Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Characteristics RSE Column Factor: Total  

Gasoline and Diesel Fuel Update (EIA)

Per- cent 125 Per- cent 0.4 2.4 1.8 1.2 0.9 0.8 0.8 0.7 1.4 1.1 0.9 Race of Householder White ... 1,592 27 60 105 272 255 358 514 97 155...

2

Characteristics RSE Column Factor: All Vehicle Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 24.9 18.1 17.4 0.7 0.8 0.8 0.6 4.5 Q 18.4 Race of Householder White ... 138.6 92.3 86.7 5.6 7.3 8.9 2.8 26.7...

3

Characteristics RSE Column Factor: Households with Children Households...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 6.1 0.8 2.7 2.6 Q Q Q Q Q Q Q 23.2 Race of Householder White ... 54.8 14.4 27.6 12.8 83.7 3.2 6.7 7.2...

4

Characteristics RSE Column Factor: All Model Years Model Year  

Gasoline and Diesel Fuel Update (EIA)

or 17 Years ... 15.2 0.7 0.9 0.9 3.0 3.8 2.8 1.2 0.9 0.9 15.5 Households Without Children ... 92.2 4.2 5.9 6.5 21.8 21.8 14.2 5.9 5.5 6.4 5.5...

5

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

6

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

7

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

8

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

9

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

10

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

11

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

12

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

13

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

14

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

15

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

16

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

17

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

to other energy products" "(e.g., crude oil converted to residual and distillate fuel oils) are excluded." " NFNo applicable RSE rowcolumn factor." " * Estimate less...

18

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

"to other energy products (e.g., crude oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable RSE rowcolumn factor." " * Estimate less...

19

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

20

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

22

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

23

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

24

Re: NBP RFI: CommunicationRse quirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Energy request for comments regarding the communications requirements of electric utilities deploying the Smart Grid. Re: NBP RFI: CommunicationRse quirements More Documents &...

25

Profils des entreprises en matire de RSE et innovation technologique  

E-Print Network [OSTI]

la nature de la relation entre la Responsabilité Sociale des Entreprises (RSE) et l'innovation : Innovation, PME, Responsabilité Sociale des Entreprises (RSE) Rachel BOCQUET - Caroline MOTHE hal-00950166 : Corporate Social Responsibility (CSR), Innovation, SME's hal-00950166,version1-25Feb2014 #12;3 Introduction

Boyer, Edmond

26

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

27

Intemodal Equipment Ron Sucik RSE Consulting  

E-Print Network [OSTI]

Constitution with exclusive charge of the operations, administration, management, preservation, maintenance. BAF ­ Bunker Adjustment Factor: Additional charge levied on the shippers to compensate: A warehouse or other specialized building, often with refrigeration or air conditioning, which is used

Bustamante, Fabián E.

28

S:\\VM3\\RX97\\TBL_LIST.WPD  

Gasoline and Diesel Fuel Update (EIA)

b. Household Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 Household Characteristics RSE Column Factor: Total Four Most Populated States RSE Row...

29

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

30

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

31

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

32

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

33

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

34

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

35

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

36

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

37

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

38

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

39

Une analyse des liens entre types de Green IT et stratgies RSE  

E-Print Network [OSTI]

: France (2013)" #12;ABSTRACT This communication addresses the issue of the adoption of green technologiesUne analyse des liens entre types de Green IT et stratégies RSE An analysis of links between Green/INSTEAD (Luxembourg), CREM R?SUM? Cette communication aborde la question de l'adoption des technologies vertes ou

Boyer, Edmond

40

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

42

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

43

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

44

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

45

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

46

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

47

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

48

Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5.17. U.S. Number of Households by Vehicle Fuel Expenditures, 1994 (Continued) (Million Households) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: All...

49

" Row: NAICS Codes;" " Column...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving...

50

Column Initialization 1 Initializing Distillation Column Models 1  

E-Print Network [OSTI]

Column Initialization 1 Initializing Distillation Column Models 1 Roger Fletcher \\Lambda with the optimisation of distillation column models by non­ linear programming are considered. The paper presents of the distillation column model. A certain limiting case of the column model is examined, that of infinite reflux

Dundee, University of

51

"Table A17. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Components of Onsite Electricity Generation by Census Region," 7. Components of Onsite Electricity Generation by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," "," ","RSE" "SIC"," "," "," "," "," ","Row" "Code(a)","Industry Groups and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.4,1.2

52

Nuclear reactor control column  

DOE Patents [OSTI]

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

53

Never Drying Column  

Science Journals Connector (OSTI)

......Department, University of Missouri-Kansas City, Kansas City, Missouri 64110 Column chromatography...Corporation, St. Louis, Missouri Question I. Many smaller...inor- ganic gases to heavy naphthas and crude oil fractions. The variety......

Bahman Nassim

1978-11-01T23:59:59.000Z

54

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

55

Table N13.2. Electricity: Components of Onsite Generation, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electricity: Components of Onsite Generation, 1998;" 2. Electricity: Components of Onsite Generation, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.8,1.5,0.9

56

Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1,1.1 "Value of Shipments and Receipts"

57

Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: Sales to Utility and Nonutility Purchasers, 2002;" Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1.3,0.9 "Value of Shipments and Receipts" "(million dollars)"

58

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002;" 4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.1,1.4 "Value of Shipments and Receipts"

59

Operating Parameters in the Column Flotation of Alabama Oil Shale  

Science Journals Connector (OSTI)

A factionally designed experiment performed in a one meter column flotation cell identified the important factors affecting the flotation of eastern oil shales. These initial tests were performed in a...

C. W. Schultz; John B. Bates

1990-01-01T23:59:59.000Z

60

Single-Column Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C.J. Somerville and S. F. lacobellis C.J. Somerville and S. F. lacobellis Climate Research Division Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093-0224 Our project is centered around a computationally efficient and economical one-dimensional (vertical) model, resembling a single column of a general circulation model (GCM) grid, applied to the experimental site of the Atmospheric Radiation Measurement (ARM) Program. The model contains a full set of modern GCM parameterizations of subgrid physical processes. To force the model, the advective terms in the budget equations are specified observationally from operational numerical weather prediction analyses. These analyses, based on four-dimensional data assimilation techniques, provide dynamically consistent wind fields and horizontal gradients

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per...

62

Two-Column Aerosol Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

63

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

64

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

65

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

66

"Table A27. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region," Components of Onsite Electricity Generation by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" ," "," "," "," " " "," "," "," ",," ","RSE" "SIC"," "," "," ",," ","Row" "Code(a)","Industry Group and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.6,1 , 20,"Food and Kindred Products",6962,6754,90,118,11.2

67

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

68

Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers" Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1.1,1 , 20,"Food and Kindred Products",1829," W "," W ",28

69

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

70

WASTEWATER TREATMENT OVER SAND COLUMNS  

E-Print Network [OSTI]

93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France, a greater depth for desinfection purposes. KEYWORDS Wastewater treatment, Infiltration-percolation. Sand

Paris-Sud XI, Université de

71

Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments  

E-Print Network [OSTI]

Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments for their suitability as hydrological tracers. Sorption is one of the limiting factors for the suitability of a dye tracer. In this study we examined the sorption of four dyes to a sandy soil using batch and column

Flury, Markus

72

Relative Retention Data for an Ethofat Column  

Science Journals Connector (OSTI)

......Retention Data for an Ethofat Column David P. Mowry Marathon Oil Company, Littleton, Colorado 80121 ture. RECIPROCAL...Retention Data for an Ethofat Column by David P. Mowry, Marathon 011 Company, Littleton, Colorado 80121 Relative retention......

David P. Mowry

1966-11-01T23:59:59.000Z

73

The French codes RCC-M and RSE-M -- Design, construction and in-service inspection rules for the mechanical components of PWR nuclear islands: An overview and a comparison to the ASME codes  

SciTech Connect (OSTI)

The RCC-M, ``Regles de Conception et de Construction des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``Design and Construction Rules for the Mechanical Components of PWR Nuclear Islands`` and the RSE-M, ``Regles de Surveillance en Exploitation des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``In-Service Inspection Rules for the Mechanical Components of PWR Nuclear Islands`` gather all design, construction and operating practices relating to the mechanical components of French PWR nuclear islands. This paper is a presentation of these two codes. Throughout this presentation the specific aspects of the French approach will be underlined and will be compared to that of the ASME codes--mainly Section 3 and Section 11. The broad general technical scopes of the French codes are similar to those of the ASME codes. However, in some important areas of design, material specifications, procurement and manufacturing, the provisions of the RCC-M and RSE-M deviate from those of a strict mechanical Code and are more self-sustaining than those of ASME.

Journet, J.; Masson, S.H.; Morel, A.; Remond, A.; Grandemange, J.M.

1995-12-01T23:59:59.000Z

74

Solutions diversification in a column generation algorithm  

E-Print Network [OSTI]

Solutions diversification in a column generation algorithm N. Touati a L. L´etocart a A. Nagih b a Column generation algorithms have been specially designed for solving mathemat- ical programs with a huge-based techniques. A more classical approach, known as "intensification", consists in inserting a set of columns

Létocart, Lucas

75

Process Svstems Enaineerina Instability of Distillation Columns  

E-Print Network [OSTI]

Process Svstems Enaineerina , Instability of Distillation Columns Elling W. Jacobsen and Sigurd recognized, distillation columns, operating with reflux and boilup as independent inputs, may have The dynamic behavior of distillation columns has been stud- ied quite extensively over the past decades

Skogestad, Sigurd

76

Vivapure Metal Chelate Mega spin columns  

E-Print Network [OSTI]

®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

Lebendiker, Mario

77

table10.1_021.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Nonswitchable Minimum and Maximum Consumption, 2002; Nonswitchable Minimum and Maximum Consumption, 2002; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. RSE Actual Minimum Maximum Row Energy Sources Consumption Consumption(a) Consumption(b) Factors Total United States RSE Column Factors: 1 1 1 Electricity Receipts(c) (million kilowatthours) 855,160 668,467 894,613 2 Natural Gas (billion cubic feet) 5,641 3,536 6,108 2 Distillate Fuel Oil (thousand barrels) 24,446 13,621 118,299 5 Residual Fuel Oil (thousand barrels) 33,132 14,781 84,800 3 Coal (thousand short tons) 60,310 34,999 62,947 8.3 LPG (thousand barrels) 26,547 8,661 142,736 4.8 Northeast Census Region RSE Column Factors:

78

Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1814,3 "Natural Gas",7426,1 "Net Electricity",3035,1 " Purchases",3044,1

79

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1959,10 "Natural Gas",6468,1.3 "Net Electricity",2840,1.4 " Purchases",2882,1.4

80

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

geo column legal.ai  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teapot Dome Teapot Dome Geologic Column Natrona County, Wyoming T 38 & 39 N R 78 W Period Formation L i t h o l o g y T h i c k n e s s D e p t h ( f t ) P r o d u c t i v e Quaternary Alluvium Fox Hills Sandstone Lewis Shale Niobrara Shale Carlisle Shale Mesaverde Group Morrison Mowry Shale Muddy Sandstone Thermopolis Shale Dakota Lakota Goose Egg Tensleep Amsden Madison Undifferentiated Granite Steele Shale Frontier Sundance Chugwater Group Teapot Ss "Pumpkin Buttes shale" Parkman Ss Sussex Ss Shannon Ss 1st Wall Creek 2nd Wall Creek 3rd Wall Creek Upper Lower Crow Mountain Alcova LS Red Peak Outcropping units 195 515 635 1990 2440 3840 3975 4060 4070 4340 4435 4585 4665 4685 5205 5525 5845 6005 6305 7085 3825 3595 3330 3325 3150 3085 2840 2680 0-50 600 100 50 325 470 1355 195 30 290 120 480 160 245 65 240 450 265 230 15 135 85 5 175 80 150 95 270 10 160 320 320 520

82

How to Calculate Molecular Column Density  

E-Print Network [OSTI]

The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...

Mangum, Jeffrey G

2015-01-01T23:59:59.000Z

83

Divided Wall Column Without the Wall  

E-Print Network [OSTI]

popularity in North America due to capital cost benefits and increasing energy conservation awareness. DWC is literally a column with a longitudinal partition inside, separating the pre-frac and the main-frac. The fixed internals, obviously, leave...

Tung, P.

2004-01-01T23:59:59.000Z

84

ARM - Evaluation Product - MFRSR-Column Intensive Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Product : MFRSR-Column Intensive Properties The MFRSR-Column Intensive Properties (CIP) value-added product (VAP) has been developed for estimating the microphysical (e.g.,...

85

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

86

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

87

PCB fluxes from the sediment to the water column following resuspension A column experiment  

E-Print Network [OSTI]

PCB fluxes from the sediment to the water column following resuspension ­ A column experiment confirmed that many French rivers and lakes sediments are contaminated by PCBi at levels ranging from 50 of cubic meters of contaminated sediments and to improve the understanding of the behavior of PCB

Paris-Sud XI, Université de

88

Current Status of High Resolution Column Technology for Gas Chromatography  

Science Journals Connector (OSTI)

......work in high-resolution gas-solid chromatography...developments in high- resolution gas chromatographic column...illary or high-resolution gas chromatography. Of these...column material is its high cost compared to glass columns...re sulting from column production, and requires deactivation......

Mary A. Kaiser; Matthew S. Klee

1986-09-01T23:59:59.000Z

89

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

90

Mass transfer in a wetted wall column  

E-Print Network [OSTI]

and downstream calming sections. (Figure 3 ). After the liquid has transversed the length oi' the column it is disengaged from contact with the gas stream by means of a flared nossle and a collection chamber. Provision is made to measure the temperatures... internal diameter were employed. The equipment was operated so that an annular film of liquid flowed dove the column countercurrent to a stream of gas, The amount of liquid that evaporated into the gas was reassured and then used to calculate a mass...

Platt, Allison M

1950-01-01T23:59:59.000Z

91

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

92

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

93

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

94

"Table A52. Nonswitchable Minimum Requirements and Maximum Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonswitchable Minimum Requirements and Maximum Consumption" 2. Nonswitchable Minimum Requirements and Maximum Consumption" " Potential by Census Region, 1991" " (Estimates in Physical Units)" ,,,,"RSE" ,"Actual","Minimum","Maximum","Row" "Type of Energy","Consumption","Consumption(a)","Consumption(b)","Factors" "RSE Column Factors:",1,1.2,0.8 ," Total United States" ,"-","-","-" "Electricity Receipts(c) (million kilowatthours)",718480,701478,766887,2 "Natural Gas (billion cubic feet)",5345,3485,5887,2 "Distillate Fuel Oil (thousand barrels)",23885,19113,201081,3.7 "Residual Fuel Oil (thousand barrels)",65837,36488,201921,2.6

95

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

96

"Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Units)" " "," ","Residual","Distillate ","Natural"," "," ","RSE" " ","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Row" "Economic Characteristics(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.8,1.2,0.7,2.5,0.9 "Value of Shipments and Receipts" "(million dollars)" " Under 20",0.065,0.43,0.77,3.71,0.76,39.15, 2.4

97

"Table A25 Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Selected Purchased Energy Sources by Census" Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors" ,,"Total United States" ,"RSE Column Factors:",0.7,0.8,1,2.8,1,0.7 20,"Food and Kindred Products",15.789,2.854,6.064,2.697,7.596,1.433,4.5

98

" Electricity Sales/Transfers Out",96,4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Selected Energy Sources, 1994" " (Estimates in Trillion Btu)" ,,"RSE" ,,"Row" "Selected Energy Sources","Total","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers In",53,4 " Generation from Noncombustible",," " " Renewable Resources",10,10 " Electricity Sales/Transfers Out",96,4 "Coke and Breeze",449,8 "Residual Fuel Oil",490,3

99

Table HC1-12a. Housing Unit Characteristics by West Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Housing Unit Characteristics by West Census Region, 2a. Housing Unit Characteristics by West Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England ............................................. 5.4 -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- NF Midwest ....................................................... 24.5 -- -- -- NF East North Central ..................................... 17.1 -- -- -- NF West North Central ....................................

100

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

102

Table A20. Components of Onsite Electricity Generation by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region and" Components of Onsite Electricity Generation by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,,"RSE" " "," "," "," "," ","Row" "Economic Characteristics(a)","Total","Cogeneration","Renewables","Other(b)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.2,1.3 "Value of Shipments and Receipts" "(million dollars)" " Under 20",562,349,"W","W",23 " 20-49",4127,3917,79,131,20.1 " 50-99",8581,7255,955,371,10

103

Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1,1 , 20,"Food and Kindred Products",988,940,48,16.2 2011," Meat Packing Plants",0,0,0,"NF"

104

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

105

Table HC1-11a. Housing Unit Characteristics by South Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Housing Unit Characteristics by South Census Region, 1a. Housing Unit Characteristics by South Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.4 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- -- NF New England ............................................. 5.4 -- -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- -- NF Midwest ....................................................... 24.5 -- -- -- -- NF East North Central .....................................

106

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

8. Principal Building Activity, Number of Buildings 8. Principal Building Activity, Number of Buildings and Floorspace, 1992 Building Characteristics RSE Column Factor: All Buildings (thousand) Total Floorspace (million square feet) RSE Row Factor 0.9 1.1 All Buildings ........................................................ 4,806 67,876 3.7 Principal Building Activity Education ............................................................ 301 8,470 7.5 Food Sales ......................................................... 130 757 14.5 Food Service ..................................................... 260 1,491 8.7 Health Care Inpatient ............................................................. 19 1,287 18.7 Outpatient .......................................................... 44 476 17.8 Laboratory

107

S:\VM3\RX97\TBL_LIST.WPD  

U.S. Energy Information Administration (EIA) Indexed Site

Million U.S. Households, 1997 Housing Unit Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.1 1.2 1.7 Total .............................................................. 101.5 6.8 11.5 7.0 5.9 NF Census Region and Division Northeast ..................................................... 19.7 6.8 -- -- -- NF New England ............................................. 5.3 Q -- -- -- NF Middle Atlantic ........................................... 14.4 6.8 -- -- -- NF Midwest ....................................................... 24.1 -- -- -- -- NF East North Central ..................................... 16.9 -- -- -- -- NF West North Central .................................... 7.2 -- -- -- -- NF South ...........................................................

108

Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",1,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",188,122,66,35.6 " 20-49",2311,1901,410,39.5 " 50-99",2951,2721,230,9.6 " 100-249",6674,5699,974,7.1

109

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

110

"Table A40. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" " (Estimates in Dollars per Physical Units)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Group and Industry","(kWh)","(gallons)","(gallons)","cu ft)","(gallons)","(short tons)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,1,1.3,0.8,1.6,0.8

111

Table A28. Components of Onsite Electricity Generation by Census Region, Cens  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region, Census Division, and" Components of Onsite Electricity Generation by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,"Renewables" ,,,"(excluding Wood",,"RSE" " "," "," ","and"," ","Row" "Economic Characteristics(a)","Total","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.6,1.8,1.4 "Value of Shipments and Receipts" "(million dollars)" " Under 20",1098,868," W "," W ",22.3

112

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

113

"Table A29. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Unit)" " "," ","Residual","Distillate ","Natural"," "," ","RSE" " ","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Row" "Economic Characteristics(a)","(kWh)","(gallon)","(gallon)","(1000 cu ft)","(gallon)","(short ton)","Factors" ,"Total United States" "RSE Column Factors:",0.7,1.2,1.1,0.8,1.2,1 "Value of Shipments and Receipts " "(million dollars)" " Under 20",0.066,0.404,0.813,3.422,0.705,37.024,3.4

114

Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",0.9,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",222,164," Q ",23.3 " 20-49",1131,937,194,17.2

115

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

116

"Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.8,1.2,0.7,2.5,0.9 "Value of Shipments and Receipts" "(million dollars)" " Under 20",18.96,2.9,5.56,3.6,8.66,1.74, 2.4 " 20-49",15.07,2.53,4.9,2.8,5.87,1.81, 2.7

117

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

118

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

119

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

120

The Behaviour of STeel ColumnS in fire Material -Cross-seCtional CapaCity -ColuMn BuCkling  

E-Print Network [OSTI]

The Behaviour of STeel ColumnS in fire Material - Cross-seCtional CapaCity - ColuMn BuIch december 2012 #12;#12;Structural stability and the general behaviour of steel structures can be described during a fire influence the behaviour of steel structures markedly. Significant advances have been made

Giger, Christine

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BNL | Two-Column Aerosol Program (TCAP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

122

Assembly procedure for column cutting platform  

SciTech Connect (OSTI)

This supporting document describes the assembly procedure for the Column Cutting Platform and Elevation Support. The Column Cutting Platform is a component of the 241-SY-101 Equipment Removal System. It is set up on the deck of the Strongback Trailer to provide work access to cut off the upper portion of the Mitigation Pump Assembly (MPA). The Elevation Support provides support for the front of the Storage Container with the Strongback at an inclined position. The upper portion of the MPA must be cut off to install the Containment Caps on the Storage Container. The storage Container must be maintained in an inclined position until the Containment Caps are installed to prevent any residual liquids from migrating forward in the Storage Container.

