via transmission-constrained residual demand.  

E-Print Network (OSTI)

??This dissertation studies how to characterize strategic behaviors in electricity markets from a transmission-constrained residual demand perspective. This dissertation generalizes the residual demand concept, widely (more)

Xu, Lin

2010-01-01T23:59:59.000Z

369

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

370

table7.8_02  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Establishment Counts. Electricity Components Natural Gas Components Steam Components Electricity Electricity Natural Gas Natural Gas Steam Steam from Only from Both from Only from Both from Only from Both Electricity Sources Local Utility Any Natural Gas Sources Local Utility Steam Sources Local Utility RSE NAICS Any from Only Other than and Natural from Only Other than and Any from Only Other than and Row Code(a) Subsector and Industry Electricity(b) Local Utility(c) Local Utility(d)

371

table7.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Row Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft)

372

table7.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Row Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

373

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

374

Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste  

SciTech Connect

Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.

2011-03-03T23:59:59.000Z

375

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

376

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

377

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and"," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

378

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2006;" 9 Expenditures for Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

379

Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

380

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010;" 9 Expenditures for Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " 6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)"," "

382

The functions of tryptophan residues in membrane proteins  

SciTech Connect

Membrane proteins in general have a significantly higher Trp content than do soluble proteins. This is especially true for the M and L subunits of the photosynthetic reaction center from purple bacteria. The Trp residues are located mostly in the segments that connect the transmembrane helices. Further, they are concentrated at the periplasmic side of the complex. Within the protein subunits, many form hydrogen bonds with carbonyl oxygens of the main chain, thereby stabilizing the protein. On the surface of the molecule, they are correctly positioned to form hydrogen bonds with the lipid head groups while their hydrophobic rings are immersed in the lipid part of the bilayer. We suggest that Trp residues are involved in the translocation of protein through the membrane and that following translocation, Trp residues serve as anchors on the periplasmic side of the membrane.

Schiffer, M.; Chang, C.H.; Stevens, F.J.

1994-08-01T23:59:59.000Z

383

Matrix Effects on Radiolytic Gas Generation in Plutonium Residues  

DOE Green Energy (OSTI)

Transportation of plutonium bearing materials requires a shipping package that has been rigorously tested to withstand normal and accident conditions. Plutonium bearing materials can contribute to package internal pressure by producing heat and gases from chemical and radiochemical reactions. Of particular concern is the production of hydrogen gas from the radiolysis of moisture, which can result in flammable gas mixtures within the shipping package. Estimating the gas generation rates for plutonium residues is complicated by the large variability of material composition and process origin. In February 1999, the Savannah River Technology Center established a gas generation test program to support transportation of plutonium residue materials. The initial efforts of this program have focused on evaluation of residues identified as Sand, Slag, and Crucible (SS and C) generated as a byproduct of plutonium metal production.

Livingston, R.

1999-08-06T23:59:59.000Z

384

An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems  

Science Conference Proceedings (OSTI)

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion ... Keywords: Agricultural residues, Bioenergy, Model integration, Soil erosion, Soil organic carbon

D. J. Muth, Jr.; K. M. Bryden

2013-01-01T23:59:59.000Z

385

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

386

Recovery of plutonium from molten salt extraction residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) are jointly developing a process to recover plutonium from molten salt extraction residues. These NaCl, KCl, MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved PUCl/sub 3/ and up to 2 wt % AmCl/sub 3/. The objective is to develop a process to convert these residues to plutonium metal product and discardable waste. The first step of the conceptual process is to convert the actinides to a heterogenous scrub alloy with aluminum and magnesium. This step, performed at RFP, effectively separates the actinides from the bulk of the chloride. This scrub alloy will then be dissolved in a HNO/sub 3/-HF solution at SRP. Residual chloride will be removed by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifugation. Plutonium and americium will be separated using the Purex solvent extraction process. The /sup 241/Am will be diverted to the solvent extraction waste stream where it can either be discarded to the waste farm or recovered. The plutonium will be finished via PuF/sub 3/ precipitation, oxidation to a mixture of PUF/sub 4/ and PuO/sub 2/, followed by reduction to plutonium metal with calcium.

Gray, L.W.; Holcomb, H.P.

1983-01-01T23:59:59.000Z

387

Aqueous recovery of plutonium from pyrochemical processing residues  

Science Conference Proceedings (OSTI)

Pyrochemical processes provide rapid methods to reclaim plutonium from scrap residues. Frequently, however, these processes yield an impure plutonium product and waste residues that are contaminated with actinides and are therefore nondiscardable. The Savannah River Laboratory and Plant and the Rocky Flats Plant are jointly developing new processes using both pyrochemistry and aqueous chemistry to generate pure product and discardable waste. An example of residue being treated is that from the molten salt extraction (MSE), a mixture of NaCl, KCl, MgCl/sub 2/, PuCl/sub 3/, AmCl/sub 3/, PuO/sub 2/, and Pu/sup 0/. This mixture is scrubbed with molten aluminum containing a small amount of magnesium to produce a nonhomogeneous Al-Pu-Am-Mg alloy. This process, which rejects most of the NaCl-KCl-MgCl/sub 2/ salts, results in a product easily dissolved in 6M HNO/sub 3/ -0.1M HF. Any residual chloride in the product is removed by precipitation with Hg(I) followed by centrifuging. Plutonium and americium are then separated by the standard Purex process. The americium, initially diverted to the solvent extraction waste stream, can either be recovered or sent to waste.

Gray, L.W.; Gray, J.H.

1984-01-01T23:59:59.000Z

388

Modeling EU electricity market competition using the residual supply index  

Science Conference Proceedings (OSTI)

An econometric approach to related hourly Residual Supply Index to price-cost margins in the major EU electricity generation markets suggests that market structure, as measured by the RSI, is a significant explanatory factor for markups, even when scarcity and other explanatory variables are included. (author)

Swinand, Gregory; Scully, Derek; Ffoulkes, Stuart; Kessler, Brian

2010-11-15T23:59:59.000Z

389

Crop residue conversion to biogas by dry fermentation  

Science Conference Proceedings (OSTI)

A simple 'dry fermentation' process has been developed that may enable economical conversion of drier crop residues to biogas. Results from two years of process definition and scale-up to a 110 m/sup 3/ prototype show that biogas production rates exceeding those necessary to make the dry fermentor competitive have been achieved. 13 refs.

Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.J.; Jackson, D.A.; Kabrick, R.M.; Gottung, E.J.