Routh, R.D.

1995-04-01T23:59:59.000Z

123

Materialization Strategies in a Column-Oriented DBMS  

E-Print Network [OSTI]

There has been renewed interest in column-oriented database architectures in recent years. For read-mostly query workloads such as those found in data warehouse and decision support applications, ``column-stores'' have ...

Abadi, Daniel J.

2006-11-27T23:59:59.000Z

124

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

125

Cross flow cyclonic flotation column for coal and minerals beneficiation  

DOE Patents [OSTI]

An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

Lai, Ralph W. (Upper St. Clair, PA); Patton, Robert A. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

126

Model Predictive Control of a Kaibel Distillation Column  

E-Print Network [OSTI]

Model Predictive Control of a Kaibel Distillation Column Martin Kvernland Ivar Halvorsen Sigurd (e-mail: skoge@ntnu.no) Abstract: This is a simulation study on controlling a Kaibel distillation column with model predictive control (MPC). A Kaibel distillation column has several advantages compared

Skogestad, Sigurd

127

Active constraint regions for optimal operation of distillation columns  

E-Print Network [OSTI]

Active constraint regions for optimal operation of distillation columns Magnus G. Jacobsen the control structure of distillation columns, with optimal operation in mind, it is important to know how for distillation columns change with variations in energy cost and feed flow rate. The production of the most

Skogestad, Sigurd

128

Design and Operability of an Energy Integrated Distillation Column  

Science Journals Connector (OSTI)

Abstract Operability issues are investigated on an energy integrated distillation column. The distillation column separates a nearly binary mixture. The energy integration is achieved using an indirect heat pump between the column condenser and the reboiler. The design aim of the integrated is system to enable operation of the distillation column over its entire operating window, through manipulation of the heatpump variables. An additional aim is to provide the operator with a set of standard distillation column actuators, for controlling the distillation column as a conventional distillation column. This secondary aim is attempted achieved, through selection of the control structure of the heat pump. Both simulation and experimental results illustrate areas within the possible operating window where potential operability problems remain dependent upon the selected control configuration. A very large part of the totally possible operating window may be covered by using just one heat pump control structure. However multivariable control avoids singularity of the multiloop structure.

Torben Mnsted Schmidt; Arne Koggersbl; Sten Bay Jrgensen

1992-01-01T23:59:59.000Z

129

Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers  

SciTech Connect (OSTI)

The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

Keller, A.; Jacobs, H.R.; Boehm, R.F.

1980-12-01T23:59:59.000Z

130

IMPROVED PRUNING IN COLUMN GENERATION OF A VEHICLE ROUTING PROBLEM  

E-Print Network [OSTI]

column generation, shadow price model 1. Introduction The German automobile club ADAC (Allgemeiner Deutscher Automobil- Club) maintains a heterogeneous fleet of service vehicles in order to assist people

Krumke, Sven O.

131

Design of Earthquake Resistant Bridges Using Rocking Columns  

E-Print Network [OSTI]

Self-Compacting Concrete being2.2.2 Self-Compacting Concrete . . . . . 2.3 Bridge ColumnsBRIDGE CONSTRUCTION Self-Compacting Concrete The mechanical

Barthes, Clement Benjamin

2012-01-01T23:59:59.000Z

132

The Two-Column Aerosol Project Definitions TCAP Educational  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

133

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

134

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

135

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

136

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

137

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

138

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

139

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

140

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

142

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

143

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

144

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

145

table11.6_02.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of RSE Economic Sales and Utility Nonutility Row Characteristic(a) Transfers Offsite Purchaser(b)...

146

The Book Review Column1 by William Gasarch  

E-Print Network [OSTI]

The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: gasarch@cs.umd.edu In this column we review the following books. 1. Excellence Without a Soul: How a Great University Forgot Education by Harry Lewis. Review

Gasarch, William Ian

147

The Book Review Column1 by William Gasarch  

E-Print Network [OSTI]

The Book Review Column1 by William Gasarch Department of Computer Science University of Maryland at College Park College Park, MD, 20742 email: gasarch@cs.umd.edu In this column we review the following books. 1. Symbolic Asymptotics by John R. Shackell. Review by James C. Beaumont. Given two functions f

Gasarch, William Ian

148

THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN  

SciTech Connect (OSTI)

Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below 100 C. In addition, the calculation results demonstrate that the cooling tube system external to an air-filled column is not highly effective at reducing the maximum temperature, but the baseline design using a central cooling tube inside the column provides sufficient cooling to maintain the maximum temperature near the assumed safety limit.

Lee, S.; King, W.

2009-12-30T23:59:59.000Z

149

HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS  

SciTech Connect (OSTI)

In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of {approx}130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum temperature with either ion exchange material. Sensitivity calculations for the RF resin porosity, the ambient external column temperature, and the cooling system configuration were performed under the baseline conditions to assess the impact of these parameters on the maximum temperatures. It is noted that the cooling mechanism at the column boundary (forced versus natural convection) and the cooling system configuration significantly impact the maximum temperatures. The analysis results provide quantitative information associated with process temperature control requirements and management of the SCIX column.

Lee, S

2007-10-17T23:59:59.000Z

150

Performance of Reinforced Concrete Column Lap Splices  

E-Print Network [OSTI]

the reinforcement and the surrounding concrete, and a factor depending on the section detailing. However, the effects of concrete deterioration due to alkali silica reaction (ASR) and/or delayed ettringite formation (DEF) may weaken the bond of the splice region...

Alberson, Ryan M.

2010-01-14T23:59:59.000Z

151

SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES  

SciTech Connect (OSTI)

PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

Flach, G.

2014-10-28T23:59:59.000Z

152

MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN  

SciTech Connect (OSTI)

The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particles hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

Lee, S.

2014-06-24T23:59:59.000Z

153

Improved direct and indirect systems of columns for ternary distillation  

SciTech Connect (OSTI)

Separation of a ternary mixture into almost pure components is discussed. Systems of distillation columns, with higher thermodynamic efficiency, are developed from a direct sequence (or indirect sequence) of distillation columns by allowing for two interconnecting streams of the same composition and different enthalpy. This increases the reversibility of distillation in the second column, which results in replacing a portion of the high-temperature boiling duty with a lower-temperature heat in the direct split case. For the indirect split case, the improvement allows a portion of the low-temperature condensing duty to be replaced with a higher-temperature condensation.

Agrawal, R.; Fidkowski, Z.T. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [Air Products and Chemicals, Inc., Allentown, PA (United States)

1998-04-01T23:59:59.000Z

154

table11.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of RSE NAICS Sales and Utility Nonutility Row Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Factors Total United States RSE Column Factors: 1 0.9 1 311 Food 708 380 328 31 311221 Wet Corn Milling 248 W W 20.1 31131 Sugar 8 8 0 1 311421 Fruit and Vegetable Canning 28 W W 1 312 Beverage and Tobacco Products W W W 1 3121 Beverages W W W 1 3122 Tobacco W W 0 1 313 Textile Mills W W W 1.8 314 Textile Product Mills 0 0 0 0 315 Apparel 0 0 0 0 316 Leather and Allied Products

155

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

156

table7.10_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources RSE NAICS Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than Row Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Factors Total United States RSE Column Factors: 0.9 1 1.3 1 1.4

157

table1.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. RSE Total Row Energy Source First Use Factors Total United States RSE Column Factor: 1.0 Coal 1,959 10.0 Natural Gas 6,468 1.3 Net Electricity 2,840 1.4 Purchases 2,882 1.4 Transfers In 35 2.6 Onsite Generation from Noncombustible Renewable Energy 8 1.5 Sales and Transfers Offsite 86 0.7 Coke and Breeze 385 1.7 Residual Fuel Oil 255 2.3 Distillate Fuel Oil 151 5.6 Liquefied Petroleum Gases and Natural Gas Liquids 3,070 0.6

158

table8.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002 1 Number of Establishments by Participation in Energy-Management Activity, 2002 Level: National Data; Row: Energy-Management Activities within NAICS Codes; Column: Participation and Source of Financial Support for Activity; Unit: Establishment Counts. RSE NAICS Row Code(a) Energy-Management Activity No Participation Participation(b) In-house Other Don't Know Factors Total United States RSE Column Factors: 0.9 1.4 0.9 0.9 1 311 - 339 ALL MANUFACTURING INDUSTRIES Participation in One or More of the Following Types of Activities 120,362 80,348 -- -- -- 1 Energy Audits 165,216 35,494 14,845 15,890 4,760 2.3 Direct Electricity Load Control 171,940 28,770 13,652 9,986 5,132 2.5 Special Rate Schedule (c)

159

table9.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002; 1 Enclosed Floorspace and Number of Establishment Buildings, 2002; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite RSE NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Row Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Factors Total United States RSE Column Factors: 0 0 0 0 0 311 Food 751 15,089 102,589.2 26,438 3.0 0 311221 Wet Corn Milling 5 49 239,993.7 428 13.0 0 31131 Sugar 17 77 418,497.0 821 15.2 0

160

table5.3_02  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002; 3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.4 1 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - Field Campaign - Summer Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsSummer Single Column Model IOP govCampaignsSummer Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer Single Column Model IOP 1997.06.18 - 1997.07.18 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive IOP Server Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data sets, see below. Summary During the IOP, 1180 sondes were launched, with 4 missing data due to weather related problems and 24 terminating before 10,000 m (10 km). Description The Summer 1997 SCM IOP was scheduled with the SGP97 Campaign. With additional NASA funding, the IOP was extended so that the total IOP covered

162

ARM - Field Campaign - Winter Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsWinter Single Column Model IOP govCampaignsWinter Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter Single Column Model IOP 1999.01.19 - 1999.02.08 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive under IOPs/UAV. Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data sets, see below. Description A second winter SCM IOP was conducted (1/19 - 2/8/99) to provide additional sampling of winter weather conditions. This was the first SCM IOP where AERIs and ceilometers were installed at the boundary facilities to give retrievals of temperature and moisture to supplement the sounding data. A

163

ARM - Publications: Science Team Meeting Documents: Ensemble Single Column  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Ensemble Single Column Modelling (ESCM) in the Tropical Western Pacific Hume, Timothy Bureau of Meteorology Research Centre Jakob, Christian BMRC Single column models (SCMs) are useful tools for the evaluation of parameterisations of radiative and moist processes used in general circulation models. Most SCM studies to date have concentrated on regions where there is a sufficiently dense observational network to derive the required forcing data, such as the Southern Great Plains. This poster describes an ensemble single column modelling (ESCM) approach, where an ensemble of SCM forcing data sets are derived from numerical weather prediction (NWP) analyses. The technique is applied to SCM runs at the Manus Island and Nauru ARM sites in the Tropical Western Pacific (TWP). It

164

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

165

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

166

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

167

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

168

New developments in the primal-dual column generation technique  

E-Print Network [OSTI]

Jan 24, 2011 ... problem (CSP), the vehicle routing problem with time windows (VRPTW), and the .... Actually, any column with a negative reduced cost can be added to the RMP. ...... OBOE: the Oracle Based Optimization Engine, 2010.

2011-01-24T23:59:59.000Z

169

ARM - Field Campaign - Summer Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Summer Single Column Model IOP 1999.07.12 - 1999.07.22 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

170

ARM - Field Campaign - Spring Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Spring Single Column Model IOP 1999.03.01 - 1999.03.22 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from...

171

ARM - Field Campaign - Spring 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Spring 1995 Single Column Model IOP 1995.04.01 - 1995.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

172

ARM - Field Campaign - Summer 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Summer 1995 Single Column Model IOP 1995.07.01 - 1995.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

173

Treatments of Inhomogeneous Clouds in a GCM Column Radiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

version of the three- dimensional (3D) CRM described in detail by Khairoutdinov and Randall (2003) into each grid column of a realistic GCM, the NCAR Community Atmosphere Model...

174

ARM - Field Campaign - Fall 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Fall 1994 Single Column Model IOP 1994.10.01 - 1994.10.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

175

Practical Application of Distillation Column Energy Control Systems  

E-Print Network [OSTI]

Closed loop computer control of an ethylene column has been shown to save $350/day in improved ethylene recovery and $150/day in reduced energy consumption. These savings are achieved through material balance optimization and energy balance...

Matthews, S. A.

1980-01-01T23:59:59.000Z

176

METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS  

SciTech Connect (OSTI)

The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

2007-06-27T23:59:59.000Z

177

High speed electrical power takeoff for oscillating water columns  

E-Print Network [OSTI]

This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

Hodgins, Neil

2010-01-01T23:59:59.000Z

178

Optimization Online - Simultaneous Column-and-Row Generation ...  

E-Print Network [OSTI]

Nov 14, 2010 ... Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale...

Ibrahim Muter

2010-11-14T23:59:59.000Z

179

Revised Thermal Analysis of LANL Ion Exchange Column  

SciTech Connect (OSTI)

This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients following an interruption of flow to the column were calculated. The transient calculations were terminated after the maximum resin bed temperature reached the Technical Standard of 60 C, which was set to prevent significant resin degradation. The LANL column differs from the FWR column in that it has a significantly smaller radius, 3.73 cm nominal versus approximately 28 cm. It follows that natural convection removes heat much more effectively from the LANL column, so that the column may reach thermal equilibrium. Consequently, the calculations for a flow interruption were extended until an approach to thermal equilibrium was observed. The LANL ion exchange process also uses a different resin than was used in the FWR column. The LANL column uses Reillex HPQ{trademark} resin, which is more resistant to attack by nitric acid than the Ionac 641{trademark} resin used in the FWR column. Heat generation from the resin oxidation reaction with nitric acid is neglected in this analysis since LANL will be treating the resin to remove the LTE prior to loading the resin in the columns. Calculations were performed using a finite difference computer code, which incorporates models for absorption and elution of plutonium and for forced and natural convection within the resin bed. Calculations for normal column operation during loading were performed using an initial temperature and a feed temperature equal to the ambient air temperature. The model for the normal flow calculations did not include natural convection within the resin bed. The no flow calculations were started with the temperature and concentration profiles at the end of the loading stage, when there would be a maximum amount of plutonium either adsorbed on the resin or in the feed solution in the column.

Laurinat, J

2006-04-11T23:59:59.000Z

180

E-Print Network 3.0 - azeotropic distillation columns Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

closed (total reflux) operation of the conventional batch distillation column with a condenser... in closed middle vessel batch distillation column (solid ... Source: Skogestad,...

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002;" 5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

182

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

183

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

184

Table E13.1. Electricity: Components of Net Demand, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Electricity Components;" " Unit: Million Kilowatthours." " ",," "," ",," " ,,,,"Sales and","Net Demand","RSE" "Economic",,,"Total Onsite","Transfers","for","Row" "Characteristic(a)","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,"Total United States"

185

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

186

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

187

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

188

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

189

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

190

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

191

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

192

Table 7.4 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002;" 4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate","Natural ","LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

193

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

194

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

195

"Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Prices of Selected Purchased Energy Sources, 1998;" 1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

196

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

197

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

198

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

199

"Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Selected Purchased Energy Sources, 1998;" 2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

200

Single-Column Modeling R. B. Stull  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Stull B. Stull University of Wisconsin Madison, WI 53706 Oncley's data will become available during March 1993. Data from other research flights over the ARM/CART sites will be used as they become available. Calibration of Subgrid Statistics During the HAPEX experiment. one frequently flown flight track was an S-shaped pattern, shown in Figure 1. The track passed over 12 different regions of land use, which can be grouped into five broad classes. From 8 May through 24 July 1986, the NCAR King Air aircraft flew the Variations in surface albedo, moisture, soil type, vegetation coverage, and other factors cause surface-layer air (air within 50 m of surface) to be horizontally heterogeneous over land surfaces. This heterogeneity causes patchiness in boundary layer cloud coverage because clouds are

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High pressure humidification columns: Design equations, algorithm, and computer code  

SciTech Connect (OSTI)

This report describes the detailed development of a computer model to simulate the humidification of an air stream in contact with a water stream in a countercurrent, packed tower, humidification column. The computer model has been developed as a user model for the Advanced System for Process Engineering (ASPEN) simulator. This was done to utilize the powerful ASPEN flash algorithms as well as to provide ease of use when using ASPEN to model systems containing humidification columns. The model can easily be modified for stand-alone use by incorporating any standard algorithm for performing flash calculations. The model was primarily developed to analyze Humid Air Turbine (HAT) power cycles; however, it can be used for any application that involves a humidifier or saturator. The solution is based on a multiple stage model of a packed column which incorporates mass and energy, balances, mass transfer and heat transfer rate expressions, the Lewis relation and a thermodynamic equilibrium model for the air-water system. The inlet air properties, inlet water properties and a measure of the mass transfer and heat transfer which occur in the column are the only required input parameters to the model. Several example problems are provided to illustrate the algorithm`s ability to generate the temperature of the water, flow rate of the water, temperature of the air, flow rate of the air and humidity of the air as a function of height in the column. The algorithm can be used to model any high-pressure air humidification column operating at pressures up to 50 atm. This discussion includes descriptions of various humidification processes, detailed derivations of the relevant expressions, and methods of incorporating these equations into a computer model for a humidification column.

Enick, R.M. [Pittsburgh Univ., PA (United States). Dept. of Chemical and Petroleum Engineering; Klara, S.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Marano, J.J. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1994-07-01T23:59:59.000Z

202

Single Column Model Simulations of Cloud Sensitivity to Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Column Model Simulations Single-Column Model Simulations of Cloud Sensitivity to Forcing A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. B. Wolf National Aeronautics and Space Administration SGT, Inc., Goddard Institute for Space Studies New York, New York Introduction The Atmospheric Radiation Measurement (ARM) Program single-column modeling (SCM) framework has to date used several fairly brief intensive observing periods (IOPs) to evaluate the performance of climate model parameterizations. With only a few weather events in each IOP, it is difficult to separate errors associated with the instantaneous dynamical forcing from errors in parameterization. It is also impossible to determine whether model errors are systematic and climatically significant. This

203

the Fractional Flotation of Flotation Column Particles Opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancing Selectivity and Recovery in Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles Opportunity Although research is currently inactive on the patented technology "Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles," the technology is available for licensing from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Disclosed in this patent is a method of particle separation from a feed stream comprised of particles of varying hydrophobicity by injecting the feed stream directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. The current invention allows the height of the feed stream injection and the reflux ratio to be

204

ARM - Field Campaign - Summer 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsSummer 1994 Single Column Model IOP govCampaignsSummer 1994 Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Summer 1994 Single Column Model IOP 1994.07.01 - 1994.07.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

205

ARM - Field Campaign - Winter 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsWinter 1994 Single Column Model IOP govCampaignsWinter 1994 Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter 1994 Single Column Model IOP 1994.01.01 - 1994.01.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

206

ARM - Field Campaign - Fall 1995 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Column Model IOP Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1995 Single Column Model IOP 1995.09.01 - 1995.10.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

207

The Monte Carlo Independent Column Approximation Model Intercomparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Monte Carlo Independent Column Approximation Model Intercomparison The Monte Carlo Independent Column Approximation Model Intercomparison Project (McMIP) Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Li, Jiangnan Canadian Center for Climate Modelling Stephens, Graeme Colorado State University Vaillancourt, Paul Environment Canada Oreopoulos, Lazaros JCET/UMBC and NASA/GSFC Siebesma, Pier KNMI Los, Alexander KNMI Clothiaux, Eugene The Pennsylvania State University Randall, David Colorado State University Iacono, Michael Atmospheric & Environmental Research, Inc. Category: Radiation The Monte Carlo Independent Column Approximation (McICA) method for

208

A new model for solvent extraction in columns  

SciTech Connect (OSTI)

A new model was developed for analyzing solvent extraction processes carried out in columns. Each column is treated as a series of well-defined equilibrium stages where the backmixing (other-phase carryover) between stages can be large. By including all mass transfer effects in the backmixing value, the same number of stages can be used for all extracted components no matter what their distribution coefficients. This greatly simplifies the calculations required when modeling multicomponent solvent extraction processes. Initial testing shows the new model to be better than either the Height of an Equivalent Theoretical Plate (HETP) or the Height of a Transfer Unit (HTU) method.

Leonard, R.A.; Regalbuto, M.C.; Chamberlain, D.B.; Vandegrift, G.F.

1989-12-08T23:59:59.000Z

209

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

210

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

211

Behavior of the Mass Transfer Zone in a Biosorption Column  

E-Print Network [OSTI]

that Sargassum seaweed has a high efficiency for biosorption removal of toxic heavy metals (11). The biomass in a flow-through fixed-bed column. Copper has been chosen as a typical toxic heavy metal with simple is a process whereby certain types of inactive, dead biomass may bind and concentrate heavy metals from aqueous

Volesky, Bohumil

212

Assessment of solution uncertainties in single-column modeling frameworks  

SciTech Connect (OSTI)

Single-column models (SCMs) have been extensively promoted in recent years as an effective means to develop and test physical parameterizations targeted for more complex three-dimensional climate models. Although there are some clear advantages associated with single-column modeling, there are also some significant disadvantages, including the absence of large-scale feedbacks. Basic limitations of an SCM framework can make it difficult to interpret solutions, and at times contribute to rather striking failures to identify even first-order sensitivities as they would be observed in a global climate simulation. This manuscript will focus on one of the basic experimental approaches currently exploited by the single-column modeling community, with an emphasis on establishing the inherent uncertainties in the numerical solutions. The analysis will employ the standard physics package from the NCAR CCM3 and will illustrate the nature of solution uncertainties that arise from nonlinearities in parameterized physics. The results of this study suggest the need to make use of an ensemble methodology when conducting single-column modeling investigations.

Hack, J.J.; Pedretti, J.A.

2000-01-15T23:59:59.000Z

213

Plastic Hinging Behavior of Reinforced Concrete Bridge Columns  

E-Print Network [OSTI]

of the seismic performance of four-span large-scale bridge systems at the University of Nevada Reno that details deformations in column hinging regions during response to strong shaking events. In order to evaluate the plastic hinging regions, a photogrammetric...

Firat Alemdar, Zeynep

2010-04-27T23:59:59.000Z

214

Novel Column Heater for Fast Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......expected advantage of radial heating with the coaxial heater...with other "coated" heating elements, differences...Louisiana light crude oil; 3 m 0.1 mm phenyl...expansion coefficient, and price imposed substantial practical...existing standard column heating technology. Thus, chromatographic......

E.U. Ehrmann; H.P. Dharmasena; K. Carney; E.B. Overton

1996-12-01T23:59:59.000Z

215

Virus Transport in Saturated and Unsaturated Sand Columns  

Science Journals Connector (OSTI)

...demonstrated in bubble column experiments...pH and ionic strength, and various...application of sewage sludges. Appl. Environ...z-potential of gas bubbles. J. Colloid...the role of the gas-water interface...pH and ionic strength (IS). The...

S. Torkzaban; S. M. Hassanizadeh; J. F. Schijven; H. A. M. de Bruin; A. M. de Roda Husman

216

COMPRESSION OF A PLASMA COLUMN OF INFINITE ELECTROCONDUCTIVITY SITUATED  

E-Print Network [OSTI]

45 COMPRESSION OF A PLASMA COLUMN OF INFINITE ELECTROCONDUCTIVITY SITUATED IN AN EXTERNAL AXIAL velocity, ion temperature, electron temperature and plasma density is analysed. The experimental results [1. Amongst the dissipative processes we are primarily concerned here with the electron heat conductivity

Boyer, Edmond

217

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment  

E-Print Network [OSTI]

Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment Tingyue Gu* and Mei used in bioconversions to produce biological products as well as in wastewater treatment such as solvent removal from wastewater streams. In this work, a rate model is proposed to simulate this kind

Gu, Tingyue

218

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

219

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

220

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosinetypeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

Bernard A. Toseland

2000-12-31T23:59:59.000Z

222

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

223

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

224

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

225

Automated two column generator systems for medical radionuclides  

Science Journals Connector (OSTI)

This work describes automated chromatographic methods for the separation of medically useful radionuclides from source material containing their parent radionuclides. The separation techniques employ two chromatographic columns to ensure high chemical and radiochemical purity of the product radionuclide. The separations were performed using an automated system, the automated radionuclide separator (ARS2), consisting of syringe pumps and multiport valves controlled through a computer interface. Generator systems for 68Ga, 99mTc, 188Re and 213Bi will be described.

Daniel R. McAlister; E. Philip Horwitz

2009-01-01T23:59:59.000Z

226

Determination of plate efficiencies for conventional distillation columns  

E-Print Network [OSTI]

DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COIUMNS A Thesis By Thomas Raymond Harris Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1962 Ma)or Sub)ect t Chemical Engineering DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COLUMNS A Thesis Thomas Raymond Harris Approred as to style and content bye Chairman of ommittee Head...

Harris, Thomas Raymond

2012-06-07T23:59:59.000Z

227

Nano and viscoelastic Beck's column on elastic foundation  

E-Print Network [OSTI]

Beck's type column on Winkler type foundation is the subject of the present analysis. Instead of the Bernoulli-Euler model describing the rod, two generalized models will be adopted: Eringen non-local model corresponding to nano-rods and viscoelastic model of fractional Kelvin-Voigt type. The analysis shows that for nano-rod, the Herrmann-Smith paradox holds while for viscoelastic rod it does not.

Atanackovic, Teodor M; Zorica, Dusan

2014-01-01T23:59:59.000Z

228

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

229

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

230

Buckling propagation failure in semi-submersible platform columns  

Science Journals Connector (OSTI)

abstract The present paper aims at studying the behavior of stiffened panels from a column segment of a new generation of semi-submersible platforms up to the peak compressive load and in the post-buckling condition. Previous studies have demonstrated a strong influence of the mode and magnitude of initial geometric imperfections, as well as boundary conditions, on the structure's axial load capacity. Numericalexperimental correlation study for small-scale models was performed to define the proper numerical model to be used in more complex numerical simulations of the failure behavior of full-scale column structures. The stiffened panels were assessed to identify the buckling onset in a specific plate and its interaction with longitudinal and transversal stiffeners during the progressive column failure. Measurements of the geometric imperfection distribution of full-scale stiffened panels were collected during construction to better understand the buckling mechanism. Initial geometric imperfections were measured by means of laser-based equipment including a portable measuring system that uses laser technology with sub-millimeter accuracy.

Tiago P. Estefen; Segen F. Estefen

2012-01-01T23:59:59.000Z

231

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

232

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

233

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

234

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

235

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

236

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

237

Table HC1-9a. Housing Unit Characteristics by Northeast Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Housing Unit Characteristics by Northeast Census Region, 9a. Housing Unit Characteristics by Northeast Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Census Region and Division Northeast ..................................................... 20.3 20.3 14.8 5.4 NF New England ............................................. 5.4 5.4 Q 5.4 NF Middle Atlantic ........................................... 14.8 14.8 14.8 Q NF Midwest ....................................................... 24.5 -- -- -- NF East North Central ..................................... 17.1 -- -- -- NF

238

S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]  

U.S. Energy Information Administration (EIA) Indexed Site

b. Usage Indicators by Four Most Populated States, b. Usage Indicators by Four Most Populated States, Percent of U.S. Households, 1997 Usage Indicators RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.2 1.1 1.3 1.5 Total .............................................................. 100.0 100.0 100.0 100.0 100.0 0.0 Weekday Home Activities Home Used for Business Yes ............................................................ 7.2 7.4 7.5 6.0 6.4 13.5 No .............................................................. 92.8 92.6 92.5 94.0 93.6 2.2 Energy-Intensive Activity Yes ............................................................ 2.4 Q 3.2 2.1 Q 26.0 No .............................................................. 97.6 98.3 96.8 97.9 97.1 1.5

239

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

240

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table HC1-10a. Housing Unit Characteristics by Midwest Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Housing Unit Characteristics by Midwest Census Region, 0a. Housing Unit Characteristics by Midwest Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.8 Total .............................................................. 107.0 24.5 17.1 7.4 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England ............................................. 5.4 -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- NF Midwest ....................................................... 24.5 24.5 17.1 7.4 NF East North Central ..................................... 17.1 17.1

242

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

243

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

244

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

245

S:\VM3\RX97\TBL_LIST.WPD  

U.S. Energy Information Administration (EIA) Indexed Site

b. Housing Unit Characteristics by Four Most Populated States, b. Housing Unit Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 Housing Unit Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.1 1.2 1.7 Total .............................................................. 100.0 100.0 100.0 100.0 100.0 0.0 Census Region and Division Northeast ..................................................... 19.4 100.0 -- -- -- NF New England ............................................. 5.2 Q -- -- -- NF Middle Atlantic ........................................... 14.2 100.0 -- -- -- NF Midwest ....................................................... 23.7 -- -- -- -- NF East North Central ..................................... 16.7 --

246

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

247

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

248

S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]  

U.S. Energy Information Administration (EIA) Indexed Site

Million U.S. Households, 1997 Usage Indicators RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.2 1.1 1.3 1.5 Total .............................................................. 101.5 6.8 11.5 7.0 5.9 NF Weekday Home Activities Home Used for Business Yes ............................................................ 7.4 0.5 0.9 0.4 0.4 13.5 No .............................................................. 94.1 6.3 10.6 6.5 5.6 2.2 Energy-Intensive Activity Yes ............................................................ 2.4 Q 0.4 0.1 Q 26.0 No .............................................................. 99.1 6.7 11.1 6.8 5.8 1.5 Someone Home All Day Yes ............................................................

249

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

250

Experimental and Analytical Studies on Old Reinforced Concrete Buildings with Seismically Vulnerable Beam-Column Joints  

E-Print Network [OSTI]

column axial load was controlled to follow the pre-definedThe column axial loads were controlled to follow Equation (The lateral load pattern is selected as follows, F i = ? i W

PARK, SANGJOON

2010-01-01T23:59:59.000Z

251

Automated metal-free multiple-column nanoLC for improved phosphopeptid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput. Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis...

252

Application of a Plantwide Control Design Procedure to a Distillation Column with Heat Pump  

E-Print Network [OSTI]

(Larsson & Skogestad 2001) to a distillation column heat-integrated by using a heatpump. Top-down analysis) and apply it to a distillation column with heatpump. Plantwide control design should start by formulating

Skogestad, Sigurd

253

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column  

E-Print Network [OSTI]

Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column distillation columns have been explored in many papers, very few papers have dealt with closed-loop control. Most of these control papers consider reactive distillation columns in which there is only one product

Al-Arfaj, Muhammad A.

254

A globally convergent method for finding all steady-state solutions of distillation columns  

E-Print Network [OSTI]

A globally convergent method for finding all steady-state solutions of distillation columns Ali distillation column with 7 steady-states show the robustness of the method. No published software known to the steady-state model of distillation columns as it returns the original system as a single large block

Neumaier, Arnold

255

Charge Collection Measurements in single-type column 3D Sensors  

E-Print Network [OSTI]

Charge Collection Measurements in single-type column 3D Sensors M. Scaringella*, A. Polyakov, and H sensors. In particular, 3D detectors with columns of both n-and p-doping are considered to be especially-substrate [5]. The principle of the single-type column 3D sensors is shown in Fig. 1. Their advantages over

California at Santa Cruz, University of

256

Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography  

E-Print Network [OSTI]

SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

Lebendiker, Mario

257

Comparative Study of Plasma Anodization of Silicon in a Column of a dc Glow Discharge  

Science Journals Connector (OSTI)

A comparative study of plasma anodization of silicon in the column of a dc oxygen glow discharge is presented. Quantitative results for growth rates of silicon dioxide in the negative glow Faraday dark space positive column and the anode fall are given. It is observed that the growth rate is higher in the positive column than the other regions of the discharge.

M. A. Copeland; R. Pappu

1971-01-01T23:59:59.000Z

258

Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor  

E-Print Network [OSTI]

Spatial distribution of isoprene emissions from North America derived from formaldehyde column isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent distribution of OMI HCHO columns follows that of isoprene emission; anthropogenic hydrocarbon emissions

Chance, Kelly

259

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

260

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

262

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

263

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

264

Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)  

SciTech Connect (OSTI)

The current BNFL Inc. flowsheet for the pretreatment of the Hanford high-level tank wastes includes the use of Superlig{reg_sign} materials for removing {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium-selective Superlig 632and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, Utah. This report describes the testing of the Superlig 644 ion exchange material in a small dual-column system. The bed volume of the lead column was 18.6 mL (L/D = 7), and the bed volume of the lag column was 15.9 mL (L/D = 6) during the loading phase. The sample processed was approximately 1.6 L of diluted waste ([Na{sup +}] = 4.84 M) from Tank 241-AN-107 (Envelope C). This sample had been previously treated for removal of Sr/transuranic (TRU) values and clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration. A summary of performance measures for both columns is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 20 for the lead column is much lower than the estimated 150 obtained by the Savannah River Technology Center during Phase 1A testing. Equilibrium data obtained with batch contacts using the AN-107 Cs IX feed predicts a Cs {lambda} of 183. A Cs {lambda} for the lag column could not be determined due to insufficient breakthrough, but it appeared to work well and removed nearly all of the cesium not removed by the lead column. The low value for the lead column indicates that it did not perform as expected. This may have been due to air or gas in the bed that caused fluid channeling or blinding of the resin. The maximum decontamination factor (DF) for {sup 137}Cs listed in Table S1 is based on {sup 137}Cs concentration in the first samples collected from each column and the {sup 137}Cs concentration in the feed. The composite DF for {sup 137}Cs was 1,760, which provided an effluent with a {sup 137}Cs concentration of 8.7E-02 Ci/m{sup 3}. The {sup 137}Cs concentration is below the basis of design limit and is 7.2% of the contract limit for {sup 137}Cs.

DE Kurath; DL Blanchard; JR Bontha

2000-06-28T23:59:59.000Z

265

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

266

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

267

Interactions of the Yeast SF3b Splicing Factor  

Science Journals Connector (OSTI)

...GGATCCTTTTTAGCCAAAATGAGTTTC 3 TABLE 2. Yeast two-hybrid interactions a Construct BBP...Rds3p Rse1p Yra1p a The two-hybrid scores reflect relative colony...for assistance with the two-hybrid constructs and Martha Peterson...GM42476 to B.C.R. and infrastructure funds provided by NSF EPS-0132295...

Qiang Wang; Jin He; Bert Lynn; Brian C. Rymond

2005-12-15T23:59:59.000Z

268

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

269

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

270

Kinetic azeotropy and design of reactive distillation columns  

SciTech Connect (OSTI)

The reactive fixed points in the distillation maps of a reactive distillation column (RDC) with kinetically controlled reactions are identified and their role in deciding the design feasibility has been elucidated. The fixed points at which both reaction and distillation vectors have zero magnitudes correspond to the equilibrium fixed point. It is known that the relative positions of these points for the rectifying and stripping sections determine the value of the minimum reflux ratio. However, apart from these fixed points, there are certain fixed points in the distillation map at which, though the reaction and distillation vectors have nonzero magnitudes, they nullify the effects of each other. These points correspond to the kinetic fixed points and have a special significance. Their positions have direct influence on the feasible product composition. A simple example of an ideal ternary system undergoing a reaction 2B {longleftrightarrow} A + c has been illustrated to show the importance of kinetic azeotropy in the design aspects of RDC.

Mahajani, S.M. [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering] [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering

1999-01-01T23:59:59.000Z

271

Transient simulation for large scale flow in bubble columns  

Science Journals Connector (OSTI)

Abstract The transient simulation of large scale bubbly flow in bubble columns using the unsteady Reynolds averaged Navier Stokes (URANS) equations is investigated in the present paper. An extensive set of bubble forces is used with different models for the bubble induced turbulence. Criteria are given to assess the independence of the simulation time and the time step length. Using these criteria it is shown that a simulation time, time step length and mesh independent solution can be obtained for complex bubbly flows using URANS equations under certain requirements. With the obtained setup the contribution of the resolved turbulence to the total turbulence and the influence of the bubble induced turbulence modeling on the resolved turbulence is investigated. Further, it is pointed out that the virtual mass force is not negligible. The simulations are compared to data from the literature at two different superficial velocities, which cover monodisperse and polydisperse bubbly flows.

T. Ziegenhein; R. Rzehak; D. Lucas

2015-01-01T23:59:59.000Z

272

Heat transfer to a horizontal cylinder in a shallow bubble column  

Science Journals Connector (OSTI)

Abstract Heat transfer coefficient correlations for tall bubble columns are unable to predict heat transfer in shallow bubble columns, which have unique geometry and fluid dynamics. In this work, the heat transfer coefficient is measured on the surface of a horizontal cylinder immersed in a shallow airwater bubble column. Superficial velocity, liquid depth, and cylinder height and horizontal position with respect to the sparger orifices are varied. The heat transfer coefficient is found to increase with height until reaching a critical height, and a dimensionless, semi-theoretical correlation is developed that incorporates superficial velocity, liquid properties, and height. Additionally, the more minor effects of flow regime, column region, and bubble impact are discussed. Notably, the heat transfer coefficient can be as high in the region of bubble coalescence as in the bulk of the column, but only if bubbles impact the cylinder. The correlation and discussion provide a framework for modeling and designing shallow, coil-cooled bubble columns.

Emily W. Tow; John H. Lienhard V

2014-01-01T23:59:59.000Z

273

Improving the Performance of a Two-Shell Column with Advanced Control  

E-Print Network [OSTI]

column has yielded stable operation with reduced utility consumption and increased capacity. Prior to the application of advanced controls this column was a plant capacity limit and composition control was very difficult. The advanced controls now... allow composition to be controlled within 15% of setpoint at both ends of the column. specific energy consumption has been reduced significantly, yielding higher potential capacity. The control strategies implemented include analyzer composition...

Morrison, T. A.; Laflamme, D.

274

Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Small Column Ion Exchange Technology at Small Column Ion Exchange Technology at Savannah River Site U.S. Department of Energy Office of Environmental Management Office of Technology Innovation and Development Technology Readiness Assessment Report November 2011 U.S. DOE-EM Office of Technology Innovation and Development November 11, 2011 Small Column Ion Exchange Program Technology Readiness Assessment Page 2 of 112 This page intentionally left blank November 11, 2011 U.S. DOE-EM Office of Technology Innovation and Development Small Column Ion Exchange Program Technology Readiness Assessment Page 3 of 112 APPROVALS ________________________ _ Harry D. Harmon Date

275

Automation of Column-based Radiochemical Separations: A Comparison of Fluidic, Robotic, and Hybrid Architectures  

SciTech Connect (OSTI)

Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on setting up samples and columns in parallel, and using disposable components so that no sample contacts any surface that any other sample has contacted. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL column bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions four rows of six vials below the columns. The samples are delivered to the columns via a manual 3-port valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is simpler and faster in performing anion exchange procedures for the recovery and purification of plutonium from samples.

Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Ozanich, Richard M.; Owsley, Stanley L.

2011-09-26T23:59:59.000Z

276

Development of a Fuzzy Logic Controller for a Distillation Column using Rockwell Software .  

E-Print Network [OSTI]

??In this thesis, an alternative control method based on Fuzzy Inference System (FIS) is proposed to keep the product composition of a distillation column constant. (more)

Nizami, Muhammad

2011-01-01T23:59:59.000Z

277

Integrated Silica-Bead Separation Column for On-Chip LC-ESI  

E-Print Network [OSTI]

area as a 58m ID capillary. ESI nozzle freestandingESI voltage is on, Cross Section Dimension Equivalent Column ID

He, Qing; Xie, Jun; Tai, Yu-Chong; Miao, Yunan; Lee, Terry D

2004-01-01T23:59:59.000Z

278

E-Print Network 3.0 - activated carbon columns Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- School of Physics, University of Sydney Collection: Materials Science ; Physics 6 United States Department of Summary: column is non-zero only in the year of harvest, 2015....

279

E-Print Network 3.0 - absorbing column densities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

John - National Radio Astronomy Observatory Collection: Physics 3 Characteristics and energy balance of a plasma column sustained by a surface wave Summary: density distribution...

280

E-Print Network 3.0 - anaerobic aquifer column Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorit Topic List Advanced Search Sample search results for: anaerobic aquifer column Page: << < 1 2 3 4 5 > >> 1 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic...

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A new warmstarting strategy for the primal-dual column generation ...  