1981-01-01T23:59:59.000Z

390

Adsorption process producing chronologically constant amount of a residual gas  

SciTech Connect

An adsorption process is disclosed for purifying or fractionating a gaseous feed mixture comprises an adsorption phase, at least one expansion phase, a purging phase and at least one pressure buildup phase. The expansion phase(S) and the purging phase produce residual process gas fractions. The sum total of volume, and/or mass streams of the residual process gas fractions comprises a residual gas stream which is maintained chronologically substantially constant by controlling the volume and/or gas streams of the gas entering the purging phase and maintaining the gas leaving the expansion phase(S) at a substantially constant value, dependent on the desired mass and/or volume quantity of the residual gas stream. The length of the purging phase and of the expansion phase(S) is adjusted accordingly so that the relationship of the length of time of the purging phase to the length of time of the expansion phase(S) is substantially the same as the relationship of the volume and/or mass of the gas fractions obtained during the purging to those obtained during the expansion phase(S), respectively. The control of the purging and of the expansion phase(S) can also be varied in response to a flow rate of a feed gas entering the process.

Benkmann, C.

1982-02-16T23:59:59.000Z

391

European experience in transport/storage cask for vitrified residues  

SciTech Connect

Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN{sup TM}81 casks currently in use in Switzerland and the TN{sup TM}85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN{sup TM}81 and TN{sup TM}85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN{sup TM}81 and the TN{sup TM}85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN{sup TM}28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

Otton, Camille; Sicard, Damien [AREVA - TN International (France)

2007-07-01T23:59:59.000Z

392

Design of thermal imprinting system with uniform residual thickness  

Science Conference Proceedings (OSTI)

A new thermal imprinting system for the printed circuit boards (PCBs) with both large areas and fine conducting lines was developed adopting hot airs with a high pressure. Several small nickel stamps were used to cover the large area, and the stamps ... Keywords: Patterned circuit boards, Thermal imprinting system, Uniformity of residual thickness

Won-Ho Shin

2009-11-01T23:59:59.000Z

393

Measuring residual stress in glasses and ceramics using instrumented indentation.  

Science Conference Proceedings (OSTI)

Instrumented indentation has yielded mixed results when used to measure surface residual stresses in metal films. Relative to metals, many glasses and ceramics have a low modulus-to-yield strength (E/sy) ratio. The advantage of this characteristic for measuring residual stress using instrumented indentation is demonstrated by a series of comparative spherical and conical tip finite element simulations. Two cases are considered: (i) a material with E/s{sub y} = 24-similar to glass and (ii) a material with E/s{sub y} = 120-similar to metal films. In both cases, compressive residual stress shifts the simulated load-displacement response toward increasing hardness, irrespective of tip geometry. This shift is shown to be entirely due to pile up for the ''metal'' case, but primarily due to the direct influence of the residual stress for the ''glass'' case. Hardness changes and load-displacement curve shifts are explained by using the spherical cavity model. Supporting experimental results on stressed glasses are provided.

Tandon, Rajan; Buchheit, Thomas E.

2007-03-01T23:59:59.000Z

394

Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates  

SciTech Connect

This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher cycle loading cases. The residual strength models may provide a more accurate estimate of blade lifetime than Miner's rule for some loads spectra. They have the added advantage of providing an estimate of current blade strength throughout the service life.

WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

2002-03-01T23:59:59.000Z

395

FIRST DRAFT OF OUTLINE: RPSEA 1 RESIDUAL OIL ZONE RESEARCH  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Exploitation and the Origin of Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas RPSEA PROJECT NUMBER.FINAL Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas Contract 81.089 08123-19-RPSEA June 28, 2012 Dr. Robert Trentham Director, Center for Energy and Economic Diversification The University of Texas of the Permian Basin Odessa, Texas 79762 L. Steven Melzer Melzer Consulting Midland, Texas 79701 David Vance Arcadis, U. S. Midland, Texas 79701 LEGAL NOTICE This report was prepared by Dr Robert Trentham as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA

396

The Particle Adventure | What holds it together? | Residual EM force  

NLE Websites -- All DOE Office Websites (Extended Search)

EM force EM force Residual EM force Atoms usually have the same numbers of protons and electrons. They are electrically neutral, therefore, because the positive protons cancel out the negative electrons. Since they are neutral, what causes them to stick together to form stable molecules? The answer is a bit strange: we've discovered that the charged parts of one atom can interact with the charged parts of another atom. This allows different atoms to bind together, an effect called the residual electromagnetic force. So the electromagnetic force is what allows atoms to bond and form molecules, allowing the world to stay together and create the matter you interact with all of the time. Amazing, isn't it? All the structures of the world exist simply because protons and electrons have opposite charges!

397

Bulging of cans containing plutonium residues. Summary report  

Science Conference Proceedings (OSTI)

In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.

Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

1996-03-01T23:59:59.000Z

398

Effluent Guidelines and Coal Combustion Residuals Strategic Vision  

Science Conference Proceedings (OSTI)

This report provides a strategic view of the potential impacts on the electric power industry resulting from potential U.S. Environmental Protection Agency (EPA) effluent guidelines (EG) and coal combustion residuals (CCR) rule-making activities and deliberations. The report will be of value to electric power company executives and managers involved with long-range facility planning and operations. The report will also assist generation facility managers and electric power company environmental staff in ...

2011-11-11T23:59:59.000Z

399

The Dissolution of Desicooler Residues in H-Canyon Dissolvers  

Science Conference Proceedings (OSTI)

A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

Gray, J.H.

2003-06-23T23:59:59.000Z

400

Turbine-Generator Topics for Plant Engineers: Residual Magnetism  

Science Conference Proceedings (OSTI)

The undesirable magnetization of components of rotating equipment used in the generation of electric power is a problem that has been recognized for many years; but wide understanding of the origins, detection techniques, remediation, and avoidance principles of residual magnetization has been lacking. As part of the series Turbine-Generator Topics for Plant Engineers, EPRI commissioned this report with the purpose of providing engineers active in the operation and maintenance of power ...

2013-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automobile shredder residue: Process developments for recovery of recyclable constituents  

SciTech Connect

The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

1990-01-01T23:59:59.000Z

402

EOR: well logs sharpen focus on residual saturation. Part 2  

Science Conference Proceedings (OSTI)

Much of what the enhanced recovery specialist must know about the reservoir under consideration can be measured, calculated, or deduced from well logging data. Appropriate well logging procedures for this type of formation evaluation would include resistivity, radioactivity, dielectric constant, and acoustic well logs. This work describes the principles and procedures for assessing residual oil saturation of a subsurface formation using these methods. The study explains what is actually being measured and compared when well logging data are obtained and processed.

Frederick, R.O.

1983-01-01T23:59:59.000Z

403

State-of-Knowledge Assessment of Residual Oil Nickel Emissions  

Science Conference Proceedings (OSTI)

This report summarizes current knowledge of nickel emissions from power plants firing residual oil. The primary motivation for the study was the Maximum Achievable Control Technology (MACT) standard proposed by the Environmental Protection Agency (EPA) in 2004. Although EPA subsequently withdrew its proposed standard, EPRI and members of its Gas and Oil Boiler Interest Group (GOBIG) decided that completion of the study and documentation of its findings were worthwhile.