E-Print Network [OSTI]

Jun 24, 2012 ... Abstract: This paper presents a new warmstarting technique in the context of a primal-dual column generation method applied to solve a...

Jacek Gondzio

2012-06-24T23:59:59.000Z

282

DUST EXTINCTION BIAS IN THE COLUMN DENSITY DISTRIBUTION OF GAMMA-RAY BURSTS: HIGH COLUMN DENSITY, LOW-REDSHIFT GRBs ARE MORE HEAVILY OBSCURED  

SciTech Connect (OSTI)

The afterglows of gamma-ray bursts (GRBs) have more soft-X-ray absorption than expected from the foreground gas column in the Galaxy. While the redshift of the absorption can in general not be constrained from current X-ray observations, it has been assumed that the absorption is due to metals in the host galaxy of the GRB. The large sample of X-ray afterglows and redshifts now available allows the construction of statistically meaningful distributions of the metal column densities. We construct such a sample and show, as found in previous studies, that the typical absorbing column density (N{sub H{sub X}}) increases substantially with redshift, with few high column density objects found at low-to-moderate redshifts. We show, however, that when highly extinguished bursts are included in the sample, using redshifts from their host galaxies, high column density sources are also found at low-to-moderate redshift. We infer from individual objects in the sample and from observations of blazars that the increase in column density with redshift is unlikely to be related to metals in the intergalactic medium or intervening absorbers. Instead we show that the origin of the apparent increase with redshift is primarily due to dust extinction bias: GRBs with high X-ray absorption column densities found at z {approx}< 4 typically have very high dust extinction column densities, while those found at the highest redshifts do not. It is unclear how such a strongly evolving N{sub H{sub X}}/A{sub V} ratio would arise, and based on current data, remains a puzzle.

Watson, Darach [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Jakobsson, Pall, E-mail: darach@dark-cosmology.dk, E-mail: pja@raunvis.hi.is [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhaga 5, IS-107 Reykjavik (Iceland)

2012-08-01T23:59:59.000Z

283

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

284

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

285

Separation and Detection of Sulfur-Containing Anions Using Single-Column Ion Chromatography  

Science Journals Connector (OSTI)

......derivatized. With the resin-based column...states or complex ions. Sulfide is...Systems with resin-based anion exchange (RBAX) columns...for which ion-exchange H...detectors. In addition to electrical...since its early demonstration. It has been......

Richard E. Poulson; Harry M. Borg

1987-09-01T23:59:59.000Z

286

A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns  

E-Print Network [OSTI]

A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns Wenjun with an existing Q machine, to produce extended, steady state, magnetized plasma columns. The dusty plasma device (DPD) is to be used for the investigation of waves in dusty plasmas and of other plasma/dust aspects

Merlino, Robert L.

287

Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber  

E-Print Network [OSTI]

with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types. The cloud chamber developed at the Desert Re- search Institute has been used to produce ice clouds composedLight-scattering properties of plate and column ice crystals generated in a laboratory cold chamber

Liou, K. N.

288

JOURNAL OF STRUCTURAL ENGINEERING / OCTOBER 2000 / 1113 SEISMIC RESPONSE OF EXTERIOR RC COLUMN-TO-STEEL  

E-Print Network [OSTI]

JOURNAL OF STRUCTURAL ENGINEERING / OCTOBER 2000 / 1113 SEISMIC RESPONSE OF EXTERIOR RC COLUMN-TO-STEEL: The inelastic cyclic response of hybrid connections consisting of RC columns and steel beams (RCS) is studied of the steel beams, steel band plates or cover plates surrounding the joint region, steel fiber concrete

Parra-Montesinos, Gustavo J.

289

A Novel Cross-Flow Cascade Packed Column Design and Simulation  

Science Journals Connector (OSTI)

A Novel Cross-Flow Cascade Packed Column Design and Simulation ... Thus the abundant area for gas flow will decrease gas-phase pressure drop, and it can allow operation at gas velocities above the flooding points of countercurrent packed columns. ...

Fengrong Chen; Rongqi Zhou; Zhanting Duan; Yumei Liu

1999-07-03T23:59:59.000Z

290

Validation of Ozone Monitoring Instrument nitrogen dioxide columns E. A. Celarier,1  

E-Print Network [OSTI]

Validation of Ozone Monitoring Instrument nitrogen dioxide columns E. A. Celarier,1 E. J. Brinksma the standard nitrogen dioxide (NO2) data product (Version 1.0.), which is based on measurements made), Validation of Ozone Monitoring Instrument nitrogen dioxide columns, J. Geophys. Res., 113, D15S15, doi:10

291

Use of Two Distillation Columns in Systems with Maximum Temperature Limitations  

E-Print Network [OSTI]

Use of Two Distillation Columns in Systems with Maximum Temperature Limitations Rebecca H. Masel, Pennsylvania 18015, United States ABSTRACT: Maximum temperature limitations are encountered in distillation of the bottoms product fixes the column base pressure and, hence, the condenser pressure. The distillate

Gilchrist, James F.

292

Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le1  

E-Print Network [OSTI]

Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le1 , Ivar J. Halvorsen2 of this work is to implement heterogeneous azeotropic distillation schemes in a dividing wall column (DWC distillation, Petlyuk arrangement, energy saving. 1. Introduction Distillation is one of the most energy

Skogestad, Sigurd

293

Cyclotron waves in a non-neutral plasma column Daniel H. E. Dubin  

E-Print Network [OSTI]

plasma column with near-Maxwellian velocity distributions. We focus on the z-independent component#12;Cyclotron waves in a non-neutral plasma column Daniel H. E. Dubin Department of Physics April 2013; published online 25 April 2013) A kinetic theory of linear electrostatic plasma waves

California at San Diego, University of

294

Cyclotron Waves in a Nonneutral Plasma Column Daniel H.E. Dubin  

E-Print Network [OSTI]

plasma column with near-Maxwellian velocity distributions. We focus on the z-independent componentCyclotron Waves in a Nonneutral Plasma Column Daniel H.E. Dubin Department of Physics, University of California at San Diego, La Jolla, California 92093 (Dated: February 22, 2013 [submitted to Phys. Plasmas

California at San Diego, University of

295

Cyclotron waves in a non-neutral plasma column Daniel H. E. Dubin  

E-Print Network [OSTI]

plasma column with near-Maxwellian velocity distributions. We focus on the z-independent componentCyclotron waves in a non-neutral plasma column Daniel H. E. Dubin Citation: Phys. Plasmas 20. Additional information on Phys. Plasmas Journal Homepage: http://pop.aip.org/ Journal Information: http

California at San Diego, University of

296

An Evaluation of Microextraction/Capillary Column Gas Chromatography for Monitoring Industrial Outfalls  

Science Journals Connector (OSTI)

......Microextraction/Capillary Column Gas Chromatography for Monitoring...for environmental and production analyses. Gary Olsen...both environmental and production lab activities. Daniel...and capillary-column gas chromatography techniques...because of its lower cost and more desirable maintenance......

Daniel R. Thielen; Gary Olsen; Abram Davis; Edward Bajor; John Stefanovski; John Chodkowski

1987-01-01T23:59:59.000Z

297

PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux  

E-Print Network [OSTI]

PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux: patterns of oxygen dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment

Mallin, Michael

298

E-Print Network 3.0 - argon plasma column Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface wave produced plasma column obtained at 40 mtorr of argon in a 25 mm i.d. pyrex tube... shows the plasma column obtained at 40 mtorr of argon in a 25 mm i.d. tube with 80 W...

299

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin  

E-Print Network [OSTI]

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin Overview: This is a small scale method for purifying a His-tagged protein using commercial affinity resin. Materials: TALON rotor, at 18 K rpm) at 4 °C. 7. Save supernatant fraction for column purification. Supernatant can

Doering, Tamara

300

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

302

Micro-miniature gas chromatograph column disposed in silicon wafers  

DOE Patents [OSTI]

A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

Yu, Conrad M. (Antioch, CA)

2000-01-01T23:59:59.000Z

303

Correlate the flooding of packed columns a new way  

SciTech Connect (OSTI)

Packed-column pressure-drop and flooding-point prediction has received new attention recently. These publications, like most earlier ones, focus on gas-flow-induced pressure drop, and flooding due to liquid entrainment in the packing. A few years ago, some problems occurred when packing was applied in high-pressure distillation service, such as ethylene and propylene superfractionators. Apparently, the maximum liquid-through-put capacity was lower than predicted from the gas-flow-induced flooding correlations. Such situation exists when predicting the performance of valve trays in similar service: liquid downflow can be limiting before entrainment flooding occurs. The reason for this behavior is the relatively low liquid and high vapor density of these high-pressure services. The liquid/vapor density ratios are typically 10--15:1 for such hydrocarbon systems. In contrast, for low-pressure water/air systems, this ratio is in the range 300--800:1. A large amount of experimental data for low-pressure systems has been used to correlate pressure drop and flooding, but it doesn't cover the technically important region of low liquid and high vapor density. This Article suggests an approach for understanding such liquid-limited systems.

Kaiser, V.

1994-06-01T23:59:59.000Z

304

Cyclotron waves in a non-neutral plasma column  

SciTech Connect (OSTI)

A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

2013-04-15T23:59:59.000Z

305

Douglas Factors  

Broader source: Energy.gov [DOE]

The Merit Systems Protection Board in its landmark decision, Douglas vs. Veterans Administration, 5 MSPR 280, established criteria that supervisors must consider in determining an appropriate penalty to impose for an act of employee misconduct. These twelve factors are commonly referred to as Douglas Factors and have been incorporated into the Federal Aviation Administration (FAA) Personnel Management System and various FAA Labor Agreements.

306

High Level Waste System Impacts from Small Column Ion Exchange Implementation  

SciTech Connect (OSTI)

The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

2005-08-18T23:59:59.000Z

307

EVIDENCE OF CONTRIBUTION OF INTERVENING CLOUDS TO GAMMA-RAY BURST'S X-RAY COLUMN DENSITY  

SciTech Connect (OSTI)

The origin of excess of X-ray column density with respect to optical extinction in gamma-ray bursts (GRBs) is still a puzzle. A proposed explanation of the excess is the photoelectric absorption due to the intervening clouds along a GRB's line of sight. Here, we test this scenario by using the intervening Mg II absorption as a tracer of the neutral hydrogen column density of the intervening clouds. We identify a connection between the large X-ray column density (and large column density ratio of log (N{sub H,X}/N{sub H{sub I}})?0.5) and large neutral hydrogen column density probed by the Mg II doublet ratio (DR). In addition, GRBs with large X-ray column density (and large ratio of log (N{sub H,X}/N{sub H{sub I}})>0) tend to have multiple saturated intervening absorbers with DR < 1.2. These results therefore indicate an additional contribution from the intervening system to the observed X-ray column density in some GRBs, although the contribution from the host galaxy alone cannot be excluded based on this study.

Wang, J., E-mail: wj@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2013-10-20T23:59:59.000Z

308

Influence of the gas-flow Reynolds number on a plasma column in a glass tube  

SciTech Connect (OSTI)

Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)

2013-08-15T23:59:59.000Z

309

A study of flow patterns and dissolution kinetics in bubble columns  

SciTech Connect (OSTI)

Research objectives were to: study liquid and gas phase flow patterns in a bubble column reactor by comparing observations made with reported observations and hydrodynamic models; study mixing of two miscible liquid solutions with and without solid suspension in a bubble column reactor; study the kinetics of dissolution of a reactive solid phase suspended in the liquid phase in a bubble column reactor; and calculate mass transfer coefficients and apparent reaction rate from suitable mathematical models. Observations and conclusions are summarized in a series of viewgraphs.

Long, R.; Holbrook, S.; Chang, T. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Chemical Engineering

1997-11-01T23:59:59.000Z

310

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

311

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

312

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

313

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

314

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

315

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

316

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

317

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

318

Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Bubble Column Reactors: Novel Technique Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,619,011 entitled "Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection." Disclosed in this patent is a method to determine the optimum catalyst particle size for application in a fluidized bed reactor, such as a slurry bubble column reactor (SBCR), to convert synthesis gas into liquid fuels. The reactor can be gas-solid, liquid- solid, or gas-liquid-solid. The method considers the complete granular temperature balance based on the kinetic theory of

319

Gas holdup in a gas-liquid-fiber semi-batch bubble column.  

E-Print Network [OSTI]

??A 4-m high, 15.24-cm diameter semi-batch bubble column connected to one of three perforated plate gas distributors with open area ratios A = 0.57%, 0.99%, (more)

Su, Xuefeng

2005-01-01T23:59:59.000Z

320

Strategic Planning -College -Agricultural Sciences & Natural Resources Unit Assessment Report -Four Column  

E-Print Network [OSTI]

Strategic Planning - College - Agricultural Sciences & Natural Resources Unit Assessment Report - Four Column Texas Tech University Priorities Means of Assessment & Criteria / Tasks Results Action & Natural Resources - 2013 Priority 1_Increase Enrollment and Promote Student Success (CASNR - Outcome 1

Zhang, Yuanlin

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method  

Science Journals Connector (OSTI)

Determination of Asphaltenes in Crude Oil and Petroleum Products by the on Column Precipitation Method ... An improved analytical method for the determination of asphaltene content in crude oils and petroleum products was developed. ... Composition of heavy petroleums. ...

Estrella Rogel; Cesar Ovalles; Michael E. Moir; John F. Schabron

2009-08-14T23:59:59.000Z

322

Microwave heating of electrons of a dense plasma column at frequencies higher than electron cyclotron frequency  

Science Journals Connector (OSTI)

In this experimental study the absorption of plasma waves, excited in a dense plasma column, was investigated and the localization of the regions of efficient heating of electrons were determined in a broad...ce/...

J. ?atlov; L. Kryka; V. N. Budnikov

1973-01-01T23:59:59.000Z

323

Microwave heating of electrons of a dense plasma column at frequencies higher than electron cyclotron frequency  

Science Journals Connector (OSTI)

In the overdense collisionless plasma column inserted through the narrow sides of a rectangular waveguide, the excited electron cyclotron harmonic waves (CHWs) are studied by means of two movable probes and a ...

J. ?atlov; R. Klma; L. Kryka; V. N. Budnikov

1973-01-01T23:59:59.000Z

324

Calculation of limiting horizontal load on piles-columns based on cone-penetration data  

Science Journals Connector (OSTI)

Results of field tests confirming the correlation relation between the limiting load on a pile-column and the specific resistance of the soil beneath the cone of the probe are presented. A formula is proposed ...

B. V. Goncharov; O. V. Galimnurova

2012-03-01T23:59:59.000Z

325

Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder  

E-Print Network [OSTI]

Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

Wang, Hao

2013-07-19T23:59:59.000Z

326

Comparative study of the performance of conventional and column flotation when treating coking coal fines  

Science Journals Connector (OSTI)

Investigations were carried out on coking coal fines by conventional cell and column flotation techniques. The effects of different operating parameters were evaluated for both conventional and column flotation. The coal fines were collected from Bhojudih washery, India. These coal fines averaged 24.4% ash, 19.8% volatile matter and 53.8% fixed carbon on a dry basis. A commercial grade sodium silicate, light diesel oil and pine oil were used as depressant, collector and frother respectively. The flotation performance was compared with release analysis. The conventional flotation results indicated that a clean coal with 14.4% ash could be obtained at 78.0% yield with 88.4% combustible recovery. The ash of the clean coal could be further reduced to 10.1% at 72.0% yield with 85.6% combustible recovery by using column flotation. The column flotation results were close to those obtained by release analysis.

M.S. Jena; S.K. Biswal; S.P. Das; P.S.R. Reddy

2008-01-01T23:59:59.000Z

327

Gamma-Ray Transmission Scans of Naphtha Splitter Column: A Case Study  

SciTech Connect (OSTI)

The gamma-ray transmission technique is well known and widely used to on-line examine inner details of industrial process column. For that purpose, a particular case study was conducted to diagnose the performance of a Naphtha Splitter Column in real time at one petrochemical plant in Malaysia. The technique employed Co-60 as a radioisotope sealed source to emit gamma radiation and a NaI(TI) scintillation as detector. This technique provides a visible representation of the true nature of the naphtha splitter column wherein the process and mechanical problems inside the column can be identified while it is in operation. This paper demonstrates details of the technique used and shows the result obtained.

Zain, Rasif Mohd; Rahman, Mohd Fitri Abd; Hasan, Nor Pa'iza Mohamad; Abdullah, Jaafar [Malaysian Nuclear Agency (Nuklear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

2008-05-20T23:59:59.000Z

328

A Case Study of Karstic Collapse Columns Delimitation in Coal Mine by GIS Spatial Analysis  

Science Journals Connector (OSTI)

Karstic collapse column (KCC), a kind of vertical structure typically developed in Carboniferous - Permian coal- fields in north China, adversely affects the safety of coal mine production. The formation of KCC e...

Jinhui Luo; Yongguo Yang; Yuhua Chen

2012-01-01T23:59:59.000Z

329

Effects of CSP Support Particle Size on the Performance of Larger Diameter Liquid Partition Columns  

Science Journals Connector (OSTI)

......research-article Editorial Effects of CSP Support Particle Size on the Performance...packed with different particle sizes of CSP (controlled surface porosity) support...larger, infinite-diameter columns and CSP support used in this study. Reduced plate......

H. C. Beachell; J. J. DeStefano

1972-08-01T23:59:59.000Z

330

Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges  

E-Print Network [OSTI]

Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges By Cole C. Mc ................................................................................................................................... 6 Seismic Activity in Western Washington State Approach ­ Bridge Modeling .............................................11 Seismic Excitations

331

Inexpensive Near-IR Sun Photometer for Measuring Total Column Water Vapor  

Science Journals Connector (OSTI)

An inexpensive two-channel near-IR sun photometer for measuring total atmospheric column water vapor (precipitable water) has been developed for use by the Global Learning and Observations to Benefit the Environment (GLOBE) environmental science ...

David R. Brooks; Forrest M. Mims III; Richard Roettger

2007-07-01T23:59:59.000Z

332

Effects from Alkali-Silica Reacton and Delayed Ettringite Formation on Reinforced Concrete Column Lap Splices  

E-Print Network [OSTI]

Reinforced concrete bridge columns can deteriorate prematurely due to the alkali-silica reaction (ASR) and/or delayed ettringite formation (DEF), causing internal expansion and cracking on the surface of the concrete. The performance...

Eck, Mary

2012-07-16T23:59:59.000Z

333

EXPERIMENTAL INVESTIGATION OF TRANSPORT OF STRONGLY RETAINED SPECIES BY SOIL COLUMNS  

Science Journals Connector (OSTI)

Column experiments have been extensively used in transport studies of major cations but few investigations are available on migration through soils of strongly retained species that are environmentally relevan...

MARCO PETRANGELI PAPINI; MAURO MAJONE

1997-04-01T23:59:59.000Z

334

Autonomous Gliders Reveal Features of the Water Column Associated with Foraging by Adelie Penguins  

E-Print Network [OSTI]

SYMPOSIUM Autonomous Gliders Reveal Features of the Water Column Associated with Foraging by Ade associated with low temperatures, restricted sunlight for much of the year, high wind, sea ice, and limited

335

Heat and mass transfer in bubble column dehumidifiers for HDH desalination  

E-Print Network [OSTI]

Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers ...

Tow, Emily W

2014-01-01T23:59:59.000Z

336

Effects from Alkali-Silica Reacton and Delayed Ettringite Formation on Reinforced Concrete Column Lap Splices.  

E-Print Network [OSTI]

??Reinforced concrete bridge columns can deteriorate prematurely due to the alkali-silica reaction (ASR) and/or delayed ettringite formation (DEF), causing internal expansion and cracking on the (more)

Eck, Mary

2012-01-01T23:59:59.000Z

337

HF heating of a plasma column at frequencies below the electron cyclotron frequency  

Science Journals Connector (OSTI)

Dispersion of waves, excited by the helical structure in a plasma column and the heating of a tail of the electron distribution ... frequencies below the electron plasma and the electron cyclotron frequency.

J. ?atlov; V. Kopeck; J. Musil; F. ?ek; K. Novik

1978-01-01T23:59:59.000Z

338

Chloride and Lithium Transport in Large Arrays of Undisturbed Silt Loam and Sandy Loam Soil Columns  

Science Journals Connector (OSTI)

...concentrations of surface-applied agrochemicals in subsurface tile drainage lines or...columns. This means that the soil composition, together with the particular flow...Warington. 1882. On the amount and composition of the rain and drainage water collected...

M. Saleem Akhtar; Tammo S. Steenhuis; Brian K. Richards; Murray B. McBride

339

Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns  

E-Print Network [OSTI]

Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently associated with carbon tetrachloride (CT) biodegradation in laboratory aquifer columns operated with a pulsed Hydrology: Groundwater transport; KEYWORDS: biodegradation, carbon tetrachloride, microbial transport

340

Small Column Ion Exchange Technology at Savannah River Site | Department of  

Broader source: Energy.gov (indexed) [DOE]

Small Column Ion Exchange Technology at Savannah River Site Small Column Ion Exchange Technology at Savannah River Site Small Column Ion Exchange Technology at Savannah River Site The Small Column Ion Exchange (SCIX) system being developed for deployment at the Savannah River Site (SRS) is a supplementary salt waste processing technology that, if implemented, will augment the baseline Salt Waste Processing Facility (SWPF) capability. An opportunity exists to shorten the SRS radioactive waste system lifecycle by 6 years, and significantly reduce life cycle costs, by accelerating salt processing to earlier completion, simultaneous with sludge vitrification. As described in the Enhanced Tank Waste Strategy, which is part of the Department of Energy (DOE) Office of Environmental Management (EM) Roadmap - EM Journey to Excellence,

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Monte Carlo Independent Column Approximations Conditional Random Noise: Impact on Simulated Climate  

Science Journals Connector (OSTI)

The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. Results for five experiments are used ...

P. Risnen; H. W. Barker; J. N. S. Cole

2005-11-01T23:59:59.000Z

342

Nonlinear wave loads on a three-column TLP in real seas  

E-Print Network [OSTI]

of offshore structures. In extreme storm sea conditions waves are significantly non- Gaussian and create remarkable nonlinear excitation loads, especially for the surface- piercing-column support of shuctures such as semi-submersibles, tension leg platforms... of offshore structures. In extreme storm sea conditions waves are significantly non- Gaussian and create remarkable nonlinear excitation loads, especially for the surface- piercing-column support of shuctures such as semi-submersibles, tension leg platforms...

Wang, Zhongmin

2012-06-07T23:59:59.000Z

343

A column based variance analysis approach to static reservoir model upgridding  

E-Print Network [OSTI]

A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office...

Talbert, Matthew Brandon

2008-10-10T23:59:59.000Z

344

Flow induced vibration of a cantilever column jet: a spectral analysis  

E-Print Network [OSTI]

FLON INDUCED VIBRATION OF A CANTILEVER COLUMN JET ? A SPECTRAL ANALYSIS A Thesis by ROY BRYANT SHILLING III Submitted to the Graduate College of Texas A8M University ir, partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1978 Major Subject: Ocean Engineering FLOW INDUCED VIBRATION OF A CANTILEVER COLUMN JET - A SPECTRAL ANALYSIS A Thesis by ROY BRYANT SHILLING III Approved as to style and content by: (Chairman of Committee) (Head of Department) ember...

Shilling, Roy Bryant

2012-06-07T23:59:59.000Z

345

New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns  

SciTech Connect (OSTI)

A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

Wright, Bob W.; Wright, Cherylyn W.

2012-10-26T23:59:59.000Z

346

Tests of Monte Carlo Independent Column Approximation With a Mixed-Layer Ocean Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tests of Monte Carlo Independent Column Tests of Monte Carlo Independent Column Approximation With a Mixed-Layer Ocean Model Petri Simo Järvenoja Heikki Järvinen Räisänen Finnish Meteorological Institute Figure 1. Root-mean-square sampling errors in local instant- aneous total (LW+SW) net flux at the surface and total radiative heating rate for the 1COL, CLDS, and REF approaches. Global rms values are given at the upper right hand corner of the plots. 1. Introduction The Monte Carlo Independent Column Approximation (McICA) separates the description of unresolved cloud structure from the radiative transfer solver very flexible ! unbiased with respect to ICA ! However, the radiative fluxes and heating rates contain conditional random errors ("McICA noise"). ? The topic of this poster: All previous tests of McICA

347

Tests of Monte Carlo Independent Column Approximation in the ECHAM5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tests of Monte Carlo Independent Column Approximation in the ECHAM5 Tests of Monte Carlo Independent Column Approximation in the ECHAM5 Atmospheric GCM Raisanen, Petri Finnish Meteoroligical Institute Jarvenoja, Simo Finnish Meteorological Institute Jarvinen, Heikki Finnish Meteorological Institute Category: Modeling The Monte Carlo Independent Column Approximation (McICA) was recently introduced as a new approach for parametrizing broadband radiative fluxes in global climate models (GCMs). The McICA allows a flexible description of unresolved cloud structure, and it is unbiased with respect to the full ICA, but its results contain conditional random errors (i.e., noise). In this work, McICA and a stochastic cloud generator have been implemented to the Max Planck Institute for Meteorology's ECHAM5 atmospheric GCM. The

348

One ARM, Two Columns and a Whole Lot of Aerosols | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ARM, Two Columns and a Whole Lot of Aerosols ARM, Two Columns and a Whole Lot of Aerosols One ARM, Two Columns and a Whole Lot of Aerosols July 25, 2012 - 5:49pm Addthis This observatory is part of an air particles research initiative at Cape Cod National Seashore in Massachusetts, and includes dozens of sophisticated instruments that take continuous ground-based measurements of clouds, aerosols, and other atmospheric properties. | Photo courtesy of the ARM Climate Research Facility. This observatory is part of an air particles research initiative at Cape Cod National Seashore in Massachusetts, and includes dozens of sophisticated instruments that take continuous ground-based measurements of clouds, aerosols, and other atmospheric properties. | Photo courtesy of the ARM Climate Research Facility.

349

Analysis of Dynamic Behavior of a Thermally Coupled Distillation Column Implemented on a Process with Recycles  

Science Journals Connector (OSTI)

Abstract Nowadays, the installation and operation of systems with minimum energy and material consumption is a main objective in the industrial ambit; this goal can be achieved through the implementation of recycle streams to recover raw materials and the use of energy integration techniques to minimize utilities requirements. However, when a process is highly integrated, e.g. processes with recycle streams and energy integration or thermal couplings, systems can present control problems. Several studies for Reactor-Separation-Recycle (RSR) systems using separation systems with conventional distillation columns have been reported, but few works have focused on energy-integrated columns or thermally coupled distillation sequences. This work presents a comparison between the dynamic behavior of a thermally coupled distillation column with side rectifier implemented within a RSR system and that obtained with a conventional distillation sequence.

D. Mascote-Prez; A. Snchez-Hijar; N. Ramrez-Corona; A. Jimnez-Gutierrez

2012-01-01T23:59:59.000Z

350

First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon  

E-Print Network [OSTI]

We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

H. O. Back; T. Alexander; A. Alton; C. Condon; E. de Haas; C. Galbiati; A. Goretti; T. Hohmann; An. Ianni; C. Kendziora; B. Loer; D. Montanari; P. Mosteiro; S. Pordes

2012-04-26T23:59:59.000Z

351

Dynamics and control of a heterogeneous azeotropic distillation column: Conventional control approach  

SciTech Connect (OSTI)

In this work, bifurcation analysis and dynamic simulation were used to investigate the optimum conventional control strategy of an isopropyl alcohol (IPA), cyclohexane (CyH), and water (H{sub 2}O) heterogeneous azeotropic column. Steady-state process analysis shows that the optimal operation point should be located at a critical reflux, a transition point at which the distillation path switches from a route that passes through the IPA + H{sub 2}O azeotrope to one that passes through the IPA + CyH azeotrope. A good control strategy must be able to maintain a steady column temperature profile that shows a plateau near 70 C to ensure passage around the IPA + CyH azeotrope. An inverse double-loop control strategy is proposed based on principal component analysis. This scheme is capable of maintaining the desired column temperature profile given all kinds of feed disturbances, thus keeping the product IPA purity at the desired level.

Chien, I.L. [National Taiwan Univ. of Science and Technology, Taipei (Taiwan, Province of China). Dept. of Chemical Engineering; Wang, C.J.; Wong, D.S.H. [National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Chemical Engineering

1999-02-01T23:59:59.000Z

352

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

353

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

354

An investigation of the buckling criteria of columns that have large angles of initial twist  

E-Print Network [OSTI]

COECLUSIONS A1G) RECOMME?3)ATIONS It is evident from the data presented in Figure 9 that no substantial change in the buckling criteria oc- curs as the result of initial twist up to 1/16 turn per inch of length. In general, the (L/r) values could... of the equations which are applicable to columns that have hinged end conditions. Experimental results from the buckling character- istics of a stepped column constructed of twisted ele- ments indicated further that no substantial change in the buckling...

Jordan, Basil Magee, Jr

2012-06-07T23:59:59.000Z

355

THERMAL ANALYSIS FOR IN-TANK ION-EXCHANGE COLUMN PROCESS  

SciTech Connect (OSTI)

High Level Waste (HLW) at the Savannah River Site (SRS) is stored in three forms: sludge, saltcake, and supernate. A small column ion-exchange (SCIX) process is being designed to treat dissolved saltcake waste before feeding it to the saltstone facility to be made into grout. The waste is caustic with high concentrations of various sodium salts and lower concentrations of radionuclides. Two cation exchange media being considered are a granular form of crystalline silicotitanate (CST) and a spherical form of resorcinol-formaldehyde (RF) resin. CST is an inorganic material highly selective for cesium that is not elutable. Through this process, radioactive cesium from the salt solution is absorbed into ion exchange media (either CST or RF) which is packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. If engineering designs cannot handle this thermal load, hot spots may develop locally which could degrade the performance of the ion-exchange media. Performance degradation with regard to cesium removal has been observed between 50 and 80 C for CST [1] and at 65 C for RF resin [2]. In addition, the waste supernate solution will boil around 130 C. If the columns boiled dry, the sorbent material could plug the column and lead to replacement of the entire column module. Alternatively, for organic resins such as RF there is risk of fire at elevated temperatures. The objective of the work is to compute temperature distributions across CST- and RF-packed columns immersed in waste supernate under accident scenarios involving loss of salt solution flow through the beds and, in some cases, loss of coolant system flow. For some cases, temperature distributions are determined as a function of time after the initiation of a given accident scenario and in other cases only the final steady-state temperature distributions are calculated. In general, calculations are conducted to ensure conservative and bounding results for the maximum temperatures achievable using the current baseline column design. This information will assist in SCIX design and facility maintenance.

Lee, S; Frank02 Smith, F

2009-01-05T23:59:59.000Z

356

Oil production from thin oil columns subject to water and gas coning  

E-Print Network [OSTI]

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

2012-06-07T23:59:59.000Z

357

table5.6_02  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002; 6 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE Net Residual and Natural LPG and (excluding Coal Row End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.3 1 0 0 TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel -- 12 127 35 2,162 8 776 -- 5.5 Conventional Boiler Use -- 9 76 25 1,306 8 255 -- 5.6 CHP and/or Cogeneration Process -- 4 51 10 857 * 521 -- 3.7 Direct Uses-Total Process -- 2,218 60 43 2,986 64 381 -- 2.9 Process Heating -- 343

358

table2.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; 4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources; Unit: Establishment Counts. Any Combustible RSE NAICS Energy Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 1.5 0.6 1.1 1 1.1 0.7 1 1.4 311 Food 406 W 152 185 0 0 4 83 9.6 311221 Wet Corn Milling W 0 W 0 0 0 0 W 0.8 31131 Sugar 6 0 W W 0 0 4 W 0.9 311421 Fruit and Vegetable Canning 14 W 6 0 0 0 0 9 5.6 312 Beverage and Tobacco Products 31 W 5 W 0 0 0 15 12.4 3121 Beverages Q W 5 0 0 0 0 12 31.9 3122 Tobacco W 0 0 W 0 0 0 W 0.8

359

table10.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002; 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Distillate Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 1.1 0.7 1.2 1.1 1.1 1.2 1.1 0.9 1.1 311 Food 12,018 2,210 10,674 532 1,170 413 75 862 3 25 9.9 311221 Wet Corn Milling 47 16 39 4 6 W W 6 0 W 1 31131 Sugar 62 23 51 W 4 13 4 0 W 0 1 311421 Fruit and Vegetable Canning 416 113 337 4 67 49 W 32 W W 5.5 312 Beverage and Tobacco Products

360

table10.10_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

0 Capability to Switch Coal to Alternative Energy Sources, 2002; 0 Capability to Switch Coal to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. RSE NAICS Total Not Electricity Natural Distillate Residual Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Factors Total United States RSE Column Factors: 1.4 1.1 1.5 0.7 1.1 0.8 1.2 1.5 0.5 311 Food 8,290 1,689 7,112 0 1,410 Q 212 313 7 8.5 311221 Wet Corn Milling 5,462 771 5,201 0 766 0 0 249 6 0.9 31131 Sugar 1,648 388 1,260 0 243 0 W 0 2 0.9 311421 Fruit and Vegetable Canning 0 0 0 0 0 0 0 0 0 0 312 Beverage and Tobacco Products

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

table10.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Distillate and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.9 1.4 1.9 0.6 1.5 0.6 0.6 0.9 0 0.7 311 Food 2,125 1,411 508 0 819 W W Q 0 Q 11.1 311221 Wet Corn Milling 61 W 45 0 0 W 0 0 0 0 0.8 31131 Sugar 346 193 98 0 169 0 W 0 0 0 0.7 311421 Fruit and Vegetable Canning 153 29 Q 0 29 * 0 0 0 0 24.6 312 Beverage and Tobacco Products

362

table3.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002; 4 Number of Establishments by Fuel Consumption, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any RSE NAICS Energy Net Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal and Breeze Other(g) Factors Total United States RSE Column Factors: 0.7 0.7 1.3 1.1 0.9 1.2 1.2 1 1.2 311 Food 15,089 15,045 274 2,418 12,018 3,159 91 19 1,858 5.1 311221 Wet Corn Milling 49 49 3 20 47 14 19 0 15 1 31131 Sugar 77 77 18 40 62 31 24 19 44 1 311421 Fruit and Vegetable Canning 468 468 38 123 416 229 0 0 146 7.8 312 Beverage and Tobacco Products 1,595 1,595 35 251 1,132 630 17 0 184 11 3121 Beverages 1,517 1,517

363

table11.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002; 4 Electricity: Components of Onsite Generation, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood RSE Economic Total Onsite and Row Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.4 Value of Shipments and Receipts (million dollars) Under 20 609 379 W W 25.2 20-49 4,155 4,071 27 58 13.3 50-99 6,356 6,296 * 61 6.5 100-249 19,027 16,033 1,185 1,809 2.2 250-499 36,752 32,991 W W 2.2 500 and Over 69,334 66,458 W W 1.2 Total 136,233 126,228 2,381 7,625 2 Employment Size Under 50 3,927 3,713

364

table4.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.6 1.3 2.2 0.7 1.4 1.5 0.6 1 Value of Shipments and Receipts (million dollars) Under 20 1,276 437 15 50 598 W 47 W 97 14.5 20-49 1,258 417 28 22 590 W 112 W 72 6.1 50-99 1,463 401 17 W 731 7 185 W 97 4.9 100-249 2,041 571 43 17 968 8 253 7 175 4.6 250-499 1,962 475 54 W 826 W 326 W 255 5.6 500 and Over 3,971 618 38 W 2,077 37 259 W 607 1.5 Total 11,970

365

table5.5_02  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002; 5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.4 1 0 0 TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6 2,105 2 35 -- 5.3 Conventional Boiler Use -- 2,496 12 4 1,271 2 11 -- 5.6

366

table5.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002; 2 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE NAICS Net Residual and Natural LPG and (excluding Coal Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.3 1 NF TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel -- 12 127 25 2,162 8 776 -- 5.5 Conventional Boiler Use -- 9 76 25 1,306 8 255 -- 5.6 CHP and/or Cogeneration Process -- 4 51 10 857 * 521 -- 3.7 Direct Uses-Total Process

367

table10.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Distillate and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 1.3 1 1.5 0.7 1 0.8 0.6 1.2 1.4 0.8 311 Food 274 183 108 0 119 72 W Q 0 15 15.2 311221 Wet Corn Milling 3 W W 0 0 W 0 0 0 0 0.9 31131 Sugar 18 9 9 0 9 0 W 0 0 0 1 311421 Fruit and Vegetable Canning 38 26 30 0 26 W 0 0 0 0 8.1 312 Beverage and Tobacco Products 35 17 Q 0 17 6 W 0 0 0 8

368

table5.8_02  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002; 8 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE for Residual and Natural LPG and (excluding Coal Row End Use Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Factors Total United States RSE Column Factors: 0.3 2.4 1.1 1.3 1 0 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127 35 2,162 8 776 5.5 Conventional Boiler Use 11 76 25 1,306 8 255 5.6 CHP and/or Cogeneration Process 12 51 10 857 * 521 3.7 Direct Uses-Total Process 2,624 60 43 2,986 64 381 2.9 Process Heating 355 58 24 2,742 60 368 3.2

369

table6.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002; 1 Consumption Ratios of Fuel, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 0.9 1 311 Food 867.8 6.0 2.6 5.9 311221 Wet Corn Milling 24,113.7 65.7 26.2 1.8 31131 Sugar 8,414.5 54.2 17.9 1 311421 Fruit and Vegetable Canning 824.1 5.4 2.5 10.6 312 Beverage and Tobacco Products 670.4 1.6 1.0 2.7 3121 Beverages 658.6 2.8 1.3 3.9 3122 Tobacco 729.4 0.6 0.5 1 313 Textile Mills 798.7 11.2 4.3

370

table10.13_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002; 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Distillate Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.8 0.6 0.9 0.7 0.8 1 2.8 2.7 0.7 311 Food 3,159 793 2,492 570 533 147 225 22 20 21 21.9 311221 Wet Corn Milling 14 W W W W 0 0 0 0 W 1.4 31131 Sugar 31 W W W 0 0 0 W 0 W 1.1 311421 Fruit and Vegetable Canning 229 15 215 11 4 W W 0 0 0 5.3 312 Beverage and Tobacco Products

371

table10.11_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002; 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. RSE NAICS Total Not Electricity Natural Distillate Residual Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Factors Total United States RSE Column Factors: 1.5 1.2 1.5 0.7 1.1 0.8 1.1 1 0.5 311 Food 91 50 92 0 26 Q Q W W 10.7 311221 Wet Corn Milling 19 8 17 0 7 0 0 W W 0.9 31131 Sugar 24 13 22 0 11 0 4 0 W 0.9 311421 Fruit and Vegetable Canning 0 0 0 0 0 0 0 0 0 0 312 Beverage and Tobacco Products 17 8 12 0 7 W 5 0 0 5.3 3121 Beverages 9 5 5 0 W W W 0 0 8.5

372

table11.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002; 3 Electricity: Components of Onsite Generation, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood RSE NAICS Total Onsite and Row Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Factors Total United States RSE Column Factors: 0.9 0.8 1.1 1.3 311 Food 5,622 5,375 0 247 12.5 311221 Wet Corn Milling 2,755 2,717 0 38 2.6 31131 Sugar 1,126 1,077 0 48 1 311421 Fruit and Vegetable Canning 388 W 0 W 1 312 Beverage and Tobacco Products W W * 1 1.6 3121 Beverages W W * * 3.8 3122 Tobacco W W 0 1 1 313 Textile Mills W 138 W W 11.9 314 Textile Product Mills 55 49 Q * 2.1

373

table3.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption, 2002; Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Net Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.7 1.3 2.1 0.7 1.4 1.5 0.7 0.9 Value of Shipments and Receipts (million dollars) Under 20 1,312 436 15 50 598 W 47 W 132 13.9 20-49 1,465 407 28 22 590 W 112 W 289 6.9 50-99 1,598 394 17 W 731 7 185 W 237 4.5 100-249 2,385 561 43 17 972 8 253 7 525 4.2 250-499 2,598 458 57 W 826 W 326 W 906 5.4 500 and Over 6,914 584 47 21 2,077 55 259 530 3,342 1.5 Total 16,273 2,840

374

table4.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 233 13 19 575 5 184 1 50 8 311221 Wet Corn Milling 217 24 * * 61 * 121 0 11 1.1 31131 Sugar 74 3 2 1 22 * 37 1 8 1 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 12.4 312 Beverage and Tobacco Products 104 27 2 2 46 1 17 0 9 4.3 3121 Beverages 84 22 1 2 42 1 8 0 9 5.9 3122 Tobacco 19 5 1 * 4 * 10 0 * 0.9 313 Textile Mills 206 87 4 2 74 2