2007-02-07T23:59:59.000Z

404

Composition and utilization of cellulose for chemicals from agricultural residues  

DOE Green Energy (OSTI)

This study was undertaken for several reasons. Firstly, because of the scarcity of data on the composition of certain agricultural residues generated predominantly in California, it could only be inferred from the published composition of agricultural grains and wood what the carbohydrate composition of the residue straw, stems, and roots might be. Published methods of analysis on wood and grains were adapted or modified to suit these materials, resulting in an analytical system applicable to these residues. Secondly, a series of chemical pretreatments were studied to see if sugar production by enzymatic hydrolysis might be improved. Also these studies are used as a basis of generating the data for chemical engineering parameters of the Berkeley process. Since lignin is ultimately used as a feed back energy source in the Berkeley process, it is not necessary for it to be in the form of a relatively low weight polymer. Therefore, a study on the use of recoverable chemical solvents for dilignification by solution, rather than by a depolymerization reaction is indicated.

Sciamanna, A.F.; Freitas, R.P.; Wilke, C.R.

1977-12-01T23:59:59.000Z

405

Diesel engine lubrication with poor quality residual fuel  

Science Conference Proceedings (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

406

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-Print Network (OSTI)

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facilitys residue handling challenges and input demands. A number of feedstock, technology, oxidizer and product options are available for gasification along with combinations thereof. The objective of this work is to create a systematic method for optimizing the design of a residual biomass gasification unit. In detail, this work involves development of an optimization superstructure, creation of a biorefining scenario, process simulation, equipment sizing & costing, economic evaluation and optimization. The superstructure accommodates different feedstocks, reactor technologies, syngas cleaning options and final processing options. The criterion for optimization is annual worth. A biorefining scenario for the production of renewable diesel fuel from seed oil is developed; gasification receives the residues from this biorefinery. Availability of Soybeans, Jatropha, Chinese Tallow and woody biomass material is set by land use within a 50-mile radius. Four reactor technologies are considered, based on oxidizer type and operating pressure, along with three syngas cleaning methods and five processing options. Results show that residual gasification is profitable for large-scale biorefineries with the proper configuration. Low-pressure air gasification with filters, water-gas shift and hydrogen separation is the most advantageous combination of technology and product with an annual worth of $9.1 MM and a return on investment of 10.7 percent. Low-pressure air gasification with filters and methanol synthesis is the second most advantageous combination with an annual worth of $9.0 MM. Gasification is more economic for residue processing than combustion or disposal, and it competes well with natural gas-based methanol synthesis. However, it is less economic than steam-methane reforming of natural gas to hydrogen. Carbon dioxide credits contribute to profitability, affecting some configurations more than others. A carbon dioxide credit of $33/t makes the process competitive with conventional oil and gas development. Sensitivity analysis demonstrates a 10 percent change in hydrogen or electricity price results in a change to the optimal configuration of the unit. Accurate assessment of future commodity prices is critical to maximizing profitability.

Georgeson, Adam

2010-12-01T23:59:59.000Z

407

Mechanical Freeze/Thaw and Freeze Concentration of Water and Wastewater Residuals  

Science Conference Proceedings (OSTI)

Water and wastewater treatment plants generate water residuals that must be disposed of in accordance with environmental regulations. This report analyzes the use of mechanical freeze/thaw and freeze concentration processes to reduce the volume of these residuals.

2003-11-06T23:59:59.000Z

408

Effects of fluoride residue on Cu agglomeration in Cu/low-k interconnects  

Science Conference Proceedings (OSTI)

We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (kKeywords: Barrier metal, Cu agglomeration, Fluoride residue, Low-k, Oxidation, Penetration, Porous

Y. Kobayashi; S. Ozaki; Y. Iba; Y. Nakata; T. Nakamura

2011-05-01T23:59:59.000Z

409

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network (OSTI)

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

410

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues  

E-Print Network (OSTI)

Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current

Ma, Lena

411

Three-Dimensional Residual Tidal Circulation in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional residual circulation driven by tides in an elongated basin of arbitrary depth is described with a small amplitude, constant density model on the f plane. The inclusion of rotation fundamentally alters the residual flow. With ...

Clinton D. Winant

2008-06-01T23:59:59.000Z

412

Residual fuel consumption in the U.S. continues to decline - Today ...  

U.S. Energy Information Administration (EIA)

Crude oil , gasoline, heating ... in the late 1970s, demand for residual fuel oil in the United ... Changes on both the residual fuel supply and demand side of the ...

413

European experience in transport / storage cask for vitrified residues  

Science Conference Proceedings (OSTI)

Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN{sup TM}81 casks currently in use in Switzerland and the TN{sup TM}85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN{sup TM}81 and TN{sup TM}85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN{sup TM}81 and the TN{sup TM}85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN{sup TM}28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. In addition, years of feedback and experience in design and operations - together with ever improved materials - have allowed finding further optimization of this type of cask design. In order to increase the loading capacity in terms of radioactive source terms and heat load by 40%, the cask design relies on innovative solutions and benchmarks from the current shipping campaigns. Currently, TN{sup TM}81 and TN{sup TM}85 are the only licensed casks that can transport and store 28 canisters with a total decay heat of 56 kW. It contributes to optimise the number of required transports to bring back high level waste residues to their producers. Three units have already been loaded and transported to ZWILAG (Zwischenlager Wuerenlingen AG) in Switzerland where they are stored for 40 years. Based on the same design but integrating the German Authorities and German users specificities, the TN{sup TM}85 cask is dedicated to the transport and storage of vitrified residues to Germany. It is presently at the final licensing stage. The transport cask approval expertise has now been granted, and the storage expertise is in the final steps. The first transport with TN{sup TM}85 cask is scheduled up to now in 2007 and the commissioning operations are under preparation. These two casks are key elements for the whole reprocessing system of AREVA as they enable the transport and the storage of the vitrified residues. (authors)

Blachet, L.; Otton, C.; Sicard, D. [AREVA TN International (France)

2007-07-01T23:59:59.000Z

414

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)"

415

Environmental and economic evaluation of energy recovery from agricultural and forestry residues  

DOE Green Energy (OSTI)

Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

None

1980-09-01T23:59:59.000Z

416

Modelling of residual stresses in the shot peened material C-1020 by artificial neural network  

Science Conference Proceedings (OSTI)

This study consists of two cases: (i) The experimental analysis: Shot peening is a method to improve the resistance of metal pieces to fatigue by creating regions of residual stress. In this study, the residual stresses induced in steel specimen type ... Keywords: Artificial neural network, Layer removal technique, Residual stresses, Shot peening

Cetin Karata?; Adnan Sozen; Emrah Dulek

2009-03-01T23:59:59.000Z

417

Fuel gas production from animal residue. Dynatech report No. 1551  

DOE Green Energy (OSTI)

A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

Ashare, E.; Wise, D.L.; Wentworth, R.L.