375

table5.4_02  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002; 4 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE NAICS for Residual and Natural LPG and (excluding Coal Row Code(a) End Use Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.3 1 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127 25 2,162 8 776 5.5 Conventional Boiler Use 11 76 25 1,306 8 255 5.6 CHP and/or Cogeneration Process 12 51 10 857 * 521 3.7 Direct Uses-Total Process 2,624

376

table10.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Capability to Switch Electricity to Alternative Energy Sources, 2002; 6 Capability to Switch Electricity to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke RSE NAICS Total Not Natural Distillate Residual and Row Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Factors Total United States RSE Column Factors: 0.9 1.4 0.9 1.6 1.7 0.6 0.8 1.7 0.5 0.9 311 Food 68,230 2,270 49,890 239 2,125 17 9 72 0 Q 12.2 311221 Wet Corn Milling 7,098 77 6,062 77 0 0 0 0 0 0 0.9 31131 Sugar 733 21 602 * 11 9 9 0 0 * 1 311421 Fruit and Vegetable Canning 1,987 Q 1,764 Q Q 0 0 25

377

table5.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2002; 7 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Row End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States RSE Column Factors: 0.3 2.4 1.1 1.4 1 0 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use 3,199 12 4 1,271 2 11 5.6 CHP and/or Cogeneration Process 3,515 8 2

378

table7.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002; 4 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate Natural LPG and RSE Economic Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Row Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 0.067 0.6 1.01 5.05 0.9 60.2 11.2 20-49 0.056 0.55 0.89 4.69 0.88 40.36 6.5 50-99 0.05 0.61 0.91 4.21 0.62 47.85 4.7 100-249 0.043 0.59 0.92 3.84 0.45 41.33 5.5 250-499 0.038 0.52 0.79 3.94

379

table10.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002; 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke RSE NAICS Total Not Electricity Distillate Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 0.8 1 0.9 1.6 1 1 1.1 1.1 0.5 1.3 311 Food 560 155 298 20 70 40 2 63 * Q 12 311221 Wet Corn Milling 59 11 41 3 3 3 * 4 0 * 2 31131 Sugar 22 7 10 * 2 5 * 0 * 0 1 311421 Fruit and Vegetable Canning 35 10 19 2 6 2 * 1 * * 5.5 312 Beverage and Tobacco Products

380

table10.8_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke RSE NAICS Total Not Electricity Natural Residual and Row Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 1.7 1.6 1.7 0.9 1.5 0.6 0.7 1.7 0.3 0.8 311 Food 3,177 986 767 Q 297 Q 1 Q 0 Q 10.4 311221 Wet Corn Milling 14 4 10 * 3 0 1 2 0 * 0.8 31131 Sugar 169 W 143 W W 0 0 0 0 0 0.7 311421 Fruit and Vegetable Canning 242 Q 121 0 Q 0 0 0 0 * 27.1 312 Beverage and Tobacco Products

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

table1.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE NAICS Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 230 13 19 582 5 184 1 89 0 6.8 311221 Wet Corn Milling 217 23 * * 61 * 121 0 11 0 1.1 31131 Sugar 112 2 2 1 22 * 37 1 46 0 0.9 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 0 11 312 Beverage and Tobacco Products 105 26 2 2 46 1 17 0 11

382

table10.9_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Electricity Natural Residual and Row Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Factors Total United States RSE Column Factors: 1 1.3 1 0.9 1.2 1 0.8 1.3 0.8 0.9 311 Food 2,418 789 1,899 129 447 176 W 280 0 40 12.4 311221 Wet Corn Milling 20 7 15 W 4 0 W W 0 W 1 31131 Sugar 40 W W W W 0 0 0 0 0 0.9 311421 Fruit and Vegetable Canning 123 6 117 0 5 0 0 0 0 W 6.9 312 Beverage and Tobacco Products 251 30 227

383

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

384

table6.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002; 4 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 395.7 4.3 2.3 3.6 50-99 663.4 6.8 3.3 5 100-249 905.8 7.9 3.8 3.6 250-499 1,407.1 11.1 5.1 4.3 500-999 1,999.6 12.4 5.9 5.6 1000 and Over 1,597.7 8.5 3.9 2.5 Total 1,172.2 8.9 4.2 2 311 FOOD Employment Size Under 50 893.5 6.6 2.4

385

table7.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002; 5 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Million Btu. RSE Economic Residual Distillate Natural LPG and Row Characteristic(a) Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 19.67 3.98 7.29 4.91 9.79 2.57 11.3 20-49 16.48 3.64 6.42 4.57 9.97 1.77 6.5 50-99 14.79 4.07 6.53 4.1 7.14 2.11 4.7 100-249 12.72 3.94 6.6 3.74 5.2 1.87 5.5 250-499 11.2 3.46 5.69 3.84 5.97 1.74 4.6 500 and Over 11.64 3.88 5.23 3.48 5.83 1.84 1.7 Total 14.13

386

table2.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * Q 7 0 0 * * 10.2 311221 Wet Corn Milling * 0 * 0 0 0 0 * 0.7 31131 Sugar * 0 * * 0 0 * * 0.9 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 1.7 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 2.3 3121 Beverages * * * 0 0 0 0 * 28.9 3122 Tobacco 1 0 0 * 0 0 0 1 0.8 313 Textile Mills 1 0 * 1 0 0 0 * 0.8 314 Textile Product Mills * 0 0 * 0 * 0 * 2 315 Apparel

387

table6.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002; 3 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 281.0 3.9 2.2 3 20-49 583.7 6.1 3.0 4.6 50-99 889.2 8.1 3.8 4.9 100-249 1,268.8 8.7 4.1 4.6 250-499 2,146.6 11.2 5.3 7.6 500 and Over 3,807.1 12.5 5.4 2.3 Total 1,172.2 8.9 4.2 2 311 FOOD Value of Shipments and Receipts

388

table7.9_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002; 9 Expenditures for Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 0.9 0.9 1.1 1.5 0.9 1.4 0.8 0.7 1.2 311 Food 6,943 3,707 58 135 2,546 38 276 8 175 8 311221 Wet Corn Milling 683 252 2 1 237 * 165 0 26 1.1 31131 Sugar 224 39 11 8 84 * 63 8 10 1 311421 Fruit and Vegetable Canning 333 139 5 8 168 Q 0 0 4 13.5 312 Beverage and Tobacco Products 780 479 8 18 201 9 40 0 25 5.8 3121 Beverages 665 413 4 Q 182 8 16 0 25 5.6 3122 Tobacco 115

389

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

390

table10.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke RSE NAICS Total Not Natural Distillate Residual and Row Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Factors Total United States RSE Column Factors: 0.6 1.2 0.6 1.2 1.3 1 0.8 1.4 1.3 1.2 311 Food 15,045 582 14,905 185 437 30 W 170 0 55 11.4 311221 Wet Corn Milling 49 W W W 0 0 0 0 0 0 1.2 31131 Sugar 77 8 74 W 4 W W 0 0 W 1.1 311421 Fruit and Vegetable Canning 468 37 443 Q 34 0 0 13 0 0 10.4 312 Beverage and Tobacco Products 1,595 70 1,556

391

Optimization of a Diabatic Distillation Column with Sequential Heat Edward Steven Jimenez and Peter Salamon*  

E-Print Network [OSTI]

to the reboiler and extracted from the condenser. Such diabatic columns dramatically reduce the exergy needed comparison, we find how much exergy is lost by circulating a fluid in series rather than using independently. The comparisons show that most of the potential exergy savings can be captured by diabatization using heat

Salamon, Peter

392

Solute Band Broadening Effects in Gas-Adsorption Elution Chromatography in Packed Columns  

Science Journals Connector (OSTI)

......column. Gas pressures at the inlet and outlet were measured on mercury-in- glass manometers. Measurements of the carrier gas velocity...cient in gas phase at one at- mosphere, cm2 sec-' atm. Dla - apparent gas diffusion coeffi- cient of a solute in the pores......

P. C. van Berge; V. Pretorius

1964-07-01T23:59:59.000Z

393

Tropospheric Nitric Acid Columns from IASI Interpreted with a Chemical Transport Model Matthew Cooper1  

E-Print Network [OSTI]

1 Tropospheric Nitric Acid Columns from IASI Interpreted with a Chemical Transport Model Matthew from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). GEOS the Infrared Atmospheric Sounding Interferometer (IASI) instrument on the MetOp satellite platform. IASI

Martin, Randall

394

STREAMLINE is a range of adsorbents and columns designed for expanded bed adsorption.  

E-Print Network [OSTI]

STREAMLINE is a range of adsorbents and columns designed for expanded bed adsorption. In this new. Adsorbent particles are suspended in equilibrium due to the balance between particle sedimentation velocity and upward flow (Fig. 2). The defined particle distribution and high density of STREAMLINE adsorbents yield

Lebendiker, Mario

395

Dynamic RadiativeConvective Equilibria Using GCM Column Physics ISAAC M. HELD  

E-Print Network [OSTI]

Dynamic Radiative­Convective Equilibria Using GCM Column Physics ISAAC M. HELD NOAA and Oceanic Sciences, Department of Geosciences, Princeton University, Princeton, New Jersey BRUCE WYMAN NOAA author address: Dr. Isaac M. Held, NOAA/Geo- physical Fluid Dynamics Laboratory, Princeton University

396

Magnetic fluctuations of a large nonuniform plasma column J. E. Maggsa)  

E-Print Network [OSTI]

Magnetic fluctuations of a large nonuniform plasma column J. E. Maggsa) and G. J. Morales Physics of spontaneously generated magnetic fluctuations in a large linear device in which the plasma density has different as at an interior plasma­plasma interface, thus phenomena of interest to magnetic fusion research as well

California at Los Angles, University of

397

Lignin biomarkers as tracers of mercury sources in lakes water column  

E-Print Network [OSTI]

Lignin biomarkers as tracers of mercury sources in lakes water column Jean-Franc¸ois Ouellet ? Marc the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signa- tures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous

Long, Bernard

398

Black-Box Identification for PLC based MPC of a Binary Distillation Column  

E-Print Network [OSTI]

Black-Box Identification for PLC based MPC of a Binary Distillation Column B. Huyck ,, F. Logist J is to upgrade the control system with a linear MPC running on a PLC. However, before a model based controller can be used on a PLC, an accurate (but simple) process model has to be constructed. Hence, the aim

399

Investigations into the Utility of an Inorganic Salt Eutectic Column for Trace Hydrocarbon Determinations  

Science Journals Connector (OSTI)

......components of both the alkane and PAH mixtures to active sites. While Snowdon and Peake (1) worked with crude oil and oil shale extracts, and the workers of Reference 5 appear to have injected hydrocarbons onto similar columns at 500 ng/compo......

A.C. Butler; R.R. Sibbald

1985-08-01T23:59:59.000Z

400

Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements  

E-Print Network [OSTI]

Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde emission estimates are highly uncertain because of a lack of direct observations. Formaldehyde (HCHO the observation of this trace gas to help constrain isoprene emissions. We use HCHO column observations from

Chance, Kelly

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mapping isoprene emissions over North America using formaldehyde column observations from space  

E-Print Network [OSTI]

Mapping isoprene emissions over North America using formaldehyde column observations from space. [1] We present a methodology for deriving emissions of volatile organic compounds (VOC) using space to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene

Chance, Kelly

402

Department of Mechanical Engineering Spring 2011 Liquid Nitrogen Packed Column Distributor Design  

E-Print Network [OSTI]

Distributor Design Overview Air Products and Chemicals Inc. tasked the design team to come up with new with Air Products and SJTU, the team developed a final concept and then modeled the distributor design distillation column design. Approach The design team first gathered customer specifications from Air Products

Demirel, Melik C.

403

Chemical Reduction of PCE by Zero Valent Iron Colloids Batch and Column Experiments  

E-Print Network [OSTI]

Chemical Reduction of PCE by Zero Valent Iron Colloids ­ Batch and Column Experiments Motivation nm NAPASAN Particle - nZVI / PCE-Solution 0 20 40 60 80 100 120 140 0 2 4 6 8 10 12 14 16 18 20 22 24H[-] PCE - Inflow PCE - Outflow TCE - Inflow TCE - Outflow Chloride - Outflow Blank Value Chloride pH Value

Cirpka, Olaf Arie

404

Integrated Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation  

E-Print Network [OSTI]

Distillation Ivar J. Halvorsen1 and Sigurd Skogestad Norwegian University of Science and Technology, Department at the Topical conference on Separations Technology, Session 23 - Distillation Modeling and Processes II. 2001 Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation Ivar J

Skogestad, Sigurd

405

Nonlinear process model based control of a propylene sidestream draw column  

SciTech Connect (OSTI)

While sidestream draw columns offer the incentives of reduced capital and operating expenses, they also pose more challenging control problems than ordinary distillation columns. This paper describes the application of nonlinear process model based control (PMBC) for composition control of all product streams for a simulation of a distillation column with a liquid sidestream draw. A tray-to-tray simulator of an industrial propylene/propane column that considers 5-min composition analyzer dead time was used to test the nonlinear PMBC controller for setpoint changes, a feed flow rate change, and feed composition changes. The nonlinear PMBC controller used an approximate model based upon the Smoker equation directly to make control decisions. The nonlinear PMBC controller exhibits excellent control performance for all test cases with a maximum relative deviation of the impurity from setpoint of about 10% for the two product streams. The nonlinear PMBC controller provides significantly improved control performance over a conventional single loop control scheme that is currently in industrial use.

Riggs, J.B. (Dept. of Chemical Engineering, Texas Tech Univ., Lubbock, TX (US))

1990-11-01T23:59:59.000Z

406

VOC recovery using microwave regeneration of adsorbents: Pilot-column studies  

SciTech Connect (OSTI)

A pilot-scale column was constructed to evaluate the technical feasibility of microwave (MW) heating as a means of regenerating adsorbents for recovery of volatile organic compounds (VOCs). The 6 inch diameter moving-bed column, which has a throughput capacity of 200 lb/hr of adsorbent, is representative of a full-scale component of a small-capacity recovery system or a single element of a large-capacity system. Regeneration experiments were conducted to study the effects of key process variables, including adsorbent and stripping gas feed rates, initial adsorbent coverage and microwave power input, on column performance. Two adsorbents with contrasting dielectric loss characteristics were studied, Dowex Optipore L502 (low dielectric loss styrene-based) and Rohm and Haas Ambersorb 600 (moderate dielectric loss carbonaceous). Adsorbates included polar and nonpolar compounds: isopropyl alcohol (iPA), methyl ethyl ketone (MEK) and toluene. Solvent recovery rates of 20--30 lbs/hr were achieved. The results of the pilot-column experiments demonstrate that axial temperature and desorption profiles are dependent on the dielectric characteristics of the adsorbent/sorbate pair, and that final regeneration coverage can be correlated with a dimensionless stripping gas ratio and final adsorbent temperature. Implications for design of microwave-regenerated VOC recovery systems are discussed.

Salinas, M.J.; Price, D.W.; Schmidt, P.S.

1999-07-01T23:59:59.000Z

407

A simple column model to explore anticipated problems in variational assimilation of satellite observations  

E-Print Network [OSTI]

A simple column model to explore anticipated problems in variational assimilation of satellite Office, Exeter, UK Abstract We investigate a simplified form of variational data assimilation in a fully of nonlinearity become non-negligible in the variational data assimilation algorithm. A careful analysis

Roulstone, Ian

408

Local instability of certain 18-8 stainless steel thin sheet metal columns  

E-Print Network [OSTI]

o ". &e cross~ac', ?ion in its oi&n pl in& ~ Ms i. , u &nally faced in short columns, 1&is invo ti, "ion ia conco&siod onl~. , &?LGh accoi&dcr~. Z&ilurc, o. ii, is aonetiaea c. . le&. . '. , loc;!1 b. ?n&linI;, 'he object o ' t&. ia i!!v;. i...

McClendon, E. W

2012-06-07T23:59:59.000Z

409

Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column  

DOE Patents [OSTI]

A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

Rutherford, W.M.

1985-12-04T23:59:59.000Z

410

Airgap Prediction: Use of Second-Order Diffraction and Multi-Column Models  

E-Print Network [OSTI]

of a specific semi-submersible platform subjected to irregular waves is considered. The effects of including, which uses a multi-column model of the semi-submersible platform to compute the diagonal-order diffraction entirely. KEY WORDS: airgap, second-order diffraction, semi-submersible, extremes INTRODUCTION

Sweetman, Bert

411

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process  

E-Print Network [OSTI]

, methanol recovery 1. Introduction A process of producing TAME via reactive distillation has been presented the bulk of the reaction between C5 and methanol to produce TAME and a reactive distillation. MethanolDesign of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Al-Arfaj, Muhammad A.

412

Nested Column Generation applied to the Crude Oil Tanker Routing and Scheduling Problem with  

E-Print Network [OSTI]

's fuel price of around 650 USD/ton. A port visit avoided through good routing and scheduling could reduce builds on a branch-and-price algorithm in which the column generation subproblems are solved by branch-and-price themselves. We describe our implementa- tion in the branch-cut-and-price framework SCIP and give

Lübbecke, Marco

413

Discrete particle simulations and experiments on the collapse of wet granular columns  

E-Print Network [OSTI]

: the initial liquid content, the particle size, the solid den- sity, the liquid surface tension and the liquid in the algorithm and the volume of each sessile drop on the particle surface was considered during its motion near the movable wall at a middle-height of the initial column sample. Other particles at the surface

Boyer, Edmond

414

Photocathode source for studying two-dimensional fluid phenomena with magnetized electron columns  

E-Print Network [OSTI]

Photocathode source for studying two-dimensional fluid phenomena with magnetized electron columns D have been generated with thermionic sources, typically limiting the initial electron distribution a new electron source based on a cesium antimonide photocathode that can generate more complicated

Fajans, Joel

415

Gas Chromatographic Analysis of Low Molecular Weight Alkyl Thiols and Sulfides Separated on Open Tubular Columns  

Science Journals Connector (OSTI)

......O.Z /98 Figure 1. Open Tubular Column Separation of Thiols and Sulfides. 1. Adams, D. F., and Koppe, R. H., Tappi 42, No. 7: 601 (July 1959). 2. Levey, E. J., and Stahl, W. A., Anal Chem. 33, No. 6: 707 (1961). 3. Fredericks......

Robert W. Freedman

1968-09-01T23:59:59.000Z

416

Column Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material  

E-Print Network [OSTI]

Column Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material bioremediation of carbon tetrachloride (CT) at the Hanford site in south- central Washington state. Benzoate in south- central Washington state has been a defense materials pro- duction complex since 1943. Carbon

Semprini, Lewis

417

388 Biomedical Instrumentation & Technology September/October 2011 Columns and Departments  

E-Print Network [OSTI]

388 Biomedical Instrumentation & Technology September/October 2011 Columns and Departments When) as a biomedical equipment technician in 1999, he remembers being presented with the organization's strategic plan written permission from AAMI. #12;389Biomedical Instrumentation & Technology September/October 2011

Hayden, Nancy J.

418

2004 ASHRAE. 3 Standing column wells can be used as highly efficient  

E-Print Network [OSTI]

is a senior research fellow at the Institute of Energy and Sustainable Development, De Montfort University exchangers in geothermal heat pump systems, where hydrological and geological conditions are suitable. A numerical model of groundwater flow and heat transfer in and around standing column wells has been developed

419

Can the Operating Leaves of a Distillation Column Really Be Tshepo S. Modise, Michaela Tapp, Diane Hildebrandt,* and David Glasser  

E-Print Network [OSTI]

Can the Operating Leaves of a Distillation Column Really Be Expanded? Tshepo S. Modise, Michaela to determine the operation leaves and hence the feasible region for distillation columns operating at a specific distillate and bottoms composition for all possible constant reflux and reboil ratios

Skogestad, Sigurd

420

MODELING, IDENTIFICATION AND CONTROL, 2000, VOL. 21, NO. 2, 83103 Evaluation of Dynamic Models of Distillation Columns with Emphasis  

E-Print Network [OSTI]

of Distillation Columns with Emphasis on the Initial Response BERND WITTGENS and SIGURD SKOGESTAD* Keywords: Distillation dynamics, tray hydraulics, experimental response The flow dynamics (tray hydraulics) are of key importance for the initial dynamic response of distillation columns. The most important parameters

Skogestad, Sigurd

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Structure of columns in monkey striate cortex induced by luminant-contrast and color-contrast stimulation  

Science Journals Connector (OSTI)

...6, 7) reported columns induced by oscillating B/W, vertically oriented stripes which...superimpose the density outlines of a string of columns generated by B/W stimulation...magnification they appear as beads on a string- i.e., periodic densities along...

M L Crawford; L S Meharg; D A Johnston

1982-01-01T23:59:59.000Z

422

A CycloDissipativity Condition for Power Factor Improvement in Electrical Circuits  

E-Print Network [OSTI]

A Cyclo­Dissipativity Condition for Power Factor Improvement in Electrical Circuits Romeo Ortega compensation problem for electrical circuits. Namely, we prove that a necessary condition for a (shunt of the source are functions of time and are denoted by the column vectors vs, is Rq . The load is described

Stankoviæ, Aleksandar

423

Posters Single-Column Model and Cumulus Ensemble Model Simulations of GATE Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Posters Single-Column Model and Cumulus Ensemble Model Simulations of GATE Data D. A. Randall and K.-M Xu Colorado State University Department of Atmospheric Science Fort Collins, Colorado Introduction Our project for the Atmospheric Radiation Measurement (ARM) Program consists of developing and demonstrating improved cloud formation parameterizations using a single-column model (SCM), a cumulus ensemble model (CEM), and ARM data. These two models can be driven with large-scale forcing (e.g., vertical motion) as observed in ARM. Each model produces a field of clouds and the associated radiation and precipitation fields. The SCM does so through its physical parameterizations, while the CEM does so by directly simulating convective cloud circulations. The improved parameterizations tested in this way will be

424

PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien  

Office of Scientific and Technical Information (OSTI)

PULSE COLUMN DESIGN PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien November 1958 Ames Laboratory Iowa State College Ames, Iowa UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. F. H. Spedding, Director, Ames Laboratory. Work performed under Contract No. W-7405-Eng-82. L E G A L N O T I C E This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu- racy, completeness, or usefulness of the information contained in this report, or that the use

425

Summary - Small Column Ion Exchange (SCIX)Technology at the SRS  

Broader source: Energy.gov (indexed) [DOE]

ETR ETR R Un Baseline The Sm being The SC operat which Sr, and waste critical the SC deploy Specif exchan [CST]) CST, a (mono and so (RMF) maturi readin design moving The pu techni projec Site: S roject: S E Report Date: F ited States Sma Why DOE e SCIX System Pr mall Column Io developed at S CIX system is tions (ion excha function to rem d actinides) fro and prepare th l technology ele CIX system tha yment and thes fically the critica nge on a selec ) housed in an actinide and Sr osodium titanat olids/liquid sepa ). The objectiv ty of the SCIX ess of the proc n, and to provid g towards deta To view the full E http://www.em.doe. urpose of an Externa ical risk associated w ct decisions. Technic Savannah Rive Small Column Exchange/SCIX Feb. 2011 Departmen ll Colum E-EM Did This rocess Diagram on Exchange (S

426

Novel hybrid FRP tubular columns for sustainable mining infrastructure: Recent research at University of Wollongong  

Science Journals Connector (OSTI)

Abstract This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer (FRP) tube and an annular concrete infill between them. The two tubes may be concentrically placed to produce a section form more suitable for columns, or eccentrically placed to produce a section form more suitable for beams. The FRP is combined with steel and concrete in these hybrid structural members in such a way that the advantages of FRP are appropriately exploited while its disadvantages are minimized. As a result, these hybrid members possess excellent corrosion resistance as well as excellent ductility and seismic resistance. This paper summarizes existing research on this new form of structural members, and discusses their potential applications in mining infrastructure before presenting a summary of the recent and current studies at University of Wollongong (UOW) on their structural behaviour and design.

Tao Yu; Alex M. Remennikov

2014-01-01T23:59:59.000Z

427

Estimating vent emissions from a distillation column: An alternative to stack testing  

SciTech Connect (OSTI)

This technical paper points out the cost-effectiveness and data manageability of material balance over the epidemic use of stack testing in the chemical industry. An example is drawn from a Title V emissions inventory prepared for an international manufacturer of pharmaceuticals and fuel additives. This example case focuses on the use of mass balance to estimate noncondensibles generated by a typical large-scale distillation column. Distillation fundamentals are reviewed, including discussion of relative volatility, x-y and McCabe-Thiele diagrams, and basic sieve tray mechanics. A seemingly complex set of energy and material balance equations is simplified by the application of constant molar overflow. The example case concludes with a calculation of column noncondensibles, and the paper closes with a review of the material balance approach, including its strengths, limitations, and applicability to other unit operations.

Dickerson, D.L. Jr. [ERM-Southeast, Charleston, SC (United States)

1996-12-31T23:59:59.000Z

428

Startup of distillation columns using profile position control based on nonlinear wave model  

SciTech Connect (OSTI)

Startup of distillation columns is a very challenging control problem because of its strong nonlinearity and a wide operating range during the transient period. A nonlinear wave model captures the essential dynamic behavior of the distillation process so that it is possible to deal with the difficulties encountered during startup operation. This paper is concerned with the startup of distillation systems using nonlinear wave model based control developed by Han and Park. This control scheme uses profile positions as controlled variables and is based on the nonlinear wave model by Hwang and generic model control scheme by Lee and Sullivan. It can be applied to a binary or a multicomponent distillation system that can be represented as a pseudobinary. The proposed control scheme is shown by simulation studies to provide a safe and economic startup operation not only for dual composition control of a simple distillation column but also for a complex distillation configuration.

Han, M.; Park, S. [Chungnam National Univ., Taejon (Korea, Republic of). Chemical Engineering Dept.] [Chungnam National Univ., Taejon (Korea, Republic of). Chemical Engineering Dept.; [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Chemical Engineering Dept.

1999-04-01T23:59:59.000Z

429

Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column  

SciTech Connect (OSTI)

Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

2014-01-15T23:59:59.000Z

430

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

431

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

432

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

433

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

434

Design and validation of a settling column for particle transport studies  

E-Print Network [OSTI]

the column and the advective- dispersive model. Average settling velocities predicted for the sewage sludge were estimated to be 2x10-s cm/sec in freshwater and 7x10-s cm/sec in saltwater. The sediments settled at 1x10-z cm/sec in freshwater and 3x10-z cm.... Objectives. I V V V I V I I I I X 1 2 LITERATURE REVIEW Particle Transport. Particle Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement of Transport Characteristics. . . . . Sample Background...

Ducharme, Sharon Lynn

2012-06-07T23:59:59.000Z

435

Application of the theta method to distillation columns where one or more reactions occur per stage  

E-Print Network [OSTI]

per Stage Theta Method of Convergence K Method Calculation of Enthalpies of Mixtures Enthalpy Balances. Calculational Procedure 14 16 I7 20 25 28 38 44 Numerical Examples Example 1 Example 2 COLUMNS AT TOTAL REFLUX 44 45 51 64... OF TABLES TABLE Page Expressions for the Reaction Function R for Various Types of Reactions 29 Calculation of the Partial Derivatives 32 Statement of Example l. Solution of Example 1 Statement of Example 2. Solution of Example 2 46 53 59...

Izarraraz, Alicia

2012-06-07T23:59:59.000Z

436

Partitioning and Interfacial Tracers for Differentiating NAPL Entrapment Configuration:? Column-Scale Investigation  

Science Journals Connector (OSTI)

Partitioning and Interfacial Tracers for Differentiating NAPL Entrapment Configuration:? Column-Scale Investigation ... In field investigations, such as partitioning interwell tracer tests (PITTs), tracers are deployed before and after cleanup implementation to assess remedial performance (13, 26?28). ... The use of 222Rn, a naturally occurring radioactive isotope, was investigated as a partitioning tracer to detect and quantify the amt. of non-aq.-phase ...

Dongping Dai; Frank T. Barranco Jr.; Tissa H. Illangasekare

2001-11-17T23:59:59.000Z

437

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

438

Kinematics and kinetics of single-limb heel rise in diabetes related medial column foot deformity  

Science Journals Connector (OSTI)

AbstractBackground Diabetes-related medial column foot deformities contribute to high plantar pressure, joint instability, ulceration and amputation. Impaired foot function may be an early indicator of foot structural incompetence and contribute to deformity progression. This study examines the ability of single-limb heel rise multi-segmental kinematics and kinetics to identify midfoot and hindfoot dysfunction in those with diabetes-related medial column foot deformity. Methods Single-limb heel rise foot kinematics and kinetics were examined in adults with diabetes mellitus and peripheral neuropathy with and without medial column foot deformity and age-, weight-matched controls. Findings Hindfoot relative to shank plantarflexion, peak and excursion, were reduced in both diabetes groups compared to controls (Ppower was reduced in the diabetes deformity group compared to controls (P<0.017). Interpretation The single-limb heel rise task identified movement dysfunction in those with diabetes mellitus and peripheral neuropathy. Failure to plantarflex the forefoot relative to hindfoot may compromise midfoot joint stability and increase the risk of injury and arch collapse.

Mary K. Hastings; James Woodburn; Michael J. Mueller; Michael J Strube; Jeffrey E. Johnson; David R. Sinacore

2014-01-01T23:59:59.000Z

439

The setup of an extraction system coupled to a hydrogen isotopes distillation column  

SciTech Connect (OSTI)

Among the most difficult problems of cryogenic distillation one stands apart: the extraction of the heavy fraction. By an optimal design of the cycle scheme, this problem could be avoided. A 'worst case scenario' is usually occurring when the extracted fraction consists of one prevalent isotope such as hydrogen and small amounts of the other two hydrogen isotopes (deuterium and/or tritium). This situation is further complicated by two parameters of the distillation column: the extraction flow rate and the hold-up. The present work proposes the conceptual design of an extraction system associated to the cryogenic distillation column used in hydrogen separation processes. During this process, the heavy fraction (DT, T{sub 2}) is separated, its concentration being the highest at the bottom of the distillation column. From this place the extraction of the gaseous phase can now begin. Being filled with adsorbent, the extraction system is used to temporarily store the heavy fraction. Also the extraction system provides samples for the gas Chromatograph. The research work is focused on the existent pilot plant for tritium and deuterium separation from our institute to validate the experiments carried out until now. (authors)

Zamfirache, M.; Bornea, A.; Stefanescu, I.; Bidica, N.; Balteanu, O.; Bucur, C. [INC-DTCI, ICSIRm. Valcea, Uzinei Street 4, Rm. Valcea (Romania)

2008-07-15T23:59:59.000Z

440

Accounting for water-column variability in shallow-water waveguide characterizations based on modal eigenvalues  

SciTech Connect (OSTI)

The influence of water-column variability on the characterization of shallow-water waveguides using modal eigenvalue information is considered. This work is based on the relationship between the acoustic pressure field in shallow water and the depth-dependent Green's function through the Hankel transform. In many practical situations, the Hankel transform can be approximated by a Fourier transform, in which case the Green's function is approximated by a horizontal wave number spectrum with discrete peaks corresponding with individual modal eigenvalues. In turn, the wave number data can be used in inverse algorithms to determine geoacoustic properties of the waveguide. Wave number spectra are estimated from measurements of a point-source acoustic field on a horizontal aperture array in the water column. For range-dependent waveguides, techniques analogous to using a short-time Fourier transform are employed to estimate range-dependent wave number spectra. In this work, water-column variability due to linear internal waves and mesoscale features are considered. It will be shown that these two types of variability impact the estimation of range-dependent modal eigenvalues in different ways. Approaches for accounting for these different types of variability will be discussed as they apply to waveguide characterization.

Becker, Kyle M. [Pennsylvania State University, Applied Research Laboratory, P.O. Box 30, State College, PA 16804-0030 (United States); Ballard, Megan S. [Applied Research Laboratories, University of Texas at Austin, Austin, TX 78713-8029 (United States)

2010-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A comparison study of column flotation technologies for cleaning Illinois coal. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. A statistically-designed experimental program will be conducted to optimize the critical operating performance values of each flotation column. The operating values suggested by the vendor will be used as the center point of the design. The ultimate recovery-grade curve and-the maximum throughput capacity for each column will be determined by conducting further tests using the optimum operating parameter values. During this reporting period, the flotation columns that were not already present were purchased and received. Installation of all the flotation columns was completed with the exception of the Packed-Column which is presently being mounted. A total of 25 fifty-five gallon drums of Illinois No. 5 flotation feed coal ({minus}100 mesh) was collected at a local preparation plant to be used as the feed for the comparison tests. A complete characterization of this coal sample will be conducted during the next reporting period.

Honaker, R.Q.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

1993-12-31T23:59:59.000Z

442

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

443

Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis  

SciTech Connect (OSTI)

The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary matrices with an unbounded number of columns. This construct can be used, for example, to model a fixed numer of observed data points (rows) associated with an unknown number of latent features (columns). Markov Chain Monte Carlo (MCMC) methods are often used for IBP inference, and in this technical note, we provide a detailed review of the derivations of collapsed and accelerated Gibbs samplers for the linear-Gaussian infinite latent feature model. We also discuss and explain update equations for hyperparameter resampling in a 'full Bayesian' treatment and present a novel slice sampler capable of extending the accelerated Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of real-valued latent features.

Andrzejewski, D M

2011-09-12T23:59:59.000Z

444

Experimental results of hydrogen distillation at the low power cryogenic column for the production of deuterium depleted hydrogen  

SciTech Connect (OSTI)

The Deuterium Removal Unit (DRU) has been designed and built at the Petersburg Nuclear Physics Inst. (PNPI) to produce isotopically pure hydrogen with deuterium content less than 1 ppm. The cryogenic distillation column of 2.2 cm inner diameter and 155 cm packing height is the main element of the DRU. Column performances at different hydrogen distillation operating modes have been measured. The height equivalent to theoretical plate (HETP) for the column is 2.2 cm and almost constant over a wide range of vapour flow rates. Deuterium depleted hydrogen with a deuterium content of less than 0.1 ppm was produced in required quantity. (authors)

Alekseev, I.; Fedorchenko, O.; Kravtsov, P.; Vasilyev, A.; Vznuzdaev, M. [Petersburg Nuclear Physics Inst., Leningrad district, Gatchina, 188300 (Russian Federation)

2008-07-15T23:59:59.000Z

445

Power Factor Compensation (PFC) Power Factor Compensation  

E-Print Network [OSTI]

Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

Knobloch,Jürgen

446

Miscible Column Studies of Unfractured and Saturated Cores of Topopah Spring Tuff from Yucca Mountain, Nevada Using Hydrophobic Organic Pollutants.  

E-Print Network [OSTI]

??Miscible displacement column studies were conducted on unfractured cores of Topopah Spring Tuff to quantify transport characteristics of bromide&44; pentafluorobenzoic acid &40;PFBA&41;&44; trichloroethylene &40;TCE&41;&44; and (more)

Kramer, Kody V.

2011-01-01T23:59:59.000Z

447

Multi-reanalysis comparison of variability in column water vapor and its analysis increment associated with MaddenJulian Oscillation  

Science Journals Connector (OSTI)

This study conducts a multi-reanalysis comparison of variability in column water vapor (CWV) represented in three reanalysis products (JRA-55, JRA-25, and ERA-Interim) associated with MaddenJulian Oscillation (MJO) in boreal winter, with emphasis ...

Satoru Yokoi

448

2009, the Year of Science (By Dan Johnson. Published in the column "Public Professor", Lethbridge Herald, Dec 27, 2008)  

E-Print Network [OSTI]

2009, the Year of Science (By Dan Johnson. Published in the column "Public Professor", Lethbridge events to make science accessible and exciting. Dan Johnson Professor of Environmental Science Canada

Johnson, Dan L.

449

Determination of Trace Inorganic Anions in Weak Acids by Single-Pump Column-Switching Ion Chromatography  

Science Journals Connector (OSTI)

......China) were used. Polyethylene containers were used for storage of the concentrated acid samples. Equipment Most chromatographic...Mou, and J.M. Riviello. Determination of ammonium in seawater by column-switching ion chromatography. J. Chromatogr......

Haibao Zhu; Huadong Chen; Yingying Zhong; Dandan Ren; Yaling Qian; Hongfang Tang; Yan Zhu

2010-08-01T23:59:59.000Z

450

Improving Energy Efficiency and Cost-Effectiveness of Batch Distillation for Separating Wide Boiling Constituents. 1. Vapor Recompression Column  

Science Journals Connector (OSTI)

Although the direct vapor recompression column (VRC) has been known for its application in continuous distillation since the 1960s, the research on vapor recompressed batch distillation (VRBD) started a couple of years ago. In this contribution, a batch ...

Md. Malik Nawaz Khan; G. Uday Bhaskar Babu; Amiya K. Jana

2012-11-05T23:59:59.000Z

451

The Analysis of Hydrocarbon Products Obtained From Methanol Conversion to Gasoline Using Open Tubular GC Columns and Selective Olefin Absorption  

Science Journals Connector (OSTI)

......SCOT column. Run conditions are...Table I. GC Run Conditions for Methanol Derived Gasolines Carrier Gas...minor amounts of straight-chain isomers...dependent upon process run conditions. These...methanol derived gasolines were similar in......

M.G. Bloch; R.B. Callen; J.H. Stockinger

1977-11-01T23:59:59.000Z

452

A study of solvent refining of cottonseed oil by use of a rotating core countercurrent extraction column  

E-Print Network [OSTI]

. Conclusions 7. Bibliography 8. Appendix 23 27 A STUDY OF SOLVENT REFINING OP COTTONSEED OIL BY USE OF A ROTATING CORE COUNTERCURRENT EXTRACTION COLUMN INTRODUCTION In th1s study the applicability oi several solvents for solvent refining crude... countercurrent ex- traction column. Cottonseed oil is essent1ally a triglyceride but contains also a number of impurities. Jamieson and Baughman (7) report the following 1n crude cottonseed oil& rai'finose, pentosans, resins, proteoses, peptones...

Holbrook, Charles Ray

1953-01-01T23:59:59.000Z

453

Application of biofiltration system on AOC removal: Column and field studies  

Science Journals Connector (OSTI)

The Cheng-Ching Lake Water Treatment Plant (CCLWTP) is the main supplier of domestic water for the Greater Kaohsiung area, the second largest metropolis in Taiwan. Biological activated carbon (BAC) filtration is one of the major treatment processes in CCLWTP. The objectives of this study were to evaluate the effectiveness of BAC filtration on water treatment in the studied advanced water treatment plant and its capability on pollutants [e.g., AOC (assimilable organic carbon), bromide, bromate, iron] removal. In this study, water samples from each treatment process of CCLWTP were collected and analyzed periodically to assess the variations in concentrations of AOC and other water quality indicators after each treatment unit. Moreover, the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers was also evaluated through a column experiment. Results show that the removal efficiencies for AOC, bromide, bromate, and iron are 86% 100%, 17%, and 30% after the BAC filter bed, respectively. This indicates that BAC filtration plays an important role in pollutant removal. Results also show that AOC concentrations in raw water and effluent of the CCLWTP are approximately 143 and 16?g acetate-Cl?1, respectively. This reveals that the treatment processes applied in CCLWTP is able to remove AOC effectively. Results of column study show that the AOC removal efficiencies in the GAC and anthracite columns are 60% and 17%, respectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic images. The observed microorganisms included bacteria (rods, cocci, and filamentous bacteria), fungi, and protozoa. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.

C.C. Chien; C.M. Kao; C.W. Chen; C.D. Dong; C.Y. Wu

2008-01-01T23:59:59.000Z

454

Heavy Oil Process Monitor: Automated On-Column Asphaltene Precipitation and Re-Dissolution  

SciTech Connect (OSTI)

An automated separation technique was developed that provides a new approach to measuring the distribution profiles of the most polar, or asphaltenic components of an oil, using a continuous flow system to precipitate and re-dissolve asphaltenes from the oil. Methods of analysis based on this new technique were explored. One method based on the new technique involves precipitation of a portion of residua sample in heptane on a polytetrafluoroethylene-packed (PTFE) column. The precipitated material is re-dissolved in three steps using solvents of increasing polarity: cyclohexane, toluene, and methylene chloride. The amount of asphaltenes that dissolve in cyclohexane is a useful diagnostic of the thermal history of oil, and its proximity to coke formation. For example, about 40 % (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolves in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. The automated procedure takes one hour. Another method uses a single solvent, methylene chloride, to re-dissolve the material that precipitates on heptane on the PTFE-packed column. The area of this second peak can be used to calculate a value which correlates with gravimetric asphaltene content. Currently the gravimetric procedure to determine asphaltenes takes about 24 hours. The automated procedure takes 30 minutes. Results for four series of original and pyrolyzed residua were compared with data from the gravimetric methods. Methods based on the new on-column precipitation and re-dissolution technique provide significantly more detail about the polar constituent's oils than the gravimetric determination of asphaltenes.