1977-01-14T23:59:59.000Z

418

Integrating the Clearance in NPP Residual Material Management  

SciTech Connect

Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could be achieved. A rough economical analysis permits to estimate a saving around 2000 US$ to 13000 US$ per cubic meter of steel scrap according the variability of materials and disposal costs. Many learnt lessons of this practice were used as a feed back in the planning of characterization activities for decommissioning a Spanish NPP and today are considered as a significant reference in our Decommissioning engineering approaches.

Garcia-Bermejo, R.; Lamela, B. [Iberdrola Ingenieria y Construccion, Jose Bardasano Baos 28036, Madrid (Spain)

2008-01-15T23:59:59.000Z

419

Residue arithmetic circuit design based on integrated optics  

SciTech Connect

Hybrid circuits containing integrated optical detectors, waveguides, and electro-optic switches can be used to perform a variety of digital logic operations. In combining the hybrid circuits with the carry-free residue arithmetic algorithm, different modules are designed to perform basic arithmetic operations, encoding, decoding, and scaling. Based on pipelining and parallel concepts, a vector-vector multiplier is designed to yield very high throughput rate for application involving traditionally slow computation such as matrix-vector multiplication and polynomial evaluation. 18 references.

Huang, S.Y.; Lee, S.H.

1982-01-01T23:59:59.000Z

420

Residual stress measurement and microstructural characterization of thick beryllium films  

SciTech Connect

Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

2008-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radon transform on a space over a residue class ring  

Science Conference Proceedings (OSTI)

The functions on a space of dimension N over the residue class ring Z{sub n} modulo n that are invariant with respect to the group GL(N,Z{sub n}) form a commutative convolution algebra. We describe the structure of this algebra and find the eigenvectors and eigenvalues of the operators of multiplication by elements of this algebra. The results thus obtained are applied to solve the inverse problem for the hyperplane Radon transform on Z{sup N}{sub n}. Bibliography: 2 titles.

Molchanov, Vladimir F [Tambov State University, Tambov (Russian Federation)

2012-05-31T23:59:59.000Z

422

table6.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002; 1 Consumption Ratios of Fuel, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 0.9 1 311 Food 867.8 6.0 2.6 5.9 311221 Wet Corn Milling 24,113.7 65.7 26.2 1.8 31131 Sugar 8,414.5 54.2 17.9 1 311421 Fruit and Vegetable Canning 824.1 5.4 2.5 10.6 312 Beverage and Tobacco Products 670.4 1.6 1.0 2.7 3121 Beverages 658.6 2.8 1.3 3.9 3122 Tobacco 729.4 0.6 0.5 1 313 Textile Mills 798.7 11.2 4.3

423

table6.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002; 4 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 395.7 4.3 2.3 3.6 50-99 663.4 6.8 3.3 5 100-249 905.8 7.9 3.8 3.6 250-499 1,407.1 11.1 5.1 4.3 500-999 1,999.6 12.4 5.9 5.6 1000 and Over 1,597.7 8.5 3.9 2.5 Total 1,172.2 8.9 4.2 2 311 FOOD Employment Size Under 50 893.5 6.6 2.4

424

table11.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002; 3 Electricity: Components of Onsite Generation, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood RSE NAICS Total Onsite and Row Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Factors Total United States RSE Column Factors: 0.9 0.8 1.1 1.3 311 Food 5,622 5,375 0 247 12.5 311221 Wet Corn Milling 2,755 2,717 0 38 2.6 31131 Sugar 1,126 1,077 0 48 1 311421 Fruit and Vegetable Canning 388 W 0 W 1 312 Beverage and Tobacco Products W W * 1 1.6 3121 Beverages W W * * 3.8 3122 Tobacco W W 0 1 1 313 Textile Mills W 138 W W 11.9 314 Textile Product Mills 55 49 Q * 2.1

425

table6.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002; 3 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 281.0 3.9 2.2 3 20-49 583.7 6.1 3.0 4.6 50-99 889.2 8.1 3.8 4.9 100-249 1,268.8 8.7 4.1 4.6 250-499 2,146.6 11.2 5.3 7.6 500 and Over 3,807.1 12.5 5.4 2.3 Total 1,172.2 8.9 4.2 2 311 FOOD Value of Shipments and Receipts

426

Microbiological Production of Surfactant from Agricultural Residuals for IOR Application  

SciTech Connect

Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

2002-04-01T23:59:59.000Z

427

Magnetic separation as a plutonium residue enrichment process  

Science Conference Proceedings (OSTI)

We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

1989-01-01T23:59:59.000Z

428

Study on leaching vanadium from roasted residue of stone coal  

SciTech Connect

In China, the total reserves of vanadium, reported as V{sub 2}O{sub 5}, in stone coal is 118 Mt (130 million st). Recovering vanadium from such a large resource is very important to China's vanadium industry. The technology now being used to recover vanadium from stone coal has the following two problems in the leaching process: a low recovery of vanadium and high acid consumption. To resolve these problems, a new leaching technology is proposed. The effects of factors such as H{sub 2}SO{sub 4} concentration, liquid-solid ratio, temperature and time, and the types and additions of additives were studied. By adding 1.5% (by weight) CaF2 and leaching the roasted residue of stone coal with 5.4% (by weight) sulfuric acid at 90{sup o}C for 12 hours at a liquid-solid ratio of 2 mL/g, the leaching degree of vanadium reached 83.10%. This proposed leaching technology gives a feasible alternative for the processing of roasting residue of stone coal and can be applied in the comprehensive utilization of stone coal ores in China.

He, D.; Feng, Q.; Zhang, G.; Luo, W.; Ou, L. [Central South University, Changsha (China)

2008-11-15T23:59:59.000Z

429

A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential  

Science Conference Proceedings (OSTI)

Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

2012-10-01T23:59:59.000Z

430

Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Fauth and Yee Soong J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940 Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001 Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Introduction - Objective - Goals - NETL Facilities * Effect of Solution Chemistry on Carbonation Efficiency - Buffered Solution + NaCl - Buffered Solution + MEA * Effect of Pretreatment on Carbonation Efficiency - Thermal Treatments - Chemical Treatments * Carbonation Reaction with Ultramafic Minerals - Serpentine - Olivine Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Carbonation Reaction with Industrial By-products

431

Residual stress measurement using the pulsed neutron source at LANSCE  

Science Conference Proceedings (OSTI)

The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can make spatially resolved non-destructive strain measurements in the interior of components. By recording the change in the crystalline interplanar spacing, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all the lattice reflections are recorded in each measurement which allows anisotropic effects to be studied. Measurements made at the Manuel Lujan Jr Neutron Scattering Centre (LANSCE) demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 15 refs., 7 figs.

Bourke, M.A.M.; Goldstone, J.A. (Los Alamos National Lab., NM (USA)); Holden, T.M. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada))

1991-01-01T23:59:59.000Z

432

Residual energy in magnetohydrodynamic turbulence and in the solar wind  

E-Print Network (OSTI)

Recent observations indicate that kinetic and magnetic energies are not in equipartition in the solar wind turbulence. Rather, magnetic fluctuations are more energetic and have somewhat steeper energy spectrum compared to the velocity fluctuations. This leads to the presence of the so-called residual energy E_r=E_v-E_b in the inertial interval of turbulence. This puzzling effect is addressed in the present paper in the framework of weak turbulence theory. Using a simple model of weakly colliding Alfv\\'en waves, we demonstrate that the kinetic-magnetic equipartition indeed gets broken as a result of nonlinear interaction of Alfv\\'en waves. We establish that magnetic energy is indeed generated more efficiently as a result of these interactions, which proposes an explanation for the solar wind observations.

Stanislav Boldyrev; Jean Carlos Perez; Vladimir Zhdankin

2011-08-30T23:59:59.000Z

433

Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues  

DOE Green Energy (OSTI)

This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

2009-12-01T23:59:59.000Z

434

Modeling and experimental measurements of residual stress using synchrotron radiation  

SciTech Connect

This work was an extension of recent LLNL-related efforts to determine the most effective method for determining residual stress in metal components by non-destructive techniques. These activities have included neutron diffraction, x-ray diffraction, and ultrasonics. In 1988, we recognized that the newly installed UC/LLNL beam line at the Stanford Synchrotron Radiation Laboratory (SSRL) could be applied to determining lattice strains in a fashion helpful to our overall research goals. Pioneering work using synchrotron radiation for stress measurements had been reported in Japan. Benefits of a synchrotron source to our studies include a highly intense and monochromatic beam, with variable energies (allowing significant sample penetration) and very low beam divergence. 10 refs., 3 figs., 2 tabs.

Shackelford, J.F.

1989-05-08T23:59:59.000Z

435

RSE Table 7.10 Relative Standard Errors for Table 7.10  

U.S. Energy Information Administration (EIA) Indexed Site

327310," Cements",2,2,2,5,2,8,0,0,0 327410," Lime",0,0,0,0,0,0,0,0,0 327993," Mineral Wool",3,3,1,1,2,0,0,0,0 331,"Primary Metals",1,2,2,3,4,3,1,0,1 331111," Iron and Steel...

436

RSE Table 3.1 Relative Standard Errors for Table 3.1  

U.S. Energy Information Administration (EIA) Indexed Site

327310," Cements",2,1,0,2,5,4,2,1,4 327410," Lime",0,0,0,0,0,0,0,0,0 327993," Mineral Wool",1,2,0,66,1,2,0,7,16 331,"Primary Metals",1,1,8,2,2,3,7,1,1 331111," Iron and Steel...

437

RSE Table 1.1 Relative Standard Errors for Table 1.1  

U.S. Energy Information Administration (EIA) Indexed Site

Cements",2,1,0,2,5,4,2,1,4,0 327410," Lime",0,0,0,0,0,0,0,0,0,0 327993," Mineral Wool",1,2,0,61,1,2,0,7,10,0 331,"Primary Metals",1,1,8,2,2,3,1,2,2,0 331111," Iron and Steel...

438

RSE Table 4.2 Relative Standard Errors for Table 4.2  

U.S. Energy Information Administration (EIA) Indexed Site

327310," Cements",2,1,0,2,5,4,2,1,5 327410," Lime",0,0,0,0,0,0,0,0,0 327993," Mineral Wool",1,2,0,66,1,2,0,7,17 331,"Primary Metals",2,1,8,2,2,3,7,2,1 331111," Iron and Steel...

439

RSE Table 5.1 Relative Standard Errors for Table 5.1  

U.S. Energy Information Administration (EIA) Indexed Site

l",0,11,4,10,2,10,13,0 ," Conventional Boiler Use",0,15,5,14,2,10,8,0 ," CHP andor Cogeneration Process",0,8,2,6,3,2,19,0 ,"Direct Uses-Total Process",0,2,7,8,2,4,2,0 ," Process...

440

RSE Table 5.5 Relative Standard Errors for Table 5.5  

U.S. Energy Information Administration (EIA) Indexed Site

uel",0,11,4,10,2,10,13,0 " Conventional Boiler Use",0,15,5,14,2,10,8,0 " CHP andor Cogeneration Process",0,8,2,6,3,2,19,0 "Direct Uses-Total Process",0,2,7,8,2,4,2,0 " Process...

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

RSE Table 8.2 Relative Standard Errors for Table 8.2  

U.S. Energy Information Administration (EIA) Indexed Site

The 'Establishments' column includes those units which reported any of the five listed" "energy-saving technologies in use anytime in 2002, plus those units where usage of those"...

442

RSE Table 7.3 Relative Standard Errors for Table 7.3  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 7.3;" 3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" " "," ","Electricity","from Local","Other than","Natural Gas","from Local","Other than","Steam","from Local","Other than"

443

Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds  

SciTech Connect

The enrichment of black carbon (BC) in residuals of small ice crystals was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 ?m). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 27% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC containing particles preferentially act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Daniel J.; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

2008-08-15T23:59:59.000Z

444

Black carbon enrichment in atmospheric ice particle residuals observed in lower trophospheric mixed phase clouds  

SciTech Connect

The enrichment of black carbon (BC) in residuals of small ice particles was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 m). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 14% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC may act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Dan; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

2008-08-15T23:59:59.000Z

445

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

446

Feasibility analysis of gasification for energy recovery from residual solid waste in Humboldt County.  

E-Print Network (OSTI)

??This analysis investigates the feasibility of implementing a gasification system to process residual solid waste in Humboldt County. The Humboldt Waste Management Authority manages 70,000 (more)

Hervin, Kirstin

2013-01-01T23:59:59.000Z

447

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

448

New England (PADD 1A) Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values of U.S. residual ...

449

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

450

Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues  

Science Conference Proceedings (OSTI)

The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

Livingston, R.R.

1999-08-24T23:59:59.000Z

451

Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues  

SciTech Connect

Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.

Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

2009-06-18T23:59:59.000Z

452

POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION  

Science Conference Proceedings (OSTI)

At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a safety standpoint, the inventory of residual sodium in these systems was greatly reduced by using the carbonation process. From a regulatory standpoint, the process was not able to achieve deactivation of all residual sodium, and other more aggressive measures will be needed if the remaining residual sodium must also be deactivated to meet the requirements of the existing environmental permit. This chapter provides a project history and technical summary of the carbonation of EBR-II residual sodium. Options for future treatment are also discussed.

Sherman, S.; Knight, C.

2011-03-08T23:59:59.000Z

453

Recovery of alkali metal constituents from catalytic coal conversion residues  

DOE Patents (OSTI)

In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

Soung, Wen Y. (Houston, TX)

1984-01-01T23:59:59.000Z

454

Treatment of plutonium process residues by molten salt oxidation  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

1999-04-01T23:59:59.000Z

455

Process to produce SNG from residue oil shows promise  

Science Conference Proceedings (OSTI)

As supplies of natural gas from the more accessible fields dwindle, manufactured substitute natural gas (SNG) will become increasingly valuable as an energy source. To begin with it will be used to supplement supplies during peak load periods in cold weather; but eventually its role will be extended to base load supplies. Feedstock availability is an important factor in producing gas economically; therefore, the gas industry in Britain has developed a number of processes using a range of coal and oil feedstocks. British Gas has now successfully completed a major research program that will enable it to produce SNG from low value residue oil. This is the near solid ''bottom of the barrel'' oil that previously only power plants and refineries were able to use with any success. The process has been developed in collaboration with Osaka Gas of Japan. British Gas signed an agreement in 1981 to extend the existing range of oil feedstocks suitable for gasification, and the Japanese company has contributed some pounds9 million ($10.8 million).

Wood, R.

1985-02-01T23:59:59.000Z

456

Environmental impact of landfill disposal of selected geothermal residues  

Science Conference Proceedings (OSTI)

A solid waste is classified as hazardous if it contains sufficient leachable components to contaminate the groundwater and the environment if disposed in a landfill. Scale, sludge and drilling mud from three geothermal fields (Bulalo, Phlippines; Cerro Prieto, Mexico; and Dixie Valley, USA) containing regulated elements at levels above the earths crustal abundance were studied for their leachability. Cr, As, Cu, Zn and Pb were detected at levels which could impair groundwater quality if leaching occurred. Several procedures were used to assess the likely risk posed by the residues : protocol leaching tests (Canadian LEP and US TCLP), toxicity testing, accelerated weathering test, and a preliminary acid mine drainage potential test. Whole rock analysis, X-ray diffraction, and radioactivity counting were also performed to characterize the samples. Toxi-chromotest and SOS-chromotest results were negative for all samples. Leachng tests indicated that all of them could be classified as nonhazardous wastes. Only one of the six showed a low-level radioactivity based on its high Pb-210 activity. Initial tests for acidification potential gave positive results for three out of six samples whle none of the regulated elements were found in the leachate after accelerated weathering experiment for three months.

Peralta, G.L.; Graydon, J.W.; Seyfried, P.L.; Kirk, D.W.

1996-01-24T23:59:59.000Z

457

Transport of Explosive Residue Surrogates in Saturated Porous Media  

Science Conference Proceedings (OSTI)

Department of Defense operational ranges may become contaminated by particles of explosives residues (ER) as a result of low-order detonations of munitions. The goal of this study was to determine the extent to which particles of ER could migrate through columns of sandy sediment, representing model aquifer materials. Transport experiments were conducted in saturated columns (2 x 20 cm) packed with different grain sizes of clean sand or glass beads. Fine particles (approximately 2 to 50 {mu}m) of 2,6-dinitrotoluene (DNT) were used as a surrogate for ER. DNT particles were applied to the top 1 cm of sand or beads in the columns, and the columns were subsequently leached with artificial groundwater solutions. DNT migration occurred as both dissolved and particulate phases. Concentration differences between unfiltered and filtered samples indicate that particulate DNT accounted for up to 41% of the mass recovered in effluent samples. Proportionally, more particulate than dissolved DNT was recovered in effluent solutions from columns with larger grain sizes, while total concentrations of DNT in effluent were inversely related to grain size. Of the total DNT mass applied to the uppermost layer of the column, <3% was recovered in the effluent with the bulk remaining in the top 2 cm of the column. Our results suggest there is some potential for subsurface migration of ER particles and that most of the particles will be retained over relatively short transport distances.

Lavoie, Bethsheba [ORNL; Mayes, Melanie [ORNL; McKay, Larry Donald [ORNL

2011-01-01T23:59:59.000Z

458

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of

459

Energy Information Administration - Energy Efficiency, Table 6b-End Uses of  

Gasoline and Diesel Fuel Update (EIA)

and 2002 > Table 6b and 2002 > Table 6b Table 6b. End Uses of Energy per Ton of Steel, 1998, 2002, and 2006 (thousand Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total3 16,957 15,884 17,796 Net Electricity 4 1,602 2,009 4,673 Natural Gas 4,625 4,236 5,969 Coal 487 393 214 Boiler Fuel -- -- -- Coal 81 W 10 Residual Fuel Oil 101 W 266 Natural Gas 527 426 276 Process Heating -- -- -- Net Electricity 751 862 830 Residual Fuel Oil 193 W 112 Natural Gas 3,742 3,592 2,776 Machine Drive -- -- -- Net Electricity 690 939 786 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

460

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Table 7b. Offsite-Produced Fuel Consumption per Ton of Steel, 1998, 2002, and 2006 (1000 Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 3 2006 3 Total NA 11,886 9,210 Electricity NA 2,315 2,152 Natural Gas NA 4,855 4,009 Coal NA 450 172 Residual Fuel NA 13 234 Coke and Breeze NA 3,916 2,287 Notes:1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 1998 data unavailable due to disclosure avoidance procedures in place at the time. 3. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil, coal or coke.

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensities, 1998 and 2002 > Energy Intensities, 1998 and 2002 > Table 6b Table 6b. End Uses of Energy per Ton of Steel, 1998, 2002, and 2006 (thousand Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 2 2006 2 Total 3 16,957 15,884 17,796 Net Electricity 4 1,602 2,009 4,673 Natural Gas 4,625 4,236 5,969 Coal 487 393 214 Boiler Fuel -- -- -- Coal 81 W 10 Residual Fuel Oil 101 W 266 Natural Gas 527 426 276 Process Heating -- -- -- Net Electricity 751 862 830 Residual Fuel Oil 193 W 112 Natural Gas 3,742 3,592 2,776 Machine Drive -- -- -- Net Electricity 690 939 786 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS

462

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network (OSTI)

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio Committee Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported

Victoria, University of

463

The Structure of Three-Dimensional Tide-Induced Current. Part II: Residual Currents  

Science Conference Proceedings (OSTI)

A simple method of computing the second-order, three-dimensional, tidally-induced residual current is presented. The depth-averaged residual current and the mean-surface gradient from the depth-averaged equations are first computed, assuming that ...

Kim-Tai Tee

1980-12-01T23:59:59.000Z

464

Soil fertility and soil loss constraints on crop residue removal for energy production  

DOE Green Energy (OSTI)

A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

Flaim, S.

1979-07-01T23:59:59.000Z

465

Management of high sulfur coal combustion residues, issues and practices: Proceedings  

SciTech Connect

Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

Chugh, Y.P.; Beasley, G.A. [eds.

1994-10-01T23:59:59.000Z

466

A method for in situ measurement of residual layer thickness in nano-imprint lithography  

Science Conference Proceedings (OSTI)

Nanoimprint lithography has the advantages of high throughput, sub-10-nm fabrication process, and low cost. However, residual layer encountered in the imprinting process requires removal through reactive ion etching to maintain pattern fidelity. This ... Keywords: Nanoimprint lithography (NIL), Non-destructive measurement, Residual layer, Surface plasmon resonance (SPR)

Wei-Hsuan Hsu, Hong Hocheng, Jow-Tsong Shy

2013-10-01T23:59:59.000Z

467

FORCE-CLAMP SPECTROSCOPY DETECTS RESIDUE CO-EVOLUTION IN ENZYME CATALYSIS  

E-Print Network (OSTI)

distant correlated mutations in E. coli thioredoxin. Our findings show that evolutionary anti- correlated of distant residue co-evolution in enzyme catalysis. The acquisition of adequate activity by an enzyme,10). Analysis of co-evolving residues has been used to explore functional coupling in processes like protein

Fernandez, Julio M.

468

Research article: Fine grained sampling of residue characteristics using molecular dynamics simulation  

Science Conference Proceedings (OSTI)

In a fine-grained computational analysis of protein structure, we investigated the relationships between a residue's backbone conformations and its side-chain packing as well as conformations. To produce continuous distributions in high resolution, we ... Keywords: Backbone conformation, Dynameome, Molecular dynamics simulation, Ramachandran plot, Residue volume, Rotamer, Side-chain packing

Hyun Joo; Xiaotao Qu; Rosemarie Swanson; C. Michael McCallum; Jerry Tsai

2010-06-01T23:59:59.000Z

469

Burning Forest Residues231 Corstorphine Road www.forestry.gov.uk  

E-Print Network (OSTI)

1 Burning Forest Residues231 Corstorphine Road Edinburgh EH12 7AT www.forestry.gov.uk S E P T E M B E R 2 0 0 2 FCTN004 SUMMARY Burning forest residues is a traditional method of ground clearance following harvesting operations. Guidance is given on suitable types of cut material for burning, equipment

470

Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements  

Science Conference Proceedings (OSTI)

Large quantity of residual biomass with possible energy and industrial end can be obtained from management operations of urban forests. The profitability of exploiting this resource is conditioned by the amount of existing biomass within urban community ... Keywords: Allometric relationships, Crown modeling, Residual biomass, TLS, Urban forest, Volume equations

A. FernNdez-SarrA; B. VelZquez-Mart; M. Sajdak; L. MartNez; J. Estornell

2013-04-01T23:59:59.000Z

471

Using the method of weighted residuals to compute potentials of mean force  

Science Conference Proceedings (OSTI)

We propose a general framework for approximating the potential of mean force (PMF) along a reaction coordinate in conformational space. This framework, based on the method of weighted residuals, can be viewed as a generalization of thermodynamic integration ... Keywords: Free energy, Histogram methods, Method of weighted residuals, Potential of mean force, Thermodynamic integration

Eric C. Cyr; Stephen D. Bond

2007-07-01T23:59:59.000Z

472

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

473

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

474

U.S. Department of Energy Guidelines for Residual Radioactive Material at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Guidelines for Residual Radioactive U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Revision 2, March 1987) More Documents & Publications

475

Neutron diffraction measurements of residual stresses in friction stir welding: a review  

Science Conference Proceedings (OSTI)

Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

Woo, Wan Chuck [ORNL; Feng, Zhili [ORNL; Wang, Xun-Li [ORNL; David, Stan A [ORNL

2011-01-01T23:59:59.000Z

476

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Residues Treatment, Repackaging and Storage at the 0: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal from the U.S. Department of Energy Rocky Flats Environmental Technology Site in Golden, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1996 EA-1120: Finding of No Significant Impact Solid Residues Treatment, Repackaging and Storage at the Rocky Flats

477

Command shaping for residual vibration free crane maneuvers  

Science Conference Proceedings (OSTI)

Cranes used in the construction and transportation industries are generally devices with multiple degrees of freedom including variable load-line length, variable jib length (usually via a trolley), and variable boom angles. Point-to-point payload maneuvers using cranes are performed so as not to excite the spherical pendulum modes of their cable and payload assemblies. Typically, these pendulum modes, although time-varying, exhibit low frequencies. Current crane maneuvers are therefore performed slowly contributing to high construction and transportation costs. This investigation details a general method for applying command shaping to various multiple degree of freedom cranes such that the payload moves to a specified point without residual oscillation. A dynamic programming method is used for general command shaping for optimal maneuvers. Computationally, the dynamic programming approach requires order M calculations to arrive at a solution, where M is the number of discretizations of the input commands. This feature is exploited for the crane command shaping problem allowing for rapid calculation of command histories. Fast generation of commands is a necessity for practical use of command shaping for the applications described in this work. These results are compared to near-optimal solutions where the commands are linear combinations of acceleration pulse basis functions. The pulse shape is required due to hardware requirements. The weights on the basis functions are chosen as the solution to a parameter optimization problem solved using a Recursive Quadratic Programming technique. Simulation results and experimental verification for a variable load-line length rotary crane are presented using both design procedures.

Parker, G.G.; Petterson, B.; Dohrmann, C.; Robinett, R.D.

1995-07-01T23:59:59.000Z

478

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

479

Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment  

SciTech Connect

This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

Muth, David J. [Idaho National Laboratory; Bryden, Kenneth Mark [Ames L; Nelson, R. G. [Kansas State University

2012-10-06T23:59:59.000Z

480

Injection, flow, and mixing of CO2 in porous media with residual gas.  

Science Conference Proceedings (OSTI)

Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

Oldenburg, C.M.; Doughty, C.A.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rse naics residual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Canyon dissolution of sand, slag, and crucible residues  

Science Conference Proceedings (OSTI)

An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive corrosion in the dissolvers was evaluated using experimental data reported in the literature. Corrosion data at the exact flowsheet conditions were not available; however, the corrosion rate for 304L stainless steel (wrought material) corrosion coupons in 10M nitric acid/0.01M hydrofluoric acid at 95 degrees Celsius was reported as 21 mils per year. If the fluoride in the dissolver is complexed with aluminum, the corrosion rate will decrease to approximately 5 mils per year.

Rudisill, T.S.; Gray, J.H.; Karraker, D.G.; Chandler, G.T.

1997-12-01T23:59:59.000Z

482

Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force  

SciTech Connect

The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others

1995-06-01T23:59:59.000Z

483

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

484

Collection, transportation, and storage of biomass residues in the Pacific Northwest  

DOE Green Energy (OSTI)

This study was conducted to identify potential methods for the collection, transportation and storage of agricultural and forest residues in the Pacific Northwest. Information was gathered from available literature and through contacts with researchers, equipment manufacturers, and other individuals involved in forest and agricultural activities. This information was evaluated, combined, and adapted for situations existing in the Pacific Northwest. A number of methods for collection, transportation, and storage of biomass residues using currently available technology are described. Many of these methods can be applied to residue fuel materials along with their current uses in the forest and agricultural industries.

Inaba, L.K.; Eakin, D.E.

1981-11-01T23:59:59.000Z

485

Organochlorine insecticide, polychlorinated biphenyl, and metal residues in some South Dakota birds, 1975-76  

SciTech Connect

Common species of South Dakota birds with different feeding habits were analyzed in 1975-76 for 11 insecticide residues, six metals, and PCB's. Crows, American coots, starlings, and Franklin's gulls were analyzed. DDE was the most prevalent residue, detected in 93% of all samples. Dieldrin was detected in 61% of all samples. PCB's were not found to be above the minimum detectable level in any sample. Gulls had higher insecticide and metal residues than coots, starlings, or crows had. (16 references, 2 tables)

Greichus, Y.A.; Gueck, B.D.; Ammann, B.D.

1978-06-01T23:59:59.000Z

486

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

487

STUDY 226: PROTOCOL TO DETERMINE DISTRIBUTION OF ATRAZINE/SIMAZINE PARENT AND BREAKDOWN PRODUCT RESIDUES IN MUNICIPAL WELLS  

E-Print Network (OSTI)

for the presence of triazine pre-emergence, herbicide residues in primarily domestic wells (Schuette et. al., 2002). Simazine residues have been detected in 659 wells in 24 different counties and atrazine residues have been detected in 203 wells in 21 counties.

unknown authors

2004-01-01T23:59:59.000Z

488

Acetylation of MEK2 and I B kinase (IKK) activation loop residues by YopJ inhibits signaling  

E-Print Network (OSTI)

Acetylation of MEK2 and I B kinase (IKK) activation loop residues by YopJ inhibits signaling Rohit modifi- cation prevents the phosphorylation of these serine residues that is required for activation residue in the activation loop of both the and subunits of the NF- B pathway kinase, IKK. These results

McMahon, Harvey

489

EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77: Management of Certain Plutonium Residues and Scrub Alloy 77: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site SUMMARY This EIS evaluates the potential alternatives and impacts associated with a proposal to process certain plutonium residues and all of the scrub alloy currently stored at Rocky Flats. While ongoing stabilization activities at Rocky Flats are addressing immediate health and safety concerns associated with existing storage conditions, the indefinite storage of these materials, even after stabilization, would continue to present health and safety concerns that could only be eliminated by disposal or other disposition of the materials. Thus, this

490

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: Solid Residues Treatment, Repackaging and Storage at the 20: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal from the U.S. Department of Energy Rocky Flats Environmental Technology Site in Golden, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1996 EA-1120: Finding of No Significant Impact

491

U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I U.S. DEPARTMENT OF ENERGY GUIDELINES FOR RESIDUAL RADIOACTIVE MATERIAL AT FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM AHD REMOTE SURPLUS FACILITIES MANAGEMENT PROGRAM SITES (Revision 2, March 1987) A. INTRODUCTION This document presents U.S. Department of Energy (DOE) radiological protection guidelines for cleanup of residual radioactive material and management of the resulting wastes and residues. It is applicable to si~es - "C-- identified by the Formerly Utilized Sites l{emedia1 Ac:tionProgram (FUSRAP) .and remote sites identified by the Surplus Facilities Management Program (SFMP).* The topics covered are basic dose limits, guidelines and authorized limits for allowable levels of residual radioactive material, and requirements for

492

Tidal Dynamics and Residual Circulation in a Well-Mixed Inverse Estuary  

Science Conference Proceedings (OSTI)

The tidal and residual circulations in Laguna San Ignacio (LSI), a well-mixed evaporative lagoon located on the Pacific coast of the Baja California peninsula in Mexico, is described based on surveys and moored observations. At tidal periods ...

Clinton D. Winant; Guillermo Gutirrez de Velasco

2003-07-01T23:59:59.000Z

493

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

494

Depth-Dependent Studies of Tidally Induced Residual Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

Using a depth-dependent tidal model, the tidally induced residual currents on the northern and southern sections of Georges Bank are computed and the effects of various physical parameters on the current are examined. Because of significant on-...

Kim-Tai Tee

1985-12-01T23:59:59.000Z

495

Reclaiming residual space from elevated transport infrastructure : time, space, and activity under the Chicago Brown Line  

E-Print Network (OSTI)

This thesis studies the non-transport functions of the residual space generated by elevated transport infrastructure and its relationship with abutting neighborhoods The space under the Chicago Brown Line, among all other ...

Su, Jing, S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

496

An Examination of Residual Wind Fluctuations Observed at 10 m over Flat Terrain  

Science Conference Proceedings (OSTI)

This study investigates the behavior of wind fluctuations observed at the 10-m level over a flat terrain site located some 100 km east of the Rocky Mountains. The purposes were to assess residual fluctuations in order to ascertain effects ...

D. M. Leahey; M. C. Hansen; M. B. Schroeder

1996-01-01T23:59:59.000Z

497

A residue formula for the fundamental Hochschild class of the Podles sphere.  

E-Print Network (OSTI)

The fundamental Hochschild cohomology class of the standard Podles quantum sphere is expressed in terms of the spectral triple of Dabrowski and Sitarz by means of a residue formula.

Ulrich Kraehmer; Elmar Wagner

498

Residual Circulation in the Stratosphere and Lower Mesosphere as Diagnosed from Microwave Limb Sounder Data  

Science Conference Proceedings (OSTI)

Results for the residual circulation in the stratosphere and lower mesosphere between September 1991 and August 1994 are reported. This circulation is diagnosed by applying an accurate radiative transfer code to temperature, ozone, and water ...

Janusz Eluszkiewicz; David Crisp; Richard Zurek; Lee Elson; Evan Fishbein; Lucien Froidevaux; Joe Waters; R.G. Grainger; Alyn Lambert; Robert Harwood; Gordon Peckham

1996-01-01T23:59:59.000Z

499

Finite Element Simulation of Residual Stresses in Thermo-coupled Wire Drawing Process  

Science Conference Proceedings (OSTI)

The objective of this paper is to calculate residual stress in drawn wire taking into account induced temperature due to plastic dissipation energy. Finite element analysis (FEA) for the simulation of wire drawing is applied. The general purpose FEA ...

R. Iankov; A. Van Bael; P. Van Houtte

2000-06-01T23:59:59.000Z

500

Absorption of Visible Radiation by Atmospheric Aerosol Particles Fog and Cloud Water Residues  

Science Conference Proceedings (OSTI)

Light absorption by samples of atmospheric aerosol particles as a function of size was studied using the integrating sphere method. In addition, the optical properties of fog and cloud-water residues were determined. The samples were taken at two ...

Karl Andre; Ralph Dlugi; Gottfried Schnatz

1981-01-01T23:59:59.000Z