John F. Schabron; Joseph F. Rovani; Mark Sanderson

2007-03-31T23:59:59.000Z

455

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

456

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

457

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

458

Working Group Reports Summary of Single-Column Model Intensive Observation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working Group Reports Summary of Single-Column Model Intensive Observation Period Workshop at Annual Atmospheric Radiation Measurement Science Team Meeting D. A. Randall Department of Atmospheric Science Colorado State University Fort Collins, Colorado R. T. Cederwall Lawrence Livermore National Laboratory Livermore, California * Study previous observation simulation system experiments (OSSEs) (i.e., Bill Frank, Pennsylvania State University [PSU]) and conduct OSSEs as necessary to evaluate data network. * Implement additional "boundary" facilities and investigate possible interim capabilities for upcoming SCM IOPs. * Improve resolution of wind profiles observed in lowest 1 km, using data sources such as towers of opportunity, doppler sodar, and doppler radar.

459

Rigorous Design of Complex Distillation Columns Using Process Simulators and the Particle Swarm Optimization Algorithm  

Science Journals Connector (OSTI)

Rigorous Design of Complex Distillation Columns Using Process Simulators and the Particle Swarm Optimization Algorithm ... Many free-derivative search algorithms are population-based procedures, where an individual represents a particular solution to the optimization problem and a population is a set of individuals competing with each other with respect to their objective function values. ... The initial NLP sub-problems, that provide linearizations for all the terms in the disjunctions, are selected through a set-covering problem for which both the cases of disjunctive and conjunctive normal form logic are considered. ...

J. Javaloyes-Antn; R. Ruiz-Femenia; J. A. Caballero

2013-09-26T23:59:59.000Z

460

Artificial Neural Network Estimator Design for the Inferential Model Predictive Control of an Industrial Distillation Column  

Science Journals Connector (OSTI)

The ANN architecture is a multilayer perceptron (MLP), which is a typical feed-forward (layered) neural network.2 A collection of neurons connected to each other forms the artificial neural network. ... It is shown that the how artificial neural networks can model the column, and demonstrated that the network model is as good or better than a simplified first principles model when used for model predictive control. ... A dynamic, nonlinear, multi-input multi-output application using the recurrent dynamic neuron network (RDNN) model is presented for a two-by-two distn. ...

Alm?la Bahar; Canan zgen; Kemal Leblebicio?lu; U?ur Hal?c?

2004-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Spectroscopic study of a long high-electron-density argon plasma column generated at atmospheric pressure  

SciTech Connect (OSTI)

A stable plasma column is generated in a quartz tube using a pair of hollow electrodes driven by a sinusoidal power supply of 45 kHz at atmospheric pressure in argon. Two distinct operating modes (low-current and high-current modes) are identified through observing its discharge phenomena, measuring its electrical characteristics, and determining the gas temperatures by spectroscopic diagnosis of Q branch of UV OH spectrum. The electron density in the high-current mode is diagnosed by Stark broadening and is found to be two orders higher than that in low-current mode.

Li Shouzhe; Huang Wentong; Wang Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, and School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

2010-02-15T23:59:59.000Z

462

High Performance Trays and Heat Exchangers in Heat Pumped Distillation Columns  

E-Print Network [OSTI]

AND LIQUID now PATHS fOA IltO TltAYS I A number of engineering contractors and 1 operating companies have employed Union Carbide'\\s High Flux and Multiple Downcomer tray technolog~es to improve performance, decrease utilities and I lower operating costs... ? Fi,?'d as nll\\ximum within hf'l~ht n'!:-;tl'ie-tlon. The control scheme for a heat pump can be de signed to be no more complex than a conventional steam/cooling water system which relies on flow and level controllers to set the various column flow...

Wisz, M. W.; Antonelli, R.; Ragi, E. G.

1981-01-01T23:59:59.000Z

463

THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS  

SciTech Connect (OSTI)

Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

He, C.; Ng, C.-Y.; Kaspi, V. M., E-mail: ncy@bohr.physics.hku.hk [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada)

2013-05-01T23:59:59.000Z

464

Modeling of atmospheric-pressure plasma columns sustained by surface waves  

Science Journals Connector (OSTI)

A self-consistent two-dimensional fluid-plasma model coupled to Maxwells equations is presented for argon discharges sustained at atmospheric pressure by the propagation of an electromagnetic surface wave. The numerical simulation provides the full axial and radial structure of the surface-wave plasma column and the distribution of the electromagnetic fields for given discharge operating conditions. To describe the contraction phenomenon, a characteristic feature of high-pressure discharges, we consider the kinetics of argon molecular ions in the charged-particle balance. An original feature of the model is to take into account the gas flow by solving self-consistently the mass, momentum, and energy balance equations for neutral particles. Accounting for the gas flow explains reported discrepancies between measured and calculated plasma parameters when assuming the local axial uniformity approximation. In contrast to the low-pressure case, the latter approximation is shown to be of limited validity at atmospheric pressure. The gas temperature is found to be a key parameter in modeling surface-wave discharges sustained at atmospheric pressure. It determines the radial and the axial structure of the plasma column. The calculated plasma parameters and wave propagation characteristics using the present two-dimensional fluid model are in good agreement with our set of experimental data.

Y. Kabouzi; D. B. Graves; E. Castaos-Martnez; M. Moisan

2007-01-09T23:59:59.000Z

465

PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX  

SciTech Connect (OSTI)

Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

Kyser, E.; King, W.; O'Rourke, P.

2012-07-26T23:59:59.000Z

466

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Light Usage by Total Number of Rooms, Percent of U.S. 4. Light Usage by Total Number of Rooms, Percent of U.S. Households, 1993 Total Number of Rooms Housing Unit and Household Characteristics Total 1 or 2 3 to 5 6 to 8 9 or More RSE Column Factors: 0.5 2.6 0.7 0.7 1.6 RSE Row Factor Total....................................................... 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None................................................. 10.0 16.8 10.5 9.4 5.8 11.52 1 ....................................................... 22.9 36.5 27.7 17.8 10.7 5.96 2 ....................................................... 28.4 29.3 31.4 25.8 21.1 5.33 3 ....................................................... 17.4 11.1 16.5 18.7 19.0 7.20 4 ....................................................... 9.5 Q 6.7 12.8 13.5 10.03 5 or More ..........................................

467

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

9. Mean Annual Electricity Consumption for Lighting, by Family 9. Mean Annual Electricity Consumption for Lighting, by Family Income by Number of Household Members, 1993 (Kilowatthours) Number of Household Members Family Income All Households One Two Three Four Five or More RSE Column Factors: 0.6 1.4 0.8 1.2 1.0 1.3 RSE Row Factors All Households...................................... 940 604 923 1,023 1,198 1,265 2.02 Less than $10,000................................. 668 557 657 793 952 943 5.35 $10,000 to $14,999................................ 753 547 789 905 968 986 6.02 $15,000 to $19,999................................ 888 695 831 865 1,227 1,321 5.89 $20,000 to $24,999................................ 856 641 889 921 976 1,208 5.97 $25,000 to $34,999................................ 962 630 1,000 1,015 1,095 1,247 4.64 $35,000 to $49,999................................

468

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

469

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

470

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Annual Electricity Expenditures for Lighting, by Number 7. Total Annual Electricity Expenditures for Lighting, by Number of Household Members, Million U.S. Households, 1993 Number of Household Members Electricity Expenditures (Dollars) Total One Two Three Four Five or More RSE Column Factors: 0.5 1.1 0.8 1.2 1.3 1.4 RSE Row Factors All Households................................... 96.6 23.5 31.7 16.6 14.6 10.2 2.56 25 or Less ........................................... 9.2 5.7 2.5 0.5 0.2 0.2 13.05 26 to 50 ............................................... 21.0 7.8 7.5 3.1 1.5 1.1 6.34 51 to 75 ............................................... 21.7 4.7 7.8 4.0 3.3 2.0 5.30 76 to 100 ............................................. 16.1 2.4 5.1 3.2 3.2 2.1 6.57 101 to 125 ........................................... 11.1 1.3 3.7 2.4 2.1 1.5 8.06 126 to 150 ...........................................

471

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

472

Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, 5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ...................................... 13.0 10.8 1.1 0.5 0.6 11.4 New England .............................. 3.5 3.1 0.2 Q 0.1 16.9 Middle Atlantic ............................ 9.5 7.7 0.9 0.4 0.4 13.4 Midwest ......................................... 17.5 16.0 0.3 Q 1.0 10.3 East North Central ......................

473

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Home Office Equipment by Type of Housing Unit, 4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.5 2.2 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.1 Households Using Office Equipment .......................... 96.2 68.2 8.5 13.8 5.8 4.5 Personal Computers 1 ................... 60.0 46.4 4.1 6.8 2.7 5.9 Number of Desktop PCs 1 .................................................. 45.1 34.4 3.3 5.2 2.2 6.3 2 or more .................................... 9.1 7.7 0.3 0.8 0.3 15.0 Number of Laptop PCs 1 .................................................. 12.0 9.4 0.8

474

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

475

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

476

S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]  

U.S. Energy Information Administration (EIA) Indexed Site

1997 1997 Appliance Types and Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.3 1.2 1.2 1.4 Total .............................................................. 101.5 6.8 11.5 7.0 5.9 NF Households With Electric Air-Conditioning Equipment ...................... 73.6 4.3 4.8 6.4 5.7 3.5 Central Equipment Not Used ....................... 0.3 Q 0.1 (*) 0.1 29.3 Room Air Conditioners Not Used ................ 0.7 Q Q Q 0.1 36.9 Households Using Electric Air-Conditioning 1 ........................................ 72.6 4.2 4.6 6.3 5.6 3.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 47.5 1.3 3.2 4.8 4.9 5.4 Without a Heat Pump ................................ 36.9 1.2 2.9 4.1 2.5 10.6 With a Heat Pump

477

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Million U.S. . Light Usage by Heated Floorspace Category, Million U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.7 0.9 0.8 1.1 1.2 1.2 1.2 RSE Row Factors Total................................................. 96.6 7.5 21.8 27.8 12.4 9.6 8.2 9.3 3.62 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 9.6 1.2 2.2 2.7 1.1 0.9 0.7 0.6 11.83 1 ................................................. 22.1 2.4 6.7 6.5 2.5 1.5 1.5 1.1 7.39 2 ................................................. 27.4 2.4 6.9 8.0 3.6 2.4 2.1 2.0 6.60 3 ................................................. 16.8 0.8 3.4 5.2 2.2 2.0

478

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

479

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

480

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

Note: This page contains sample records for the topic "rse column factors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]  

U.S. Energy Information Administration (EIA) Indexed Site

b. Appliances by Four Most Populated States, b. Appliances by Four Most Populated States, Percent of U.S. Households, 1997 Appliance Types and Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.3 1.2 1.2 1.4 Total .............................................................. 100.0 100.0 100.0 100.0 100.0 0.0 Households With Electric Air-Conditioning Equipment ...................... 72.5 62.6 41.4 91.7 96.0 3.5 Central Equipment Not Used ....................... 0.3 Q 1.2 0.5 1.1 29.3 Room Air Conditioners Not Used ................ 0.7 Q Q Q 1.1 36.9 Households Using Electric Air-Conditioning 1 ........................................ 71.6 62.2 39.9 91.2 94.3 3.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................

482

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

1. Mean Annual Electricity Consumption for Lighting, by Number of 1. Mean Annual Electricity Consumption for Lighting, by Number of Household Members by Number of Rooms, 1993 (Kilowatthours) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 2.0 1.1 0.9 0.8 1.0 1.1 RSE Row Factors All Households................................... 940 497 690 875 1,003 1,181 1,420 2.08 One..................................................... 604 443 545 629 745 910 1,028 4.76 Two..................................................... 923 580 705 884 968 1,141 1,264 3.35 Three.................................................. 1,023 611 789 914 1,059 1,104 1,446 4.40 Four.................................................... 1,198 544 854 1,066 1,113 1,365 1,522 4.36 Five or More....................................... 1,265

483

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

484

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

485

Table HC1-1a. Housing Unit Characteristics by Climate Zone,  

U.S. Energy Information Administration (EIA) Indexed Site

a. Housing Unit Characteristics by Climate Zone, a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast ...................................... 20.3 1.9 10.0 8.4 Q Q 6.8 New England .............................. 5.4 1.4 4.0 Q Q Q 18.4 Middle Atlantic ............................ 14.8 0.5 6.0 8.4 Q Q 4.6 Midwest ......................................... 24.5 5.4 14.8 4.3 Q Q 19.0 East North Central ...................... 17.1

486

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

Building Size, Number of Buildings, 1992 Building Size, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: All Buildings Buildings by Size RSE Row Factor 1,001 to 5,000 Square Feet 5,001 to 10,000 Square Feet 10,001 to 25,000 Square Feet 25,001 to 50,000 Square Feet 50,001 to 100,000 Square Feet 100,001 to 200,000 Square Feet 200,001 to 500,000 Square Feet Over 500,000 Square Feet 0.5 0.7 0.8 0.8 1.0 1.1 1.3 1.4 2.2 All Buildings ..................................... 4,806 2,681 975 647 280 116 71 26 9 6.9 Principal Building Activity Education ......................................... 301 112 43 57 40 30 12 6 Q 16.0 Food Sales ....................................... 130 103 Q Q Q Q Q Q Q 23.1 Food Service ................................... 260 179 51 21 Q Q Q Q Q 18.7 Health Care ......................................

487

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

488

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

9. Energy Sources, Number of Buildings, 1992 9. Energy Sources, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: All Buildings All Buildings Using Any Energy Source Energy Sources Used (more than one may apply) RSE Row Factor Electricity Natural Gas Fuel Oil District Heat District Chilled Water Propane Wood 0.5 0.5 0.5 0.6 1.1 1.6 2.2 1.6 2.0 All Buildings ..................................... 4,806 4,620 4,616 2,665 559 95 28 337 103 7.7 Building Floorspace (Square Feet) 1,001 to 5,000 .................................. 2,681 2,543 2,539 1,331 288 18 Q 218 70 10.8 5,001 to 10,000 ................................ 975 954 954 574 125 11 Q 62 25 10.7 10,001 to 25,000 .............................. 647 628 628 420 62 28 8 32 Q 11.6 25,001 to 50,000 .............................. 280 275 275 181 39 16 9 15 Q 13.0 50,001 to 100,000

489

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Percent of U.S. . Light Usage by Heated Floorspace Category, Percent of U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.6 0.9 0.8 1.1 1.2 1.3 1.2 RSE Row Factor Total................................................. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 10.0 16.5 10.2 9.9 9.2 9.4 9.1 6.7 11.42 1 ................................................. 22.9 31.3 30.9 23.5 19.9 15.3 17.9 11.5 6.62 2 ................................................. 28.4 32.3 31.9 28.7 28.7 24.8 26.0 21.5 5.64 3 .................................................

490

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

491

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

Census Region, Number of Buildings and Floorspace, 1992 Census Region, Number of Buildings and Floorspace, 1992 Building Characteristics RSE Column Factor: Number of Buildings (thousand) Total Floorspace (million square feet) RSE Row Factor All Buildings Northeast Midwest South West All Buildings Northeast Midwest South West 0.6 1.2 1.1 1.0 1.3 0.6 1.3 1.1 1.1 1.2 All Buildings ................................... 4,806 771 1,202 1,963 870 67,876 13,400 17,280 24,577 12,619 6.3 Building Floorspace (square feet) 1,001 to 5,000 ................................ 2,681 383 676 1,171 451 7,327 1,074 1,889 3,155 1,208 9.7 5,001 to 10,000 .............................. 975 180 241 370 184 7,199 1,337 1,763 2,723 1,376 7.6 10,001 to 25,000 ............................ 647 109 163 239 136 10,375 1,663 2,689 3,782 2,241 8.5 25,001 to 50,000 ............................ 280 54 66 106 56

492

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

Employment Size Category, Number of Buildings, 1992 Employment Size Category, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: All Buildings Buildings by Number of Workers RSE Row Factor Less than 5 Workers 5 to 9 Workers 10 to 19 Workers 20 to 49 Workers 50 to 99 Workers 100 to 249 Workers 250 or More Workers 0.5 0.8 0.9 1.1 1.0 1.2 1.3 1.4 All Buildings ................................... 4,806 2,718 895 561 405 130 64 31 5.9 Building Floorspace (square feet) 1,001 to 5,000 ................................ 2,681 1,968 514 160 34 Q Q Q 10.1 5,001 to 10,000 .............................. 975 460 218 195 94 Q Q Q 8.5 10,001 to 25,000 ............................ 647 204 115 144 153 25 Q Q 9.3 25,001 to 50,000 ............................ 280 60 37 43 84 41 13 Q 13.8 50,001 to 100,000 .......................... 116 12

493

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

494

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

495

S:\VM3\RX97\TBL_LIST.WPD  

U.S. Energy Information Administration (EIA) Indexed Site

b. Space Heating by Four Most Populated States, b. Space Heating by Four Most Populated States, Percent of U.S. Households, 1997 Space Heating Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.5 1.2 0.9 1.3 1.5 Total .............................................................. 100.0 100.0 100.0 100.0 100.0 0.0 Main Heating Fuel and Equipment Natural Gas ................................................. 52.7 49.8 68.2 54.1 11.0 8.6 Central Warm-Air Furnace ........................ 37.8 26.2 41.3 32.8 9.3 12.2 For One Housing Unit .............................. 36.5 24.2 40.8 32.1 9.3 12.2 For Two or More Units ............................. 1.3 Q Q Q Q 22.9 Steam or Hot-Water System ..................... 7.2 21.3 Q Q Q 7.9 For One Housing Unit

496

S:\VM3\RX97\TBL_LIST.WPD  

U.S. Energy Information Administration (EIA) Indexed Site

1997 1997 Household Characteristics RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.2 1.4 1.4 Total .............................................................. 101.5 6.8 11.5 7.0 5.9 NF 1997 Household Income Category Less than $5,000 ......................................... 3.8 0.3 0.3 0.3 0.1 16.2 $5,000 to $9,999 ......................................... 9.6 0.9 1.1 0.6 0.7 14.2 $10,000 to $14,999 ..................................... 10.3 0.4 1.6 0.8 0.7 14.3 $15,000 to $19,999 ..................................... 10.4 0.4 1.6 0.6 0.6 11.0 $20,000 to $24,999 ..................................... 8.4 0.5 0.8 0.7 0.5 11.2 $25,000 to $34,999 ..................................... 15.6 1.2 1.5 1.0 0.8 10.5 $35,000 to $49,999 .....................................

497

S:\VM3\RX97\TBL_LIST.WPD [PFP#201331587]  

U.S. Energy Information Administration (EIA) Indexed Site

b. Home Office Equipment by Four Most Populated States, b. Home Office Equipment by Four Most Populated States, Percent of U.S. Households, 1997 Home Office Equipment RSE Column Factor: Total Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.1 1.5 1.3 Total .............................................................. 100.0 100.0 100.0 100.0 100.0 0.0 Households Using Office Equipment ......................................... 79.3 79.4 77.6 75.1 79.4 1.9 Personal Computers ................................... 35.1 31.6 39.9 36.7 33.2 5.9 Number of PCs 1 ................................................................ 29.2 27.1 31.0 30.9 26.2 7.9 2 or more ................................................... 5.9 4.5 8.9 5.8 7.0 16.6 Modem Connecting PC to Telephone Line ......................................

498

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

499

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

8. Light Usage by Household Size, Percent of U.S. Households, 1993 8. Light Usage by Household Size, Percent of U.S. Households, 1993 Household Size Housing Unit and Household Characteristics Total 1 Person 2 Persons 3 Persons 4 Persons 5 Persons 6 or More Persons RSE Column Factors: 0.5 1.0 0.8 1.0 1.0 1.4 2.0 RSE Row Factors Total.................................................. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None............................................ 10.0 13.8 9.8 8.8 7.2 7.5 8.0 11.39 1 ................................................... 22.9 32.0 23.2 20.7 15.1 15.6 15.4 6.49 2 ................................................... 28.4 32.3 30.0 26.8 24.3 23.9 20.1 5.64 3 ................................................... 17.4 12.9 17.9 18.9 20.6 18.5 20.2 6.89 4 ...................................................

500

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas