Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U-003:RPM Package Manager security update | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

03:RPM Package Manager security update 03:RPM Package Manager security update U-003:RPM Package Manager security update October 4, 2011 - 1:30pm Addthis PROBLEM: A vulnerability was reported in RPM Package Manager. A remote user can cause arbitrary code to be executed on the target user's system. PLATFORM: Version(s): 4.9.1.1 and prior versions. ABSTRACT: RPM Package Manager Header Validation Flaws Let Remote Users Execute Arbitrary Code. reference LINKS: RPM Package Manager Advisory RHSA-2011:1349-1 SecurityTracker Alert ID: 1026134 CVE-2011-3378 IMPACT ASSESSMENT: Medium Discussion: A remote user can create a specially crafted RPM package that, when queried or installed by the target user, will trigger a buffer overflow or memory corruption error and execute arbitrary code on the target system. The code

2

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect (OSTI)

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

3

DSP IMPLEMENTATION OF DC VOLTAGE REGULATION USING ADAPTIVE CONTROL FOR 200 KW 62000 RPM  

E-Print Network [OSTI]

to control the DC voltage for 200 kW induction generator rated at a speed of 62000 RPM under different load to regulate the DC voltage for high speed induction generators rated from 5 kW to 200 kW. ii #12DSP IMPLEMENTATION OF DC VOLTAGE REGULATION USING ADAPTIVE CONTROL FOR 200 KW 62000 RPM INDUCTION

Wu, Thomas

4

RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations  

E-Print Network [OSTI]

-assembly of molecular electronics and smart materials will bring a new era in the field of material science.1 HoweverRPM-2: A recyclable porous material with unusual adsorption capability: self assembly via, fully recyclable porous material (RPM-2) with a very high sorption capability. Self

Li, Jing

5

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material  

E-Print Network [OSTI]

Ship-in-Bottle Photochemistry RPM-1: A Recyclable Nanoporous Material Suitable for Ship by their requirement for If one Si atom causes pyramidalization, two of them should enhance the effect. We have

Li, Jing

6

FIS Technical Services Page 1 5/23/2006 RPM Installation  

E-Print Network [OSTI]

FIS Technical Services Page 1 5/23/2006 RPM Installation Version 4.5.1.11 Revised: April 2005 clicking on an empty space on your desktop and choosing "new" and then "folder"). 2. Visit http://www.fis Desktop using the drop down menu next to the Save in text box as in the image below. #12;FIS Technical

Sibille, Etienne

7

The Effect of Coadsorbed Water on the Stability, Con?guration and Interconversion of Formyl (HCO) and Hydroxymethylidyne (COH) on Platinum (1 1 1)  

SciTech Connect (OSTI)

Two forms of the methanol electro-oxidation intermediate with stoichiometry C:H:O, COH (hydroxymethylidyne) and HCO (formyl), on Pt (11 1) with and without coadsorbed water were studied using density functional theory calculations. The structure, adsorption energy and stability with respect to dissociation were calculated. Both HC=O and C–OH were stable on clean Pt (11 1) and with a single coadsorbed water molecule, while only the HCO con?guration was stable in the presence of a whole water layer. The vibrational modes of HC=O on a bridge site showed no mode around 1700 cm-1 characteristic of C=O stretch making it hard to distinguish it from C–OH.

Arnadottir, Liney; Stuve, Eric M.; Jonsson, Hannes

2012-05-23T23:59:59.000Z

8

Microsoft PowerPoint - Risk_Portfolio_Manager(RPM)_overview_Under_Sec_DOE__2011_V4 Final 3-22-2011.ppt [Read-Only] [Compatibili  

Broader source: Energy.gov (indexed) [DOE]

Corporate Headquarters: Corporate Headquarters: Risk Management: Overview of 1010 Wayne Avenue, Suite 1150 Silver Spring, Maryland 20910 301.565.2988 Telephone 301.565.2995 Facsimile www.e-mcinc.com Overview of e-Gov Risk Portfolio Manager(tm) (e Gov RPM(tm)) V4 Satellite Offices: 80 M Street, S.E., Suite 715 Washington, DC 20003 13800 Coppermine Road, Suite 221 (e-Gov RPM(tm)) V4 for Under Secretary of Energy 13800 Coppermine Road, Suite 221 Herndon, Virginia 20171 e-Management - Proprietary Information March 2011 Today's Agenda 1) eGov RPM and use at DOE EM 2) Overview of the capabilities of eGov RPM(tm) 3) eGov RPM supports the Under Secretary of Energy's Program Cyber Security Plan (PCSP) Cyber Security Plan (PCSP) e-Management - Proprietary Information 2 e-Gov Risk Portfolio Manager is a multi-user, web based tool used for continuous monitoring

9

Dynamic Impregnator Reactor System (Poster), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Several unit operations are combined into Several unit operations are combined into one robust system, off ering fl exible and staged process confi gurations in one vessel. Spraying, soaking, low-severity pretreat- ment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation are amongst its many capabilities. * 1,900 L Horizontal Paddle Blender Vessel with Sidewall Liquid Drains * 6-60 rpm / 50 HP Tri-Directional Agitator * 3.4 bar & Vacuum ASME Design, 316L Stainless Steel * Heating/Cooling Jacket using Water or Steam * 150 L Chemical Mix Tank & Pump with Spray Injectors * Vent Condenser with Collection Tank and Vacuum Pump Dynamic Impregnator Reactor System Multifaceted system designed for complex feedstock impregnation and processing Integrated Biorefi nery Research Facility | NREL * Golden, Colorado | December 15, 2011 | NREL/PO-5100-56156

10

Notes on Call Con gurations with Stephan Rei  

E-Print Network [OSTI]

arity(CW ) = 3 Call Forwarding on Busy id, C, D arity(CFB) = 3 Group Ringing X, Y, N1, N2 arity(GR) = 4.g. a consequence could be that 2 or more users are identi#12;ed. For example CFB might forward to the caller rather

Reiff-Marganiec, Stephan

11

Software Con guration Management and Engineering Data Management  

E-Print Network [OSTI]

erences between EDM and SCM. Many concepts are similar, but there are some di erences concerning are not applicable in the EDM domain because they are based on assumptions which do not hold there (objects- gineering. That is, it is concerned with managing machine-readable data about physical objects

Westfechtel, Bernhard

12

1 PMMA():PMMA 3% 1000rpm10  

E-Print Network [OSTI]

*40um)Blanking Power ON External( Contrast Brightness ) (8) SEM X,Y PROXY WRITER Exposure 6 MIBK+IPA(1:3) 70 IPA20 D.I.Water20 7 : 8 :... 9 (Lift off) PMMA PROXY WRITER E-Beam Writer Raith PROXY

13

RussiaSNL2-web.indd  

National Nuclear Security Administration (NNSA)

a Platform-Independent Molecular a Platform-Independent Molecular Builder and Visualizer Principal Investigators: John Aidun (SNL) and Alexander Selezenev (VNIIEF) Project Description A Unix/Linux based, platform-independent molecular builder and visualizer (MBV) was developed as a preprocessor and postprocessor for atomistic simulations. This project drew on the substan- tial experience and accomplishment of the VNIIEF team in this area. Developments were selected, in particular, to enable atomistic simulations of crystal defects, grain boundaries, and material interfaces, which are topics of active interest at Sandia and VNIIEF and in the wider materials sci- ence and solid state physics communities. Joint research was conducted to identify how to defi ne the atomistic confi gurations of material interfaces in the geometric (unrelaxed) approximation,

14

RPM §9.02. Operational Procedures for Computing and Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Operational Procedures for Computing and Communications Revised 09/08 Communications and Networking Systems Communications and Networking Management ICS Voice Telephone System ICS Data-Switching System LBLnet ICS-Dedicated Wiring and Optical-Fiber Systems Public Address System Public Address System Announcements Radio Communications Systems Radio Paging Systems Radio Emissions Standards and Spectrum Management Card Access, Security, Alarms, and Surveillance Systems Video, Fiber-Optic, and Other Signal Systems Video Teleconferencing Remote Access Services Electronic Access Background Fundamental Principles and Characteristics Kinds of Access Forms of Electronic Publishing Use of Information Systems and Services Background Definitions Scope Fundamental Principles General Page and File Policy

15

RPM §2.05. Employee Relations (Rev. 03/13)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05 05 Management/Employee Relations If you have feedback regarding an HR policy or procedure, share it with us here. _____ Rev. 03/13 NOTE: The policies and procedures contained in Sections 2.05(E), (J), and (K) are reproduced exactly as they appear in the corresponding University of California Policies and Procedures and, consequently, use the UC numbering system. Areas of Responsibility Responsibilities of Managers/Supervisors Responsibilities of Employees Early Problem Resolution Employees and Supervisors Labor Employee Relations Corrective Action and Dismissal Policy Documentation Authority to Take Corrective Action Investigatory Leave Written Warnings Corrective Action Other Than Written Warnings and Dismissals Dismissal of Nonprobationary Career and Term Employees

16

RPM §2.26. Voluntary Leave Donation (Rev. 3/12)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26 26 Voluntary Leave Donation If you have feedback regarding an HR policy or procedure, share it with us here. _____ Rev. 3/12 Purpose Applicability Definitions Catastrophic Illness or Injury Catastrophic Casualty Loss Catastrophic Bereavement Loss Exceptions Provisions of Leave Applicable Situations Receiving-Employee Conditions Donating-Employee Conditions Donations Minimum Donation Maximum Credit Misuse of Leave Tax Consequences Program Details A. Purpose This policy enables employees to donate vacation time on an hour-for-hour basis, regardless of differing pay scales, to another employee who: Has exhausted sick and vacation leave due to a catastrophic illness or injury affecting the employee or an eligible person, as defined below; or Has experienced a catastrophic casualty loss; or

17

RIN13 Is a Positive Regulator of the Plant Disease Resistance Protein RPM1  

Science Journals Connector (OSTI)

...London, TN25 5AH United Kingdom 1 Current address: Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria...III secretion system (TTSS) acts as a conduit via which a constellation of proteinaceous products known as TTSS effectors are delivered...

Antonious Al-Daoude; Marta de Torres Zabala; Jong-Hyun Ko; Murray Grant

2005-02-18T23:59:59.000Z

18

Appeared in IEEE Computer, February 1995 RPM: A RAPID PROTOTYPING ENGINE FOR MULTIPROCESSOR  

E-Print Network [OSTI]

SYSTEMS1 Luiz Andre Barroso, Sasan Iman, Jaeheon Jeong, Koray Ã?ner, Krishnan Ramamurthy and Michel Dubois

Barroso, Luiz André

19

Grants.gov eRPM Steps 1. PAF worksheet Grants.gov submissions  

E-Print Network [OSTI]

­ Grants.gov submissions 3 Look up FOA number to tie Grants.gov forms to PAF #12;Step 1 - PAF worksheet (PDFs) must be in a specific order. #12;Step 6 ­ Generate PDF 21 Click Generate PDF Version Status = Valid for Submission #12;Step 6 ­ Generate PDF 22 Select the box to include attachments & click OK. #12

Shyy, Wei

20

ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS  

SciTech Connect (OSTI)

Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

Campos, A.; Skinner, C.H.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Correction for Gao et al., Plant intracellular innate immune receptor Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane  

Science Journals Connector (OSTI)

...and functions on, the plasma membrane,” by Zhiyoug Gao, Eui-Hwan Chung, Timothy K. Eitas, and Jeffery L. Dangl, which...do not affect the conclusions of the article.Zhiyong Gao, Eui-Hwan Chung, Timothy K. Eitas, and Jeffery L. Dangl

2011-01-01T23:59:59.000Z

22

A 200 000 rpm, 2 kW Slotless Permanent Magnet Pierre-Daniel Pfister, Student Member IEEE and Yves Perriard, Senior Member IEEE  

E-Print Network [OSTI]

and Yves Perriard, Senior Member IEEE Integrated Actuators Laboratory (LAI), Ecole Polytechnique F. They are hence used in energy con- version systems such as gas turbines, turbochargers [2] and superchargers [3 as- sisted turbocharger, fuel cell compressor), machining in- dustry (micro-machining), home

Psaltis, Demetri

23

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

subcritical and supercritical con?gurations, respectively Environmental Management (2010) 45:651–661 Fig. 5 Water

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

24

Theory and simulations of principle of minimum dissipation rate  

E-Print Network [OSTI]

reversed ?eld pinch and spheromak obtained from our modelguration, 18 and a spheromak con?guration. 19 Bhattacharyya

Shaikh, Dastgeer; Zank, G. P.; Hu, Q.; Dasgupta, B.

2008-01-01T23:59:59.000Z

25

GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER  

SciTech Connect (OSTI)

Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ?E/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and cost. Additional GSIM simulations will be undertaken to verify that the four-module version has acceptable ?° mass reconstruction and to continue Research and Development (R&D) analysis on the preshower calorimeter.

Whitlow, K.; Stepanyan, S.

2007-01-01T23:59:59.000Z

26

Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector  

E-Print Network [OSTI]

Study 3.1 Baseline Electrical Con?guration and DetectorElectrical Signal Path Study and Component Assay for thethe mechanical design, electrical readout performance, and

Amman, Mark

2011-01-01T23:59:59.000Z

27

ASIC life extension through hardware patch interfaces  

E-Print Network [OSTI]

Figure 4.7: Con?guration patch layout. . . . . . . .scanchains 4.4.3 Specialized Patch Processor . . . . . . .4.5 Patch generation and deployment . . . . . . . . 4.6

Bryksin, Vladyslav Sergeevich

2009-01-01T23:59:59.000Z

28

DECENTRALIZED AND MULTIVARIABLE DESIGNS FOR EGR-VGT CONTROL OF A DIESEL  

E-Print Network [OSTI]

equations. The general diesel engine con guration is depicted in Figure 1. The particular con gurationDECENTRALIZED AND MULTIVARIABLE DESIGNS FOR EGR-VGT CONTROL OF A DIESEL ENGINE M. van Nieuwstadt P for a high speed diesel engine equipped with EGR and a variable nozzle geometry turbocharger (VGT

Stefanopoulou, Anna

29

pH-Induced Changes in Intrinsically Disordered Proteins  

Science Journals Connector (OSTI)

Intrinsically disordered proteins are typically enriched in amino acids that ... confer a relatively high net charge to the protein, which is an important factor leading to ... can be used to experimentally confi...

Matthew D. Smith; Masoud Jelokhani-Niaraki

2012-01-01T23:59:59.000Z

30

On the Use of Outer Approximations as an External Active Set Strategy  

E-Print Network [OSTI]

guration of a two-link robot arm J Optim Theory Appl (2010)time interval where the robot arm travels from via point q iwith Schittkowski SQP, robot arm example Data # Native N

Chung, H.; Polak, E.; Sastry, S.

2010-01-01T23:59:59.000Z

31

A distributed hard real-time Java system for high mobility components  

E-Print Network [OSTI]

applications to adapt to changes in user requirements or to external events. We describe how we achieve run-time recon?guration in distributed Java applications by appropriately migrating servers. Guaranteed-rate schedulers at the servers provide...

Rho, Sangig

2005-02-17T23:59:59.000Z

32

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network [OSTI]

turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

Suryanarayanan, Arun

2010-07-14T23:59:59.000Z

33

HW/SW Codesign and Design, Evaluation of Software Framework for AcENoCs : An FPGA-Accelerated NoC Emulation Platform  

E-Print Network [OSTI]

like topology, ow control, routing schemes, etc. [9]. It also analyzes subsequent performance impact caused by varying the NoC con- gurations in terms of latency/throughput and performs extensive design validation through the use of synthetic... like topology, ow control, routing schemes, etc. [9]. It also analyzes subsequent performance impact caused by varying the NoC con- gurations in terms of latency/throughput and performs extensive design validation through the use of synthetic...

Pai, Vinayak

2011-02-22T23:59:59.000Z

34

E-Print Network 3.0 - air carrier flights Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SYSTEMS RESEARCHCENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH... Chapter 3 Review Price Elasticity RPM Yield ASM Unit Cost Time Elasticity RPM FlightsQOS Elasticity...

35

An experimental study of the relationship between cuttings deposition and wellbore inclination in eccentric annuli  

E-Print Network [OSTI]

of Inclination on Cuttings Deposition (0 rpm data) 6 90 % Confidence Band on Regression Mean (0 rpm, AV = 2 ft/sec) 7 90 % Confidence Band on Regression Mean (0 rpm, AV = 3 ft/sec) 8 90 % Confidence Band on Regression Mean (0 rptn, AV = 4 ft/sec) 9 Effect... of Flow Rate on Cuttings Deposition (0 rpm data) 10 Mobil Data Comparison (0 rpm, AV = 2 ft/sec) 11 Mobil Data Comparison (0 rpm, AV = 3 ft/sec) 12 Mobil Data Comparison (0 rpm, AV = 4 ft/sec) 13 Iyoho Data Comparison (0 rpm data) page 26 44 45...

Colbert, John Wesley

2012-06-07T23:59:59.000Z

36

Effects of a platinum-based fuel additive on the performance of a single cylinder research diesel engine  

E-Print Network [OSTI]

, at 1900 RPM. Exhaust Gas Concentration of Carbon Monoxide, CO, at 1300 RPM. . . . , . . . . . . 35 53 55 Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30...: Figure 31: Figure 32: Figure 33: Figure 34: Exhaust Gas Concentration of Carbon Monoxide, CO, at 1600 RPM. Exhaust Gas Concentration of Carbon Monoxide, CO, at 1900 RPM. Exhaust Gas Concentration of Carbon Dioxide, CO2, at 1300 RPM. Exhaust Gas...

Ruemmele, Warren Pietro

1990-01-01T23:59:59.000Z

37

The Complex Core Level Spectra of CeO2: An Analysis in Terms of Atomic and Charge Transfer Effects  

SciTech Connect (OSTI)

We present a rigorous parameter-free theoretical treatment of the Ce 4s and 5s photoelectron spectra of CeO2. In the currently accepted model the satellite structure in the photoelectron spectra is explained in terms of a mixed valence (Ce 4f0 O 2p6, Ce 4f1 O 2p5, and Ce 4f2 O 2p4) con?guration. We show that charge transfer (CT) into Ce 5d as well as con?gurations involving intra-atomic movement of charge must be considered in addition and compute their contributions to the spectra.

Bagus, Paul S.; Nelin, Constance J.; Ilton, Eugene S.; Baron, Martin; Abbott, Heather; Primorac, Elena; Kuhlenbeck, Helmut; Shaikhutdinov, Shamil; Freund, Hans-Joachim

2010-03-05T23:59:59.000Z

38

An Analysis of Self-similarity, Momentum Conservation and Energy Transport for an Axisymmetric Turbulent Jet through a Staggered Array of Rigid Emergent Vegetation  

E-Print Network [OSTI]

sections . . . . . . . . . . . . . . 59 vi 4.11 Suu(k) at Section 4 centerline (not behind plant stem) . . . . . . . . . 61 4.12 Suu(k) at Section 3 centerline (behind plant stem) . . . . . . . . . . . 63 4.13 Suu(k) at Section 4 radial halfwidth (not... behind plant stem) . . . . . 64 4.14 Suu(k) at Section 4 radial halfwidth (behind plant stem) . . . . . . . 65 B.1 ui Section 1 of free jet and Con guration 1 . . . . . . . . . . . . . . . 82 B.2 ui Section 1 of Con gurations 2 and 3...

Allen, Jon Scott

2013-05-29T23:59:59.000Z

39

General Operational Procedure for Pedestrian Radiation Portal Monitors  

SciTech Connect (OSTI)

This document outlines the basic conduct of operation (CONOPS) for a pedestrian radiation portal monitor (RPM), provided that the CONOPS is not facility or RPM specific and that it is based on a general understanding of a pedestrian RPM operation. The described CONOPS for a pedestrian RPM is defined by: (1) RPM design and operational characteristics, (2) type of pedestrian traffic, and (3) goal for RPM installation. Pedestrian RPMs normally are deployed for the continuous monitoring of individuals passing through point of control to detect the unauthorized traffic of radioactive/nuclear materials. RPMs generally are designed to detect gamma- and neutron-emitting materials.

Belooussov, Andrei V. [Los Alamos National Laboratory

2012-08-08T23:59:59.000Z

40

Microsoft Word - ROCKY MOUNTAIN OILFIELD TESTING CENTER - STWA-AOT-10192011 -R2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy STWA : Viscosity Reduction Test An assessment of an in-line viscosity reduction device Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for October 19, 2011 This document may contain protected/confi dential information produced under and Funds-In Agreement (FIA) and is not to be further disclosed except as expressly provided for in the FIA.

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A review of "Milton’s Cambridge Latin: Performing in the Genres 1625-1632." by John K. Hale  

E-Print Network [OSTI]

he writes of it splendidly, with sure confi- dence and affection. John K. Hale. Milton?s Cambridge Latin: Performing in the Genres 1625-1632. Tempe: Arizona Center for Medieval and Renaissance Studies, 2005. xii + 305 pp. $32.00. Review by EUGENE...

Hill, Eugene D.

2007-01-01T23:59:59.000Z

42

Applications of the Generalized DDA Formalism and the Nature of Polarized Light in Deep Oceans  

E-Print Network [OSTI]

is applied to confi rmation of irregular invisibility cloaks made from metamaterials. In the second part, radiative transfer in a coupled atmosphere-ocean system is solved to study the asymptotic nature of the polarized light in deep oceans. The rate at which...

You, Yu

2010-01-16T23:59:59.000Z

43

FITTING WEIBULL AND LOGNORMAL DISTRIBUTIONS TO MEDIUM-DENSITY FIBERBOARD FIBER AND WOOD  

E-Print Network [OSTI]

University Corvallis, OR 97330 Charles J. Monlezun Associate Professor Department of Experimental Statistics fit the data. Conclusions were based on hypothesis tests imposing a bound of 0.05 on the probability of fit tests, MDF fiber, maximum likelihood estimation, non-parametric confi- dence bands, probability

44

Comparison of the Leakage Characteristics of the Straight Annular and Convergent Seals  

E-Print Network [OSTI]

=0.1 mm, 0-20,200 rpm, water flow) .............................................................................. 88 Fig. 54 Leakage rates for the convergent seal configurations (Cex=0.1 mm, 0- 20,200 rpm, water Flow... configurations (Cex=0.1 mm, 20,200 rpm, air flow, Pr=0.17) ........................ 92 Fig. 57 Pressure distributions for the straight annular and convergent seal configurations (Cex=0.2 mm, 0-20,200 rpm, air flow, Pr=0.28) .................... 94 Fig. 58...

Ustun, Serafettin

2012-10-19T23:59:59.000Z

46

This research was supported by the National Science Foundation under Grant MIP-9223812.  

E-Print Network [OSTI]

of RPM: An FPGA-based Multiprocessor Emulator Koray Ã?ner, Luiz A. Barroso, Sasan Iman, Jaeheon Jeong

Barroso, Luiz André

47

Regulations and Procedures Manual  

E-Print Network [OSTI]

Safety Program Manual Radiation Protection Plan RPM §7.01.Chapter 26 (Biosafety) Radiation Protection Plan: Chapter 21

Young, Lydia

2014-01-01T23:59:59.000Z

48

Design and Performance Analysis of a Geographic Routing Protocol for Highly Dynamic MANETs  

E-Print Network [OSTI]

Flow . . . . . . . . . . . . . . . . . . . . . 53 3.3.1.1 Beaconless Promiscuous Mode . . . . . . . . . . . 57 3.3.2 Hello Beacon Packet Format . . . . . . . . . . . . . . . . 60 3.4 Con guration... . . . . . . . . . . . . . . . . . . . . 45 3.19 Consideration for negative TTI . . . . . . . . . . . . . . . . . . . 47 3.20 Nodes moving and staying within range . . . . . . . . . . . . . . . 49 3.21 Nodes moving out of transmission range . . . . . . . . . . . . . . 51 3.22 Ferrying packet...

Peters, Kevin James

2010-06-14T23:59:59.000Z

49

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

50

Task Scheduling and Voltage Selection for Energy Minimization  

E-Print Network [OSTI]

system con gurations. 1. INTRODUCTION Energy consumption has become a primary concern in today's ICTask Scheduling and Voltage Selection for Energy Minimization Yumin Zhang Synopsys, Inc. 700 East-phase framework that inte- grates task assignment, ordering and voltage selection VS together to minimize energy

Hu, Xiaobo Sharon

51

Published: July 11, 2011 r 2011 American Chemical Society 6182 dx.doi.org/10.1021/ma200454e |Macromolecules 2011, 44, 61826197  

E-Print Network [OSTI]

gurations in the unfolded ensemble of a protein, have a long history.7Ã?9 Early on, it was recognized by Kuhn of a Disordered Polymer To Test a Mean-Field Theory of Collapse Shirin Hadizadeh, Apichart Linhananta, and Steven of proteins in the cell.1Ã?6 When proteins fold from extended unfolded state to a compact or folded native

Plotkin, Steven S.

52

Optimization in Computational Chemistry and Molecular Biology, pp. ??-?? C. A. Floudas and P. M. Pardalos, Editors  

E-Print Network [OSTI]

Optimization in Computational Chemistry and Molecular Biology, pp. ??-?? C. A. Floudas and P. M, multivariate nonlinear optimization and optionally con gurational sampling is involved. The diversity problem. This problem is a combinatorial optimization task, and is known to have a non-polynomial time complexity 8, 24

Schlick, Tamar

53

ULF wave occurrence statistics in a high-latitude HF Doppler sounder D. M. Wright, T. K. Yeoman, T. B. Jones  

E-Print Network [OSTI]

ULF wave occurrence statistics in a high-latitude HF Doppler sounder D. M. Wright, T. K. Yeoman, T was to establish the optimum con®guration for a new high-latitude Doppler sounder experiment, called DOPE (Wright, 1996; Wright et al., 1997), and to determine the likelihood of the experiment observing pulsation eects

Paris-Sud XI, Université de

54

SU(2) Lattice Gauge Theory- Local Dynamics on Non-intersecting Electric flux Loops  

E-Print Network [OSTI]

We use Schwinger Bosons as prepotentials for lattice gauge theory to de?ne local linking oper- ators and calculate their action on linking states for 2 + 1 dimensional SU(2) lattice gauge theory. We develop a diagrammatic technique and associate a set of (lattice Feynman) rules to compute the entire loop dynamics diagrammatically. The physical loop space is shown to contain only non- intersecting loop con?gurations after solving the Mandelstam constraint. The smallest plaquette loops are contained in the physical loop space and other con?gurations are generated by the action of a set of fusion operators on this basic loop states enabling one to charaterize any arbitrary loop by the basic plaquette together with the fusion variables. Consequently, the full Kogut-Susskind Hamiltonian and the dynamics of all possible non-intersecting physical loops are formulated in terms of these fusion variables.

Ramesh Anishetty; Indrakshi Raychowdhury

2014-11-12T23:59:59.000Z

55

Viscoelastic{Viscoplastic Damage Model for Asphalt Concrete  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Viscoplastic potential energy function . . . . . . . . . . . . . . 23 2.2.3 Hardening function . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Numerical... viii LIST OF FIGURES FIGURE Page 1.1 Moisture-induced damage in pavements results in raveling and potholing 4 1.2 Adhesive and cohesive failure . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Damaged and e ective undamaged con gurations...

Graham, Michael A.

2010-10-12T23:59:59.000Z

56

Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector  

SciTech Connect (OSTI)

Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

ILINSKI P.

2012-07-10T23:59:59.000Z

57

Critical parameters of unrestricted primitive model electrolytes with charge asymmetries up to 10:1  

E-Print Network [OSTI]

in continuous space has yielded the values Tc* 0.0489 0.0003 and c* 0.076 0.003. Furthermore, the RPM has been

58

E-Print Network 3.0 - antiferromagnetic noise correlations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . , correlated vertically, the energy of the antiferromagnetic chain is increased... Ising antiferromagnets have exact RPM when evolving from a large field, but not when started...

59

Download  

Science Journals Connector (OSTI)

tric motor drives the platform at a speed of about 50 rpm, ... circular tank rests on the platform and holds the liquid ... the summertime, studies chemical and bo-.

2000-02-12T23:59:59.000Z

60

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

WHERE: TOB Torque On Bit RPM Bit Revolutions Per Minute ROP Rate Of Penetration DOC Depth Of Cut r Radius of the bit DEFINING TWO VARIABLES OF...

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network [OSTI]

change method Motor·generator Induction 1760 rpm 230, 3The generator was belt driven by a 15 hp induction motor.

Bolger, J.G.

2010-01-01T23:59:59.000Z

62

Data Collection for Improved Cold Temperature Thermal Modeling...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Speed Dynamometer CAN measured Drive trace measurement Engine RPM CAN spark frequency Model input Brake Torque CAN Flywheel torque, model input Toil Dipstick...

63

Download  

Science Journals Connector (OSTI)

Lipids can be valuable sources of energy and nutrition for organisms, but their .... Interphyletic survey—Seven species of benthic animals ... [rpm]) in the dark.

2007-12-18T23:59:59.000Z

64

Participant Guide Cover Sheet  

E-Print Network [OSTI]

Proposal Management ­ State Transition (diagram) 4 Page 2 #12;eRPM Workflow eRPM system workflow starts Management - State Transitions Page 4 #12;Proposal Management Reviewer Participant Guide Last updated: 03Proposal Management Reviewer Participant Guide Cover Sheet Last updated: 03/20/09 1 of 1 http

Shyy, Wei

65

Identification and quantification of water-soluble hydrocarbons generated by two-cycle outboard motors  

Science Journals Connector (OSTI)

A 7.0 horsepower (HP) and a 10.0 HP outboard motor were operated at 3,500±200 rpm and 1,700±200 rpm, respectively for 30 min in a 160 L tank of tapwater. Exhaust hydrocarbons were concentrated by passage throu...

W. Edward Montz Jr.; Robert L. Puyear…

1982-09-01T23:59:59.000Z

66

Experimental measurement of phase averaged wall-pressure distributions for a 25% eccentric whirling annular seal  

E-Print Network [OSTI]

Instantaneous wall-pressure data were recorded for a 25% eccentric whirling annular seal for rotor speeds of 1800RPM and 3600RPM, axial Reynolds numbers of 24000 and 12000, and whirl ratios of 0.1-1.0 following the procedure set forth by Winslow...

Cusano, Domenic

2006-08-16T23:59:59.000Z

67

Design and Implementation of a Radiation Portal Monitor Multi-Lane Simulator  

SciTech Connect (OSTI)

Abstract - Deploying radiation portal monitors (RPMs) at U.S. ports of entry requires an understanding of an RPM system’s performance at sites with a large number of RPMs. This paper describes an RPM Multi-Lane Simulator that has been designed and implemented to simulate vehicle traffic at these sites. The Simulator’s flexible architecture simulates vehicle traffic with its associated radiation profiles and emulates each RPM’s radiation sensor panels. The RPM vendor’s embedded control computer firmware and supervisory software are left unchanged, thereby enabling hardware-in-the-loop testing of RPM system performance in configurations that exceed what is experienced in the field. The Simulator has proven to be a valuable and cost effective performance testing tool used by both Pacific Northwest National Laboratory and U.S. Customs and Border Protection systems integration and testing staff.

McKinnon, Archibald D.; Bass, Robert B.; Elder, Matthew S.; Johnson, Michelle Lynn

2009-10-24T23:59:59.000Z

68

The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX  

SciTech Connect (OSTI)

Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

S.M.. Kaye, S. Gerhardt, W. Guttenfelder, R. Maingi, R.E. Bell, A. Diallo, B.P. LeBlanc and M. Podesta

2012-11-28T23:59:59.000Z

69

The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX  

SciTech Connect (OSTI)

Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

S.M.. Kaye, S. Gerhardt, W. Guttenfelder, R. Maingi, R.E. Bell, A. Diallo, B.P. LeBlanc and M. Podesta

2012-11-27T23:59:59.000Z

70

Synthesis models in a probabilistic framework: metrics of fitting  

E-Print Network [OSTI]

In general, synthesis models provide the mean value of the distribution of possible integrated luminosities, this distribution (and not only its mean value) being the actual description of the integrated luminosity. Therefore, to obtain the closest model to an observation only provides confi- dence about the precision of such a fit, but not information about the accuracy of the result. In this contribution we show how to overcome this drawback and we propose the use of the theoretical mean-averaged dispersion that can be produced by synthesis models as a metric of fitting to infer accurate physical parameters of observed systems.

M. Cervino; V. Luridiana

2007-11-08T23:59:59.000Z

71

Texas 4-H Public Presentation Guide--Method Demonstations and Illustrated Talks  

E-Print Network [OSTI]

Presentation Guide Public Method Demonstrations & Illustrated Talks 4-H 4-H 3-5.012 3-00 Acknowledgments: Original manuscript by Iris Kalich, former faculty member of the Texas Agricultural Extension Service. Editorial revisions by Jeff W. Howard...? of talking while standing in front of an audi- ence. Poise and confi- dence increase with each performance. The first presenta- tion should be short (1 to 2 min- utes) and on a topic the 4-H?ers know well. Most people find it easier to talk in front of a...

Howard, Jeff W.; Bading, Charla

2000-04-17T23:59:59.000Z

72

Multiscale Methods for Fluid-Structure Interaction with Applications to Deformable Porous Media  

E-Print Network [OSTI]

12 3-Level Hierarchy of Macro-grids : : : : : : : : : : : : : : : : : : : : 81 13 Pressure 1 (triangle shading) and velocity w1 (vectors) plots for = 1=2, h = 1=12 for (a) x1 = 0; (b) x1 = 1; in the periodic reference con guration...-Structure Interaction problems. Theorem II.1. Let (v"; p") satisfy (2.2) in the slowly varying geometry F". Let (v0; v1) be as in (2.13a), (2.20) where (w; ) satisfy (2.14) and ( ; ) satisfy (2.18),(2.19). Let p0 be as in the Darcy velocity (cf. (2.17)). Then, we...

Brown, Donald

2012-10-19T23:59:59.000Z

73

Chemical bond and entanglement of electrons in the hydrogen molecule  

E-Print Network [OSTI]

We theoretically investigate the quantum correlations (in terms of concurrence of indistinguishable electrons) in a prototype molecular system (hydrogen molecule). With the assistance of the standard approximations of the linear combination of atomic orbitals and the con?guration interaction methods we describe the electronic wavefunction of the ground state of the H2 molecule. Moreover, we managed to ?find a rather simple analytic expression for the concurrence (the most used measure of quantum entanglement) of the two electrons when the molecule is in its lowest energy. We have found that concurrence does not really show any relation to the construction of the chemical bond.

Nikos Iliopoulos; Andreas F. Terzis

2014-08-01T23:59:59.000Z

74

A comparison of experimental and theoretical results for labyrinth gas seals with honeycomb stators  

E-Print Network [OSTI]

) Seal reaction-force magnitude (E) Direct and cross-coupled stifFness coefficients (F/L) Pitch of seal strips (L) Leakage mass flow rate (M/Lt) Friction coefficients Fluid pressure (F/Ls) Gss constant for air (L /Tts) Radius of control volumes I... parameters for the analysis, and they include: I) pressure ratio across the seal, 2) prerotation of the incoming 6uid, 3) seal con6guration, and 4) rotor rotational speed. Pressure Ratio The inlet air pressure and attendant mass 6ow rate through...

Hawkins, Lawrence Allen

2012-06-07T23:59:59.000Z

75

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

76

Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

77

MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE  

E-Print Network [OSTI]

to a permanent magnet machine efficiency of 70% is desired for shaft loads ranging from 50 W to 500 W in a speed range of 150 rpm to 5000

Kimball, Jonathan W.

78

Model-based Controllers for Active Control and Real-time Tests with  

E-Print Network [OSTI]

N. Equipped with 3000rpm 400V permanent magnet motors, with a maximum torque of about 4Nm. powered by four for bidirectional coupling (Displ. control) (Wallace et al., 2005) NS Use ground input and force fedback from the PS

79

Effects of ethanol content on gasohol PFI engine wide-open-throttle operation  

E-Print Network [OSTI]

The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with ? =1 under Wide-Open-Throttle condition. There was no significant charge cooling due ...

Cheng, Wai K.

80

In-Flight Performance Optimization for Rotorcraft with Redundant Controls Gurbuz Taha Ozdemir  

E-Print Network [OSTI]

control system is designed to perform in-flight optimization of redundant control effectors on a compound controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop

Maroncelli, Mark

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Motor Drives of Modern Drilling and Servicing Rigs for Oil and Gas Wells  

Science Journals Connector (OSTI)

This paper provides a synthetic view on the most recent achievements in the field of drilling and servicing rig drives for oil and gas wells. This field is featuring ... kilowatts and speeds of 150–250 rpm for drilling

Aurelian Iamandei; Gheorghe Miloiu

2013-01-01T23:59:59.000Z

82

A Review of New Multilateral Technology at the Rocky Mountain...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lbs to maintain effective penetration rates. The rotary speed was 65 RPM. The average penetration rate was 24.8 fthr. Planned penetration rate was 20 fthr. In the 6" lateral,...

83

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

F weight-on-bit (WOB) A area N bit rotation rate (RPM) T torque-on bit (TOB) u rate-of-penetration (ROP) MSE is a measure of the efficiency of the drilling process,...

84

Effects of Advanced Combustion Technologies on Particulate Matter...  

Broader source: Energy.gov (indexed) [DOE]

1.7 L TDI with full-pass control - HCCI: single cylinder research engine * Light Duty Ad Hoc modes 1-4 for PCCI * HCCI: 1800 RPM, varied fuel rate, intake T - Loads from 1.6 -...

85

Download  

Science Journals Connector (OSTI)

Jun 30, 1972 ... With a geared-down. ( 4 rpm ) electric motor and an eccentric wheel, a female of E. affinis, secured in a wire loop, was moved back and forth in.

1999-12-28T23:59:59.000Z

86

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

275 V Model: 2.5L Atkinson Cycle Nominal Pack Capacity: 5.5 Ah Output: 156 hp @ 6000 rpm Electric Motor: 60 kW Configuration: Inline Four-cylinder Displacement: 2.5 L Fuel Tank...

87

Development and Applications of Catalyzed Diesel Particulate...  

Broader source: Energy.gov (indexed) [DOE]

of Sd-Chemie c-DPF For BUG Emission Reduction * Test Cycle: ISO 8178 D2 Five Model * Diesel Engine: Cat 3406C, 350KW, 14liter, 1800rpm * Test Fuel: CARB 2 Diesel Fuel * 0...

88

Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process  

E-Print Network [OSTI]

Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I parameters for the wood-fiber/high-density-polyethylene blends at 60 rpm were a temperature of 180°C

89

Adenovirus DNA Replication I. Requirement for Protein Synthesis and Isolation of Nuclear Membrane Fractions Containing Newly Synthesized Viral DNA and Proteins  

Science Journals Connector (OSTI)

...Musashimurayama, Tokyo 190-12, Japan. Nuclear membrane fractions were...000 rpm. To isolate nuclear membrane fractions by...gradient procedure, the nuclear suspension in TKM buffer...sonically disrupted at full power in a Raytheon DF-101...

Tadashi Yamashita; Maurice Green

1974-09-01T23:59:59.000Z

90

A finishing cutter selection algorithm for additive/subtractive rapid pattern manufacturing  

Science Journals Connector (OSTI)

The additive/subtractive rapid pattern manufacturing (RPM) process sequentially deposits thick material ... layer-by-layer manner. Although most rapid manufacturing systems mainly intend to increase flexibility i...

Xiaoming Luo; Ye Li; Matthew C. Frank

2013-12-01T23:59:59.000Z

91

Fish Gelatin-Nanoclay Composite Film. Mechanical and Physical Properties, Effect of Enzyme Cross-Linking, and as a Functional Film Layer.  

E-Print Network [OSTI]

??The effect of clay content, homogenization RPM, and pH on the mechanical and barrier properties of fish gelatin/nanoclay composite films was investigated. The addition of… (more)

Bae, Hojae

2007-01-01T23:59:59.000Z

92

Numerical Investigation of Operational Shocks and Vibrations in Mobile Hard Disk Drives  

E-Print Network [OSTI]

Suspension Load Disk RPM Nominal Flying Height Pitch Rollwrite head and the disk is known as flying height of thefor a slider flying on top of the disk will be a negative

Rai, Rahul

2011-01-01T23:59:59.000Z

93

Stat 511 (Corrected) Statistics M.S. Exam Spring 2008 page 1 of 7 This question concerns the analysis of some data like those collected in a study (by forestry/wood  

E-Print Network [OSTI]

) and two processing conditions (the extruder's die temperature and screw speed rate) run-to-run. Within moisture (%) 6 CFA , Moisture , .25 3 raw die temperature ( C) 190 raw screw speed (rpm) 80 Temp

Vardeman, Stephen B.

94

13C-Labeled Gluconate Tracing as a Direct and Accurate Method for Determining the Pentose Phosphate Pathway Split Ratio in Penicillium chrysogenum  

Science Journals Connector (OSTI)

...possible strain improvement strategies have been examined is the flux...proteinogenic amino acids using gas chromatography-mass spectrometry...was equipped with one Rushton turbine stirrer (600 rpm) and was...Penicillium chrysogenum growth & development metabolism Pentose Phosphate...

Roelco J. Kleijn; Wouter A. van Winden; Cor Ras; Walter M. van Gulik; Dick Schipper; Joseph J. Heijnen

2006-07-01T23:59:59.000Z

95

Data Visualization Perceiving and Representing  

E-Print Network [OSTI]

- power output - available fuel - rpm - warnings s Stock Market - share price or change - price structure to object structure s Can be metaphorical ­ an engine + fuel tank s Map attributes to object

Chi, Ed Huai-hsin

96

A University Consortium on Low Temperature Combustion (LTC) for...  

Broader source: Energy.gov (indexed) [DOE]

RANGE BASE RANGE TURBOCHARGING DI LTC 9 VW 1.9L TDI engine (CR17:1), 1800 RPM Ringing Index limit Higher loads possible here More fuel, but even more air LTC University...

97

Mining Gold from your Cooling Water System  

E-Print Network [OSTI]

to be achieved. GPM 2 /GPM 1 = RPM 2 /RPM 1 Equation (1) (RPM 2 /RPM 1 ) 3 = HP 2 /HP 1 Equation (2) ESL-IE-07-05-25 Proceedings from the Twenty-ninth Industrial Energy Technology Conference, New Orleans, LA, May 8-11, 2007. COOLING WATER PUMPING Pumping... Apr May Jun Jul Aug Sep Oct Nov Months Ri ver l eve l ( f t ) 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 T e mp er at ur e ( F) Average River Level Average River Temperature ESL-IE-07-05-25 Proceedings from the Twenty...

Mendez, T.

98

E-Print Network 3.0 - aqueous acetic acid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat at 70 C for 30'. 8. Add 100ml 5M potassium acetate, vortex 30". 9. Allow... to tube. 13. Invert to mix and spin 5' at 14K rpm. 14. Transfer ... Source: Singer, Mitchell -...

99

R and D for improved efficiency small steam turbines. Phase II. Second quarterly technical report  

SciTech Connect (OSTI)

The detailed design of a radial inflow steam turbine (RIT) comprised of two radial inflow turbine stages driving a common bull gear/output shaft designed for rated speeds of 70,000 rpm and 52,500 rpm, respectively, is described. Details are presented on: aerodynamic design; high speed rotors; high speed rotor bearings; high speed rotor sealing; gearing; output shaft; static structure; and predicted performance. (MCW)

Not Available

1981-03-01T23:59:59.000Z

100

Milling Centres Mori Seiki NMV1500DCG  

E-Print Network [OSTI]

Speed ­ 20,000 RPM Five Axis Machining, FANUC Controller Makino MC56-5XA Rapid Feed Rate: 15m/s 30 m/min. maximum table feed rate AGIETRON Impact 2 Ram-type EDM System Windows-based Agievision 2 generator EDM System Turning Centres Boehringer VDF 180CM Spindle Power: 50 HP Max Spindle Speed ­ 4,500 RPM

Bone, Gary

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Comparing Linear Microinstability of the National Compact Stellarator Expriment and a Shaped Tokamak  

SciTech Connect (OSTI)

One metric for comparing con nement properties of di erent magnetic fusion energy con gurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a plasma is limited to marginal stability in the plasma core. The gyrokinetic turbulence code GS2 was used to calculate critical temperature gradients for the linear, collisionless ion tem- perature gradient (ITG) mode in the National Compact Stellarator Experiment (NCSX) and a prototypical shaped tokamak, based on the pro les of a JET H-mode shot and the stronger shaping of ARIES-AT. While a concern was that the narrow cross section of NCSX at some toroidal locations would result in steep gradients that drive instabilities more easily, it is found that other stabilizing e ects of the stellarator con guration o set this so that the normalized critical gradients for NCSX are competitive with or even better than for the tokamak. For the adiabatic ITG mode, NCSX and the tokamak had similar critical gradients, though beyond marginal stability, NCSX had larger growth rates. However, for the kinetic ITG mode, NCSX had a higher critical gradient and lower growth rates until a/LT ?#25; 1:5 a/LT;crit, when it surpassed the tokamak's. A discussion of the results presented with respect to a/LT vs R/LT is included.

J.A. Baumgaertel, G.W. Hammett and D.R. Mikkelsen

2012-11-20T23:59:59.000Z

102

Feasibility study of a 6V-92TA homogeneous auto-ignited two-stroke (HAT) compressed-natural-gas-engine. Topical report, August 1989-May 1990  

SciTech Connect (OSTI)

The objective of the project was to modify a two-stroke 6V-92TA diesel engine to operate on natural gas using a simple system with gas addition to the compressor inlet and a spark plug for cold start and non-autoignition engine operation. The engine was to be operated at most speed-load conditions by autoignition of the premixed gas-air mixture. This concept is referred to as the Homogeneous Auto-Ignited Two-Stroke (HAT). Autoignition of carbureted natural gas was achieved at various loads and speeds in a 6V-92TA engine modified for operating on natural gas with the HAT concept. However, HAT engine operation up to 277 hp at 2100 rpm (diesel coach rating) was not achieved because early ignition in some cylinders caused knock and excessive heat transfer. Instead, the engine was operated up to 226 hp (767 N.m) at 2100 rpm, 181 hp (780 N.m) at 1650 rpm, 130 hp (773 N.m) at 1200 rpm, and 34 hp (368 N.m) at 650 rpm. Maximum brake thermal efficiency measured was 33.4% at 2100 rpm/219 hp. The corrected efficiency (to compensate for the unburned natural gas lost during the scavenging process) was higher than this. Steady-state emissions show very low NOx, total unburned HC lower than expected and reasonable CO levels. The lean air-fuel mixture and unburned exhaust gases in the cylinder resulted in very low NOx emissions.

Kakwani, R.M.; Winsor, R.E.

1990-08-01T23:59:59.000Z

103

SHM of Galaxies Embedded within Condensed Neutrino Matter  

E-Print Network [OSTI]

We re-examine the question of condensed neutrino objects (de- generate neutrino matter) based on new calculations. The potential show-stopper issue of free-streaming light neutrinos inhibiting galaxy formation is addressed. We compute the period associated with sim- ple harmonic motion (SHM) of galaxies embedded within condensed neutrino objects. For observational consequences, we examine the ro- tational velocities of embedded galaxies using Hickson 88A (N6978) as the prototype. Finally, we point out that degenerate neutrino objects repel each other in overlap and we compute directly the repulsive force between two interesting and relevant con?gurations. An outstanding issue is whether the accompanying tidal forces generated by condensed neutrino matter on embedded galaxies give rise to galactic bulges and halos.

Peter D. Morley; Douglas J. Buettner

2014-10-22T23:59:59.000Z

104

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

105

Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy  

SciTech Connect (OSTI)

Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

2013-02-15T23:59:59.000Z

106

Experimental versus theoretical comparison of the effects of taper and static eccentricity on the rotordynamic coefficients of short, smooth, high-speed, liquid annular seals  

E-Print Network [OSTI]

. 24 E 0. 085 Q 0. 080 g 0. 075 Pu0 070 0. 065 uO 060 0. 055 ~0 050 10200 rpm 17400 rpm t) 24600 rpm 3-02-01 00 01 02 03 E 24k MPa EO0 0) 0, 080 s& PI5 0. 075 Pu 0. 070 C3 0. 065 a 0. 060 0. 055 ~0 050 3-02-01 00 01 02 03 EO 085 Q...) 0 080 s& F50 075 o 0. 070 0. 065 u 0. 060 0 055 ~ 0, 050 3-02 ? 01 00 0. 1 02 03 ? 0. Taper Parameter Fig. 9 Minimum radial clearance versus taper parameter for all operating condittons. 25 Stiffness The direct stiffness is used...

Lindsey, William Todd

2012-06-07T23:59:59.000Z

107

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

108

Observation of Liquid Metal Actuation in Microfluidic Channels and Implementation to Tunable RF Inductors  

E-Print Network [OSTI]

biopsy punch (Acuderm Inc., Ft. Lauderdale, FL). By the same time we have spin coated the uncured PDMS on poly- methyl methacrylate (PMMA) substrate at 2000 rpm for 40 sec, and cured it in 65 °C oven for 3 hours. Then, the inverted PDMS layer of micro... channel has been bonded to 12 the PDMS spin coated PMMA sheet via using O2 plasma (100 um thick from spin- coating at 3000 rpm for 30 sec). The device and fabrication steps are shown in Figure 1. Figure 1: 3D Straight Channel Master Mold, Inverted...

Dogan, Yusuf

2014-07-18T23:59:59.000Z

109

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

110

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

111

Influence of Early Fuel Injection Timings on Premixing and Combustion in a Diesel Engine  

Science Journals Connector (OSTI)

Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, YuSeong-Gu, Daejeon 305-701, Republic of Korea ... Even with the same fueling rate, faster engine speed would need more advanced injection for achieving 6.5 ms of ?id; more than 100 CAD of ?id was needed at 3000 rpm, and it was increased to 200 CAD at 5000 rpm, which was quite occasional in modern automotive diesel engines. ... Several general observations may be made. ...

Sanghoon Kook; Seik Park; Choongsik Bae

2007-12-12T23:59:59.000Z

112

A Model for Oxidative Aging of Rubber-Modified Asphalts and Implications to Performance Analysis  

Science Journals Connector (OSTI)

Minus 10 and ?40 mesh rubber were acquired from Granular Products, also known as Tire Gator (TG), a Mexia, TX, company no longer in business. ... The Base Cure for each featured binder is represented in Table 5 by Blends #301, #307, and #313:? 10% rubber content, ?10 mesh Tire Gator rubber, 4000 rpm, and 260 °C (500 °F). ... Then for supplemental blends, one element of the Base Cure was alternated in turn to one of the following:? 20% rubber content, ?40 mesh Tire Gator rubber, 8000 rpm, and 232 °C (450 °F). ...

Jason F. Chipps; Richard R. Davison; Charles J. Glover

2001-03-14T23:59:59.000Z

113

Characteristics of a multiple disk pump with turbulent rotor flow  

E-Print Network [OSTI]

DIRHETER IINIt tl, DISCHARGE OIANETER IINlt 3. CLEARANCE OETHEEN DISKS 0. 13636 IN. TYPE SEALJ PRCKING DISKFLO PUHP; NODEL K03 TOTRL HERO HORSEPOHER X EFFICIENCY + NPSH AVAIL V Figure 12. Performance of the 11 Disk Pump at 890 rpm (Test 2) C& C...: D. 13636 IN 111'E 5EAI. PACK(NO OISKFLD PL'. "P: HDD L 40 TOTAL HERO HDRSEPOHER X EFFICIENCY + NPSH AVAIL Y Figure 14 . Performance of the 1 1 Disk Pump at 1 790 rpm ( Tes t 1 ) CV o O C) CI O C) O \\ C CC C O I-!-W I o O O O 6 )3...

Roddy, Patrick James

1985-01-01T23:59:59.000Z

114

Radiation Transport Simulation Studies Using MCNP for a Cow Phantom to Determine an Optimal Detector Configuration for a New Livestock Portal  

E-Print Network [OSTI]

scalable gamma radiation portal monitor (RPM) which can be used to assess the level of contamination on large animals like cattle. This work employed a Monte Carlo N-Particle (MCNP) radiation transport code for the purpose. A virtual system of cow...

Joe Justina, -

2012-10-19T23:59:59.000Z

115

Analysis of Vibrio vulnificus from Market Oysters and Septicemia Cases for Virulence Markers  

Science Journals Connector (OSTI)

...volume of the overnight culture was centrifuged at 14,000 rpm (Marathon Micro A centrifuge; Fisher Scientific, Pittsburgh, Pa...Samples were vortexed and overlaid with 20 mul of sterile mineral oil (Sigma) to prevent evaporation. Thermal cycling was performed...

Angelo DePaola; Jessica L. Nordstrom; Anders Dalsgaard; Anita Forslund; James Oliver; Tonya Bates; Keri L. Bourdage; Paul A. Gulig

2003-07-01T23:59:59.000Z

116

Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive  

E-Print Network [OSTI]

exchange resin Kinetics a b s t r a c t Glycerol is a byproduct of biodiesel industry and can be converted as an oxygenated fuel additive Malaya R. Nanda a , Zhongshun Yuan a , Wensheng Qin b , Hassan S. Ghaziaskar c was completely eliminated above 400 rpm. Moisture content demonstrated an adverse effect on the yield

Qin, Wensheng

117

The 2005 Upper Taum Sauk Dam Failure: A Case History  

Science Journals Connector (OSTI)

...they began testing the turbine generators in late August...uplift problems in the turbines at high rpm values...to upgrade the pump/turbine units in 1999, which...deep. AmerenUE thought wind-whipped waves from...postponed until the annual maintenance period, scheduled for...

J. DAVID ROGERS; CONOR M WATKINS; JAE-WON CHUNG

118

A POWER SHAFT FOR THE MUNICH MP-TANDEM H. STEFFENS, L. ROHRER and S. J. SKORKA  

E-Print Network [OSTI]

000 rpm was chosen. The generators are excited by permanent magnets and show a soft voltage1583 A POWER SHAFT FOR THE MUNICH MP-TANDEM H. STEFFENS, L. ROHRER and S. J. SKORKA power shaft developed for the Munich MP-Tandem is described. The shaft transfers energy at a rate

Paris-Sud XI, Université de

119

SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR  

E-Print Network [OSTI]

SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR by LIPING ZHENG B.S. Shanghai with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed

Wu, Thomas

120

Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays  

Science Journals Connector (OSTI)

...identifying the spread or outbreak of all variants of avian...infections in humans. Recent outbreaks of Nipah virus, severe...25). Recent major outbreaks in domestic poultry and...that contribute to or predict influenza virus pathogenicity...microarray (TessArray RPM-Flu 3.0 and 3.1, subsequently...

Baochuan Lin; Anthony P. Malanoski; Zheng Wang; Kate M. Blaney; Nina C. Long; Carolyn E. Meador; David Metzgar; Christopher A. Myers; Samuel L. Yingst; Marshall R. Monteville; Magdi D. Saad; Joel M. Schnur; Clark Tibbetts; David A. Stenger

2009-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

P-156 / G. Hegde P-156: Alignment of Ferroelectric Liquid Crystals with the Substrates  

E-Print Network [OSTI]

from JSR. The polymer layers were spin coated at 3000 rpm on glass slides (2x3 cm) containing patterned layer source (ALS) with a race track shaped glow discharge area [7, 10]. In the beam mode, this source irradiation. The incidence angle of plasma beam was about 70 . The distance between discharge area and treated

122

An FtsZ-Targeting Prodrug with Oral Antistaphylococcal Efficacy In Vivo  

Science Journals Connector (OSTI)

...blood samples were then centrifuged at 4,000 rpm for 10 min at 4C to separate the plasma. The plasma samples were stored at C prior to their bioanalysis. Plasma concentrations of TXY436 and PC190723 were quantified by LC-MS/MS, with the...

Malvika Kaul; Lilly Mark; Yongzheng Zhang; Ajit K. Parhi; Edmond J. LaVoie; Daniel S. Pilch

2013-09-16T23:59:59.000Z

123

University of Technology of Belfort-Montbeliard (UTBM) Doctoral School SPIM (Engineering Sciences and Microtechnology)  

E-Print Network [OSTI]

OF PHILOSOPHY By Dongdong ZHAO Control of an Ultra-high Speed Centrifugal Compressor for the Air Management, an ultra-high speed, up to 280,000 rpm, centrifugal compressor is adopted. The centrifugal com- pressor. Air compressor supplying the oxygen to the stack is an important component in the fuel cell systems

Paris-Sud XI, Université de

124

IAA17/AXR3: Biochemical Insight into an Auxin Mutant Phenotype  

Science Journals Connector (OSTI)

...METHODS Plant Treatments Surface-sterilized...100 rpm. After treatment, the tissue was...precipitation, dialysis against 1 PBS...and finally with water. The epidermis...using a 3500 MWCO dialysis bag (Spectrum...was separated by electrophoresis, blotted onto...

François Ouellet; Paul J. Overvoorde; Athanasios Theologis

125

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 1 Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 4 of 21 http of 21 http://eresearch.umich.edu Grants.gov from eRPM This procedure is a supplement to the rest

Shyy, Wei

126

Bill Bradbury Jennifer Anders  

E-Print Network [OSTI]

the RPM to value demand response resources based on the revised capacity requirements. #12;Staff identified two potential enhancements that will expand the Council's analytical capacity for the Seventh for a limited number of potential additional enhancements that fall outside the functionality agreed upon

127

Control system for a vertical-axis windmill  

DOE Patents [OSTI]

A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

Brulle, R.V.

1981-09-03T23:59:59.000Z

128

Usage Codes Observer code Vessel code Trip ID  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Sonar Observer code Vessel code Trip ID Additional Information KHz: RPM / Other _______________Global Registry ID:MMSI No. Permit expiration (dd-mm- yy): Y / N Present? Usage contact Diver / dive equipment Usage Manufacturer Hull mounted / towed Catch Y / N Other: Y / N Y / NOther

129

Usage Codes Additional Information  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Additional Information Winches (on deck) Electronics RPM: Max hoistingPresent? Usage Model Ratio Accuracy (m) Type: Electric / Hydraulic / Other _________________ KHz: GPS: Internal Other: Y / N Other: Y / N Y / NOther: Hydrophone Burned on board: Net sensors Usage Manufacturer High

130

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

131

Higher Order Chromatin Structures in Maize and Arabidopsis  

Science Journals Connector (OSTI)

...bromide-stained contour-clamped homogeneous electric field (CHEF) gel of limited DNase I...slurry was transferred to a 400-rpm motor-driven homogenizer (Eberbach Con Torque...agarose (contour-clamped homogeneous electric field [CHEF] embedding agarose Sigma...

Anna-Lisa Paul; Robert J. Ferl

132

Pulsed Field Gel Electrophoresis Adapted from Sanderson Lab protocol (U. Calgary)  

E-Print Network [OSTI]

600 -Spin down remaining 900ul at 13K rpm, 3 minutes -Resuspend Pellet in Resuspension Solution to make OD600=1.2-1.4 [(actual OD600)/ 1.3 (desired)] x 0.9 = ml resuspension buffer to use (the factor

Segall, Anca

133

E-Print Network 3.0 - alginate gel beads Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

attached copy is furnished to the author for non-commercial research and Summary: mM CaCl20.9% NaCl, immersed in a 4 1C water bath and stirred at 250 rpm. The alginate beads...

134

CFD Simulation and Experimental Testing of Multiphase Flow Inside the MVP Electrical Submersible Pump  

E-Print Network [OSTI]

to test the pump at different operating conditions. The pump is modeled and tested at two speeds; 3300 and 3600 rpm, using air-water mixtures with GVFs of 0, 5, 10, 25, 32 and 35%. The flow loop is controlled to produce different suction pressures up...

Rasmy Marsis, Emanuel 1983-

2012-08-16T23:59:59.000Z

135

Rotordynamic evaluation of a tangential-injection hybrid bearing  

E-Print Network [OSTI]

, and Cre = 0.001 . Data are presented for 550C water at three speeds out to 25000 rpm and three pressures out to 7.0 MPa. Compared to a radial-injection hybrid bearing, experiments show injection against rotation enhances stability, yielding reductions...

Laurant, Franck Jean

1998-01-01T23:59:59.000Z

136

Gas Seal Leakage at High Temperature: A Labyrinth Seal and an All-Metal Complaint Seal of Similar Clearance  

E-Print Network [OSTI]

/5 the flow of a labyrinth seal for pressure ratios (Ps/Pa) > 3.5. The savings in leakage are maximized during operation at high pressure differentials. Leakage measurements with a rotor spinning to a maximum speed of 2,700 rpm (surface speed = 23.6 m...

Anderson, Alain

2013-07-31T23:59:59.000Z

137

Protein Expression: freshly transform pInt DNA into BL21 strain  

E-Print Network [OSTI]

Protein Expression: freshly transform pInt DNA into BL21 strain pick an isolated colony which facilitates easy transfer transfer to a 30mL homogenizer (glass mortar and teflon pestle type at 45,000 rpm for 45 minutes at 4C transfer supernatant to new tube quick freeze in dry ice/EtOH bath

Segall, Anca

138

|Research Focus A cost of disease resistance: paradigm or peculiarity?  

E-Print Network [OSTI]

was tested in a field trial in the absence of P. syringae pv maculicola. RPM1 þ plants were consistently in host­parasite interactions. Plants are good models for studies of co-evolution because, unlike animals-for-gene relationship [1], plants are resistant to some genotypes of a parasite species but not to others (Box 1

Brown, James

139

Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions  

Science Journals Connector (OSTI)

...can be monitored by appropriate sample handling and assay procedures. Rubisco is posttranslationally...Tamm2 marked with an asterisk in the diagram) have a low value of RPM and a high...correlations. Supplemental Data The following materials are available in the online version of...

Ronan Sulpice; Sandra Trenkamp; Matthias Steinfath; Bjorn Usadel; Yves Gibon; Hanna Witucka-Wall; Eva-Theresa Pyl; Hendrik Tschoep; Marie Caroline Steinhauser; Manuela Guenther; Melanie Hoehne; Johann M. Rohwer; Thomas Altmann; Alisdair R. Fernie; Mark Stitt

2010-08-10T23:59:59.000Z

140

Effects of Anti-Nuclear Factor ? B Reagents in Blocking Adhesion of Human Cancer Cells to Vascular Endothelial Cells  

Science Journals Connector (OSTI)

...background. Nuclear Extract. Nuclear extracts from mononuclear...rpm for 10 min. The nuclear pellet was resuspended...sonicated for 10 s at 15% power output using Bioruptor (COSMO BIO, Tokyo, Japan) and clarified by centrifugation...protein concentration of nuclear extracts was determined...

Keiichi Tozawa; Shinsaku Sakurada; Kenjiro Kohri; and Takashi Okamoto

1995-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Journal of Manufacturing Processes Vol. 5/No. 1  

E-Print Network [OSTI]

to Grinding of Shafts Rajkumar Palanna, Manufacturing and Quality Engineering Manager, Honeywell Aerospace of air bearings used in aircraft environ- mental control systems (ECS)--a core competency of Honeywell to aerospace companies such as Honeywell.Air bearings allow machines to reach speeds of more than 100,000 rpm

Bukkapatnam, Satish T.S.

142

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Coupled to an induction generator, this HCCI genset allowspowered by the induction generator acting as a motor. OnceGenerator Size Weight Specification 6 (In-line) 6.6 L 21 Quart Air-Liquid (DEAC) 1.5 ATM 1800 RPM 35 kW Induction

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

143

7,511,624 Wind Energy Overview: Device for monitoring the balance and integrity of wind turbine blades either in  

E-Print Network [OSTI]

oscillations (including imbalances and tracking variations) in wind turbine blades. This technology was tested covering the RPM rate of any wind turbine blade. This invention directly targets the operational monitoring://tto.montana.edu/technologies Technology Available for License In-Field LIDAR Monitoring and Manufacturing Control of Wind Turbine Montana

Maxwell, Bruce D.

144

On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM  

E-Print Network [OSTI]

analysis · ScanTools ­ Vehicle/Engine parameters (coolant T, RPM, veh. Speed, %load) #12;Scanning Mobility Britt A. Holmén, Derek Vikara, Zhong Chen, Ruben Mamani-Paco Environmental Engineering Program AND cost-effective ­ 2003 -- Purchase 2 hybrid diesel-electric buses ­ Emissions Testing ­ gases

Holmén, Britt A.

145

Discussion Of Scenario ResultsDiscussion Of Scenario Results Michael Schilmoeller  

E-Print Network [OSTI]

(Btu/kWh) tons CO2/MWh RPM & Genesys (%) Council's Carbon Footprint paper Boardman 601.0 84% 504 $100/ton CO2 Policy No RPS Close Existing Coal Plants Dam Removal Low Conservation High Conservation-risk plan for each NPV study cost and TailVaR90 risk Average CO2 emission rate (MMt/year) over futures, 2030

146

Computer Based Motor Parameter Determination for High Speed Operation of Permanent Magnet Synchronous Machines  

E-Print Network [OSTI]

Synchronous Machines B. Szabados and U. Schaible McMaster University 1280 Main St. W., Hamilton, Ontario PM synchronous machine parameters in the high speed operating range. The theory and real interior PM synchronous machine at up to 8000 rpm. Results are presented which show a significant variation

Szabados, Barna

147

Spontaneous Formation of Water Droplets at Oil?Solid Interfaces  

Science Journals Connector (OSTI)

200 ?L of gold sol (diameter 150 nm) in aqueous solution (Ted Pella) was washed three times by (i) addition of 2 mL of distilled and deionized water, (ii) centrifugation at 4000 rpm for 15 min, and (iii) removal of the supernatant. ... Bibette, J.; Leal-Calderon, F.; Schmitt, V.; Poulin, P. Springer Tracts in Modern Physics: Emulsion Science. ...

Zhongqiang Yang; Nicholas L. Abbott

2010-08-17T23:59:59.000Z

148

KaushikRajashekara TheUniversityofTexasatDallas  

E-Print Network [OSTI]

rpm Brushless DC * Fuel consumption (City/Highway): 42/43 MPG with CVT NissanLEAF­ Product Range extender Series Hybrid Parallel Fuel Cell Series Mild HybridMild Hybrid GeneratorEngine Fuel Cell * Engine: 1.3 liter, 4 cylinder * Battery: 100.8V DC (NiMH battery), 5.75 Ah * Motor/Generator: 13 KW @1500

California at Davis, University of

149

Vortex Jitter in Hover Swathi M. Mula  

E-Print Network [OSTI]

78712, USA Abstract The trajectory of the tip vortex of a reduced-scale, 1 m diameter, four-bladed rotor condition of the rotor is at a blade loading of CT / = 0.0645 and a rotational speed of 1240RPM wake dominated by the tip vortices shed from the rotor blades. The complexity of the flow

Tinney, Charles E.

150

Proceedings of Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 11th International Conference on Nanochannels,  

E-Print Network [OSTI]

between the rotors. Three counter-rotating fans, which have the same design point, have been designed(mm) Rhub Blade hub radius (mm) N Rotational speed of rotor (rpm) Rotational speed ratio NRR NFR L Distribution of load Pt,RR Pt,FR+Pt,RR Z Number of blades Pw Power consumption of the rotor (W) Zp Axial

Paris-Sud XI, Université de

151

Continuous shearing of dense and wet granular materials in a torsional rheometer  

E-Print Network [OSTI]

H = 0. 002 W dH = 0. 004 ~ dH = 0. 006 ~ dH = 0. 00$ ~ dH = 0. 010 ~ dH = 0. 012 -E3- dH = Q. Q'14 ~dH = 0. 016 0 5 10 15 20 25 90 95 40 Speed in RPM Fig. 19. Torque-RPM for DRY-SAND 40 30 C 25 8 Q 25 ~ dH 0 0 W dH = 0 002 ~ dH 0 0. 004... . 44 ? dH = Oil08 ~ dH = OA)00 ~ dH = 0. 010 ~ dH = 0. 012 ? l3- dH = 0. 014 ? e- dH = 0. 010 0 5 10 15 20 25 30 35 40 Speed In RPM Fig. 20. Normal Force-RPM for DRY-SAND 1. $ C1A 4- 1. 2 5 1 I 0. $ Ias I I 04 0. 2 ? PdH=O ~ dH = 0...

Kannan, Raguraman

2012-06-07T23:59:59.000Z

152

Relationships between Beef Postharvest Biochemical Factors and Warner-Bratzler Shear Force  

E-Print Network [OSTI]

fragmentation index Mg2+ Magnesium mW Milliwatts ?l Microliter ?M Micromolar N Newtons (1 N = 0.102 kg force) Na+ Sodium ppm Parts per million PYG Preliminary Yield grade QG Quality grades viii REA Ribeye area RV Revalor IH + Revalor H rpm... ......................................................................................................... xiv 1. INTRODUCTION .......................................................................................................... 1 2. REVIEW OF LITERATURE ......................................................................................... 4 2.1...

Orozco Hernandez, Pilar

2013-04-01T23:59:59.000Z

153

Purification, Characterization, and Expression of Multiple Glutamine Synthetases from Prevotella ruminicola 23  

Science Journals Connector (OSTI)

...H2 (95:5, vol/vol) gas phase. This maintenance medium...constantly agitated using a turbine impeller at 300 rpm. Anaerobicity...addition of 75 mul of stop color development solution F (2% sodium citrate...Windows interface: flexible strategies for multiple sequence alignment...

Jong Nam Kim; Isaac K. O. Cann; Roderick I. Mackie

2011-10-21T23:59:59.000Z

154

Cam design by hyperbolic spline functions of fourth order  

Science Journals Connector (OSTI)

......Fig. 9). In the most general case, per interval there...2 and 3 pertain to petrol engines and the Cams 4 and 5 to diesel engines. 260 L. KOHAUPT FIG. 11...5500 rpm is adequate for a diesel engine, instead the valve-drive......

L. KOHAUPT

1999-10-01T23:59:59.000Z

155

Use of an Acylated Chitosan Schiff Base as an Ecofriendly Multifunctional Biolubricant Additive  

Science Journals Connector (OSTI)

A rotating pressure vessel oxidation test (ASTM D2272) was used for evaluating antioxidant property. ... Lubricity property was evaluated by using the four ball test (ASTM D4172A) which was performed at 75 °C temperature, frequency of 1200 rpm, and 198 N load for 60 min. ... Both samples passed the copper strip corrosion test (ASTM D130) too. ...

Raj K. Singh; Aruna Kukrety; Alok K. Chatterjee; Gananath D. Thakre; Gajendra M. Bahuguna; Sandeep Saran; Dilip K. Adhikari; Neeraj Atray

2014-11-07T23:59:59.000Z

156

Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism  

Science Journals Connector (OSTI)

...electron shifts for a potential proton relay. (B) T 4 5-deiodination activity of Dio3...20 °C at 18,000 rpm for 45 min in an HFA 22.50 (Thermo Scientific) rotor. Ten...indicate electron shifts in the suggested H+ relay. Instead of direct participation of Ser167...

Ulrich Schweizer; Christine Schlicker; Doreen Braun; Josef Köhrle; Clemens Steegborn

2014-01-01T23:59:59.000Z

157

Growth of Core?Shell Ga?GaN Nanostructures via a Conventional Reflux Method and the Formation of Hollow GaN Spheres  

Science Journals Connector (OSTI)

Gallium nitride (GaN) is an important III?V semiconductor with a wide direct band gap of ?3.4 eV. ... LiHMDS exhibits good solubility in TOA. ... The products were collected by centrifugation twice at 7000 rpm for 2 min in hexane, isopropanol, ethanol, and then deionized water. ...

Tz-Jun Kuo; Chi-Liang Kuo; Chun-Hong Kuo; Michael H. Huang

2009-02-05T23:59:59.000Z

158

The Use of WBM to Improve ROP in HTHP/Hard Rock Environments  

E-Print Network [OSTI]

on bit (WOB) and rotary speed (RPM) that are applied when drilling. These properties are dependent on the drillstring design and the available power of the drilling rig. Drillstring design has a direct effect on WOB the size and number of drill... Page VITA .......................................................................................................................... 65 vii vii LIST OF FIGURES Page Figure 1 Various Rotary Drilling Bits From Left: Tri-Cone Insert...

Kraussman, Andrew

2012-07-16T23:59:59.000Z

159

Comparison of a Slanted-Tooth See-Through Labyrinth Seal to a Straight-Tooth See-Through Labyrinth Seal for Rotordynamic Coefficients and Leakage  

E-Print Network [OSTI]

-a (1015 psi-a), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds of 10,200, 15,350, and 20,200 rpm, and a radial clearance of 0.2 mm (8 mils). The experiments were carried out at zero, medium, and high inlet preswirl ratios. The experimental results...

Mehta, Naitik

2012-07-16T23:59:59.000Z

160

K. McDonald Princeton U.  

E-Print Network [OSTI]

­878­1711) who developed this technology in 1948. Figure 6 shows an air cylinder made by Eldorado to hold of the tip of a gun­drill bit. 2 #12; Figure 5: Sketch of an air cylinder to position the bushing against,000 rpm. See Figure 6. Variations on this rotary seal are made by Eldorado, Deublin (Bryce Green, 847

McDonald, Kirk

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of Experimental and Theoretical Forces on a Model Dredge Cutterhead  

E-Print Network [OSTI]

in the laboratory. The effects of the depth of cut, direction of swing, and cutter rpm on the forces acting on the cutter head are evaluated. The forces on the cutterhead are determined through the use of a set of six load cells rated at 13.3 kN (3000 lb). The load...

Permenter, Rusty

2011-02-22T23:59:59.000Z

162

Comparison of soy protein concentrates produced by membrane filtration and acid precipitation  

E-Print Network [OSTI]

, respectively. A series of operations including pH adjustment (8.0), agitation (250 rpm, 30 min), sonication (40 dB, 20 min), homogenization (3 min), and centrifugation (3,000 x g, 15 min) were followed. For the membrane processing, the ultrafiltration cartridge...

Kim, Hyun Jung

2003-01-01T23:59:59.000Z

163

E-Print Network 3.0 - automated immunoradiometric assay Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1,25 OH-Vitamin D 1,25 VitD Summary: 2500 rpm 10 min 4*C NA 0.5 ml 2ml Plastic -sc -70*C RIA Core Two site immunoradiometric assay (IRMA... Plastic -sc -70*C RIA Core Two site...

164

A comparison of the static and dynamic characteristics of straight-bore and convergent tapered-bore honeycomb annular gas seals  

E-Print Network [OSTI]

seals was 3.1 mm and the cell width was 0.79 mm. Static and dynamic measurements are reported with air at three speeds out to 20,200 rpm, three supply pressures out to 17.2 bar, and with exit-to-inlet pressure ratios of 40% and 60%. The results...

Dawson, Matthew Peter

2000-01-01T23:59:59.000Z

165

Experimental evaluation of pocket damper seals with brush seal elements  

E-Print Network [OSTI]

characteristics include leakage, starting torque and dynamic coefficients. The worn BHS leaks half as much as a PDS at all test pressures. The starting torque of a brush seal increases strongly with pressure, however, the power dissipated at 6,000 R.P.M. never...

Buchanan, Steven Eugene

2000-01-01T23:59:59.000Z

166

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin  

E-Print Network [OSTI]

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin Overview: This is a small scale method for purifying a His-tagged protein using commercial affinity resin. Materials: TALON rotor, at 18 K rpm) at 4 °C. 7. Save supernatant fraction for column purification. Supernatant can

Doering, Tamara

167

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

168

Rippey | Open Energy Information  

Open Energy Info (EERE)

Rippey Rippey Jump to: navigation, search Name Rippey Facility Rippey Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RPM Access Wind Development Developer RPM Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 41.9963704°, -94.19471741° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9963704,"lon":-94.19471741,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

JC3 Bulletin Archive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 U-006:Cisco Network Admission Control Manager Directory Traversal Flaw Lets Remote Users Obtain Potentially Sensitive Information An unauthenticated attacker could exploit this vulnerability to access sensitive information, including password files and system logs, that could be leveraged to launch subsequent attacks. October 6, 2011 U-005: Apache mod_proxy Pattern Matching Bug Lets Remote Users Access Internal Servers A remote user can access internal servers. October 5, 2011 U-004:Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code A remote user can create HTML that, when loaded by the target user, will execute arbitrary code on the target user's system. October 4, 2011 U-003:RPM Package Manager security update RPM Package Manager Header Validation Flaws Let Remote Users Execute

170

Elk | Open Energy Information  

Open Energy Info (EERE)

Elk Elk Jump to: navigation, search Name Elk Facility Elk Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RPM Access Wind Development Developer RPM Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Greeley IA Coordinates 42.58659755°, -91.36861324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.58659755,"lon":-91.36861324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Procurement .:. Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Signature Authority Training ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Signature Authority Training ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) CFO Departments: Budget Office Business Systems Analysis Conference Services Controller's Office Field Operations Management Financial Policy & Training Procurement & Property Office of Sponsored Projects & Industry Partnerships Travel Office Procurement Google Search:

172

Berkeley Lab Social Media  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab social media guidelines Berkeley Lab social media guidelines Read this before you tweet! These guidelines, developed by Berkeley Lab's Public Affairs Department, are intended to help Lab employees who use social media in an official capacity on behalf of Berkeley Lab. Social media is a great way to engage a large audience, but there are ways to do it well-and not so well-so please read on. These guidelines are for Lab staff interested in establishing a social media presence for a department, division, or user facility. They're also for Lab staff using social media as an individual but representing the Lab in some way. For Berkeley Lab's policies on basic computing and communications, which pertain to all Lab employees, read RPM 9.01 Computing and Communication and RPM 9.02 Operational Procedures for Computing and

173

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High-Speed Motor for Drilling Ultra-High-Speed Motor for Drilling DE-FC26-04NT15502 Project Goal The project goal is to design two sizes of an ultra-high-speed (10,000 rpm), inverted, configured electric motor specifically for drilling. Performers Impact Technologies LLC, Tulsa, OK University of Texas, Arlington, TX Results Researchers have developed PMSM (permanent magnet synchronous machine) electromagnetic designs of both radial and axial motors for rotational speeds up to 10,000 rpm in two outer diameters (OD). Finite element analyses (FEA) of the magnetic saturation and power/torque output have been made at various speed and loading conditions. Mechanical 3-D models have been prepared based on those designs. Bearing and seal materials have been studied, and manufacturers have been contacted to provide them. The project milestones completed to date are the:

174

Computer simulations of the restricted primitive model at very low temperature and density  

E-Print Network [OSTI]

The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this manuscript we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to $10^{-10}\\sigma^{-3}$, where $\\sigma$ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.

Chantal Valeriani; Philip J. Camp; Jos W. Zwanikken; René van Roij; Marjolein Dijkstra

2009-09-30T23:59:59.000Z

175

An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine  

Science Journals Connector (OSTI)

This paper presents the results of an experimental investigation into the influence of a ferrous picrate based homogeneous combustion catalyst on fuel consumption and smoke emission of a laboratory diesel engine. The catalyst used in this study was supplied by Fuel Technology Pty. Ltd. The fuel consumption and smoke emission were measured as a function of engine load, speed and catalyst dosing ratio. The brake specific fuel consumption and smoke emission decreased as the dosing ratio of the catalyst doped in the diesel fuel increased. At the catalyst dosing ratio of 1:3200, the brake specific fuel consumption was reduced by from 2.1% to 2.7% and the smoke emission was reduced by from 6.7% to 26.2% at the full engine load at speeds from 2600 rpm to 3400 rpm. The results also indicated that the potential of the fuel saving seems to be greater when the engine was run under light load.

Mingming Zhu; Yu Ma; Dongke Zhang

2011-01-01T23:59:59.000Z

176

EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE  

Science Journals Connector (OSTI)

A water?cooled four stroke four cylinder direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0% 5% 10% 15% 20% 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that in general using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm the torque the BMEP and efficiency are found to have maximum values under these conditions. CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

A. Sakhrieh; R. H. Fouad; J. A. Yamin

2009-01-01T23:59:59.000Z

177

Anomaly metrics to differentiate threat sources from benign sources in primary vehicle screening.  

SciTech Connect (OSTI)

Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). Currently RPM's ability to distinguish these radiological sources is seriously hampered by the energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) are ubiquitous in commerce, false alarms are problematic as they require additional resources in secondary inspection in addition to impacts on commerce. To increase the sensitivity of such detection systems without increasing false alarm rates, alarm metrics need to incorporate the ability to distinguish benign and threat sources. Principal component analysis (PCA) and clustering technique were implemented in the present study. Such techniques were investigated for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources without loss of specificity. Results of the investigation demonstrated improved sensitivity and specificity in discriminating benign sources from threat sources.

Cohen, Israel Dov; Mengesha, Wondwosen

2011-09-01T23:59:59.000Z

178

Structure and thermodynamics of the primitive model electrolyte in a charged matrix: The evaluation of the Madden-Glandt approximation  

E-Print Network [OSTI]

We compared the results of the Madden-Glandt (MG) integral equation approximation for partly-quenched systems with the commonly accepted formalism of Given and Stell (GS). The system studied was a +1:-1 restricted primitive model (RPM) electrolyte confined in a quenched +1:-1 RPM matrix. A renormalization scheme was proposed for a set of MG replica Ornstein-Zernike equations. Long-ranged direct and total correlation functions, describing the interactions between the annealed electrolyte species within the same replicas and between the annealed and matrix particles, appeared to be the same for MG and GS approach. Both versions of the theory give very similar results for the structure and thermodynamics of an annealed subsystem. Differences between excess internal energy, excess chemical potential, and isothermal compressibility become pronounced only at high concentrations of matrix particles.

M. Lukši?; B. Hribar-Lee

2013-12-17T23:59:59.000Z

179

Production of high quality and low energy chemithermomechanical pulp  

SciTech Connect (OSTI)

Chemithermomechanical pulps (CTMP) were produced from Eastern black spruce chips in a two-stage pilot plant using different conditions of chemical pretreatment and refining intensity. The conventional CTMP was produced by impregnating chips with sulfite liquor at a pH of approximately 10 and the conducting the first-stage refining in a double disc refiner at 1,200 rpm. The distribution of specific energy and refining intensity was about the same in the two stages. The experiments showed that, by decreasing the impregnating liquor pH to approximately 4.5 and conducting the first-stage refining at a relatively low specific energy and high refining intensity (by operating the refiner at 1,800 rpm), an energy saving of up to 33% could be achieved without any adverse effect on the pulp quality.

Stationwala, M.I. (Pulp and Paper Research Institute of Canada, Pointe Claire, PQ (Canada))

1994-02-01T23:59:59.000Z

180

Argonne TTRDC - Publications - Transforum 10.2 - Thermal Effects on Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transforum Vol. 10, No. 2 Transforum Vol. 10, No. 2 Modeling PHEV Thermal Effects on Engine Efficiency Mass fuel versus initial oil temperature graph Mass fuel (g) versus initial engine oil temperature (degrees C). Modeled urban dynamometer driving schedule (UDDS) fuel consumption as a function of initial engine temperature. Background photo is a test vehicle on chassis dynanometer. Fuel flow versus NM versus RPM graph Fuel flow (g/s) versus Nm versus RPM. Fuel flow rate response surface shown at engine oil temperature of 22° C. Fuel flow rates and surface changes as temperature increases. Efficiency losses of 25-40 percent are seen in plug-in hybrid vehicles (PHEVs) between ambient 20° C cold starts to optimal hot temperature urban drive cycle operation. These losses are especially critical for PHEVs, when

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2012 Honda Civic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Honda Civic GX Honda Civic GX 2010 Hyundai LPI Hybrid front 2010 Hyundai LPI Hybrid rear 2012 Honda Civic GX - front 2012 Honda Civic GX- rear The Honda Civic GX was evaluated as part of the Advanced Vehicle Testing and Evaluation (AVTE) project funded by the US Department of Energy. The vehicle is factory built to run on compressed natural gas, while maintaining the majority of components of the Honda Civic. Key Technology 1.8L SOHC CNG Engine based on Honda Civic R18A1 Gasoline Engine with a 110hp @ 6500rpm, 106lb-ft @ 4300rpm; Higher Compression Ratio of 12.7:1; CNG Port Fuel Injection 5 speed torque converter automatic transmission shared with conventional civic 8.0 GGE CNG tank mounted behind the rear seats charged to 3600psig Report Testing Summary (pdf) Data Download all data (zip)

182

Research and Institutional Integrity Office at Berkeley Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Responsible Conduct of Research Resources Authorship Collaborations ORI Responsible Conduct of Research Educational Resources Mentoring Best Practices Complied by UCSD LBNL Policy on Research Misconduct - RPM 2.05I Research Integrity All persons engaged in research at the Laboratory are responsible for adhering to the highest standards of research integrity. Activities that fall short of the basic ethical principles inherent in the research process undermine the scientific enterprise. Our office is here to assist you in learning about responsible conduct of research and to address questions, concerns, and allegations of possible research misconduct. Under the Laboratory's research misconduct policy (RPM 2.05I) the Head of the Research and Institutional Integrity Office is the Research Integrity

183

Hawkeye | Open Energy Information  

Open Energy Info (EERE)

Hawkeye Hawkeye Jump to: navigation, search Name Hawkeye Facility Hawkeye Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RPM Access Wind Development Developer RPM Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 42.92513165°, -92.02989578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.92513165,"lon":-92.02989578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Finding Extreme Subdwarfs  

E-Print Network [OSTI]

I develop a new technique to identify M-type extreme subdwarfs (esdMs) and demonstrate that it is substantially more efficient than previous methods. I begin by obtaining spectroscopy and improved photometry of a sample of 54 late-type halo candidates using the rNLTT reduced proper motion (RPM) diagram. From spectroscopy, I find that four of these are esdMs, three of which were previously unknown. From the improved photometry, I show that all four lie in a narrow RPM corridor that contains only 4 non-esdMs. Hence, with good photometry (i.e., without spectroscopy), it appears possible to select esdM candidates with a 50% esdM yield. This is more than an order of magnitude more efficient than previous methods.

J. L. Marshall

2007-12-06T23:59:59.000Z

185

Growth Mechanisms and Kinetics of Gibbsite Crystallization: Experimental and Quantum Chemical Study  

Science Journals Connector (OSTI)

Growth Mechanisms and Kinetics of Gibbsite Crystallization: Experimental and Quantum Chemical Study ... A central, 4 blade, 45°, pitch turbine impeller driven by a 70 W, multispeed motor provided a constant agitation speed of 400 rpm and a fully developed axial flow with a high degree of suspension uniformity in the crystallizer. ... The exact role of the oleate ion with respect to surface bonding needs further study and will be pursued in future investigations. ...

Jun Li; Jonas Addai-Mensah; Alagu Thilagam; Andrea R. Gerson

2012-05-17T23:59:59.000Z

186

Laser velocimetry study of the flow field in a centrifugal pump  

E-Print Network [OSTI]

May 1993 Major Subject: Mechanical Engineering LASER VELOCIMETRY STUDY OF THE FLOW FIELD IN A CENTRIFUGAL PUMP A Thesis by KAZI M. RASHID Approved as to style and content by: G. L. M rison (Co-Chair of Committee) R. E. DeOtte, Jr. (Co... analyzer Pump speed (rpm) Pump specific speed Optimum specific speed PMT P? PS R SCA SS TPHC Ui, . +ass Vimi mimi Static (wall) pressure Photomultiplier tube Stagnation pressure Pressure surface of impeller Flow rate Radial distance from...

Rashid, Kazi M.

1993-01-01T23:59:59.000Z

187

Dharma Samvarddhani Ragam: Madhyamavati (22nd Mela Janyam)  

E-Print Network [OSTI]

") , r S R-S ; nr || sn P r s R ; ; || Da nu ja Sam - - - Ma- rdda ni- - - 2. R ; R- R ; S || R ; rpM - R- ni - - s- r S R- sn sn nr || sn P r s R ; ; || - Da nu ja Sam - - - Ma- rdda ni- - - R , m R -M P- ni - - s- r S R- sn sn nr || rsnp ; r s R ; ; || - Da nu ja Sam - - - Ma- rdda ni- - - rm mppm R M P

Kalyanaraman, Shivkumar

188

THREE ESSAYS ON APPLIED ECONOMICS  

E-Print Network [OSTI]

supports for commonly used weak separability assumptions about food and meat demand. 2 Eq. (2-3) and 1=? jb satisfy the theoretical restrictions of adding-up, homogeneity, and symmetry (Deaton and Muellbauer, 1980). 6 The Marshallian demand... residual, supernumerary expenditure ?? k kk rpm , which is allocated between the goods in the fixed proportions jb .? Now let us turn our attention to the calculation of compensating variation. By substituting Eq. (2-3) into Eq. (2-2) we get...

Shin, Sang-Cheol

2010-01-16T23:59:59.000Z

189

Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines  

Broader source: Energy.gov [DOE]

Two-stage combustion is investigated to achieve low noise, low emissions, and high efficiency operation using engine experiments and a multi-dimensional CFD code coupled with detailed chemistry and a Multi-Objective Genetic Algorithm (KIVA-CHEMKIN-MOGA code). The first stage is premixed combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions and operation at light load (nominal 5.5 bar IMEP and 2000 rpm).

190

SUPPLEMENTARY INFORMATION Multispectral imaging with vertical silicon nanowires  

E-Print Network [OSTI]

and Isopropyl alcohol (IPA) 2. Spin e-beam resist (MicroChem PMMA 495K A2, 4000 rpm, 45 sec) 3. Softbake at 180 for 3 min 6. E-beam lithography of nanodisk arrays (Elionix, ELS-7000) 7. Develop in 1:3 MIBK to IPA for 90 sec 8. Rinse with IPA for 30 sec 9. Evaporate aluminium (40 nm) using thermal evaporator 10

191

Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine  

Science Journals Connector (OSTI)

This work aims at the particle number concentrations and size distributions, sulfate and trace metals emitted from a diesel engine fueled with three different sulfur content fuels, operating with and without DOC. ... Figure 2. Sulfate emission rate and fuel consumption as a function of sulfur content at engine speed of 2690 rpm. ... Thus, the use of low metal fuels and lubricating oil is as important to the environment and human health as low sulfur fuels, especially for engines with after-treatment devices. ...

Hong Zhao; Yunshan Ge; Xiaochen Wang; Jianwei Tan; Aijuan Wang; Kewei You

2010-01-05T23:59:59.000Z

192

Why Reliability Options Are the Answer in New England  

SciTech Connect (OSTI)

In its market's current failed state, PJM sees evidence that electricity markets do not work. But that's the wrong conclusion. Price signals do work and generators predictably respond to price signals whether they are good price signals or bad price signals. Bad price signals caused New England's and PJM's problems. Here is why good price signals based on the RO approach and competitive markets will now solve New England's problems - and why PJM's RPM is not the answer. (author)

Bidwell, Miles

2006-05-15T23:59:59.000Z

193

Design, implementation and preliminary evaluation of displacement and force control sticks on a flight simulator  

E-Print Network [OSTI]

in every pursuit of mine. NOMENCLATURE Symbols A/D adbp Analog to digital Analog L digital board pointer bhp Brake horse power Diameter of propellor D/A FML Digital to analog Flight mechanics laboratory fpm Feet per minute fps Feet per second... rpm Revolutions per minute vn Airspeed VASI VME Visual aid slope indicator VERSA module device Vertical velocity Distance from threshold Difference from mean Distance from centerline Denotes deviation from desired value Glide slope angle...

Venugopal, Ravinder

2012-06-07T23:59:59.000Z

194

Hydrothermal Treatment of a Sub-bituminous Coal and Its Use in Coking Blends  

Science Journals Connector (OSTI)

Crucible coking determinations suggest that hydrothermal treatment can greatly increase the coke strength and the particle coke strength after reaction toward CO2 and decrease the coke reactivity when the hydrothermally treated coals were used in the coal blends instead of the raw coal. ... While the cokes from the crucible coking experiments were subjected to 800 rotations at a speed of 25 rpm, the weight percent of coke particles (>0.2 ... The coal charges were coked in the lab. ...

Hengfu Shui; Ye Wu; Zhicai Wang; Zhiping Lei; Changhui Lin; Shibiao Ren; Chunxiu Pan; Shigang Kang

2012-11-26T23:59:59.000Z

195

Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network [OSTI]

the sponsors of this research, Oak Ridge National Laboratory (ORNL). vi NOMENCLATURE EW Energy Windowing FWHM Full-Width at Half Maximum HEU Highly Enriched Uranium HPGe High-Purity Germanium ISOCS In-Situ Object Counting System MCA Multichannel... Naturally Occurring Radioactive Material ? Diameter ORNL Oak Ridge National Laboratory PMT Photomultiplier Tube PNNL Pacific Northwest National Laboratory PVT Polyvinyl Toluene RDD Radiological Dispersal Device vii RPM Radiation Portal Monitor...

Fitzmaurice, Matthew Blake 1988-

2012-11-06T23:59:59.000Z

196

Controls and Measurements of KU Engine Test Cells for Biodiesel, SynGas, and Assisted Biodiesel Combustion  

E-Print Network [OSTI]

.................................................................................................................. 127 Table 4. Torque output and standard deviation under different reformate flow rates between 0 and 15 liters per minute... to maintain 1,800 revolutions per minute (rpm) needed for the generator. The current setup allows for all the components of the engine to be operated independent of each other; it is important to note that the original design by BEC did not allow...

Cecrle, Eric Daniel

2011-04-06T23:59:59.000Z

197

Center Pivot Irrigation  

E-Print Network [OSTI]

362 Electric 1740 40:1 50:1 24 40 10.47 .8700 546 Electric 3450 40:1 52:1 38 54 14.13 1.6586 1406 Hi-Speed No. Hydraulic pump Tire size Rim & tire Last wheel End tower towers drive HP circum. ft. drive - RPM feet per hour Hydraulic 8 10 16.9X24 10...

New, Leon; Fipps, Guy

2000-07-10T23:59:59.000Z

198

Magnet. Part VI—Power Supply  

Science Journals Connector (OSTI)

The power for the Cosmotron magnet is supplied by a 1750?hp 13 800?volt induction motor that drives a 21 000?kva 12?phase ac generator and a 43?ton flywheel rotating at approximately 900 rpm. The generator output is rectified through 24 double?grid ignitrons which also act as inverters returning most of the magnetic energy of the coil to the rotating set.

G. K. Green; E. E. Shelton

1953-01-01T23:59:59.000Z

199

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect (OSTI)

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

200

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine  

SciTech Connect (OSTI)

The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

Kass, Michael D [ORNL; Domingo, Norberto [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2008-01-01T23:59:59.000Z

202

Melter feed tank operating map from the FA-10.02 test data  

SciTech Connect (OSTI)

The operability of the Melter Feed Tank (MFT) feed loops has been tested during the DWPF-FA-10.02 test. The ability to feed the melter at three distinct melter feed rates (0.20, 0.45, and 0.90 gpm), two distinct agitator speeds (65 and 130 rpm), varying liquid levels, and varying slurry rheologies was tested. This report correlates the operability of the feed loops with the above mentioned variables. The data are presented in the form of operating maps, Figs. 1 through 4, which are plots of the liquid level versus the wt% total solids (and yield stress) for two agitator speeds. The maps are divided into regions of acceptable feed loop operation and unacceptable feed loop operation. This report does not consider how closely the compositions of the MFT, the melter feed lines, and the Hydragard samples agree. The significant observations in this report are as follows: Both feed loops satisfy the operability criteria down to a liquid level below the upper impeller blade at low speed agitation (65 rpm). Under high speed agitation (130 rpm), feed loop No. 2 operates much more poorly than feed loop No. 1. The uncertainty associated with the wt% total solids of a slurry sample is larger than the current design basis range for total solids. The dilution of slurry due to pump priming is shown graphically in the chronological presentation of wt% total solids.

Spatz, T.L.

1994-08-01T23:59:59.000Z

203

Design of a New Collimation System to Prevent Interference between X-ray Machines and Radiation Portal Monitors  

SciTech Connect (OSTI)

Researchers at Oak Ridge National Laboratory (ORNL) developed a new collimation system that allows radiation portal monitors (RPMs) installed near x-ray machines to operate with a negligible false-positive alarm rate. RPMs are usually installed as far as possible from x-ray machines because false alarms are triggered by escaping x-rays; however, constraints at the installation site sometimes make it necessary that RPMs be installed near x-ray machines. Such RPMs are often plagued by high alarm rates resulting from the simultaneous operation of the RPMs and x-ray machines. Limitations on pedestrian flow, x-ray machine orientation, and RPM location often preclude a simple solution for lowering the alarm rate. Adding additional collimation to the x-ray machines to stop the x-rays at the source can reduce the alarm rate without interfering with site operations or adversely affecting the minimum detectable quantity of material (MDQ). A collimation design has been verified by measurements conducted at a RPM installation site and is applicable to all new and existing RPM installations near x-ray machines.

Guzzardo, Tyler [ORNL] [ORNL; Livesay, Jake [ORNL] [ORNL

2012-01-01T23:59:59.000Z

204

Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine  

Science Journals Connector (OSTI)

The influence of a ferrous picrate based homogeneous combustion catalyst on the combustion characteristics and fuel efficiency was studied using a fully instrumented diesel engine. A naturally aspirated four stroke, single cylinder, air cooled, direct injection diesel engine was tested at engine speeds of 2800 rpm, 3200 rpm and 3600 rpm under variable load conditions, with different dosing ratio of the catalyst in a commercial diesel fuel. The results indicated that the brake specific fuel consumption decreased and the brake thermal efficiency increased with the addition of the catalyst. At the catalyst dosing ratio of 1:10,000, the brake specific fuel consumption was reduced by 3.3–4.2% at light engine load of 0.12 MPa and 2.0–2.4% at heavy engine load of 0.4 MPa due to the application of the catalyst. From the in-cylinder pressure and heat release rate analysis, it was found that the catalyst reduced ignition delay and combustion duration of fuel in the engine, resulting in slightly higher peak cylinder pressure and faster heat release rate.

Mingming Zhu; Yu Ma; Dongke Zhang

2012-01-01T23:59:59.000Z

205

The Role of Spectroscopy Versus Detection for Border Security  

SciTech Connect (OSTI)

Countries around the world are deploying radiation portal monitor (RPM) systems and other radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments in the U.S. and in a number of other countries by governments and international organizations. Because of their high efficiency for gamma-ray detection, most deployed RPM systems are based on plastic scintillators. Such systems, however, are largely non-spectroscopic in capability. Fully capable spectroscopic portal monitor systems are undergoing engineering development for deployment in the future. The ability to identify the detected radionuclides may allow improved operational handling of radiation alarms, particularly those arising from the normal cargo stream of naturally occurring radioactive material, commercial radioactive sources, and individuals treated with medical radiopharmaceuticals. The goal for improved RPM systems is to increase the sensitivity to threats while reducing the impact that nuisance alarms have on operations. This paper considers the roles for spectroscopic and non-spectroscopic systems for safeguards and border security.

Kouzes, Richard T.; Ely, James H.

2008-06-15T23:59:59.000Z

206

Application of organosilicon pre-sic polymer technology to optimize rapid prototyping of ceramic components  

SciTech Connect (OSTI)

Developments of applications of advanced ceramics e.g., SiC, Si{sub 3}N{sub 4}, CMCs need to be on a faster track than what the current processing technologies can afford. Rapid reduction in time to market of new and complex products can be achieved by using Rapid Prototyping and Manufacturing Technologies (RP&M) e.g., 3D-printing, selective laser sintering, stereolithography etc. These technologies will help advanced ceramics meet the performance challenges at an affordable price with reliable manufacturing technologies. The key variables of the RP&M technologies for ceramics are the nature of the polymer carrier and/or the binder, and the powder. Selection and/or the production of a proper class of polymer carrier/binder, understanding their impact on the processing of ceramics such as polymer-powder interaction, speed of hardening the green body in a controlled manner, ability to retain shape during forming and consolidation, delivering desirable properties at the end, are crucial to develop the low cost, high quality ceramic products. Organosilicon pre-SiC polymer technology route to advanced ceramics is currently being commercialized by Dow Corning. Methods to use this class of polymer as a processing aid in developing potentially better RP&M technologies to make better ceramics have been proposed in this work.

Saha, C.K.; Zank, G. [Dow Corning Corporation, Midland, MI (United States); Ghosh, A. [Philips Display Components Co., Ann Arbor, MI (United States)

1995-12-01T23:59:59.000Z

207

Straddle Carrier Radiation Portal Monitoring  

SciTech Connect (OSTI)

U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

2005-08-01T23:59:59.000Z

208

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

SciTech Connect (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

209

The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine  

Science Journals Connector (OSTI)

Abstract The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (?4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. \\{NOx\\} emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load, the effect of the additives is much less significant, due to the fact that the ratio oxygen from additive/oxygen from air is much lower.

F. Gómez-Cuenca; M. Gómez-Marín; M.B. Folgueras-Díaz

2013-01-01T23:59:59.000Z

210

Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice  

Science Journals Connector (OSTI)

In this study mango juice fermentation at laboratory scale with controlled inoculation using selected yeast strain was performed (Saccharomyces cerevisiae 101). Effect of fermentation conditions (temperature, pH, SO2 and aeration) on wine fermentation was evaluated based on yeast growth, duration, fermentation rate and volatile composition. The composition of the major volatile compounds with low boiling points was determined by gas chromatography under the different operating conditions of fermentation temperature (15–35 °C), pH (3.5–6.0), SO2 (100–300 ppm) and aeration (initial dissolved O2 and shaking at 30 rpm). Temperature had important effect on yeast growth and on the levels of volatile compounds. It was observed that the final concentrations of ethyl acetate and some of the higher alcohols decreased when fermentation temperature increased to 25 °C (35 mg/l at 15 °C and 27 mg/l at 25 °C). SO2 stimulated the yeast growth up to certain level and in excess it inhibited the yeast metabolism. Ethanol concentration slightly increased with the addition of 100 ppm SO2 (8.2 g/l) and decreased with increase in concentration of SO2 (6.2 g/l in 300 ppm SO2). Aeration by shaking increased the viable cell count (from 52 × 106 in the absence of oxygen to 98 × 106 in shaking at 30 rpm) but decreased the ethanol productivity (from 7.2 in initial dissolved O2 to 6.5 g/l shaking at 30 rpm). With the results obtained it was concluded that the temperature (25 °C), pH (5), SO2 (100 ppm) and must with initial oxygen were optimum for better quality of wine from mango fruits. The results of the present study considering the traditionally recognized preference for low alcoholic fermentation temperatures in wine making.

L.V.A. Reddy; O.V.S. Reddy

2011-01-01T23:59:59.000Z

211

Imaging Heterogeneous Objects Using Transport Theory and Newton's Method  

E-Print Network [OSTI]

were being scanned.2 The systems used today in all major U.S. ports to determine the presence of radioactive material within cargo containers are Radiation Portal Monitors (RPM). These devices generally exist in the form of a gate or series of gates... detectors can can be used in portal monitors such as scintillators such as Sodium Iodide (NaI), High Purity Germanium (HPGe), Polyvinyl Toluene (PVT) for gamma particle detection and gas-filled detectors like Helium-3 (He-3) tubes for neutron detection...

Fredette, Nathaniel

2012-02-14T23:59:59.000Z

212

Comparison of Extraction Methods for Marker Compounds in the Essential Oil of Lemon Grass by GC  

Science Journals Connector (OSTI)

Four procedures for the extraction of essential oils from C. citratus were compared including solvent extraction, steam distillation extraction, accelerated solvent extraction, and supercritical fluid extraction. ... The essential oil of lemon grass has also been used to treat a wide variety of health conditions such as acne, athlete's foot, excessive perspiration, flatulence, muscle aches, oily skin, and scabies (2). ... Upon completion of the sonication, the emulsion was centrifuged for 8 min at 3000 rpm in a Marathon 21K/Br centrifuge (Fisher Scientific, Fair Lawn, NJ) and the supernatant was then decanted into a flask. ...

Brian T. Schaneberg; Ikhlas A. Khan

2002-02-02T23:59:59.000Z

213

A survey of shaped-based registration and segmentation techniques for cardiac images  

Science Journals Connector (OSTI)

Heart disease is the leading cause of death in the modern world. Cardiac imaging is routinely applied for assessment and diagnosis of cardiac diseases. Computerized image analysis methods are now widely applied to cardiac segmentation and registration ... Keywords: AAM, ASM, CT, CVD, Cardiac CT, Cardiac MR, Cardiac motion, Cardiac registration, Cardiac segmentation, EB, EDV, EF, EFFD, EM, ESV, Echocardiography, Endo, Epi, FE, FFD, Four CH, GMM, GRPM, LA, LADA, LAX, LCX, LV, MI, MIA, MRF, MRI, N, N/A, NMI, NURBS, P, PCA, PET, PM, RA, RPM, RV, Review article, SAD, SAX, SM, SPECT, SSD, TDI, TEE, TMI, US

Vahid Tavakoli; Amir A. Amini

2013-09-01T23:59:59.000Z

214

Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering  

E-Print Network [OSTI]

, collagen with or without (±) elastin were swollen in 0.05 M acetic acid at 4 ± 2°C overnight to produce a 1% (w/v) protein suspension. The resulting suspension was homogenised on ice for 10 min at 9,500 rpm using an Ultra-Turrax VD125 (VWR International... the optimal physical properties and microenvironment for cells. Various different materials have been used to produce scaffolds for cardiac tissue engineering; collagen type I (van Luyn et al. 2002; Zimmermann et al. 2002), collagen and glycosaminoglycans...

Grover, CN; Best, Serena Michelle; Cameron, Ruth Elizabeth

2012-07-09T23:59:59.000Z

215

Efficiency of a gearbox lubricated with wind turbine gear oils  

Science Journals Connector (OSTI)

Abstract In this study a two stage multiplying gearbox with helical gears and four fully formulated wind turbine gear oils were tested, on a back-to-back gearbox test rig with recirculating power, at low input speeds (100–500 rpm) and high input torques (500–1000 Nm). The gearbox oil sump temperature was set free. A numeric power loss model simulating all the relevant power loss mechanisms was implemented, aiming to evaluate the relative influence of each power loss component. The experimental results have shown that each wind turbine gear oil formulation generated different power loss resulting in distinct stabilized operating temperatures.

Pedro M.T. Marques; Carlos M.C.G. Fernandes; Ramiro C. Martins; Jorge H.O. Seabra

2014-01-01T23:59:59.000Z

216

Neutron Imaging of Diesel Particulate Filters  

SciTech Connect (OSTI)

This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

2009-01-01T23:59:59.000Z

217

Mixing device for materials with large density differences  

DOE Patents [OSTI]

An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

Gregg, David W. (Moraga, CA)

1994-01-01T23:59:59.000Z

218

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

219

Effect of mixing on polymerization of styrene  

E-Print Network [OSTI]

Model R404 Differential Refractometer (DRI) was used to continuously monitor the reactor effluent. A portion of the liquid medium from the feed tank was used as a static reference in the DRI. To introduce a change in the refractive index of the fluid... the mixing pattern was made by desolving iodine crystals in the styrene used for pulse generation. A strobotact was used to monitor the rpm of the impeller shaft. To reduce the amount of degassing occurring in the reactor during the runs, the liquid...

Treybig, Michael Norris

2012-06-07T23:59:59.000Z

220

Method and system for managing an electrical output of a turbogenerator  

DOE Patents [OSTI]

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The New Mexico State University motion room  

Science Journals Connector (OSTI)

This article describes the construction and operation of a totally enclosed motion room capable of carrying four students. The room is used for studying motion in a rotating frame. The rotation rate can be varied from 0 to above 20 rpm. Unique features of this motion room are the 60?in. searchlight frame used for the mount and electrical connections and the two cattle watering troughs used for the motion room proper. The room built a number of years ago has not previously been described in the literature.

Harold A. Daw

1990-01-01T23:59:59.000Z

222

Development and test of a 300 kW superconducting homopolar generator  

SciTech Connect (OSTI)

A 300 kW superconducting homopolar generator has been jointly developed and tested by Wuhan Marine Electrical Propulsion Research Institute and Institute of Electrical Engineering, Academia Sinica. It is a drum-type machine with superconducting excitation and solid brush current collection, 1,300 rpm rotating speed, 230--330 V output voltage. The armature rotor diameter is 620 mm, effective length is 600 mm, the average radial magnetic field in the armature region is 0.75 T. During test it reached 300 kW nominal output power and worked stably. The design and development of the machine and its main components, together with its test results are presented.

Ge, W.; Tang, S. [Wuhan Marine Electrical Propulsion Research Inst. (China); Yan, L.; Yi, C.; Qin, J. [Academia Sinica, Beijing (China). Inst. of Electrical Engineering

1996-07-01T23:59:59.000Z

223

Effects of CH4, H2 and CO2 Mixtures on SI Gas Engine  

Science Journals Connector (OSTI)

Abstract Performance of a four-stroke spark ignition gas engine operated on mixtures of CH4, H2 and CO2 was studied. Experiments were carried out at a constant engine speed of 2,000 rpm and throttle opening of 14% with various equivalence ratios. The results showed that the highest brake power output of 12.5 kW and 35% thermal efficiency were achieved when operated with the mixture of 69.70% CH4, 9.95% H2 and 20.45% CO2 and the equivalence ratios between 1.0 and 0.82.

S. Chuayboon; S. Prasertsan; T. Theppaya; K. Maliwan; P. Prasertsan

2014-01-01T23:59:59.000Z

224

Prototyping of the ILC Baseline Positron Target  

SciTech Connect (OSTI)

The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

2012-02-29T23:59:59.000Z

225

Variable Frequency Pump Drives  

E-Print Network [OSTI]

-frequency electric motor drive. What is happenin9 with variable frequency driven pun,ps is a classical illustration that evolution in technical products takes place not only because of changes in the processes served by these products, or because of innovations...-pole 3550 rpm squirrel caqe induction motor became available in the early 1930s that high pressure pumps operating at that speed could be buil t. And now, in the 1980s, the development of the solid-state, variable frequency electric motor drive...

Karassik, I. J.; Petraccaro, L. L.; McGuire, J. T.

226

A novel high power density permanent magnet variable-speed motor  

SciTech Connect (OSTI)

This paper proposes a novel polyphase multipole permanent magnet motor which possesses high power density, high efficiency and excellent controllability, yet can be produced by conventional fabrication technique. The basic operating principles, design features, performance analysis and control system are described. The experimental results of a 5 kW, 1,500 rpm prototype motor and its comparison with other types of motors such as switched reluctance motor and induction motor are given. This proposed motor has the potential to compete in certain applications.

Chan, C.C.; Chen, G.H.; Jiang, J.Z.; Wang, X.Y. (Univ. of Hong Kong (Hong Kong))

1993-06-01T23:59:59.000Z

227

Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report  

SciTech Connect (OSTI)

The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

Bird, W.L. Jr.; Woodson, H.H.

1980-03-01T23:59:59.000Z

228

Effect of Process Parameters on Abnormal Grain Growth during Friction Stir Processing of a Cast Al Alloy  

SciTech Connect (OSTI)

The effects of process parameters and friction stir processing (FSP) run configurations on the stability of nugget microstructure at elevated temperatures were evaluated. Cast plates of an Al-7Si- 0.6Mg alloy were friction stir processed using a combination of tool rotation rates and tool traverse speeds. All single pass runs showed some extent of abnormal grain growth (AGG), whereas multi-pass runs were more resistant to AGG. Additionally, higher tool rpm was found to be beneficial for controlling AGG. These effects were analyzed by comparing the result of this work with other published results and AGG models.

Jana, Saumyadeep; Mishra, Rajiv S.; Baumann, John A.; Grant, Glenn J.

2010-11-25T23:59:59.000Z

229

First and second law analysis of a gasoline engine for various compression ratios  

Science Journals Connector (OSTI)

This article presents a comparative energy and exergy analyses of a single cylinder, four-stroke spark-ignition engine for three compression ratios. A Petter engine with variable compression ratio and ignition timing was used to obtain the experimental data at full load conditions for six engine speeds between 1,300 and 2,800 rpm. It was found that the first and the second law efficiencies increased with increasing compression ratio. The maximum extractable power was obtained at the compression ratio 6.2 and observed inversely proportional to the compression ratio.

Adnan Parlak; Yavuz Erbas; Halit Yasar; Hakan Soyhan; Cengiz Deniz

2009-01-01T23:59:59.000Z

230

Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer  

Science Journals Connector (OSTI)

Modern combustion engines burn cleaner and produce less particulate mass than older models, but it has also been observed that some engines, for example, diesels, emit high number concentrations of a subset of fine particles called nanoparticles (diameter cycle, turbocharged diesel engine that produced a peak torque of 350 N-m at an intermediate engine speed of 1400 rpm, which is generally used for short-duration work periods of heavy lifting or material handling. ... However, general trends from past studies can be applied to the analysis of this work. ...

Herbert J. Tobias; Derek E. Beving; Paul J. Ziemann; Hiromu Sakurai; Miriam Zuk; Peter H. McMurry; Darrick Zarling; Robert Waytulonis; David B. Kittelson

2001-04-25T23:59:59.000Z

231

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

232

Application of PDC bits in the Kuparuk River Field, Alaska  

SciTech Connect (OSTI)

In soft to medium hard clays and shales, PDC bits have proven to be economically successful in the Kuparuk River Field, Alaska. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved and the use of PDC bits has become routine. These bits are typically run with a standpipe pressure of 4000 psi, pump rate of 400 to 450 gpm, and a rotary speed of 150 to 200 rpm. Using these high operating parameters, a savings of about $50,000 per PDC bit is being achieved when compared to roller cone bits.

Balkenbush, R.J.; Onisko, J.E.

1983-10-01T23:59:59.000Z

233

Theory versus experiment of the rotordynamic and leakage characteristics of smooth annular bushing oil seals  

E-Print Network [OSTI]

) ANGULAR CONTACT BALL BEARING TEST ROTOR HUB SEALINSERT SEAL HOUSING (END CAP) PRELOAD SPRING VACUUM SEAL ANNULAR BUSHING OIL-SEAL TEST RIG AIR TURBINE MOUNTING BASE HYDRAULIC SHAKER LOCATING SLEEVE MOUNTING BRACKET TEST OIL OUT LOCK NUT TEST... OIL OUT PULLEY AIR BUFFER SEAL AIR BUFFER SEAL 8 17,000 rpm. The test shaft is made from stainless steel and machined to a precise diameter of 116.84 mm [4.6 in ] at the test section. It is supported on the pedestals through angular contact ball...

Culotta, Vittorio G.

2005-02-17T23:59:59.000Z

234

Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking  

SciTech Connect (OSTI)

Changes in proximate composition of fish and rice flour coextrudates like moisture, protein, and fat content were studied with respect to extrusion process v ariables like barrel temperature, x1 (100–200 degrees C); screw speed, x2 (70–110 rpm); fish content of the feed, x3 (5–45 percent); and feed moisture content, x4 (20–60 percent). Experiments were conducted at five levels of the process variables based on rotatable experimental design. Response surface models (RSM) were developed that adequately described the changes in moisture, protein, and fat content of the extrudates based on the coeff icient of determination (R2) values of 0.95, 0.99, and 0.94. ANOVA analysis indicated that extrudate moisture content was influenced by x4, protein content by x1 and x3, and fat content by x3 and x4 at P < 0.001. Trends based on response surf ace plots indicated that the x1 of about 200 degrees C, x2 of about 90 rpm, x3 of about 25%, and x4 of about 20% minimized the moisture in the extrudates. Protein content was maximized at x1 of 100 degrees C, x2 > 80 rpm, x3 of about 45 percent, and x4 > 50 percent, and fat content was minimized at x1 of about 200 degrees C, x2 of about 85–95 rpm, x3 < 15 percent, and x4 of about >50 percent. Optimized process variables based on a genetic algorithm (GA) for minimum moisture and fat content and maximum protein content were x1 = 199.86, x2 = 109.86, x3 = 32.45, x4 = 20.03; x1 = 199.71, x2 = 90.09, x3 = 15.27, x4 = 58.47; and x1 = 102.97, x2 = 107.67, x3 = 44.56, x4 = 59.54. The predicted values were 17.52 percent, 0.57 percent, and 46.65 percent. Based on the RSM and GA analy sis, extrudate moisture and protein content was influenced by x1, x3, and x4 and fat content by x2, x3, and x4.

Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay; A. S. Bawa

2013-02-01T23:59:59.000Z

235

Mixing device for materials with large density differences  

DOE Patents [OSTI]

An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

Gregg, D.W.

1994-08-16T23:59:59.000Z

236

Office of Sponsored Projects and Industry Partnerships .:. Lawrence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quicklinks: A-Z Index for the OCFO Berkeley Lab Home Contact Us: By Group Contact Us: By Subject Contact Us: Full Listing Employment Financial Systems Modernization (F$M) Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Signature Authority Training ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) Quicklinks: A-Z Index for the OCFO Berkeley Lab Home Contact Us: By Group Contact Us: By Subject Contact Us: Full Listing Employment Financial Systems Modernization (F$M) Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Signature Authority Training ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) CFO Departments: Budget Office Business Systems Analysis Conference Services Controller's Office Field Operations Management Financial Policy & Assurance Procurement & Property Office of Sponsored Projects & Industry Partnerships Training Travel Office

237

Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop  

Science Journals Connector (OSTI)

During drilling operations, control of the sub-surface pressure is of utmost importance. High density minerals, such as barite and hematite, are used to increase the density of drilling fluids and thereby control these pressures. However, contributing factors, such as the gravitational force, cause the weighting material particles to settle out of the suspension. This is designated as “sag” within the drilling industry and can lead to a variety of major drilling problems, including lost circulation, well control difficulties, poor cement jobs, and stuck pipes. The study of this phenomenon, including ways to mitigate its effects, has long been of interest. In this paper several methods for evaluating dynamic barite sag in oil-based drilling fluids are examined in a flow loop with the use of a rotational viscometer modified by the addition of a sag shoe (MRV). Tests using the MRV in the range of 0–100 RPM were conducted, and the effects of rotation speed on sag were correlated with flow loop tests performed by varying the inner pipe rotation speed. The combined effects of eccentricity and pipe rotation on dynamic barite sag in oil-based drilling fluids are also described in this paper. Flow loop test results indicate that pipe rotation has a greater impact on reducing sag when the pipe is eccentric rather than concentric. Additionally, results in the MRV indicate a strong correlation between the test RPM and the degree of measured sag.

Tan Nguyen; Stefan Miska; Mengjiao Yu; Nicholas Takach; Ramadan Ahmed; Arild Saasen; Tor Henry Omland; Jason Maxey

2011-01-01T23:59:59.000Z

238

The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity  

Science Journals Connector (OSTI)

This research has purposed to derive efficiency equation of the prototype of pico wind turbine produces the electricity (PPWTPE). By using a ventilating fan of 12 cm diameter as a blower, at rotating speed of 2,880 rpm. Blower blew the wind to PPWTPE of alternator. The wind turbine of alternator modified from magnet motor of central processing unit fan of computer. Magnet motor composes of the cylindrical magnet 30 mm diameters, magnetic field intensity of 70 mT, 7 propellers of 74 mm diameter. These components were enclosed at the center of wind turbine rotate around copper line no.40 as 4 coils, each coil 550 turns. It shows that, the distance between blower and the pico wind turbine of 8 cm obtained the wind speed 7.14 m/s, the PPWTPE rotated of 855 rpm. The magnet was rotated around the 4 coils and induced the accelerating voltage of 4.9 volts and accelerating current 17.52 mA in 4 coils. The induced accelerating current from 4 coils sent AC signal to bridge rectifier circuit converts AC to DC obtained voltage of 3.60 V and DC current of 14.90 mA, and the 7 LED lamps were bright. By using a derived efficiency equation of the PPWTPE, the PPWTPE has estimate efficiency of 9%.

S. Jugsujinda; P. Jugsujinda; T. Seetawan

2012-01-01T23:59:59.000Z

239

The structure and properties of a simple model mixture of amphiphilic molecules and ions at a solid surface  

SciTech Connect (OSTI)

We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.

Pizio, O., E-mail: pizio@unam.mx [Instituto de Química, Universidad Nacional Autonoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico); Soko?owski, S., E-mail: stefan.sokolowski@gmail.com [Department for the Modeling of Physico-Chemical Processes, Maria Curie-Sk?odowska University, 20-031 Lublin (Poland); Soko?owska, Z. [Institute of Agrophysics, Polish Academy of Sciences, Do?wiadczalna 4, 20-290 Lublin (Poland)] [Institute of Agrophysics, Polish Academy of Sciences, Do?wiadczalna 4, 20-290 Lublin (Poland)

2014-05-07T23:59:59.000Z

240

Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor  

SciTech Connect (OSTI)

The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

Spencer, J.W.

1982-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

APPLIED HTS BULKS AND WIRES TO ROTATING MACHINES FOR MARINE PROPULSION  

Science Journals Connector (OSTI)

High?temperature superconductors allow a compact and efficient way to provide high?torque density to rotating machines with excellent operation. A field pole providing flux density of more than 1.5 T around the armature was initially designed for an axial?gap type with the flux parallel to the rotor axis. Melt?growth Gd?123 bulks as well as Bi?2223 wire windings have been successfully assembled on the rotor disk. No iron core was used though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks a 15 kW 720 rpm synchronous motor was designed and tested in the group of TUMSAT Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large?scale marine propulsion is also discussed on a 100 kW 230 rpm tested machine. A closed?cycle condensed neon associated with thermal insulation is also reported.

M. Miki; B. Felder; Y. Kimura; K. Tsuzuki; R. Taguchi; Y. Shiliang; Y. Xu; T. Ida; M. Izumi

2010-01-01T23:59:59.000Z

242

Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor  

SciTech Connect (OSTI)

TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.

D. H. Meikrantz; T. G. Garn; J. D. Law; N. R. Mann; T. A. Todd

2008-09-01T23:59:59.000Z

243

Studies on flow resistance of regenerator in Stirling engine  

SciTech Connect (OSTI)

Studies on flow resistance of regenerator in Stirling engine are to be reported. The purpose of this study is to measure the flow resistance of regenerator in oscillating flow condition, compare with the results of previous studies and examine whether the friction factor changes between accelerating period and decelerating period of the oscillation cycle. New experimental apparatus for measurement of flow resistance of regenerator element was designed and built. Using semiconductor pressure transducer, instantaneous pressure drops during many oscillation cycle were measured. As regenerator elements, layer of usual mesh and packed mesh were used. It was clear that friction factor of usual mesh, obtained from maximum values of pressure drops in oscillation cycle, lay between two previous studies, while friction factor of packed mesh became higher than the previous studies. Also it became obvious that friction factor did not change between accelerating period and decelerating period of oscillation cycle under revolution speed of 100 rpm, while over 200 rpm, friction factor in decelerating period became higher than in accelerating period at same lower Reynolds number.

Sakano, Akira; Isshiki, Seita; Ushiyama, Izumi [Ashikaga Inst. of Technology, Ashikaga, Tochigi (Japan). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

244

NASA Lewis Stirling engine computer code evaluation  

SciTech Connect (OSTI)

In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was /minus/11 percent for the P-40 and 12 percent for the RE-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvement to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions. 13 refs., 26 figs., 3 tabs.

Sullivan, T.J.

1989-01-01T23:59:59.000Z

245

Development of an HTS hydroelectric power generator for the hirschaid power station  

Science Journals Connector (OSTI)

This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

Ruben Fair; Clive Lewis; Joseph Eugene; Martin Ingles

2010-01-01T23:59:59.000Z

246

Time Series Evaluation of Radiation Portal Monitor Data for Point Source Detection  

SciTech Connect (OSTI)

The time series of data from a Radiation Portal Monitor (RPM) system are evaluated for the presence of point sources by isolating the contribution of anomalous radiation. Energy-windowed background spectra taken from the RPM are compared with the observed spectra at each time step during a vehicle drive-through. The total signal is turned into a spectral distance index using this method. This provides a time series with reduced systematic fluctuations due to background attenuation by the vehicle, and allows for point source detection by time-series analyses. The anomalous time series is reanalyzed by using a wavelet filter function of similar size to the expected source profile. A number of real drive-through data sets taken at a U.S. port of entry are analyzed in this way. A set of isotopes are injected into the data set, and the resultant benign and injected data sets are analyzed with gross-counting, spectral-ratio, and time-based algorithms. Spectral and time methods together offer a significant increase to detection performance.

Robinson, Sean M.; Bender, Sarah E.; Flumerfelt, Eric L.; Lopresti, Charles A.; Woodring, Mitchell L.

2009-12-08T23:59:59.000Z

247

Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine  

Science Journals Connector (OSTI)

Abstract This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (?th) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. \\{NOx\\} produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases.

Ali Alahmer

2013-01-01T23:59:59.000Z

248

Thermal modeling of core sampling in flammable gas waste tanks. Part 2: Rotary-mode sampling  

SciTech Connect (OSTI)

The radioactive waste stored in underground storage tanks at Hanford site includes mixtures of sodium nitrate and sodium nitrite with organic compounds. The waste can produce undesired violent exothermic reactions when heated locally during the rotary-mode sampling. Experiments are performed varying the downward force at a maximum rotational speed of 55 rpm and minimum nitrogen purge flow of 30 scfm. The rotary drill bit teeth-face temperatures are measured. The waste is simulated with a low thermal conductivity hard material, pumice blocks. A torque meter is used to determine the energy provided to the drill string. The exhaust air-chip temperature as well as drill string and drill bit temperatures and other key operating parameters were recorded. A two-dimensional thermal model is developed. The safe operating conditions were determined for normal operating conditions. A downward force of 750 at 55 rpm and 30 scfm nitrogen purge flow was found to yield acceptable substrate temperatures. The model predicted experimental results reasonably well. Therefore, it could be used to simulate abnormal conditions to develop procedures for safe operations.

Unal, C.; Poston, D.; Pasamehmetoglu, K.O. [Los Alamos National Lab., NM (United States). Nuclear Systems Design and Analysis Group; Witwer, K.S. [Westinghouse Hanford Co., Richland, WA (United States). Engineering Testing Lab.

1997-08-01T23:59:59.000Z

249

Time Series Evaluation of Portal Monitor Data  

SciTech Connect (OSTI)

Radiation portal monitors screen cargo and personal vehicle traffic at international border crossings to detect and interdict illicit sources which may be present in the commerce stream. One difficulty faced by RPM systems is the prospect of false alarms, or undesired alarms due to background fluctuation, or Naturally-Occurring Radioactive Material (NORM) sources in the commerce stream. In general, NORM alarms represent a significant fraction of the nuisance alarms at international border crossings, particularly with Polyvinyl-Toluene (PVT) RPM detectors, which have only very weak spectral differentiation capability. With PVT detectors, the majority of detected photon events fall within the Compton continuum of the material, allowing for very little spectral information to be preserved [1]. Previous work has shown that these detectors can be used for limited spectroscopy, utilizing around 8 spectral bins to further differentiate some NORM and other nuisance sources [2]. NaI based systems achieve much more detailed spectral resolution from each measurement of a source, but still combine all measurements over a vehicle's occupancy in order to arrive at a spectrum to be analyzed.

Robinson, Sean M.; Bender, Sarah E.; Lopresti, Charles A.; Woodring, Mitchell L.

2008-12-08T23:59:59.000Z

250

An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions  

SciTech Connect (OSTI)

A predictive model was developed for uniform carbon dioxide corrosion, based on modeling of individual electrochemical reactions in a water-CO{sub 2} system. The model takes into account the electrochemical reactions of hydrogen ion reduction, carbonic acid reduction, direct water reduction, oxygen reduction, and anodic dissolution of iron. The required electrochemical parameters (e.g., exchange current densities and Tafel slopes) for different reactions were determined from experiments conducted in glass cells. The corrosion process was monitored using polarization resistance, potentiodynamic sweep, electrochemical impedance, and weight-loss measurements. The model was calibrated for two mild steels over a range of parameters: temperature (t) = 20 C to 80 C, pH = 3 to 6, partial pressure of CO{sub 2} (P{sub CO{sub 2}}) = 0 bar to 1 bar (0 kPa to 100 kPa), and {omega} = 0 rpm to 5,000 rpm (v{sub p} = 0 m/s to 2.5 m/s). The model was applicable for uniform corrosion with no protective films present. Performance of the model was validated by comparing predictions to results from independent loop experiments. Predictions also were compared to those of other CO{sub 2} corrosion prediction models. Compared to the previous largely empirical models, the model gave a clearer picture of the corrosion mechanisms by considering the effects of pH, temperature, and solution flow rate on the participating anodic and cathodic reactions.

Nesic, S. [Inst. for Energiteknikk, Kjeller (Norway); Postlethwaite, J. [Univ. of Saskatchewan, Saskatoon (Canada); Olsen, S. [Statoil, Trondheim (Norway)

1996-04-01T23:59:59.000Z

251

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

252

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

253

Characterization of cycle-to-cycle variations in a natural gas spark ignition engine  

Science Journals Connector (OSTI)

Abstract In this work a study of the influence of the fuel/air equivalence ratio and engine rotational speed on the cycle-to-cycle variations in combustion in a natural gas spark ignition engine is presented. The study considers both classic estimators of cyclic dispersion and a new one, based on the burned mass and burning rate. The engine experimental conditions were as follows: Intake pressure 0.5 bar, while fuel/air equivalence ratio was changed from 1.0 to 0.63, and engine rotational speed was varied from 1000 rpm to 2500 rpm. For each equivalence ratio and engine speed, a diagnosis model is used to process the experimentally obtained combustion pressure data in order to provide combustion relevant results such as the mass burning rate at a cycle level. A procedure based on the use of genetic algorithms is used to obtain a very accurate and objective (without human intervention) adjustment of the optimum parameters needed for combustion diagnosis: angular positioning and pressure offset of the pressure register, dynamic compression ratio, and heat transfer coefficients. The model allows making the diagnosis of series of 830 consecutive engine cycles in an automatic way, increasing the objectivity of the combustion diagnosis. The paper focuses on using the values of the mass fraction burned computed from the pressure register and especially on the analysis of the combustion cycle to cycle variation in the natural gas fuelled engine. A new indicator for the study of cycle-to-cycle variations is proposed, i.e. the standard deviation of the mass fraction burning rate. The values of this new indicator are compared with other classic indicators, showing the same general trends. However, a deeper insight is provided on the combustion cyclic variation when the values of the new indicator are plotted as a function of the mass fraction burned, since this allows analyzing the cyclic variation along the combustion development in each cycle from a mass fraction burned of zero to one, with a relevant value at mass fraction burned of 0.5. More important is that the consideration of the dependence of the combustion variables (density, flame front surface, combustion speed) on the mass fraction burned allows ensemble averaging of all registered cycles for each value of mass fraction burned. This permits using the ensemble averaged mass fraction burning rate as an estimator of combustion speed. The analysis of the general trends of cyclic dispersion when engine speed and equivalence ratio are modified (1000, 1750 and 2500 rpm; 0.7, 0.8, 0.9 and 1.0) indicate that cycle-to-cycle variations show, as expected, a strong dependence on the engine rotational speed, increasing the variation with engine rpm. However, when the standard deviation of mass fraction burning rate is plotted as a function of mass fraction burned, there is a linear dependence on engine rpm, but only a very weak dependence on equivalence ratio. This means that the proposed estimator of cyclic dispersion is sensitive to only flow turbulent intensity and not to equivalence ratio.

M. Reyes; F.V. Tinaut; B. Giménez; A. Pérez

2015-01-01T23:59:59.000Z

254

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

255

Renewable source controls for grid stability.  

SciTech Connect (OSTI)

The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on the relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability perspective, the increase in renewable penetration results in subtle changes to the system modes. In gen- eral, mode frequencies increase slightly, and mode shapes remain similar. The system frequency nadir for the 2022 light spring case was slightly lower than the other cases, largely because of the reduced system inertia. However, the nadir is still well above the minimum load shedding frequency of 59.5 Hz. Finally, several discrepancies were identi ed between actual and reported wind penetration, and additional work on wind/solar modeling is required to increase the delity of the WECC models.

Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.; Silva Monroy, Cesar Augusto; Schoenwald, David Alan; Grant, Lisa

2012-12-01T23:59:59.000Z

256

FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay, Cuba  

Broader source: Energy.gov (indexed) [DOE]

a m a m ESPC Success Stories Environmental Stewardship and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are about 185 feet high. The blade lengths are 90 feet. The top of the blades are about 275 feet off the g round. The blades rotate at a maximum of 22 RPM, or a rotation every three seconds. This translates to a blade tip speed of 140 mph. During construction there were as many as 20 workers on the project. However, operating the wind turbines will only take one part-time staff-person who will check on them daily. Photos courtesy of: Jeffrey M. Johnston, Public Works Officer, Guantanamo Bay; Paul DelSignore, NFESC; Daniel Ingold, NORESCO. U.S. NAVAL STATION

257

Vienna | Open Energy Information  

Open Energy Info (EERE)

Vienna Vienna Jump to: navigation, search Name Vienna Facility Vienna Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Marshalltown IA Coordinates 42.159909°, -92.779639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.159909,"lon":-92.779639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91 - 13900 of 28,905 results. 91 - 13900 of 28,905 results. Download FAQS Qualification Card - Radiation Protection A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). http://energy.gov/hss/downloads/faqs-qualification-card-radiation-protection Download Microsoft PowerPoint- Risk_Portfolio_Manager(RPM)_overview_Under_Sec_DOE__2011_V4 Final 3-22-2011.ppt [Read-Only] [Compatibili http://energy.gov/cio/downloads/microsoft-powerpoint-riskportfoliomanagerrpmoverviewundersecdoe2011v4-final-3-22

259

Microsoft PowerPoint - Real-Time Dynamic Brake Assessment poster.ppt [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Brake Assessment Dynamic Brake Assessment Purpose Conduct a proof-of-concept test to examine the feasibility of developing an on-board system to assess a vehicle's ability to stop based on typical low-pressure in-service braking events. Partnerships H.T. Hackney Company MGM Brakes Overview Funded through the Federal Motor Carrier Safety Administration's Vehicle and Roadside Operations Division Concept stemming from on the Department of Energy's Medium Truck Duty Cycle research as well as previous research conducted for the National Highway Transportation Safety Administration. Signals to be collected Real-time brake application pressure Vehicle speed and acceleration GPS location and grade information Vehicle weight (current load) Engine parameters such as RPM and torque To be conducted October 2010 -

260

Field Operations Management .:. Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home OCFO Financial Calendar Home OCFO Financial Calendar Quicklinks: A-Z Index for the OCFO Berkeley Lab Home Contact Us: By Group Contact Us: By Subject Contact Us: Full Listing Employment Financial Systems Modernization (F$M) Fiscal Close Forms: By Group Forms: Full Listing Glossary OCFO EH&S OCFO HR OCFO Home Policies Signature Authority ---------------------------------- UCOP University of California DOE CFO U.S. Department of Energy --------------------------------- Cost Accounting Standards DOE Accounting Handbook Federal Accounting Standards Generally Accepted Accounting Principles OMB Circular Regulations & Procedures Manual (RPM) UC Accounting Manual UC/DOE Prime Contract (Contract 31) CFO Departments: Budget Office Business Systems Analysis Conference Services Controller's Office Field Operations Management Financial Policy & Assurance Procurement & Property Office of Sponsored Projects & Industry Partnerships Training Travel Office

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-005191: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91: Categorical Exclusion Determination 91: Categorical Exclusion Determination CX-005191: Categorical Exclusion Determination Radiation Portal Monitor CX(s) Applied: B2.2 Date: 01/31/2011 Location(s): Menlo Park, California Office(s): Stanford Linear Accelerator Site Office SLAC National Accelerator Laboratory has a long-term schedule for the disassembly and disposition (D&D) of metal objects released for offsite disposal from the SLAC B-Factory Detector (BaBar) and the upgraded SLAC positron-electron collider (PEP-II) experiments. As part of this effort, SLAC is proposing to install and operate a radiation portal monitor (RPM) to measure high-energy gamma radioisotopes of trucks transporting metals offsite. The proposed structure comprises two upright columns, one on either side of a turnout lane along the road toward SLAC?s south gate at

262

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

263

PERIODIC CRYO REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRYO REPORT CRYO REPORT TIME: Jan 11 2014 11:29:09:000PM LN2 tank pressure, psi 63.00 LN2 main tank level,inch 48.05 LN2 resv tank level,inch 179.00 Cryostat pressure, psi 0.01 LN2 sump level, inch 0.00 LN2 pump speed, rpm 0.27 LN2 pump pressure, psi 0.00 Scanner OK DIBORANE SYSTEM CRYBOR CONC1 OK CRYBOR CONC2 OK CRYBOR INST1 OK CRYBOR INST2 OK RESISTANCE COIL TEMPERATURES, deg C EF1U, deg C 34.66 EF1L 21.94 EF2U 26.93 EF2L 21.70 EF3U 41.54 EF3L 36.42 EFCU 18.28 EFCL 8.16

264

T-572: VMware ESX/ESXi SLPD denial of service vulnerability | Department of  

Broader source: Energy.gov (indexed) [DOE]

72: VMware ESX/ESXi SLPD denial of service vulnerability 72: VMware ESX/ESXi SLPD denial of service vulnerability T-572: VMware ESX/ESXi SLPD denial of service vulnerability March 8, 2011 - 3:05pm Addthis PROBLEM: A vulnerability was reported in VMware ESX. A remote user can cause denial of service conditions. PLATFORM: ESX/ESXi 4.0, 4.1 ABSTRACT: VMware ESX/ESXi SLPD denial of service vulnerability and ESX third party updates for Service Console packages bind, pam, and rpm. reference LINKS: VMware Security Advisory: VMSA-2011-0004 VMware vSphere 4 VMware ESXi 4.1 Update CVE-2010-3609 IMPACT ASSESSMENT: Moderate Discussion: A remote user can send specially crafted data to cause the target Service Location Protocol daemon (SLPD) to enter an infinite loop and consume excessive CPU resources.A remote user can consume excessive CPU resources.

265

MHK Technologies/Multi Resonant Chambers MRC 1000 | Open Energy Information  

Open Energy Info (EERE)

Resonant Chambers MRC 1000 Resonant Chambers MRC 1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Resonant Chambers MRC 1000.jpg Technology Profile Primary Organization ORECon Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A 1 5MW Multi Resonant Chamber MRC using Oscillating Water Column OWC principles Consists of 3 x 500kW independent chambers each with a Dresser Rand HydroAir turbine driving an induction generator Full power conversion system delivers grid compliant power 1 5MW 33kV 60Hz to shore Device is tension moored to maximise power capture and minimise footprint All maintenance is done on board No moving parts in the water Turbines are low speed 300rpm high efficiency 75 and low noise

266

Microsoft PowerPoint - 4-07 Herman _1000 hr test talk  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L3100-2010-00229 L3100-2010-00229 Results of the 1000 Hour Rotary Microfilter Endurance Test D.T. Herman - SRNL W. Greene, J. Gilmour, T. Ho - SpinTek 11/16/10 EM Waste Processing Technical Exchange 2010 Print Close 2 SRNL-L3100-2010-00229 Rotary Microfilter 1000 Hour Test SpinTek Rotary Microfilter 1 - 25 filter disks ~11 inch diameter ~1 sq ft filter media per disk 1170 rpm 60 ft/s tip speed Turbulence promoters / baffles above and below disks increase shear at the membrane surface and reduce cake buildup 40 psi pressure drop across filter PERMEATE ROTATING MEMBRANES STATIONARY SHEAR ELEMENTS TIE RODS HOLLOW SHAFT Membrane Back plate Epoxy Bead Permeate carrier Print Close 3 SRNL-L3100-2010-00229 Rotary Microfilter 1000 Hour Test Design of the 2 nd Generation 25-Disk Rotary Filter Improvements:

267

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

268

NEPA CX Determination SS-SC-11-02 for Radiation Portal Monitor  

Broader source: Energy.gov (indexed) [DOE]

2 for Radiation Portal Monitor 2 for Radiation Portal Monitor National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-11-02 B. Brief Description of Proposed Action: SLAC has a long-term schedule for the disassembly and disposition (D&D) of metal objects released for offsite disposal from the SLAC B-Factory Detector (BaBar) and the upgraded SLAC positron-electron collider (PEP-II) experiments. As part of this effort, SLAC is proposing to install and operate a radiation portal monitor (RPM) to measure high-energy gamma radioisotopes of trucks transporting metals offsite. The proposed structure comprises two upright columns, one on either side of a turnout lane along the road toward SLAC's south gate at Alpine Road. Vehicles exiting the site will be directed to drive between the columns to have their cargo

269

MHK Technologies/Atlantisstrom | Open Energy Information  

Open Energy Info (EERE)

Atlantisstrom Atlantisstrom < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Atlantisstrom.jpg Technology Profile Primary Organization Atlantisstrom Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Five drop shaped vanes 20 meters length are placed between two circular metal plates 8 meter diameter and are held in place by two supports The assembly is fixed between two opposing rock faces in a narrow fjord and rotates at approximately 7 RPM Technology Dimensions Device Testing Date Submitted 51:25.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Atlantisstrom&oldid=681544

270

Laurel | Open Energy Information  

Open Energy Info (EERE)

Laurel Laurel Jump to: navigation, search Name Laurel Facility Laurel Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884°, -92.97214508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.89096884,"lon":-92.97214508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

BioPower Application (United States) | Open Energy Information  

Open Energy Info (EERE)

BioPower Application (United States) BioPower Application (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Application (United States) Focus Area: Ethanol Topics: Potentials & Scenarios Website: rpm.nrel.gov/biopower/biopower/launch Equivalent URI: cleanenergysolutions.org/content/biopower-application-united-states,ht Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation BioPower is an interactive map for comparing biomass feedstocks and biopower by location. This tool helps users select from and apply biomass data layers to a map as well as query and download biopower and feedstock data. The analysis function offers common conversion factors that allow users to determine the potential biopower production for a selected

272

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect (OSTI)

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

273

A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available  

Science Journals Connector (OSTI)

This paper provides the first review of the application of atmospheric models for particle dispersion. The different types of dispersion models available, from simple box type models to complex fluid dynamics models are outlined and the suitability of the different approaches to dispersion modelling within different environments, in regards to scale, complexity of the environment and concentration parameters is assessed. Finally, several major commercial and non-commercial particle dispersion packages are reviewed, detailing which processes are included and advantages and limitations of their use to modelling particle dispersion. The models reviewed included: Box models (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and UNI-AERO).

N.S. Holmes; L. Morawska

2006-01-01T23:59:59.000Z

274

Screw Type Steam Compressors for Mechanical Vapor Recompression (MVR) Systems  

E-Print Network [OSTI]

) (Lbs/Hr) (RPM) j STM510L ,7,700-15,400 28,700-57,400 2400- 4800 ~' STM400L 4,750- 9,500 17,600-35,200 3000- 6000 ]: STM320L 3,000- 6,000 11,000-22,000 3600- 7600 STM250L 1,800- 3,600 6,600-13,200 4600- 9600 STN200L 1,200- 2,400 4,400- 8...,800 5800-12000 .~ 2.4 SPECIFICATIONS Suction Pressure (2.8-30) PSIA Suction Temperature (140-250) OF Discharge Pressure (30-115) PSIA Max. Discharge Temperature 360 0 F 2.5 PERFORMANCE Figures 4 and 5 show the performance of the screw...

Kawamura, K.; Apaloo, Thomas-L.

275

In situ global method for measurement of oxygen demand and mass transfer  

SciTech Connect (OSTI)

Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering

1997-05-01T23:59:59.000Z

276

Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

2008-05-15T23:59:59.000Z

277

The development of a bearing spectral analyzer and algorithms to detect turbopump bearing wear from deflectometer and strain gage data  

SciTech Connect (OSTI)

Over the last several years, Rocketdyne has actively developed condition and health monitoring techniques and their elements for rocket engine components, specifically high pressure turbopumps. Of key interest is the development of bearing signature analysis systems for real-time monitoring of the cryogen-cooled turbopump shaft bearings, which spin at speeds up to 36,000 RPM. These system elements include advanced bearing vibration sensors, signal processing techniques, wear mode algorithms, and integrated control software. Results of development efforts in the areas of signal processing and wear mode identification and quantification algorithms based on strain gage and deflectometer data are presented. Wear modes investigated include: inner race wear, cage pocket wear, outer race wear, differential ball wear, cracked inner race, and nominal wear. 4 refs.

Martinez, C.L. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-07-01T23:59:59.000Z

278

Multidimensional modelling of the effect of engine load on various exergy terms in an indirect injection diesel engine  

Science Journals Connector (OSTI)

In this investigation, the energy and exergy analyses are carried out in a Lister 8.1 IDI diesel engine for different loads (25%, 50%, 75% and full loads operation) at maximum torque engine speed (730 rpm). The energy analysis is done during a closed cycle using of a three dimensional CFD code. The results by this model for the pressure in cylinder at 50% and full load operations are compared with the corresponding experimental data and show good agreements. Second-law analysis is carried out by a developed in house computational code. Various rate and accumulative exergy components are identified and calculated separately with crank position for various loads. The results show that when the load increases from 25% to full load in steps by 25%, the percentage of combustion irreversibility decreases from 33.7% to 25% of fuel burn exergy. Also, exergy efficiency reaches its peak of 36.7% at 75% load.

S. Jafarmadar

2014-01-01T23:59:59.000Z

279

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

SciTech Connect (OSTI)

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

280

An Experimental Study on the Two-Stage Combustion Characteristics of a Direct-Injection-Type HCCI Engine  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 1271 Sa-1 Dong, Sangrok-gu Ansan-si, Gyenggi-do, 426-791, Korea ... This research was achieved using a direct-injection-type diesel method during the intake stroke in real single-cylinder engines, and observations were made regarding the cool and hot flame characteristics, according to the air:fuel ratio and engine speed (given in units of rpm), an additive that influences the auto-ignition and the start times, and the combustion and emission characteristics, according to these times. ... This work was supported by the “Development of techniques on the fundamental and practical use of a HCCI” project at Korea Automotive Technology Institute, 2004. ...

Kihyung Lee; Changsik Lee; Jeaduk Ryu; Hyungmin Kim

2005-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chapter 5 - DP4 – Advanced Simulation Settings: Racing Car Engine Connecting Rod  

Science Journals Connector (OSTI)

Publisher Summary In developing race-winning cars, Triple Eight utilizes Autodesk Inventor and Dynamic Simulation. One of the critical design issues in developing race-winning cars is weight, as this has a considerable impact on the performance of the cars. In this design problem, one highlights the key components of the engine and demonstrates how one can make effective use of Dynamic Simulation to simulate the explosion of gases on the piston–crank assembly. In the design problem, one determines several things like the time taken for the engine speed to reach 7000 rpm, the engine torque with friction taken into account, the engine torque with friction not taken into account, and the reaction forces acting on the connecting rod.

Wasim Younis

2010-01-01T23:59:59.000Z

282

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network [OSTI]

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

283

Automotive Stirling Engine Development Program Mod I Stirling engine development  

SciTech Connect (OSTI)

The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

Simetkosky, M.A.

1983-08-01T23:59:59.000Z

284

ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT  

SciTech Connect (OSTI)

The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

Clinton Lum

2002-02-04T23:59:59.000Z

285

Intelligent speed controller for a Switched Reluctance Motor drive using FPGA  

Science Journals Connector (OSTI)

In this paper, an FPGA-based digital speed control scheme is presented to overcome the drawbacks in the previous speed control schemes, proposed for Switched Reluctance Motor (SRM) drives. It is based on discrete control algorithm, and requires simple mathematical models. The real-time experimental results given in this paper show that the closed-loop speed control method proposed could provide accurate speed control upto 6.2 rpm depending on the needed operating speed range, with a step response settling time of 0.25-1.05 s. It can also perform accurately at different operating conditions and over a wide range of speeds. Complete descriptions of the experimental system along with FPGA implementation are presented.

S. Vijayan; S. Paramasivam

2009-01-01T23:59:59.000Z

286

Design of a variable reluctance asymmetric stepping millimotor  

SciTech Connect (OSTI)

This paper reports on the design, simulation, and preliminary testing of a three phase variable reluctance stepping motor. This motor is pancake-shaped with an overall outside diameter of 8 mm and a height of 3 mm. The outside diameter of the rotor is 4.7 mm. The rotor and stators occupy 2 mm of the height with the remaining 1 mm reserved for a 6:1 planetary gear reductor. The rotor and stators were constructed of Hyperco 50 using conventional miniature machining. The reductor was assembled using copper and PMMA (polymethylmethacrylate) components that were constructed using the LIGA (Lithographic Galvanoformung Abformung) microfabrication process. The maximum measured stall torque of the motor without the reductor is 0.47mNm at 4W and the maximum speed is 2,400 rpm.

GARCIA,ERNEST J.; GREENWOOD,WILLIAM H.; OLIVER,ANDREW D.

2000-06-01T23:59:59.000Z

287

Determination of naval medium speed diesel engine air exhaust emissions and validation of a proposed estimation model. Master`s thesis  

SciTech Connect (OSTI)

Steady state marine diesel engine exhaust emissions are being reviewed by the Environmental Protection Agency for possible regulation. In anticipation of future regulation, the United States Navy is developing appropriate emissions models for naval vessels. A procedure for collecting this data from an U. S. Navy ship with medium speed main propulsion diesels is presented. It is based on similar testing conducted by the U.S. Coast Guard for measuring patrol boat diesel engine emissions and International Standards Organization methodology. The primary challenge of the experiment design was to minimize interference with the engineering plant as the assigned ship was concurrently tasked for other operations. Data gathered allowed calculation of engine rpm, engine load, exhaust gas flow rate, and determination of pollutant amounts. The tests were conducted at a series of predetermined speeds to reflect an 11-Mode duty cycle developed previously for the LSD 41 Class propulsion diesel engines.

Mayeaux, A.M.

1995-05-01T23:59:59.000Z

288

Evaluation of the rabies immune status of stray dogs in Beaumont and Port Arthur, Texas  

E-Print Network [OSTI]

RPM. The serum was poured into a second tube which was then either refrigerated or frozen until it was analyzed. 20 ~SA msai sa The serum analysis for RVNAT was performed by the laboratory of the Texas Department of Health. The technique used... 20 20 20 30 30 35 10 8 8 40 15 30 12 30 40 20 20 15 30 25 10 8 70 50 90 15 35 6 mo 6 mo 6 mo 2 yr 10 yr 1 yr 5 mo 6 mo 1 yr Z yr 2 1/2 yr 2 yr 6 mo 6 mo 4 mo 1 yr 4 mo 4 mo 4 mo 6 yr 1 1/2 yr 1 yr 1 1...

Massey, James Leonidas

2012-06-07T23:59:59.000Z

289

Human and organisational aspects of remote patient monitoring in residential care homes  

Science Journals Connector (OSTI)

Demographic changes in the population, with a growing proportion of elderly people, make the efficient and effective provision of healthcare for this age group an increasingly important issue. We examine the organisational and human aspects of introducing a Remote Patient Monitoring (RPM) system that uses wireless and broadband networks into three residential care homes in the UK. Stakeholders were identified, and semi-structured one-to-one interviews were carried out in order to identify issues deemed most important to each group. The work is novel, as it requires examination of the issues of communication between healthcare workers in several primary and secondary care organisations. The key finding was the need to identify the changes in working practice and interpersonal communication. A key factor in particular was the change in relationships: staff in the remote centre needing to learn to seek support when reporting and requesting assistance for a problem; and for the staff at the health centres to respond appropriately.

Tanja Bratan; Jyoti Choudrie; Malcolm Clarke; Russell Jones; Andrew Larkworthy

2007-01-01T23:59:59.000Z

290

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).

Arnis Judzis; Homer Robertson; Alan Black

2006-06-22T23:59:59.000Z

291

Development of a high efficiency compressor/expander for an air cycle air conditioning system. Final report  

SciTech Connect (OSTI)

This document presents the methods and procedures used and the results obtained in the design, fabrication, and testing of a rotary vane type compressor operated on air cycle thermodynamics. The history and results of the testing of a similar expander are summarized and the full report of that work is referenced. The machine design used was based on one patented by Ecton Corporation. The goal of the reported effort was to demonstrate the attainable efficiencies of these machines. Appropriate test rigs were assembled and the machines were tested at various operating conditions. The compressor testing did not achieve the full design speed because of time constraints but important data was obtained at 87% speed (3000 rpm). The maximum measured total efficiencies were 78% for the expander and 71% for the compressor. Various design improvements which may yield improved performance were identified and reported.

Summers, R.L.; Smolinski, R.E.

1982-11-15T23:59:59.000Z

292

Electrostatic charge generation during impeller mixing in two-phase systems  

E-Print Network [OSTI]

of water to toluene was varied during the tests by adding 18 megaohm-cm, deionized, ultrapure water and using a vacuum apparatus to remove precisely measured quantities of toluene. The variance in concentra- tion of water was 0, 1, 3, 5, 7, 104...) 500 RPM 700 PN 1000 RPN 7. 48 E-13 2. 75 E-13 9. 00 E-12 2. 00 E-11 4. 74 E-11 7. 46 E-11 1. 18 E-10 1. 5 E-9 3. 0 E-9 4. 15 E-9 1. 65 E-9 3. 5 E-9 7. 5 E-9 2. 5 E-10 3. 85 E-9 5. 0 E-9 8. 3 E-9 8. 0 E-9 9. 0 E-9 3. 5 E-10 8. 0 E-9 8...

Hernandez, Andrew

1988-01-01T23:59:59.000Z

293

Evaluation of an Air Quality Model for the Size and Composition of Source-Oriented Particle Classes  

Science Journals Connector (OSTI)

Such models include the California Institute of Technology model (CIT) (6), the Regional Particulate Matter model (RPM) (7), the European Air Pollution Dispersion model (EURAD) (8), the Urban Airshed Model-IV with aerosols (UAM-AERO) (9, 10), the Urban Airshed Model-IV with the Aerosol Inorganics Model-2 (UAM-AIM) (11, 12), the Denver Air Quality Model (DAQM) (13), the Gas, Aerosol, Transport, and Radiation model (GATOR) (14), and the SARMAP Air Quality Model with aerosols (SAQM-AERO) (15). ... Furthermore, global-scale model calculations (GATOR-GCMM) reveal that the assumptions made regarding the mixing state of ambient aerosols can significantly affect our calculations of the atmospheric radiation budget (20). ...

Prakash V. Bhave; Michael J. Kleeman; Jonathan O. Allen; Lara S. Hughes; Kimberly A. Prather; Glen R. Cass

2002-04-20T23:59:59.000Z

294

STORAGE, NUTRITIONAL AND SENSORY PROPERTIES OF HIGH-FAT FISH AND RICE FLOUR COEXTRUDATES  

SciTech Connect (OSTI)

The present research is on understanding the storage, nutritional and sensory characteristics of high-fat fish (khoira) and rice flour coextrudates at storage temperature of 30C. The extruder processing conditions used are barrel temperature (200C), screw speed (109 rpm), fish content of feed (44%) and feed moisture content (39%). Sorption isotherm data indicated that the safe aw level was about 0.4–0.7. Guggenheim -Anderson -de Boer model described the sorption data adequately with an r2 value of 0.99. During the initial 15 days of storage, there was a loss of vitamin A and total tocopherols by 64.4 and 20.6%, and an increase in peroxides and free fatty acid content by about 116 mg/kg and 21.7%. The nonlinear mathematical model developed has adequately described the changes in nutritional and storage properties. Sensory attributes indicated that the product fried for 15 s was most acceptable.

Jaya Shankar Tumuluru; Shahab Sokhansanj; Sukumar Bandyopadhyay; Amarender Singh Bawa

2013-10-01T23:59:59.000Z

295

Experimental investigation on a turbo expander substituted for throttle valve in the subcritical refrigeration system  

Science Journals Connector (OSTI)

Abstract Owing to the large volumetric expansion ratio of the subcritical refrigerant and the geometrical restriction of the positive displacement machine, investigations on expanders in subcritical vapor refrigeration systems are relatively few in the literature. In this paper, a radial inflow turbo expander prototype is developed for expansion power recovery in the subcritical refrigeration system. The experimental results show that the prototype can operate stably within a wide speed range of up to 3200 rpm. A maximum of 10.4% isentropic efficiency is obtained when the inlet pressure is 1.7 MPa. It is also found that the optimum velocity ratio of the expander is 0.08–0.14 and shifts to higher values with the increase of the expander inlet pressure. Also, the defects of the prototype are discussed to further improve its performance.

Zhenying Zhang; Minxia Li; Yitai Ma; Xiufeng Gong

2014-01-01T23:59:59.000Z

296

ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES  

SciTech Connect (OSTI)

We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

E. L. BROSHA; R. MUKUNDAN; ET AL

2000-10-01T23:59:59.000Z

297

Characterisation and model fitting kinetic analysis of coal/biomass co-combustion  

Science Journals Connector (OSTI)

Abstract The combustion behaviors of biomass, coal and their blends were studied by thermogravimetric analysis. Combustion parameters such as ignition, burnout, peak rate, ignition index, and combustibility index were analyzed. The kinetic parameters were optimized based on experimental results by a double parallel reactions random pore model (DRPM) proposed in this paper. The results show that the combustion characteristic temperature of the biomass is lower and maximum rate of combustion is higher than that of anthracite coal. With the increase of biomass content, ignition temperature and burnout temperature of blends tended to decrease, while the ignition index and combustibility index increased. Compared with the original RPM model, the DRPM model could not only describe the combustion process with a single peak rate, but also the combustion of biomass-coal blends with two rate peaks. The combustion activation energies of blends were extracted by DRPM model in the present study.

Guangwei Wang; Jianliang Zhang; Jiugang Shao; Shan Ren

2014-01-01T23:59:59.000Z

298

CFD Simulation of the NREL Phase VI Rotor  

E-Print Network [OSTI]

The simulation of the turbulent and potentially separating flow around a rotating, twisted, and tapered airfoil is a challenging task for CFD simulations. This paper describes CFD simulations of the NREL Phase VI turbine that was experimentally characterized in the 24.4m x 36.6m NREL/NASA Ames wind tunnel (Hand et al., 2001). All computations in this article are performed on the experimental base configuration of 0o yaw angle, 3o tip pitch angle, and a rotation rate of 72 rpm. The significance of specific mesh resolution regions to the accuracy of the CFD prediction is discussed. The ability of CFD to capture bulk quantities, such as the shaft torque, and the detailed flow characteristics, such as the surface pressure distributions, are explored for different inlet wind speeds. Finally, the significant three-dimensionality of the boundary layer flow is demonstrated.

Song, Yang

2014-01-01T23:59:59.000Z

299

Extended performance of alcohol fumigation in diesel engines through different multipoint alcohol injection timing cycles  

SciTech Connect (OSTI)

This paper reports on the results of using multipoint port injection alcohol fumigation of a four-cycle turbocharged diesel engine in which the fumigation injection cycle was varied. The three cycles, dual with one-half of the alcohol injection on each engine revolution, single with all of the alcohol injection during the open intake valve revolution, and single with all of the alcohol injected during the closed intake valve revolution, lead to significant differences in the engines pressure-volume history and alcohol energy replacement tolerance. The engine was fumigated with both industrial grade ethanol and methanol and complete performance and emissions data (excluding aldehydes) were measured at low, medium, and high values of BMEP and rpm.

Savage, L.D.; White, R.A.; Cole, S.; Pritchett, G.

1986-01-01T23:59:59.000Z

300

Biological conversion of synthesis gas  

SciTech Connect (OSTI)

Overall mass transfer coefficients for CO have been determined in a continuous stirred-tank reactor at agitation rates of 300--700 rpm using a biological system with the photosynthetic bacterium Rhodospirillum rubrum. A non-steady state approach was employed in order to separate mass transfer and kinetic limited regions of the fermentation. As a result, a kinetic model could be developed for specific CO uptake by the culture including the apparent CO inhibition. The maximum specific CO uptake rate found matched the earlier results obtained in batch culture and by other investigators. CO inhibition was more predominant in CSTR culture than in batch culture, perhaps due to CO acclimation. The growth of the photosynthetic bacterium Chlorobium thiosulfatophilum on CO[sub 2] has been studied at light intensities ranging from 27-1723 lux in batch culture. Modeling results indicate that growth is dependent upon light intensity according to a Monod type relationship.

Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

1992-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biological conversion of synthesis gas. Project status report, April 1, 1992--June 30, 1992  

SciTech Connect (OSTI)

Overall mass transfer coefficients for CO have been determined in a continuous stirred-tank reactor at agitation rates of 300--700 rpm using a biological system with the photosynthetic bacterium Rhodospirillum rubrum. A non-steady state approach was employed in order to separate mass transfer and kinetic limited regions of the fermentation. As a result, a kinetic model could be developed for specific CO uptake by the culture including the apparent CO inhibition. The maximum specific CO uptake rate found matched the earlier results obtained in batch culture and by other investigators. CO inhibition was more predominant in CSTR culture than in batch culture, perhaps due to CO acclimation. The growth of the photosynthetic bacterium Chlorobium thiosulfatophilum on CO{sub 2} has been studied at light intensities ranging from 27-1723 lux in batch culture. Modeling results indicate that growth is dependent upon light intensity according to a Monod type relationship.

Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

1992-06-30T23:59:59.000Z

302

The response of mechanical and chemical pulps to refining  

SciTech Connect (OSTI)

This paper reports on theoretical equations describing the flow of pulp in refiners were used to analyze the experimental results obtained in a series of pilot plant trials. Western red cedar and loblolly pine wood chips were refined in 1-3 stages at rotational speeds of 1200 and 1800 rpm to produce thermomechanical pulps (TMP). Also, sulfate semibleached and low-yield sulfite pulps were refined at low (5%), medium (12%), and high (25%) consistency. The results indicate that the number of refining stages did not affect mechanical pulp quality. At a given specific energy, increasing the rotational speed increased the specific energy per impact and decreased the total number of impacts, resulting in a faster rate of fines generation for mechanical pulps. For chemical pulps higher pulp consistency produced gentler refining and yielded a higher rate of freeness decrease.

Miles, K.B.; Karnis, A. (Pulp and Paper Research Inst. of Canada, 570 St. John's Rd., Pointe Claire, Quebec H9R 3J9 (CA))

1991-01-01T23:59:59.000Z

303

Coal-water-slurry autoignition in a high-speed Detroit diesel engine  

SciTech Connect (OSTI)

Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm{sup 3} injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DDC) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NO{sub x} levels with a combustion efficiency of 99.2 percent. 6 refs., 15 figs., 4 tabs.

Schwalb, J.A.; Ryan, T.W. III.; Kakwani, R.M.; Winsor, R.E.

1994-10-01T23:59:59.000Z

304

This is the title of the presentation on three lines if you need it  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30 30 Development of the Rotary Microfilter for Radioactive Waste Applications D.T. Herman M.R. Poirier, D.B. Stefanko, S.D. Fink 5/20/09 EM-21 Technology Exchange 2 Development of the Rotary Microfilter for Radioactive Waste Applications Introduction SRS developing processes to treat radioactive liquid waste Crossflow filter testing has shown filtration rates less than desired Funded by EM-21 to investigated methods to improve separation of sludge solids from high level waste salt solution Identified rotary microfilter as a potential alternative to a crossflow filter 3 Development of the Rotary Microfilter for Radioactive Waste Applications SpinTek Rotary Microfilter 1 - 25 filter disks ~11 inch diameter ~1 sq ft filter media per disk 1170 rpm 60 ft/s tip speed

305

KLD Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

KLD Energy Technologies KLD Energy Technologies Jump to: navigation, search Name KLD Energy Technologies Place Austin, Texas Zip 78746 Sector Efficiency, Vehicles Product Austin, Texas-based KLD Energy Technologies designs and licenses a high-frequency, low RPM, transmissionless motor system that increases the speed and efficiency of electric vehicles. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

307

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

2003-09-30T23:59:59.000Z

308

Performance of twist-coupled blades on variable speed rotors  

SciTech Connect (OSTI)

The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

Lobitz, D.W.; Veers, P.S.; Laino, D.J.

1999-12-07T23:59:59.000Z

309

Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering  

SciTech Connect (OSTI)

A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ?1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ?1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ?25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States)] [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan)] [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)] [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)] [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

2013-11-11T23:59:59.000Z

310

Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised  

SciTech Connect (OSTI)

The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

2007-07-31T23:59:59.000Z

311

Erosive–corrosive wear of aluminum alloy composites: Influence of slurry composition and speed  

Science Journals Connector (OSTI)

The Erosion–corrosion behavior of a SiC particle reinforced Al–Si alloy has been studied in two different environments, namely saline and acidic, to simulate sea water and mining atmospheres, respectively. These studies were performed at different sand concentrations (20–40 wt%) and varying rotational speeds (700–900 rpm). It is noted from the present study that the composite exhibited better wear resistance than the alloy in marine and acidic atmospheres irrespective of sand content and speed. It is also noted that the wear rates increased with increasing sand content and speed irrespective of material due to increase in the severity of erosive/abrasive attacks. However, the wear rates decreased at higher speeds (e.g., 1100 rpm) due to increased intercollisions and rebounding and also the decrease in the mobility of the erodant particles. It is observed that erosion is the dominant mode of material removal in these two media. Corrosive attack was more predominant in the acidic media than in the NaCl media at lower sand concentrations (0–20 wt%). However, at higher sand concentrations (30–40 wt%) corrosive attack was more severe in the NaCl medium. Scanning electron microscopic (SEM) observation shows that Al/Si interfaces act as predominant sites for corrosion attack rather than the Al/SiC interfaces. Formation and removal of the passive layer, preferential attack at the Al/Si interfaces, fragmentation and wear of SiC particles were observed as mechanisms of material removal in marine and acidic media. SEM studies of the eroded–corroded surfaces indicated that an increase in the sand content of the slurry and in the rotational speed of the slurry increased resulted in greater damage to the SiC particles and matrix, resulting in an increase in wear rates.

S. Das; Y.L. Saraswathi; D.P. Mondal

2006-01-01T23:59:59.000Z

312

Performance and market evaluation of the bladeless turbine  

SciTech Connect (OSTI)

The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

1982-10-01T23:59:59.000Z

313

A Design of Single Phase Induction Generator for Waterfall-hydro Turbine  

Science Journals Connector (OSTI)

Abstract This paper presents the design of the single phase induction generator for hydro turbine that driven by waterfall power. By the principle, when the water from the waterfall flows along the 1 inch pipe until to the nozzle, after that the nozzle directs water jet along a tangent to the circle through the center of the buckets. Finally, the buckets drive the rotor shaft of the single phase induction generator and generated 220 V a.c. voltage for distributing electric load. The design of single phase induction generator is modified by rewiring the winding of an old 1 HP, 220 V, 50 Hz motor from 4 poles to 6 poles. For impulse turbine design, this paper use the information model from Baan Kiriwong waterfall, Nakhorn Sri Thammarat province, south of Thailand for designing the dimension of the components of Pelton turbine with 9 ½ inches diameter and 18 buckets. The result in laboratory test, at on-load test, the generator can distribute the load at 115.96W, 223 V, 0.52A, 0.96P.F. - lagging with 1,200 rpm of shaft speed. For the applications test, the water pump are set the pressure as similar as the Baan Kiriwong waterfall and when the water jet against the bucket for moving the generator, at on-load test, the generator can distribute the load at 77.9W, 190 V, 0.41A, 0.98P.F. - lagging with 1,100 rpm of shaft speed. It should be suitable for light load rural area and really far from electric distribution system.

Sirichai Dangeam

2013-01-01T23:59:59.000Z

314

Operation of a test bed axial-gap brushless dc rotor with a superconducting stator  

SciTech Connect (OSTI)

A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.

McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.; Young, R.W. Sr.; Campbell, V.W.; Hickey, M.H.; Ott, G.W. [Oak Ridge National Lab., TN (United States); Bailey, J.M. [Tennessee Univ., Knoxville, TN (United States)

1993-08-01T23:59:59.000Z

315

Testing to expand the rotary mode core sampling system operating envelope  

SciTech Connect (OSTI)

Rotary sampling using the Rotary Mode Core Sampling System (RMCSS) is constrained by what is referred to as the ``Operating Envelope``. The Operating Envelop defines the maximum downward force, maximum rotational speed and minimum purge gas flow allowed during operation of the RMCSS. The original values of 1170 lb. down force, 55 RPM rotational speed, and 30 SCFM nitrogen purge gas were determined during original envelope testing. This envelope was determined by observing the temperature rise on the bitface while drilling into waste simulants. The maximum temperature in single-shell tanks (SSTS) is considered to be approximately 9O C and the critical drill bit temperature, which is the temperature at which an exothermic reaction could be initiated in the tank waste, was previously determined to be 150 C. Thus, the drill bit temperature increase was limited to 60 C. Thermal properties of these simulants approximated typical properties of waste tank saltcake. Later, more detailed envelope testing which used a pumice block simulant, showed a notably higher temperature rise while drilling. This pumice material, which simulated a ``worst case`` foreign object embedded in the waste, has lower thermal conductivity and lower thermal diffusivity than earlier simulants. These properties caused a slower heat transfer in the pumice than in the previous simulants and consequently a higher temperature rise. The maximum downward force was subsequently reduced to 750 lb (at a maximum 55 RPM and minimum 30 SCFM purge gas flow) which was the maximum value at which the drill bit could be operated and still remain below the 60 C temperature rise.

Witwer, K.S.

1998-01-21T23:59:59.000Z

316

Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol  

Science Journals Connector (OSTI)

UltraViolet–visible imaging measurements were carried out in a gasoline direct injection (GDI) engine in order to investigate the spray and combustion evolution of gasoline and pure bio-ethanol fuel. Two different starts of injection, early injection (homogeneous charge) and late injection (stratified charge), were tested in two different engine conditions, 1000 rpm idle and 1500 rpm medium load as representative point of urban new European driving cycle (NEDC). Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution cameras in order to allow the visualization of the fuel injection and the combustion process. All the optical data were correlated to the in-cylinder pressure-based indicated analysis and to the gaseous and solid emissions. Wide statistics were performed for all measurements in order to take into account the cycle-to-cycle variability that characterized, in particular, the idle engine condition. Optical imaging showed that gasoline spray was more sensible to air motion and in-cylinder pressure than ethanol’s, for all the investigated conditions. The stratified flame front for both fuels was about 40% faster compared to homogeneous in the first phase, due to the A/F ratio local distribution. It leads to better performance in terms of stability and maximum pressure, even if the late injections produce more soot and UHC emissions due to fuel impingement. Ethanol combustion shows less diffusive flames than gasoline. A lower amount of soot was evaluated by two color pyrometry method in the combustion chamber and measured at the exhaust.

Paolo Sementa; Bianca Maria Vaglieco; Francesco Catapano

2012-01-01T23:59:59.000Z

317

KNIFE MILL COMMINUTION ENERGY ANALYSIS OF SWITCHGRASS, WHEAT STRAW, AND CORN STOVER AND CHARACTERIZATION OF PARTICLE SIZE DISTRIBUTIONS  

SciTech Connect (OSTI)

Biomass preprocessing and pretreatment technologies such as size reduction and chemical preconditioning are aimed at reducing the cost of ethanol production from lignocellulosic biomass. Size reduction is an energy-intensive biomass preprocessing unit operation. In this study, switchgrass, wheat straw, and corn stover were chopped in an instrumented knife mill to evaluate size reduction energy and corresponding particle size distribution as determined with a standard forage sieve analyzer. Direct mechanical power inputs were determined using a dedicated data acquisition system for knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. A speed of 250 rpm gave optimum performance of the mill. Optimum feed rates for 25.4 mm screen and 250 rpm were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively. Total specific energy (MJ/Mg) was defined as the size reduction energy required to operate the knife mill plus that imparted to the biomass. Effective specific energy was defined as the energy imparted to the biomass. For these conditions, total specific energies were 27.3, 37.9, and 31.9 MJ/Mg and effective specific energies were 10.1, 15.5, and 3.2 MJ/Mg for switchgrass, wheat straw, and corn stover, respectively. These results demonstrated that biomass selection affects the size reduction energy, even for biomass with similar features. Second-order polynomial equations for the total specific energy requirement fitted well (R2 > 0.95) as a function of knife mill screen size, mass feed rate, and speed for biomass materials tested. The Rosin-Rammler equation fitted the cumulative undersize mass of switchgrass, wheat straw, and corn stover chop passed through ASABE sieves with high R2 (>0.983). Knife mill chopping of switchgrass, wheat straw, and corn stover resulted in particle size distributions classified as 'well-graded strongly fine-skewed mesokurtic', 'well-graded fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for small knife mill screen sizes (12.7 to 25.4 mm) and distributions classified as 'well-graded fine-skewed mesokurtic', 'well-graded strongly fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for the large screen size (50.8 mm). Total and effective specific energy values per unit size reduction of wheat straw were greater compared to those for switchgrass. Corn stover resulted in reduced total and effective specific energy per unit size reduction compared to wheat straw for the same operating conditions, but higher total specific energy per unit size reduction and lesser effective specific energy per unit size reduction compared to switchgrass. Data on minimized total specific energy with corresponding particle spectra will be useful for preparing feed material with a knife mill for subsequent grinding with finer size reduction devices.

Bitra, V.S.P. [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee, Knoxville (UTK); Sokhansanj, Shahabaddine [ORNL; Igathinathane, C. [North Dakota State University

2010-01-01T23:59:59.000Z

318

Membranes and MEAs at Freezing Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction Reaction Reduction Reaction O 2 + 1 e - + M = M(O 2 - ) ad (rds) M(O 2 - ) ad + H 3 O + = H 2 O + M(O 2 H) ad M(O 2 H) ad + H 3 O + + 1 e - + M = 2 MOH ad M(O 2 H) ad + H 3 O + + 1 e - = H 2 O 2 [MOH ad + H 3 O + + 1 e - = H 2 O] x2 E [V RHE ] 0.0 0.2 0.4 0.6 0.8 1.0 I [mA] -1.0 -0.5 0.0 I [mA] -1.0 -0.5 0.0 I [mA] -1.0 -0.5 0.0 0.05 M H 2 SO 4 (a) (b) (c) E [V RHE ] 0.0 0.2 0.4 0.6 0.8 1.0 I [mA] -1.0 -0.5 0.0 I [mA] -1.0 -0.5 0.0 I [mA] -1.0 -0.5 0.0 0.1 M KOH (f) (g) (e) 10 µA 10 µA 10 µA 293 K, 900 rpm 293 K, 900 rpm 100 µA 100 µA 100 µA 15 µA 15 µA 15 µA 15 µA 15 µA 15 µA I II III I II III ) / exp( ) / exp( ) 1 ( * 2 RT G RT FE nFKc i x ad O Θ ∆ - - Θ - = β Pt(111) 0.1M KOH Θ ad is mostly OH ad and A ad , not (O 2 - ) ad (1-Θ ad ) term Effect on availability of metal sites Effect on ∆G ad ∆G ad term O 2 adsorption strength is uniquely related to the electronic properties of the electrode material

319

Liner surface improvements for low friction piston ring packs  

Science Journals Connector (OSTI)

The development of engine components in the automotive industry is governed by several constraints such as environmental legislation and customer expectations. About a half of the frictional losses in an internal combustion engine come from the interactions between the piston assembly and cylinder liner surface. The tribological considerations in the contact between the piston ring and cylinder liner have attracted much attention over the past few decades. Many non-conventional cylinder liner finishes have been, and are being, developed with the aim to reduce friction losses and oil consumption, but the effects of the surface finish on piston ring pack performance is not well understood. One way of reducing friction in the cylinder system is to reduce the tangential load from the piston ring pack, focusing on the oil control ring. However, the side-effect of this is a disappointingly increased oil consumption. In this study a number of different cylinder liner surface specifications were developed and implemented in test engines with the aim of maintaining the level for oil consumption when decreasing the tangential load for the piston ring pack. To improve our understanding of the result, the same surfaces were evaluated in elastic and elasto-plastic rough contact and hydrodynamic flow simulation models. It is shown that oil consumption is strongly related to surface texture on the cylinder liners and at lower speeds (900–1200 rpm), a 'rougher surface' with a high core (e.g. Sk) and valley roughness (e.g. Svk) results in higher oil consumption. At the medium speed range (1200–3600 rpm), oil consumption continues to dominate for the 'rough' surfaces but with a visible influence of a lower oil consumption for a decreased roughness within the 'rough' surface group. 'Smooth' surfaces with a 'smooth' core (Sk), irrespective of the valley component (Svk), show similar oil consumption. For engine speeds above 3600 rpms, an increase in plateau roughness results in higher oil consumption. Throughout the study, standard roughness parameters were computed to compare with the results from engine testing and simulation. Future work will be directed to continuous optimization between oil consumption and friction. Improving the understanding of the functional cylinder system surfaces' ability to form oil films in the cylinder system opens up opportunities, not only in reducing the tangential load of piston ring packs but also in optimizing oil viscosity in order to reduce friction.

C Anderberg; Z Dimkovski; B-G Rosén

2014-01-01T23:59:59.000Z

320

Experimental investigation into the incineration of wool scouring sludges in a novel rotating fluidised bed  

Science Journals Connector (OSTI)

The main purpose of this research was to investigate the possibility of incineration of wool scouring sludges in a novel vertical axis rotating fluidised bed (RFB). A small-scale RFB was designed and constructed with an internal diameter (ID) of 200 mm and height of 50 mm to carry out the experiments. In phase one of the experiments, a cold test was conducted to investigate the fluidisation performance of the RFB, which eventually led to the optimisation of the operating parameters, i.e., sand particle size, rotation speed and bed loading (bed thickness) which ensures complete fluidisation and minimum particle elutriation. Sand particle size of 0.5 to 0.6 mm, rotation speed of 200 to 400 rpm and bed loading of 1 kg (equivalent to bed thickness of 27 mm) were found optimal. These information generated were useful for the second phase of the experiments, which was the hot test, in investigating the possibility of incinerating wool scouring sludges in the RFB. Nine wool sludges from different process routes generated from the wool scouring industries were analysed for their compositions. Most of these sludges were highly moist, had high volatile matter and high ash content with low level of fixed carbon. These characteristics made incineration difficult. Hence, the effect of varying the moisture content, rotation speed and sludge feed rate on the incineration of the three selected sludges were studied in the hot test. With 5% support methane, all sludges with a maximum moisture up to 70% as-received could be successfully burned in the RFB at rotating speeds of 200 and 300 rpm. The combustion was found to be intense with a high efficiency due to the good turbulence and mixing in the RFB. The combustion gases produced, i.e., CO, CO2 and \\{NOx\\} were reasonably low due to the high combustion intensity and efficiency. To study the dynamics of the bed and freeboard region in the RFB, the velocity flow field was simulated using a computational fluid dynamics (CFD) model to generate information of the flow pattern. The special advantages of swirling flow would benefit the gas combustion in the RFB. The experimental results obtained have suggested that the incineration was successful and the ash particles elutriated were fine due to the good mixing and turbulence in the RFB. This also reflects the RFB as an effective incinerator.

W.Y Wong; Y Lu; V.S Nasserzadeh; J Swithenbank; T Shaw; M Madden

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel  

Science Journals Connector (OSTI)

Abstract This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P engine power, torque and specific fuel consumption. The mean values of engine power were increased in the range of 59.14–69.5 kW with increasing the engine speed. The engine power did not show significant difference for all the fuel blends except for the D65B25E10, 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P engine speed ranged from 1600 to 2000 rpm. The engine specific fuel consumption was increased significantly when the engine speed ranged from 1900 to 2000 rpm. The engine specific fuel consumption was greater for all the fuel blends when compared to neat diesel fuel. The D93B5E2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D86B10E4 and D79B15E6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application.

Seyed Reza Hassan-beygi; Vahideh Istan; Barat Ghobadian; Mohammad Aboonajmi

2013-01-01T23:59:59.000Z

322

Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions  

Science Journals Connector (OSTI)

Abstract The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the rotor leading edge suggest that the circumference variation is little (7%) as compared to its variation in time as the pulse progresses. The primary aim of this paper is to investigate the relationship of the turbine speed, as well as the pulsating flow frequency to its performance. It was found that there are no direct instantaneous relationship between the pulsating pressure at the turbine inlet and the turbine efficiency, except when one considers an additional parameter, namely the incidence angle. This paper also intends to investigate the potential loss of information if the performance parameters are simply averaged without considering the instantaneous effects.

M.H. Padzillah; S. Rajoo; R.F. Martinez-Botas

2014-01-01T23:59:59.000Z

323

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

324

Part-load performance and emissions of a spark ignition engine fueled with RON95 and RON97 gasoline: Technical viewpoint on Malaysia’s fuel price debate  

Science Journals Connector (OSTI)

Abstract Due to world crude oil price hike in the recent years, many countries have experienced increase in gasoline price. In Malaysia, where gasoline are sold in two grades; RON95 and RON97, and fuel price are regulated by the government, gasoline price have been gradually increased since 2009. Price rise for RON97 is more significant. By 2014, its per liter price is 38% more than that of RON95. This has resulted in escalated dissatisfaction among the mass. People argued they were denied from using a better fuel (RON97). In order to evaluate the claim, there is a need to investigate engine response to these two gasoline grades. The effect of gasoline RON95 and RON97 on performance and exhaust emissions in spark ignition engine was investigated on a representative engine: 1.6L, 4-cylinder Mitsubishi 4G92 engine with CR 11:1. The engine was run at constant speed between 1500 and 3500 rpm with 500 rpm increment at various part-load conditions. The original engine ECU, a hydraulic dynamometer and control, a combustion analyzer and an exhaust gas analyzer were used to determine engine performance, cylinder pressure and emissions. Results showed that RON95 produced higher engine performance for all part-load conditions within the speed range. RON95 produced on average 4.4% higher brake torque, brake power, brake mean effective pressure as compared to RON97. The difference in engine performance was more significant at higher engine speed and loads. Cylinder pressure and ROHR were evaluated and correlated with engine output. With RON95, the engine produces 2.3% higher fuel conversion efficiency on average but RON97 was advantageous with 2.3% lower brake specific fuel consumption throughout all load condition. In terms of exhaust emissions, RON95 produced 7.7% lower \\{NOx\\} emission but higher CO2, CO and HC emissions by 7.9%, 36.9% and 20.3% respectively. Higher octane rating of gasoline may not necessarily beneficial on engine power, fuel economy and emissions of polluting gases. Even though there is some advantage using RON97 in terms of emission reduction of CO2, CO and HC, the 38% higher price and higher \\{NOx\\} emission is more expensive in the long run. Therefore using RON95 is economically better and environmentally friendlier. The findings provide some techno-economic evaluation on the fuel price debate that surround the Malaysia’s population in the recent years. The increased of fuel price may have limited their ability to use higher octane gasoline but it did not negatively affecting the users as they perceive.

Taib Iskandar Mohamad; Heoy Geok How

2014-01-01T23:59:59.000Z

325

PERFORMANCE STATISTICS WEIghTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2650 lbs 2650 lbs Delivered Curb Weight 9 : 2615 lbs Distribution F/R 9 (%): 58.6/41.4 GVWR: 3164 lbs GAWR F/R: 1797/1378lbs Payload 5 : 564 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 95.9 in Track F/R: 59.6/59.1 in Length: 160.6 in Width: 68.5 in Height: 54.9 in Ground Clearance: 5.3 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP Sport 1000m Tire Size: 195 / 55 R16 86V Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 1.5 L I4 Output 8 : 122 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 1.5 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2011 Honda CRZ EX Hybrid VIN: JHMZF1C64BS002982

326

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Year 5/13-5/14 2003 Year 5/13-5/14 2003 Jim Irby MIT-PSFC 5 Year 5/13-5/14 2003 Outline * Alcator C-Mod Facility * Recent accomplishments - Mods/Upgrades - Inspections - MIT Support * Five Year Plan - Upgrades - Data system - Diagnostics * Statistics * Summary 5 Year 5/13-5/14 2003 Alcator C-Mod Facility Power Sources * 13.8 kV, 24 MVA line from NSTAR - Alternator drive - ICRF transmitters - LH sources - EFC, EF2 magnets * Alternator - 125 ton, 4 pole rotor - 1800 RPM - 2 GJ stored energy (72 ton flywheel) - 200 MW loads with 500 MJ extracted 5 Year 5/13-5/14 2003 5 Year 5/13-5/14 2003 ICRF Systems * 2 transmitters at 80 MHz, 2 MW CW each * 2 transmitters tunable from 40 to 80 MHz, 2 MW CW each * 2 two-strap antennas, 1.5 MW each * 1 four-strap antenna, 3 MW 5 Year 5/13-5/14 2003 Other Major Systems * 11 power supplies power 14 magnets

327

Microsoft PowerPoint - Proceedings Cover Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Te Te e es s st t ti i in n ng g g o o of f f W W We e el l ll l lb b bo o or r re e e I I Is s so o ol l la a at t ti i in n ng g g C C Ce e em m me e en n nt t ts s s w w wi i it t th h h C C CO O 2 2 M. Supp, T. S. Ramakrishnan, E. Nelson and B. Dargaud Schlumberger O Ob b bj j je e ec c ct t ti i iv v ve e es s T Te e es s st t t P P Pr r ro o oc c ce e ed d du u ur r re e * Design and construct apparatus to simulate environments in CO 2 sequestration wells. * Apparatus designed for testing cements, rocks or any other materials that may encounter CO 2 (wet, dry or H 2 O rich phase). * Perform CO 2 exposure experiments and analyze the effects. S Sp p pe e ec c ci i if f fi i ic c ca a at t ti i io o on n ns s * Two 1-gal 316SS reactors with Alloy C-276 lining * Maximum Pressure: 2900 psi, Maximum Temperature: 350° C * Magnetically coupled stirrer (0- 600 RPM) * Programmable depressurization system * Reactors operate independently. * 1 Lt supercritical CO2 reservoir * Two 260-mL reciprocating

328

ReEDS | Open Energy Information  

Open Energy Info (EERE)

ReEDS ReEDS Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ReEDS Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.nrel.gov/analysis/reeds/ Country: United States Web Application Link: rpm.nrel.gov/refhighre/expansion/expansion.html Cost: Free OpenEI Keyword(s): Featured Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

PERFORMANCE STATISTICS WEIghTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

245 lbs 245 lbs Delivered Curb Weight: 4118 lbs GVWR: 5675 lbs GAWR F/R: 2865/3130 lbs Distribution F/R: 59/41 % Payload: 1557 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.7 in Track F/R: 61.9/61.1 in Length: 185.3 in Width: 71.5 in Height: 68.6 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P225/65R17 Tire Pressure F/R: 32/32 Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Highlander VIN: JTEDW21A860005681 Seatbelt Positions: Seven Standard Features: Air Conditioning

330

untitled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2723 lbs 2723 lbs Delivered Curb Weight: 2756 lbs Distribution F/R (%): 58/42 GVWR: 3630 lbs GAWR F/R: 1881/1782lbs Payload 5 : 907 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 100.4 in Track F/R: 58.7/58.1 in Length: 172.3 in Width: 66.7 in Height: 56.2 in Ground Clearance: 5.5 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP31 A/S Tire Size: 175 / 65 R15 84S Tire Pressure F/R: 33/33 psi Spare Installed: Yes ENGINE Model: 1.3 L LDA series I4 Output: 98 hp @ 5800 rpm Configuration: Inline Four-cylinder Displacement: 1.3 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2009 Electric Transportation Applications All Rights Reserved VEHICLE FEATURES Base Vehicle: 2010 Honda Insight Hybrid VIN: JHMZE2H78AS010141 Seatbelt Positions: Five Standard Features:

331

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

332

untitled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

720 lbs 720 lbs Delivered Curb Weight: 3698 lbs Distribution F/R (%): 60.4/39.6 GVWR: 4701 lbs GAWR F/R: 2492/2209 lbs Payload 5 : 850 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.4 in Track F/R: 61.7/61.3 in Length: 190.6 in Width: 72.2 in Height: 56.9 in Ground Clearance: 7 in Performance Goal: 5.0 in TIRES Tire Mfg: Michelin Tire Model: Energy MXV4 SS Tire Size: P225/50VR17 Tire Pressure F/R: 33/33 psi Spare Installed: Yes ENGINE Model: 2.5L Atkinson Cycle Output: 156 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 2.5 L Fuel Tank Capacity: 17.5 gal Fuel Type: Unleaded Gasoline © 2009 Electric Transportation Applications All Rights Reserved VEHICLE FEATURES Base Vehicle: 2010 Ford Fusion Hybrid VIN: 3FADP0L34AR144757 Seatbelt Positions: Five

333

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Motors Electric Motors Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of electric motors since 1997. Electric motors convert electrical energy to rotating mechanical energy. When operating, the electrical energy is transferred as useful mechanical energy to some driven device such as a fan, pump, blower, compressor, or conveyor. The Energy Policy and Conservation Act (EPCA), as amended by the Energy Independence and Security Act of 2007 (EISA 2007), covers three broad categories of electric motors: general purpose, definite purpose and special purpose. These broad categories include a variety of motors including single-speed, continuous-duty polyphase motors with voltages not greater than 600 volts; motors with or without mounting feet; motors built in a T- or U-frame; motors built with synchronous speeds of 3600, 1800, 1200, or 900 rpm (two, four, six, or eight poles, respectively); National Electrical Manufacturers Association (NEMA) Design B motors from 1 to 500 horsepower, NEMA Design A and C motors from 1 to 200 horsepower; and motors that are close-coupled pump or vertical solid-shaft normal thrust motors.

334

PERFORMANCE STATISTICS WEIghTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

365 lbs 365 lbs Delivered Curb Weight: 4510 lbs Distribution F/R: 57/43 % GVWR: 5520 lbs GAWR F/R: 2865/2865 lbs Payload: 1010 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.0 inches Track F/R: 62/61.2 inches Length: 187.2 inches Width: 72.6 inches Height: 66.4 inches Ground Clearance: 7.1 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Eagle RS-A Tire Size: P215/55R18 Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: DOHC V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 Gallons Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Lexus RX 400h VIN: JTJHW31U160002575 Seatbelt Positions: Five

335

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect (OSTI)

Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.

Kirby S. Chapman; Sarah R. Nuss-Warren

2006-07-01T23:59:59.000Z

336

Multi-stage axial-flux PM machine for wheel direct drive  

SciTech Connect (OSTI)

The design of direct-driven wheel motors must comply with diameter restriction due to housing the motor in a wheel rim and allow the achievement of very high torque density and overload capability. Slotless axial-flux permanent magnet machines (AFPMs) prove to be one best candidate for application in electric vehicles as direct-drive wheel motors, as in comparison with conventional machines they allow designs with higher compactness, lightness and efficiency. The paper presents a newly-conceived AFPM which has multi-stage structure and water-cooled ironless stator. In the proposed new topology of the machine the space formerly occupied by the toroidal core becomes a water duct, which removes heat directly from the interior surface of the stator winding. The high efficiency of the machine cooling arrangement allows long-term 100% overload operation and great reduction of the machine weight. The multistage structure of the machine is suited to overcome the restriction on the machine diameter and meet the torque required at the wheel shaft. The paper gives guidelines for the design of a multi-stage AFPM with water-cooled ironless stator, and describes characteristics of a two-stage prototype machine rated 220 Nm, 1,100 rpm.

Caricchi, F.; Crescimbini, F.; Mezzetti, F.; Santini, E. [Univ. of Rome La Sapienza (Italy). Dept. of Electrical Engineering

1995-12-31T23:59:59.000Z

337

Design of a high power density, permanent magnet, axial gap dc motor  

SciTech Connect (OSTI)

In the design of drive motors for undersea vehicles, the premium placed on noise suppression suggests the use of a brush-commutated dc motor. The additional constraints of weight and volume, as well as unusual configuration, presents the axial air-gap configuration, with a permanent magnet field, as a viable candidate. In such a configuration the design of the brushes and commutator and the resulting structure becomes critical. The report describes a novel solution to this problem. The basic motor consists of two discs containing permanent magnets on either side of a magnetic structure containing the copper windings. An advantage of this motor concept is that copper cooling may easily be accomplished through the use of liquid circulating through the stator windings. The role of field and armature in a conventional disc motor configuration are reversed. The two discs containing the permanent magnets are rotating. The brushes are on the discs. The magnetic structure with the coils is stationary. The commutator bars are imbedded in the stationary member. Input power is supplied to the brushes through a brush-and-slip ring assembly. An electromagnetic design analysis for a 92 ft-lb, 700 rpm motor was performed. A finite element analysis has been conducted and the results show that magnetic saturation is not a limiting factor in this design. The motor torque is achievable within weight and volume constraints. 9 figs., 1 tab.

Hawsey, R.A.; Daniel, D.S.; Thomas, R.J. (Oak Ridge National Lab., TN (USA)); Bailey, J.M. (Tennessee Univ., Knoxville, TN (USA))

1990-01-01T23:59:59.000Z

338

Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol  

Science Journals Connector (OSTI)

Abstract The main aim of the present study was to enrich anaerobic mixed bacterial culture capable of producing ethanol from synthesis gas fermentation. Screening of thirteen anaerobic strains together with enrichment protocol helped to develop an efficient mixed culture capable of utilizing syngas for ethanol production. Physiological and operational parameters were optimized for enhanced ethanol production. The optimized value of operational parameters i.e. initial media pH, incubation temperature, initial syngas pressure, and agitation speed were 6.0 ± 0.1, 37 °C, 2 kg cm?2 and 100 rpm respectively. Under these conditions ethanol and acetic acid production by the selected mixed culture were 1.54 g L?1 and 0.8 g L?1 respectively. Furthermore, up-scaling studies in semi-continuous fermentation mode further enhanced ethanol and acetic acid production up to 2.2 g L?1 and 0.9 g L?1 respectively. Mixed culture TERI SA1 was efficient for ethanol production by syngas fermentation.

Ashish Singla; Dipti Verma; Banwari Lal; Priyangshu M. Sarma

2014-01-01T23:59:59.000Z

339

Pseudo-Differential Operators and Integrable Models  

E-Print Network [OSTI]

The importance of the theory of pseudo-differential operators in the study of non linear integrable systems is point out. Principally, the algebra $\\Xi $ of nonlinear (local and nonlocal) differential operators, acting on the ring of analytic functions $u_{s}(x, t)$, is studied. It is shown in particular that this space splits into several classes of subalgebras $\\Sigma_{jr}, j=0,\\pm 1, r=\\pm 1$ completely specified by the quantum numbers: $s$ and $(p,q)$ describing respectively the conformal weight (or spin) and the lowest and highest degrees. The algebra ${\\huge \\Sigma}_{++}$ (and its dual $\\Sigma_{--}$) of local (pure nonlocal) differential operators is important in the sense that it gives rise to the explicit form of the second hamiltonian structure of the KdV system and that we call also the Gelfand-Dickey Poisson bracket. This is explicitly done in several previous studies, see for the moment \\cite{4, 5, 14}. Some results concerning the KdV and Boussinesq hierarchies are derived explicitly.

M. B. Sedra

2009-12-18T23:59:59.000Z

340

Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process  

Science Journals Connector (OSTI)

Abstract Biodiesel production from nonedible feedstocks is gaining attention in the recent years as they do not interfere with the global food economy. In this investigation, Spirulina platensis algae biomass was used as the feedstock for biodiesel production. Single stage extraction–transesterification was carried out with an aim to study the effect of reaction temperature, catalyst concentration, algae biomass to methanol ratio (wt:vol), stirring intensity and algae drying duration on the biodiesel yield. The optimum conditions for maximum biodiesel yield (75 ± 0.40%) were found to be 90 min duration for algae drying, 60% catalyst concentration, 1:4 algae biomass to methanol ratio, 450 rpm stirring intensity and 55 °C reaction temperature. The experimental data appeared to be a good fit with the first order reaction kinetics. For the reaction studied at different temperatures, values of rate constant and activation energy were found out to be 0.001 min?1 and 14518.51 J/mol respectively. The values of thermodynamic parameters such as Gibbs free energy (?G), enthalpy of activation (?H) and entropy of activation (?S) were also determined. The positive values of ?G and ?H and negative value of ?S indicated the unspontaneous and endergonic nature of the reaction.

Piyushi Nautiyal; K.A. Subramanian; M.G. Dastidar

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Design and Testing of a Prototype Spallation Neutron Source Rotating Target Assembly  

SciTech Connect (OSTI)

The mechanical aspects of an extended vertical shaft rotating target have been evaluated in a full-scale mockup test. A prototype assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. After1800 hours of operation the test program has confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. Precision alignment of the suspended target disk; successful containment of the water and verification of operational stability over the full speed range of 30 to 60 rpm were primary indications the proposed mechanical design is valid for use in a high power target station.

Rennich, Mark J [ORNL; McManamy, Thomas J [ORNL; Graves, Van [Oak Ridge National Laboratory (ORNL); Garmendia, Amaia Zarraoa [IDOM Bilbao; Sorda, Fernando [ESS Bilbao

2010-01-01T23:59:59.000Z

342

Bubble path in the wake of a cavitating propeller  

Science Journals Connector (OSTI)

Propellers that operate underwater at high rpm's cavitate at the tip. The tip cavitation creates air bubbles that are then swept downstream by the motion of the surrounding fluid. In this paper a theory is presented to predict the local velocity and the path of the bubble. The bubble motion is assumed to be governed by a group of terms due to the acceleration of the displaced fluid the convective term and the drag due to the cross?sectional area of the bubble. At very low and very high Reynolds numbers the equations have been solved in closed form. Results are presented for the bubble velocity and path for the following flow fields: (a) uniform axial flow field and (b) uniform flow field with an axially decaying swirling component. In all cases presented the bubble axial velocity component asymptotes to the free stream velocity; the manner in which it asymptotes is exponential at very low Reynolds numbers and algebraic at high Reynolds numbers. Bubble helical paths and velocity patterns are shown for different bubble sizes.

Mauro Picrucci

1988-01-01T23:59:59.000Z

343

Modeling of homogeneous charge compression ignition (HCCI) of methane  

SciTech Connect (OSTI)

The operation of piston engines on a compression ignition cycle using a lean, homogeneous charge has many potential attractive features. These include the potential for extremely low NO{sub x} and particulate emissions while maintaining high thermal efficiency and not requiring the expensive high pressure injection system of the typical modem diesel engine. Using the HCT chemical kinetics code to simulate autoignition of methane-air mixtures, we have explored the ignition timing, burn duration, NO{sub x} production, indicated efficiency and power output of an engine with a compression ratio of 15:1 at 1200 and 2400 rpm. HCT was modified to include the effects of heat transfer. This study used a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by varying the intake equivalence ratio and varying the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both heat and combustion product species. It is accomplished by varying the timing of the exhaust valve closure. Inlet manifold temperature was held constant at 330 Kelvins. Results show that there is a narrow range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO{sub x} levels below 100 ppm.

Smith, J.R.; Aceves, S.M.; Westbrook, C.; Pitz, W.

1997-05-01T23:59:59.000Z

344

REPLACING AN OVERSIZED AND UNDERLOADED ELECTRIC MOTOR  

E-Print Network [OSTI]

This fact sheet will assist in decisions regarding replacement of oversized and underloaded motors. It includes a discussion of how the MotorMaster software can be used to conduct motor replacement analyses. Motors rarely operate at their full-load point. Field tests of 60 motors at four industrial plants indicate that, on average, they operate at 60 % of their rated load. 1 Motors that drive supply or return air fans in heating, ventilation and air-conditioning (HVAC) systems generally operate at 70 % to 75 % of rated load. 2 A persistent myth is that oversized motors, especially motors operating below 50 % of rated load, are not efficient and should be immediately replaced with appropriately sized energy-efficient units. In actuality, several pieces of information are required to complete an accurate assessment of energy savings. They are the load on the motor, the operating efficiency of the motor at that load point, the full-load speed (in revolutions per minute [rpm]) of the motor to be replaced, and the full-load speed of the downsized replacement motor. 3 Motor Load Estimation Techniques Operating efficiency and motor load values must be assumed or based on field measurements and

unknown authors

345

Experimental investigation of the effect of combined hydrogen and diesel combustion on the particulate size distribution from a high speed direct injection diesel engine  

Science Journals Connector (OSTI)

The effects of hydrogen addition and exhaust gas recirculation (EGR) levels on the exhaust particulate matter size distribution in a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4-cylinder, direct injection engine equipped with a modern high-pressure common rail. A nano-Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) was used in this work to study the particulate matter size distribution. All tests were conducted at the set operating point of 1,500 rpm. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was shifted towards the nucleation mode with the addition of hydrogen. The addition of hydrogen increases the emissions of nitrogen oxides (NOx), but reduces the emissions of unburnt hydrocarbons (THC). Conversely, the addition of EGR reduces NOx, but can increase THC. Hydrogen addition increases the peak cylinder pressure and the maximum rate of pressure rise.

L. McWilliam; A. Megaritis

2009-01-01T23:59:59.000Z

346

Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact  

Science Journals Connector (OSTI)

Abstract In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher \\{NOx\\} due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces \\{NOx\\} emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low \\{NOx\\} and soot emissions simultaneously while maintaining high thermal efficiency level.

Zheng Chen; Zhenkuo Wu; Jingping Liu; Chiafon Lee

2014-01-01T23:59:59.000Z

347

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

348

Spring-supported thrust bearings used in hydroelectric generators: Limit ofhydrodynamic lubrication  

Science Journals Connector (OSTI)

The fluid film breakdown in large spring-supported thrust bearings was examined experimentally for low rotor speeds. Under these conditions, the lubrication was hydrodynamic rather than thermohydrodynamic and thus, the limit of hydrodynamic lubrication was sought. A thrust bearing test facility was used to test three bearings with various loads, speeds, and lubricant viscosities. Power loss and oil temperatures were measured and, using elementary theory, these measured quantities were linked to friction and average fluid film thickness in the bearing. A dimensionless performance number was developed and correlated with the coefficient of friction based on the power loss measurements. The breakdown of fluid film lubrication at the limit of hydrodynamic lubrication was established for an average performance number. The accuracy of the experimental findings was explored by comparing the friction and film thickness calculated from the measurements with the predictions of a comprehensive software package. Some general agreement was obtained. The relationship between the lambda ratio and a modified performance number was also examined based on typical surface roughness measurements. Although the procedures developed did not provide a high level of precision, some clear insights were gained into the thrust bearing behaviour at the limit of hydrodynamic lubrication. In particular, a large spring-supported thrust bearing under a typical load with a common lubricant was shown to sustain predominantly hydrodynamic lubrication at rotational speeds as low as 10 rpm.

A.L. Brown; J.B. Medley; J.H. Ferguson

2000-01-01T23:59:59.000Z

349

An investigation of roller burnishing process on tool steel material using CNC lathe  

Science Journals Connector (OSTI)

This paper investigates the surface characteristics of tool steel material in the roller burnishing on CNC lathe. Burnishing is a cold working, surface finishing process in which plastic deformation of surface irregularities takes place by exerting pressure through a hard roller on a surface to generate uniform and work hardened surface. The tool and work piece materials are tungsten carbide (69 HRC) and HCHCr tool steel (35 HRC). The input parameters are burnishing force, speed, feed and the number of passes. The output parameters are surface roughness and surface hardness. The surface roughness has reduced by 127.7% and hardness has improved by 55.5%. The minimum surface roughness obtained in the operating condition of burnishing force of 900 N, feed of 0.1 mm/rev, speed of 600 rpm and fourth number of pass and the value is 0.153 ?m. The empirical model is developed for the surface characteristics and validated using Pearson product moment correlation coefficient.

M.R. Stalin John; B.K. Vinayagam

2011-01-01T23:59:59.000Z

350

A new symbiotic evolution-based fuzzy-neural approach to fault diagnosis of marine propulsion systems  

Science Journals Connector (OSTI)

This paper presents a symbiotic evolution-based fuzzy-neural diagnostic system (SE-FNDS) for fault diagnosis of propeller–shaft marine propulsion systems. The SE-FNDS combination of fuzzy modeling, back-propagation training and symbiotic evolution function auto-generates its own optimal fuzzy-neural architecture, a significant advantage over previous time-consuming manual parameter determination. Four hundred samples from a test propeller–shaft system are taken over a range of 100–500 rpm, during normal and experimentally induced faulty operation. This database is applied as input/output rule generation and training data for the fuzzy-neural network. Comparison of system construction time and diagnostic accuracy is made by applying the same database to SE-FNDS and four traditional systems. Compared to traditional methods, diagnostic decisions from SE-FNDS show 94.17% agreement with real conditions and less CPU time for system construction. Two nonlinear function approximations are also used to demonstrate the proposed system. The presented design is useful as a core module for more advanced computer-assisted diagnostic systems and for direct application in marine propulsion systems.

Hsing-Chia Kuo; Hui-Kuo Chang

2004-01-01T23:59:59.000Z

351

An experimental investigation of high performance natural gas engine with direct injection  

Science Journals Connector (OSTI)

This paper presents experimental results of a new compressed natural gas direct injection (CNG-DI) engine that has been developed from modification of a multi cylinder gasoline port injection (PI) engine. The original gasoline-PI engine was also modified to a CNG bi-fuel system. The test results obtained from CNG fuel using two different systems (i.e. bi-fuel and DI) have been investigated and compared with the original gasoline engine. The objective of this investigation is to compare the test results between CNG-DI, with CNG-BI and gasoline-PI engines with the same displacement volume. It was found that the CNG-DI engine produces similar brake power at 6000 rpm and wide open throttle (WOT) but produces higher brake power at part load condition as compared to the original gasoline. The CNG-BI engine produces 23% lower brake power than the CNG-DI engine. The average brake specific fuel consumption (BSFC) of the CNG-DI engine was 0.28% and 8% lower than gasoline-PI and CNG-BI engines respectively. The CNG-DI engine reduces 42% \\{NOx\\} emission as compared to the base engine. However, the CNG-DI engine produces higher HC and CO emissions as compared to the base engine. This paper discusses a review on the direct injection (DI) natural gas engine with new information along with other investigations.

M.A. Kalam; H.H. Masjuki

2011-01-01T23:59:59.000Z

352

Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing  

Science Journals Connector (OSTI)

The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10?vol.% by mixing a bicomponent mixture of commercial powders (97?mol.% monoclinic zirconia with 3?mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50??m zirconia beads at 4000?rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

Gustavo Suárez; Yoshio Sakka; Tohru S Suzuki; Tetsuo Uchikoshi; Xinwen Zhu; Esteban F Aglietti

2009-01-01T23:59:59.000Z

353

New high-capacity, calcium-based sorbents, calcium silicate sorbents. Final report  

SciTech Connect (OSTI)

A search is being carried out for new calcium-based SO{sub 2} sorbents for induct injection. More specifically, a search is being carried out for induct injection calcium silicate sorbents that are highly cost effective. The current year objectives include the study of sorbents made by hydrating ordinary or Type I portland cement or portland cement clinker (a cement intermediate) under carefully selected conditions. Results of this study show that an excellent portland cement sorbent can be prepared by milling cement at 120{degrees}C at 600 rpm for 15 minutes with MgO-stabilized ZrO{sub 2} beads. They also show that clinker, which is cheaper than cement can be used interchangeably with cement as a starting material. Further, it is clear that while a high surface area may be a desirable property of a good sorbent, it is not a requisite property. Among the hydration reaction variables, milling time is highly important, reaction temperature is important and stirring rate and silicate-to-H{sub 2}O ratio are moderately important. The components of hydrated cement sorbent are various combinations of C-S-H, calcium silicate hydrate:Ca(OH){sub 2};AFm. a phase in hydrated cement.

Kenney, M.E.

1996-02-28T23:59:59.000Z

354

Ultrasound in gas–liquid systems: Effects on solubility and mass transfer  

Science Journals Connector (OSTI)

The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gas–liquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gas–liquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gas–liquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323 K, 1100 rpm, 10 bar, kL · a is multiplied by 11 with ultrasound (20 kHz/62.6 W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

F. Laugier; C. Andriantsiferana; A.M. Wilhelm; H. Delmas

2008-01-01T23:59:59.000Z

355

Design of applicative 100 W Stirling engine  

SciTech Connect (OSTI)

A small 100 W displacer type Stirling engine is being developed under a project of a JSME committee, RC127. The project consists of sixteen Japanese academic researchers of universities and governmental laboratories and eleven enterprise members related to the Stirling field. The engine has very unique features. Its expansion cylinder is heated by combustion gas or solar energy directly, and a simple cooling system rejects heat from the working fluid. A regenerator is built in the displacer piston with heating and cooling tubes in which the working fluid flows from/to outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the tubes for cooling are in the middle of the cylinder. The target performance is a 100 W output with 20% thermal efficiency at the operating conditions of 923 K expansion space temperature, 343 K compression space temperature, and 1,000 rpm. The 100 W displacer engine was designed based on a design manual established by a related JSME committee, RC110. It contains several guides to design for cycle, heat exchanger system, and mechanism of most Stirling cycle machines. The engine was designed by using the fundamental method, the second and third-order analyses accomplished with the newly arranged knowledge about each component. This paper presents the engine specifications and the theoretical analysis results. The design method is also introduced briefly.

Kagawa, Noboru [National Defense Academy, Yokosuka (Japan). Dept. of Applied Physics; Hirata, Koichi; Takeuchi, Makoto [and others

1995-12-31T23:59:59.000Z

356

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

357

The high-speed operation of single phase switched reluctance motor considering magnetic saturation  

Science Journals Connector (OSTI)

In the high-speed operation of SRM the conventional pulse width modulation (PWM) drive method is not available because of the limitation of switching speed; therefore the single-pulse drive method is commonly employed. On the contrary the use of the single-pulse drive method cannot avoid the overcurrent in the low-speed operation because of the insufficient back emf and the difficulty of duty control. With these reasons the switching method is commonly changed from PWM at the low-speed operation to the single-pulse method at the high-speed operation. In the fan application the required load torque increases as a square of the fan speed; it requires more current for the torque generation. Therefore at the mode transition between PWM and single-pulse drive it is unavoidable that the phase current rapidly increases if the nonlinearity of inductance to the current is not considered. In this paper by using finite element method(FEM) which is considered with the nonlinearity of the inductance with respect to the current the speed of mode transition is calculated (18?000 rpm) and verified by the experiment.

JoonSeon Ahn; Sung Hong Won

2006-01-01T23:59:59.000Z

358

Performance evaluation of a 250 kW switched reluctance starter generator  

SciTech Connect (OSTI)

This paper describes the system integration and performance evaluation testing of a high speed, 250 kW starter/generator [S/G] system used for starting and secondary electrical power extraction from an aircraft propulsion gas turbine. The effort described here is part of a contract sponsored by the USAF, Wright Laboratories, WPAFB. The paper describes a switched reluctance [SR] machine which is operating both as a motor and generator in a speed range of 0 to 22,224 rpm. Additionally it is one of the highest rated motor/generator systems in the SR technology. The system employs two independent channels consisting of two groups of three phase windings, two three phase inverters, and two controllers and can provide two different power output buses for independent loading. The system hardware is described briefly followed by a detailed description of the test results. These show some surprises with regards to single channel operating mode. A brief derivation and explanation of the findings is provided. The motor/generator system is planned to be part of a more electric aircraft power system.

Richter, E.; Ferreira, C.

1995-12-31T23:59:59.000Z

359

Technical assessment of an oil-fired residential cogeneration system  

SciTech Connect (OSTI)

The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

McDonald, R.J.

1993-01-01T23:59:59.000Z

360

Evaluation of RME (rapeseed methyl ester) and mineral diesel fuels behaviour in quiescent vessel and EURO 5 engine  

Science Journals Connector (OSTI)

Abstract Alternative diesel fuels for internal combustion engines have grown significantly in interest in the last decade. This is due to the potential benefits in pollutant emissions and particulate matter reduction. Nevertheless at possible increase in nitrogen oxide (NOx), and almost certainly increase of fuel consumption have been observed. In this paper, mineral diesel and RME (rapeseed methyl ester) fuels have been characterized in a non-evaporative spray chamber and in an optically-accessible single-cylinder engine using a Common Rail injector (8 holes, 148° cone opening angle and 480 cc/30s@10 MPa flow number) to measure the spatial fuel distribution, the temporal evolution and the vaporization–combustion processes. The injection process and mixture formation have been investigated at the Urban Driving Cycle ECE R15: 1500 rpm at 0.2 MPa of break mean effective pressure. Characteristic parameters of the spray like penetration length and liquid fuel distribution have been analysed and they have been correlated with the exhaust gaseous and particulate matter emissions. In the spray-analysis in non-evaporative conditions, short events (pilot) are mostly affected by asymmetries in the fuel distributions with noticeable standard deviations at low injected quantities. In the engine tests, the jets reached immediately the stabilization. A comparative analysis on the liquid phase of the spray, in non-evaporative and evaporative conditions, has permitted to investigate better the mixture formation. Its effect on pollutant emissions has been analysed for both fuels.

Luigi Allocca; Ezio Mancaruso; Alessandro Montanaro; Luigi Sequino; Bianca Maria Vaglieco

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chapter 14 - Ship Trials: Endurance and fuel consumption  

Science Journals Connector (OSTI)

Publisher Summary This chapter is designed to discuss endurance and fuel consumption. In endurance and fuel consumption trials, the vessel is run at Maximum Continuous Rating (MCR) power for a fixed duration, say 6-24 hours. During this period of time, the following information is measured and recorded: fuel consumption in kg/kW hour, propeller and engine rpm, indicated power (Pi) within the engine room, feed water used, and engine oil pressures and temperatures. There are certain factors that the engine room staff need to take care of. On making a group of runs at a given speed, the original engine settings used when first approaching the measured distance should be rigorously maintained throughout the group. When a controllable-pitch propeller is fitted, the pitch settings used when first approaching the measured mile should be left unaltered throughout the group of runs. By fitting diesel machinery in a ship of similar power, displacement, and speed, a saving of about 10% in the daily fuel consumption can be achieved. The differences in the cost of fuel/tonne must be taken into account plus the size of the machinery arrangement installed in the ship.

C.B. Barrass

2004-01-01T23:59:59.000Z

362

Experimental design on marine exhaust emissions. Final report  

SciTech Connect (OSTI)

Important variables in the operation of internal combustion engines were identified, and statistically-designed experiments were developed to evaluate the multivariate interactions for both diesel and spark ignition engines. For the lab engines: the diesel design included use of dual fuels (natural gas in diesel fuel); the spark ignition engine included the use of propane as well as gasoline. Experiments conducted on the diesel engine showed reduced exhaust emissions at high levels of natural gas (80%), but only at reduced compression ratios. Still another design was developed for shipboard testing using portable emissions equipment. This design was applied to three 82` CG Cutters (WPBs) and their emissions measured according to ISO 8178 protocol. The results showed no significant difference based on depth between 30 and 120 feet. Carbon monoxide was reduced with increased engine load (e.g., higher speed, or towing), whereas the NOx output was fairly constant for a given shaft rpm. The NOx value levels off at about 10 g/kW-hr or 25 kg/tonne fuel; CO at about 2 g/kW-hr or 6 kg/tonne of fuel.

Goodwin, M.J.

1995-01-01T23:59:59.000Z

363

Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint  

SciTech Connect (OSTI)

Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

2014-05-01T23:59:59.000Z

364

Improvement in surface fatigue life of hardened gears by high-intensity shot peening  

SciTech Connect (OSTI)

Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

Townsend, D.P.

1992-01-01T23:59:59.000Z

365

The effect of TDC temperature and density on the liquid-phase fuel penetration in a D.I. Diesel engine  

SciTech Connect (OSTI)

A parametric study of the liquid-phase fuel penetration of evaporating Diesel fuel jets has been conducted in a directinjection Diesel engine using laser elastic-scatter imaging. The experiments were conducted in an optically accessible Diesel engine of the ``heavy-duty`` size class at a representative medium speed (1200 rpm) operating condition. The density and temperature at TDC were varied systematically by adjusting the intake temperature and pressure. At all operating conditions the measurements show that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum length. Then, the liquid-fuel penetration length remains fairly constant although fuel injection continues. At a TDC density of 16.6 kg/m{sup 3} and a temperature of about 1000 K the maximum penetration length is approximately 23 mm. However, it varies significantly as TDC conditions are changed, with the liquid-length being less at higher temperatures and at higher densities. The corresponding apparent heat release rate plots are presented and the results of the liquid-phase fuel penetration are discussed with respect to the ignition delay and premixed bum fraction.

Espey, C. [Daimler-Benz AG, Stuttgart (Germany); Dec, J.E. [Sandia National Labs., Albuquerque, NM (United States)

1995-12-01T23:59:59.000Z

366

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

367

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

368

Joint strength in high speed friction stir spot welded DP 980 steel  

SciTech Connect (OSTI)

High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

2014-05-01T23:59:59.000Z

369

Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219  

SciTech Connect (OSTI)

Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium ? precipitates from the base metal ?? precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (? 1 ?m) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable ?? in the base metal transforms to equilibrium ? in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

2013-08-15T23:59:59.000Z

370

Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a  

Science Journals Connector (OSTI)

An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower evaporator condenser radiators electric motor which acts as a vehicle engine and then the electric motor will operate the compressor using a belt and pulley system as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000 1500 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0 500 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

Azhar Abdul Aziz

2012-01-01T23:59:59.000Z

371

Design and testing of a four-pole superconducting motor stator  

SciTech Connect (OSTI)

A four-pole, dc superconducting stator for a novel axial-gap superconducting motor has been designed and fabricated for the Superconducting Motor Research Facility at Oak Ridge National Laboratory. The four solenoidal coils are mounted in a heavy aluminum plate in a square array with alternating polarity. The coils are wound with monolithic multifilamentary NbTi conductor and produce a maximum field at the conductor of 7 T with a current of 2800 A. The windings are immersed in liquid helium (LHe) in a close-fitting rectangular case that surrounds the coil array. A liquid-nitrogen-cooled copper radiation shield and vacuum case insulate the cold mass, which is supported off the top and bottom plates of the vacuum case by four lengths of stainless steel pipe. The stator has been installed in the motor test stand and cooled down to LHe temperatures several times. Currents up to 2000 A have been applied so far with the motor operating at speeds up to 600 rpm and several horsepower, with no evidence of magnet instability. 4 refs., 3 figs., 2 tabs.

Schwenterly, S.W.; Luton, J.N.; Lue, J.W.; Kenney, W.J.; Lubell, M.S.

1991-01-01T23:59:59.000Z

372

Environmental wear testing of nonmetallic materials for compressor applications  

SciTech Connect (OSTI)

A full-size prototypical test facility was designed and built to test nonmetallic materials in support of reciprocating compressor applications. Conventional test rigs utilize a pin- or ring-on-disk configuration to produce wear data in rotary motion under relatively low applied loads. In contrast, the subject test facility is constructed around a 9-inch (23-cm) stroke compressor frame. The test specimen and counterface configurations are similar to compressor packing rings and piston rods, respectively, and specimens are spring-loaded to variable levels encompassing actual compressor conditions. Testing to date has been performed at 500 rpm, 200 F (93 C), and three different load levels [65, 130 and 195 psi (450, 900 and 1,350 kPa)]. Material wear rate in air versus specimen pressure reveals a linear relationship with a slope of approximately 0.12 mils/day/psi (0.44 {micro}m/day/kPa). The wear performance of six different materials has been ranked in air. Future testing will focus on creating a database for material wear rates in air and nitrogen.

Parrington, R.J.; Hinchliff, E.M.

1999-07-01T23:59:59.000Z

373

Development of ultrananocrystalline diamond (UNCD) coatings for multipurpose mechanical pump seals.  

SciTech Connect (OSTI)

The reliability and performance of silicon carbide (SiC) shaft seals on multipurpose mechanical pumps are improved by applying a protective coating of ultrananocrystalline diamond (UNCD). UNCD exhibits extreme hardness (97 GPa), low friction (0.1 in air) and outstanding chemical resistance. Consequently, the application of UNCD coatings to multipurpose mechanical pump seals can reduce frictional energy losses and eliminate the downtime and hazardous emissions from seal failure and leakage. In this study, UNCD films were prepared by microwave plasma chemical vapor deposition utilizing an argon/methane gas mixture. Prior to coating, the SiC seals were subjected to mechanical polishing using different grades of micron-sized diamond powder to produce different starting surfaces with well-controlled surface roughnesses. Following this roughening process, the seals were seeded by mechanical abrasion with diamond nanopowder, and subsequently coated with UNCD. The coated seals were subjected to dynamic wear testing performed at 3600 RPM and 100 psi for up to 10 days during which the seals were periodically removed and inspected. The UNCD-coated seals were examined using Raman microanalysis, scanning electron microscopy, optical profilometry, and adhesion testing before and after the wear testing. These analyses revealed that delamination of the UNCD films was prevented when the initial SiC seal surface had an initial roughness >0.1 {micro}m. In addition, the UNCD surfaces showed no measurable wear as compared to approximately 0.2 {micro}m of wear for the untreated SiC surfaces.

Kovalchenko, A. M.; Elam, J. W.; Erdemir, A.; Carlisle, J. A.; Auciello, O.; Libera, J. A.; Pellin, M. J.; Gruen, D. M.; Hryn, J. N. (Materials Science Division); (Georgia Inst. of Tech.)

2011-01-01T23:59:59.000Z

374

Investigation and Optimization of Biodiesel Chemistry for HCCI Combustion  

SciTech Connect (OSTI)

Over the past 5 years, ORNL has run 95 diesel range fuels in homogene-ous charge compression ignition (HCCI), including 40 bio-diesels and associated diesel fuels in their blending. The bio-diesel blends varied in oxygen content, iodine number, cetane, boiling point distribution, chemical composition, and some contained nitrogen. All fuels were run in an HCCI engine at 1800 rpm, in the power range of 2.5 to 4.5 bar IMEP, using intake air heating for combustion phasing control, and at a compression ratio of 10.6. The engine response to fuel variables has been analyzed statistically. Generally, the engine responded well to fuels with lower nitrogen and oxygen, lower cetane, and lower aromatics. Because of the wide range of fuels combined in the model, it provides only a broad overview of the engine response. It is recommended that data be truncated and re-modeled to obtain finer resolution of engine response to particular fuel variables.

Bunting, Bruce G. [ORNL; Bunce, Michael [ORNL; Joyce, Blake [ORNL; Crawford, Robert W. [Rincon Ranch Consulting

2014-06-23T23:59:59.000Z

375

Impact of fuel and injection system on particle emissions from a GDI engine  

Science Journals Connector (OSTI)

Abstract In recent years, particulate emissions from the gasoline direct injection (GDI) engine, especially the ultrafine particulates, have become a subject of concern. In this study, the impact of fuel (gasoline versus ethanol) and injection system (injection pressure and injector condition) on particle emissions was investigated in a single cylinder spray-guided GDI research engine, under the operating conditions of stoichiometric air/fuel ratio, 1500 rpm engine speed and 3.5–8.5 bar IMEP. The results show that, in a spray guided GDI engine, ethanol combustion yields much lower particle mass (PM) but higher particle number (PN) emissions, compared to gasoline. Depending on the fuel used, the PM and PN emissions respond differently to injection pressure and injector condition. For gasoline, the injection system has a significant impact on the PM and PN emissions. High injection pressure and clean injector condition are both essential for low particle emissions. Compared to gasoline, the particle emissions from ethanol combustion is less sensitive to the injection system, due to its higher volatility and diffusive combustion which produces less soot. Furthermore, a PM and PN trade-off was observed when using gasoline and ethanol, and when using high injection pressures.

Chongming Wang; Hongming Xu; Jose Martin Herreros; Jianxin Wang; Roger Cracknell

2014-01-01T23:59:59.000Z

376

Experimental study on combustion and emissions performance of a hybrid syngas–gasoline engine  

Science Journals Connector (OSTI)

The effect of syngas addition on the performance of a 1.6 L gasoline engine at lean condition was investigated in the paper. The syngas which produced by the onboard ethanol catalytic decomposition was mainly composed of hydrogen and carbon monoxide. A tube array reforming reactor was mounted on the engine tailpipe to produce syngas. During the test, the engine was run at 1800 rpm and a manifolds absolute pressure of 61.5 kPa. The spark timing for the maximum brake torque was adopted for all tests. The engine spark timing, injection timing and duration of the gasoline were controlled by a hybrid electronic control unit communicated with the engine original electronic control unit. The syngas volume fraction in the total intake gas was gradually increased from 0% to 1.84%. The gasoline flow rate was decreased to ensure that the global excess air ratio of the fuel–air mixture in cylinder at about 1.20. The test results confirmed that the syngas addition helped improve the indicated thermal efficiency and shorten the combustion duration. HC, \\{NOx\\} emissions and particle total number per cubic centimeter were reduced after the syngas addition at lean condition.

Changwei Ji; Xiaoxu Dai; Shuofeng Wang; Chen Liang; Bingjie Ju; Xiaolong Liu

2013-01-01T23:59:59.000Z

377

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect (OSTI)

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

378

Particle size distributions from heavy-duty diesel engine operated on low-sulfur marine fuel  

Science Journals Connector (OSTI)

Particulate matter (PM) emission characteristics of a four-stroke diesel engine were investigated while operating on low-sulfur marine gas oil. PM size distributions appeared to be unimodal (accumulation mode) with fairly constant count median diameter (CMD) of 55–65 nm for all test modes at maximum engine speed. The slightly bigger CMD of around 76 nm for unimodal particle size distributions at 1080 rpm at medium- and high-load conditions was observed. The bimodal size distribution was registered only at very low load with nuclei CMD being below 15 nm, accumulation CMD of around 82 nm and percentage of nanoparticles of around 65%. The study of primary dilution air temperature (PDT) effect revealed a significant reduction in total particle number for all operating conditions when PDT was increased from 30 °C to 400 °C. This also had an effect on particle CMD values and is believed to be due to evaporation of sulfuric acid with bound water and certain organic fractions that were formed during dilution process (at PDT = 30 °C). At very low load intermediate speed conditions, the heating of dilution air had a very little effect on the nucleation mode, which could suggest that it primarily consists of heavy hydrocarbons associated with lubrication oil.

Sergey Ushakov; Harald Valland; Jørgen B. Nielsen; Erik Hennie

2013-01-01T23:59:59.000Z

379

An electrochemical model for prediction of CO{sub 2} corrosion  

SciTech Connect (OSTI)

A predictive model of CO{sub 2} corrosion, based on modelling of individual electrochemical reactions occurring in a water CO{sub 2} system, is presented. The model takes into account the following electrochemical reactions: hydrogen ion reduction, carbonic acid reduction, direct water reduction, oxygen reduction and anodic dissolution of iron. The required electrochemical parameters in the model such as: exchange current densities and Tafel slopes for different reactions are determined from experiments conducted in glass cells. In those experiments the corrosion process was monitored with the following electrochemical measuring techniques: polarization resistance, potentiodynamic sweep, electrochemical impedance in addition to weight loss measurements. The model has been calibrated for two different mild steels over a wide range of parameters: t = 20--80C, pH 3--6, p(CO{sub 2})= 0--1 bar, {omega} = 0--5,000 rpm. In its present stage of development the model applies for the case of uniform corrosion with no protective films present. Performance of the model is validated by comparing the predictions with results from independent loop experiments. The predictions made with the present model were also compared with performance of other CO{sub 2} corrosion prediction models. Compared to the previous largely empirical models, the present model gives a much clearer picture of the corrosion mechanisms and of the effect of key parameters.

Nesic, S.; Postlethwaite, J. [Inst. for Energiteknikk, Kjeller (Norway); Olsen, S. [Statoil, Trondheim (Norway)

1995-10-01T23:59:59.000Z

380

Electrochemical properties of iron dissolution in the presence of CO{sub 2} -- Basics revisited  

SciTech Connect (OSTI)

In order to shed more light on the anodic reaction mechanism in CO{sub 2} corrosion of mild steel, two different kinds of electrochemical measurements were used: potentiodynamic sweep and galvanostatic measurements. Experiments were conducted in a glass cell at room temperature (T = 22 {+-} 1 C), different CO{sub 2} partial pressures (0--1 bar), over a broad pH range (2--7) using a rotating cylinder at 4,000 rpm. Distinct and different anodic mechanisms were observed for pH < 4 and for pH > 5. In the intermediate area there seems to be a transition from one mechanism to another. New orders of reaction and Tafel slopes were extracted, very different from what was previously assumed. A coherent ensemble of mechanisms was proposed for the anodic reaction which is consistent with the experimental results. Consequences of the present findings for the CO{sub 2} corrosion area are discussed. For example, in the case of undissolved iron carbide layers, it is no longer possible to discriminate the roles of galvanic coupling and internal acidification.

Nesic, S.; Thevenot, N. [Inst. for Energiteknikk, Kjeller (Norway); Crolet, J.L. [Elf Aquitaine, Pau (France); Drazic, D.M. [Univ. of Belgrade (Yugoslavia). Faculty of Technology and Metallurgy

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microturbines  

Broader source: Energy.gov [DOE]

Microturbines are small combustion turbines, approximately the size of a refrigerator, with outputs of 25-500 kilowatt (kW). They evolved from automotive and truck turbochargers, auxiliary power units for airplanes, and small jet engines and are composed of a compressor, a combustor, a turbine, an alternator, a recuperator, and a generator. Microturbines offer a number of potential advantages over other technologies for small-scale power generation. These include their small number of moving parts, compact size, light weight, greater efficiency, lower emissions, lower electricity costs, and ability to use waste fuels. They can be located on sites with space limitations for the production of power, and waste heat recovery can be used to achieve efficiencies of more than 80%. Turbines are classified by the physical arrangement of their component parts: single-shaft or two-shaft, simple-cycle or recuperated, inter-cooled, and reheat. The machines generally rotate more than 40,000 rotations per minute (rpm). Bearing selection, whether the manufacturer uses oil or air, is dependent on use. Single-shaft is the more common design because it is simpler and less expensive to build. Conversely, the split shaft is necessary for machine drive applications because it does not require an inverter to change the frequency of the AC power.

382

Dynamic pressure as a measure of gas turbine engine (GTE) performance  

Science Journals Connector (OSTI)

Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without.

G Rinaldi; I Stiharu; M Packirisamy; V Nerguizian; R Jr Landry; J-P Raskin

2010-01-01T23:59:59.000Z

383

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

384

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

385

Solids Accumulation Scouting Studies  

SciTech Connect (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

386

Development of a High Pressure/High Temperature Down-hole Turbine Generator  

SciTech Connect (OSTI)

As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

Ben Plamp

2008-06-30T23:59:59.000Z

387

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling  

SciTech Connect (OSTI)

Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

Hamrick, Todd

2011-05-25T23:59:59.000Z

388

Detection of embedded radiation sources using temporal variation of gamma spectral data.  

SciTech Connect (OSTI)

Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the isotopes present in a measurement. For low energy resolution detectors, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the isotopes present in the measurement. When many isotopes are present it is difficult to make the correct identification and this process often requires many trial solutions by highly skilled spectroscopists. This report investigates the potential of a new analysis method which uses spatial/temporal information from multiple low energy resolution measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other isotopes present. This method is referred to as targeted principal component analysis (TPCA). For radiation portal monitor applications, multiple measurements of gamma spectra are taken at equally spaced time increments as a vehicle passes through the portal and the TPCA method is directly applicable to this type of measurement. In this report we describe the method and investigate its application to the problem of detection of a radioactive localized source that is embedded in a distributed source in the presence of an ambient background. Examples using simulated spectral measurements indicate that this method works very well and has the potential for automated analysis for RPM applications. This method is also expected to work well for isotopic detection in the presence of spectrally and spatially varying backgrounds as a result of vehicle-induced background suppression. Further work is needed to include effects of shielding, to understand detection limits, setting of thresholds, and to estimate false positive probability.

Shokair, Isaac R.

2011-09-01T23:59:59.000Z

389

Experimental Analysis and Feasibility Study of 1400 CC Diesel Engine Car Converted into Hybrid Electric Vehicle by Using BLDC Hub Motors  

Science Journals Connector (OSTI)

Abstract New generation HEV (hybrid electric vehicles) are targeting for reducing exhaust gas pollution by operating in EV (electric vehicle) mode during the stop and go movement in thick traffic conditions at low engine rpm, but run on ICE (Internal Combustion engine) mode at cruising speed on highways. While new Hybrid car concepts are being developed internationally, existing Gasoline and Diesel powered conventional ICE vehicles will be guzzling unwanted pollutants for rest of their life, adding to the menace of global warming. To address the need for conservation of fuel and reducing production of harmful pollutants by millions of cars driven world over, an experimental research work was carried out in the field of conversion of existing diesel or petrol cars in to HEV. Main objective of the research is to reduce consumption of fossil fuel, for preserving it for future generation. An existing 1400 CC Diesel car converted in to experimental HEV prototype has been tested in EV mode at reasonably steady speed on highway and conventional ICE mode, to measure the consumption of fuel to derive the optimum performance benefits. Test results show marked improvement in fuel consumption, when driven in EV mode (for distance covered with single charge) against ICE mode. Amount of fuel saving achieved by proposed HEV methodology deployed for conversion of existing vehicles contributes in equivalent reduction in total quantity of harmful exhaust emission pollutants. The conversion process has been simplified, for implementation on existing cars and new model design of cars with engine capacity higher or lower than 1400 cc.

Sudhir Gupte

2014-01-01T23:59:59.000Z

390

Effect of different percentages of biodiesel–diesel blends on injection, spray, combustion, performance, and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

Abstract A comparative study of effect of different biodiesel–diesel blends (B5, B10, B15, B20, B25, B50 and B100) on injection, spray, combustion, performance, and emissions of a direct injection diesel engine at constant speed (1500 rpm) was carried out. The penetration distance increased with increase in percentage of biodiesel in diesel due to enhanced in-line fuel pressure. The simulation results indicate the spray penetration with biodiesel–diesel blend up to B15 does not lead to wall impingement but B20 is to be a critical limit of wall impingement (within uncertainty ±1.3%). However, it is observed clearly from the simulation results that probability of wall impingement is more with higher blends (B25, B50 and B100). The ignition delay period decreased with all biodiesel blends due to higher cetane number resulting in less rate of pressure rise and the smooth engine running operation. The engine torque does not change significantly with biodiesel–diesel blends up to 20% (B20). However, the torque reduction is about 2.7% with B100 at the rated load. Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel–diesel blends. However, oxides of nitrogen (NOx) emission increased in the range of 1.4–22.8% with all biodiesel–diesel blends at rated load due to oxygenated fuel, automatic advance in dynamic injection timing (DIT), higher penetration and higher in-cylinder temperature. A notable conclusion emerged from this study is the optimum biodiesel–diesel blend based on no wall impingement (B15: 0% and B20 ±1.3% uncertainty limit) and increase in \\{NOx\\} emission (B15: 4.1% and B20: 15.6%) in a conventional (unmodified) diesel engine is up to B15.

Subhash Lahane; K.A. Subramanian

2015-01-01T23:59:59.000Z

391

Arabelle: The most powerful steam turbine in the world  

SciTech Connect (OSTI)

On the 30th of August 1996 at the CHOOZ power station in the Ardennes, the first 1,500 MW turbine was started up under nuclear steam and connected to the grid. It will reach full power in the spring of 1997, followed shortly afterwards by a second identical machine. This turbine, known as ARABELLE, is currently the most powerful in the world, with a single line rotating at 1,500 rpm. It has been entirely designed, manufactured and installed by the teams of GEC ALSTHOM, within the framework of the Electricite de France N4 PWR program. It represents a new type of nuclear turbine, the fruit of much research and development work which started in the 1980s. It benefits from GEC ALSTHOM's considerable experience in the field of nuclear turbines: 143 machines with a total power output of 100,000 MW and more than ten million hours of operation. It should be remembered that the first 1,000 MW unit for a PWR plant was connected at Fessenheim in 1977, and since then the different EDF plants have been equipped with 58 GEC ALSTHOM turbines, ranging from 1,000 MW to 1,350 MW, this providing the company with a vast amount of information. The process which led to a new design for ARABELLE was based on: Feedback of service experience from previous machines; this provides precious learning material with a view to improving the performance of operating equipment. Research and development work resulting in significant technical advances which could then be integrated into the design of a new generation of turbines. Taking account of the major concerns of the customer-user: Electricite de France (EDF): Improved reliability and operating availability, increased efficiency, reduced investment and maintenance costs.

Lamarque, F.; Deloroix, V.

1998-07-01T23:59:59.000Z

392

Accuracy and Consistency of Respiratory Gating in Abdominal Cancer Patients  

SciTech Connect (OSTI)

Purpose: To evaluate respiratory gating accuracy and intrafractional consistency for abdominal cancer patients treated with respiratory gated treatment on a regular linear accelerator system. Methods and Materials: Twelve abdominal patients implanted with fiducials were treated with amplitude-based respiratory-gated radiation therapy. On the basis of daily orthogonal fluoroscopy, the operator readjusted the couch position and gating window such that the fiducial was within a setup margin (fiducial-planning target volume [f-PTV]) when RPM indicated “beam-ON.” Fifty-five pre- and post-treatment fluoroscopic movie pairs with synchronized respiratory gating signal were recorded. Fiducial motion traces were extracted from the fluoroscopic movies using a template matching algorithm and correlated with f-PTV by registering the digitally reconstructed radiographs with the fluoroscopic movies. Treatment was determined to be “accurate” if 50% of the fiducial area stayed within f-PTV while beam-ON. For movie pairs that lost gating accuracy, a MATLAB program was used to assess whether the gating window was optimized, the external-internal correlation (EIC) changed, or the patient moved between movies. A series of safety margins from 0.5 mm to 3 mm was added to f-PTV for reassessing gating accuracy. Results: A decrease in gating accuracy was observed in 44% of movie pairs from daily fluoroscopic movies of 12 abdominal patients. Three main causes for inaccurate gating were identified as change of global EIC over time (?43%), suboptimal gating setup (?37%), and imperfect EIC within movie (?13%). Conclusions: Inconsistent respiratory gating accuracy may occur within 1 treatment session even with a daily adjusted gating window. To improve or maintain gating accuracy during treatment, we suggest using at least a 2.5-mm safety margin to account for gating and setup uncertainties.

Ge, Jiajia; Santanam, Lakshmi; Yang, Deshan [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)] [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

2013-03-01T23:59:59.000Z

393

An investigation of diesel–ignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of diesel–ignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20 bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500 rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for diesel–ignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20 bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10 bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

394

Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine  

Science Journals Connector (OSTI)

Abstract Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves \\{CRs\\} of 12, 14 and 16 and 10 \\{AFERs\\} between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR, AFER and CNG fuel used.

A. Javaheri; V. Esfahanian; A. Salavati-Zadeh; M. Darzi

2014-01-01T23:59:59.000Z

395

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

396

Thermodynamic restrictions on mechanosynthesis of strontium titanate  

SciTech Connect (OSTI)

Chemical potential phase stability diagrams were calculated from relevant thermodynamic properties and used to predict the thermodynamic driving force under prospective conditions of room temperature mechanosynthesis. One analysed the dependence of chemical potential diagrams on temperature and partial pressure of evolving gases such as oxygen or carbon dioxide, as expected on using strontium peroxide or strontium carbonate as precursor reactants for the alkali earth component. Thermodynamic calculations were also obtained for changes in titania precursor reactants, including thermodynamic predictions for reactivity of strontium carbonate with amorphous titania. Experimental evidence showed that strontium titanate can be obtained by mechanosynthesis of strontium carbonate+anatase mixtures, due to previous amorphization under high energy milling. Ability to perform mechanosynthesis with less energetic milling depends on the suitable choice of alternative precursor reactants, which meet the thermodynamic requirements without previous amorphization; this was demonstrated by mechanosynthesis from anatase+strontium peroxide mixtures. - Graphical abstract: X-Ray diffractograms of the starting TiO{sub 2} (anatase)+SrCO{sub 3} mixture and after mechanical activation at 650 rpm, for 1, 2, and 7 h. Different symbols are used to identify reflections ascribed to anatase (diamonds), SrCO{sub 3} (squares) and SrTiO{sub 3} (triangles). Highlights: Black-Right-Pointing-Pointer Prediction of thermodynamic driving force for room temperature mechanosynthesis. Black-Right-Pointing-Pointer Dependence of chemical potential diagrams on temperature and partial pressure. Black-Right-Pointing-Pointer Thermodynamic calculations for changes in titania precursor. Black-Right-Pointing-Pointer Experimental support for thermodynamic predictions.

Monteiro, J.F. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Ferreira, A.A.L. [Instituto Politecnico de Viana do Castelo, 4900-347 Viana do Castelo (Portugal); Antunes, I. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Fagg, D.P., E-mail: duncan@ua.pt [Centro de Tecnologia Mecanica e Automacao, Departamento de Engenharia Mecanica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Frade, J.R. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

2012-01-15T23:59:59.000Z

397

Analysis of HFIR pressurizer pump overspeed transients and relief valve performance  

SciTech Connect (OSTI)

The pressurizer pump overspeed transients at the High Flux Isotope Reactor (HFIR) fall in the category of {open_quotes}increase in coolant inventory transients.{close_quotes} They are among the accident transients to be performed for Chapter 15 of the HFIR safety analysis report (SAR). The pressurizer pump speed starting to increase inadvertently to reach its maximum speed of 3,560 rpm while the reactor operates under normal conditions is the cause of this transient. Increased primary coolant system pressure due to increased pressurizer pump flow into the primary coolant head tank challenges the relief valves to open. If the relief valves do not open, increased primary coolant system pressure will challenge the integrity of the high pressure boundary. Two sets of analyses were performed to analyze the pressurizer pump overspeed transients. The purpose of the first analysis is to estimate how long it will take for the relief valves to open under different conditions and whether or not they will chatter or flutter for a considerable amount of time. The analysis estimates relief valve performance and stability using four different relief valve subsystem models. The relief valve subsystem models are not attached to the primary coolant system model. Vigorous pressure oscillations were produced in all of the computations performed as part of the first analysis. The second analysis includes new simulations of the pressurizer pump overspeed transients that were previously simulated using the RELAP5 thermal-hydraulic computer code. The HFIRSYS, High Flux Isotope Reactor System Transient Analysis computer code, was utilized for these simulations providing referable results for comparisons. The increased pressurizer pump flow due to runaway pressurizer pump speed pressurizes the primary coolant system. The assumptions were made in such a way to form constraining conditions at initiation of and during the transients to generate as high an overpressure situation as possible.

Sozer, M.C.

1992-09-11T23:59:59.000Z

398

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

399

Studies on the in situ electrooxidation and selective permeation of cerium(IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter  

SciTech Connect (OSTI)

The results of experiments carried out to develop a liquid membrane (LM) technique for the extractive permeation of cerium from nitric acid solutions are described. In-situ electrooxidation of Ce{sup 3+} to extractable Ce{sup 4+} and its transport across bulk LM (BLM) composed of tri-n-butyl phosphate (TBP)/dodecane mixtures was systematically studied under varied hydrodynamical and chemical conditions. The permeability of metal ions across the BLM was dependent on the efficiency of extraction, ionic activity of feed solutions, stirring rate, composition of the receiving phase, etc. The transport rates were found to vary linearly (a log-log correlation) with the cation concentration in feed solutions and concentration of TBP in BLM. A permeation velocity equation for cerium ion through the membrane has been proposed. More than 90% permeation of Ce with a maximum flux of 8.63 x 10{sup {minus}5} mol/m{sup 2}/s could be accomplished under the experimental conditions: stirring rates at feed and strip solutions were 380 and 300 rpm, respectively; feed was 1 mol/dm{sup 3} of HNO{sub 3} containing 0.005 mol/dm{sup 3} Ce(NO{sub 3}){sub 3}; LM contained 30% TBP/dodecane; and the receiving phase was distilled water. Radiochemically pure Ce-144 was partitioned from the Ce-Am mixture obtained by extraction chromatographic fractioning of high level radioactive waste. This also resulted in the purification of Am-241 in the feed solution with a decontamination factor of {approximately} 12 from Ce.

Kedari, C.S.; Pandit, S.S.; Ramanujam, A. [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.] [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.

1999-06-01T23:59:59.000Z

400

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

402

Combustion behaviour of a heavy duty common rail marine Diesel engine fumigated with propane  

Science Journals Connector (OSTI)

This paper presents results from the testing of a heavy duty common rail marine Diesel engine with electronically controlled two stage liquid fuel injection, operating under load on a test bench with propane mixed into the inlet air at various rates. Results are presented for a range of engine loads, with brake mean effective pressure up to 22 bar at 1800 rpm. The electronic engine control unit is not modified and allowed to respond to the addition of propane according to its inbuilt map. This results in retarded injection timing with increased propane addition at some test points. At each test point, constant engine speed and brake torque are maintained for various rates of propane addition. Cylinder pressure and the injector activation voltage are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. At high rates of propane addition very high pressure rise rates and severe knock are measured. At the high brake mean effective pressure conditions tested, knock limits propane supply rates to less than 20% by energy. Small increases in thermal efficiency are indicated with moderate rates of propane addition. Exhaust emissions of NOx, CO, HC and smoke are measured. CO, HC and smoke emissions increase significantly with increasing propane addition. For high propane supply rates, two distinct peaks in heat release rate are measured. Analysis is made of the flammability of the propane–air mixtures at the elevated temperatures at the end of the compression stroke, using the modified Burgess–Wheeler Law. At propane supply rates greater than 25%, the propane–air mixture is flammable in its own right at compression temperature. The apparent heat release rate, fuel injection timing and flammability data allow analysis of the mechanism of the combustion process with propane fumigation.

L. Goldsworthy

2012-01-01T23:59:59.000Z

403

US Coast Guard/US Maritime Administration Cooperative Research on marine engine exhaust emissions. Marine exhaust emissions measurement of the M/V Kings Pointer. Final report  

SciTech Connect (OSTI)

This report presents the results of emissions testing conducted on board the M/V KINGS POINTER in May 1995. The objective of this testing was to conduct baseline instrumentation, monitoring, and evaluation of the engine exhaust emissions as part of joint U.S. Coast Guard/Maritime Administration cooperative research on controlling air pollution from ships. The U.S. Coast Guard`s interest in emissions testing arises from both its desire to meet all federal and state air quality regulations and the fact that in the future it may be called upon to enforce regulations in the marine environment. The U.S. Maritime Administration`s interest in this and related research is based on its efforts to assure that its vessels and those of the privately-owned U.S. Flag Merchant Marine can comply with future air pollution control requirements. Underway tests were conducted of the 224-foot M/V KINGS POINTER in which two of its four diesel-electric generators were sampled for NO, NO2, CO, and SO2 in the exhaust. Additional data on fuel flow and power output were collected at five speeds over the full range of vessel operating ranges. NOx values were calculated and compared with standards proposed by the Environmental Protection Agency (EPA) and the International Maritime Organization (IMO). Results showed that average NOx values were 9.4 g/kWh which is slightly below the 10.9 g/kWh upper limit or cap that is being proposed by the IMO for a diesel engine with a rated speed of 1200 RPM. Additional conclusions and recommendations on the technique of portable emissions monitoring instrumentation are made.

Allen, S.J.; Bentz, A.P.

1996-07-01T23:59:59.000Z

404

Formation of solar cells based on Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) ferroelectric thick film  

SciTech Connect (OSTI)

Growth of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) 1 M thick films are conducted with variation of annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours at a constant temperature of 850 °C on p-type Si (100) substrate using sol-gel method then followed by spin coating process at 3000 rpm for 30 seconds. The BST thick film electrical conductivity is obtained to be 10{sup ?5} to 10{sup ?4} S/cm indicate that the BST thick film is classified as semiconductor material. The semiconductor energy band gap value of BST thick film based on annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours are 2.58 eV, 3.15 eV, 3.2 eV and 2.62 eV, respectively. The I-V photovoltaic characterization shows that the BST thick film is potentially solar cell device, and in accordance to annealing hold time of 8 hours, 15 hours, 22 hours and 29 hours have respective solar cell energy conversion efficiencies of 0.343%, 0.399%, 0.469% and 0.374%, respectively. Optical spectroscopy shows that BST thick film solar cells with annealing hold time of 8 hours, 15 hours, and 22 hours absorb effectively light energy at wavelength of ? 700 nm. BST film samples with annealing hold time of 29 hours absorb effectively light energy at wavelength of ? 700 nm. The BST thick film refraction index is between 1.1 to 1.8 at light wavelength between ±370 to 870 nm.

Irzaman,, E-mail: irzaman@yahoo.com; Syafutra, H., E-mail: irzaman@yahoo.com; Arif, A., E-mail: irzaman@yahoo.com; Alatas, H., E-mail: irzaman@yahoo.com [Department of Physics, FMIPA Bogor Agricultural Unversity, Campus Darmaga Gedung Wing S Bogor (Indonesia); Hilaluddin, M. N.; Kurniawan, A.; Iskandar, J.; Dahrul, M.; Ismangil, A.; Yosman, D.; Aminullah [Department of Biophysics, FMIPA Bogor Agricultural Unversity (Indonesia); Prasetyo, L. B. [Department of Forest Resources Conservation, FAHUTAN, Bogor Agricultural Unversity, Campus Darmaga Bogor (Indonesia); Yusuf, A.; Kadri, T. M. [LAPAN Rancabungur Ciampea Bogor (Indonesia)

2014-02-24T23:59:59.000Z

405

Development and Characterization of Hard and Wear Resistant MMC Coating on Ti-6Al-4V Substrate by Laser Cladding  

Science Journals Connector (OSTI)

Abstract Ti-6Al-4V, due to its high specific strength and resistance to corrosion, is one of the highly useful materials in aerospace, automobile and chemical industries. Poor hardness and wear resistance properties restrict its further applications. So surface modification of Ti-6Al-4V is necessary surface to enhance its tribological properties. Multi-phase and multi component coating development is one of the present research trends in surface engineering arena. In the present study it was attempted to develop a multi-component coating by laser cladding process using a pre-placed powder mixture containing Ni5Al (50 vol%) + hBN (10 vol%) + B4C (20 vol%) + SiC (20 vol%) on substrate of Ti-6Al-4V to improve its tribological performance. A nano-structured coating was formed with micro hardness (780 HV0.05). X-ray diffraction (XRD) identified the presence of compounds like TiC, BN, TiB2, SiC, and intermetallics of Ni-Ti in the coating. The wear behaviour of the composite coating was assessed by ball on disc type wear and friction monitor at 10 N load at 300 RPM taking a track diameter of 5 mm. Specific wear rate and coefficient of friction (?) were found to vary from 0.6E-12 to 2.2E-12 m3/N-m and from 0.15 to 0.45, respectively, due to rubbing of coated surface against tungsten carbide ball. The microstructure was explored by Scanning Electron Microscopy (SEM).

Mandeep Dhanda; Barun Haldar; P. Saha

2014-01-01T23:59:59.000Z

406

Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing  

SciTech Connect (OSTI)

Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

2013-10-15T23:59:59.000Z

407

Operational Results of a Closed Brayton Cycle Test-Loop  

SciTech Connect (OSTI)

A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of {approx}1000 K.

Wright, Steven A.; Lipinski, Ronald J.; Brown, Nicholas [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States); Fuller, Robert; Nichols, Kenneth [Barber Nichols 6325 W 55th Ave., Arvada, Colorado 80002 (United States)

2005-02-06T23:59:59.000Z

408

Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel  

SciTech Connect (OSTI)

In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

2012-12-15T23:59:59.000Z

409

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect (OSTI)

This quarterly report discusses continuing work in the testing phase of the project that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine. In this phase, a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) is used to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub x} emissions. This report describes potential emission reduction technologies, some of which have already been tested, and describes progress toward completing remaining tests to evaluate further synergies between some of the more promising technologies. While the end-goal is a closed-loop control system coupled with a low cost NO{sub x} retrofit package, additional work remains. Technologies including pre-combustion chambers, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on preparing the test cell for tests using a 180 psig fuel valve. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine.

Sarah R. Nuss-Warren; Kirby S. Chapman

2005-12-01T23:59:59.000Z

410

A New Design Concept for 2-Stroke Aircraft Diesel Engines  

Science Journals Connector (OSTI)

Abstract High power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements. The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves. The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel. The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000 rpm. Another fundamental target is the minimum power of 100 kW, at the altitude of 20,000 feet.The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters.

Giuseppe Cantore; Enrico Mattarelli; Carlo Alberto Rinaldini

2014-01-01T23:59:59.000Z

411

The use of artificial neural networks in PVT-based radiation portal monitors  

SciTech Connect (OSTI)

Polyvinyl toluene (PVT) based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While PVT detectors provide good sensitivity in detecting the presence of radioactive materials, they provide poor spectral resolution, limiting their ability to identify the isotopic content of the source of radiation. Thus using only total-spectrum or gross-count alarm algorithms, PVT-based RPMs cannot distinguish innocent materials that contain low-levels of normally occurring radioactivity from special nuclear materials of concern. To reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper discusses how artificial neural networks (ANNs) can be used in such an analysis. The objective was to reduce the nuisance/false alarm probability while maintaining high detection probabilities, thus allowing gross count alarm thresholds to be raised without loss of performance and sensitivity to radioactive materials of interest. The spectra used in this study were obtained from actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to rebin energy spectra into smaller sets. The results show that ANNs can be used with RPMs to reduce nuisance alarms. The algorithms described can be used in analyzing PVT spectra, and potentially sodium iodide spectra.

Kangas, Lars J.; Keller, Paul E.; Siciliano, Edward R.; Kouzes, Richard T.; Ely, James H.

2008-03-21T23:59:59.000Z

412

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

413

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

414

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

415

Report on Toyota Prius Motor Thermal Management  

SciTech Connect (OSTI)

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

416

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

Kinetic Hydropower System KHPS Kinetic Hydropower System KHPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Verdantpower.jpg Technology Profile Primary Organization Verdant Power Project(s) where this technology is utilized *MHK Projects/Roosevelt Island Tidal Energy RITE *MHK Projects/Cornwall Ontario River Energy CORE Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Verdant Power's central technology is the Kinetic Hydropower System (KHPS), a water-to-wire system that consists of three main components: 1) KHPS TURBINE: a three-bladed horizontal-axis turbine with four major assemblies: a) Composite rotor with 3-fixed blades that rotate at the relatively slow and constant speed of approximately 40 RPM, with tip-speeds of 35 feet per second. This is well below normal water vessel propeller speeds and conventional hydropower turbine blade speeds. b) Sealed nacelle, pylon and passive yaw mechanism that is hydrodynamically designed to allow the turbine to self-rotate into the prevailing current (like a weathervane) so that the blades are optimally aligned to generate energy. c) Custom-designed drivetrain unit (with induction generator) enclosed within the nacelle that integrates the bearing housing with a special long-life planetary gearbox, with mechanical shaft seals and a minimum of sealed lubricants. d) Streambed mounting system that can vary depending on site conditions as a single drilled monopile, a single gravity-based structure, or a gravity-based triframe mount that supports 3 turbines. 2) UNDERWATER CABLING: low-voltage shielded cable of short distance; and shoreline switchgear vaults, control room, and interconnection point(s). 3) APPURTENANT FACILITIES: for navigation safety, such as Public Aides to Navigation (PATON) buoys and lighted warning signs, as well as instrumentation including Acoustic Doppler Current Profilers (ADCPs). In order to maximize the application of the KHPS within the global MHK resource, Verdant Power has designed the technology as a simple and uniquely scalable system that can be operated in tidal, river and ocean current settings. Possible KHPS installations range from distributed generation arrangements in near-shore urban and village settings to base power generation at offshore deepwater locales.

417

Radial-Gap Permanent Magnet Motor and Drive Research FY 2004  

SciTech Connect (OSTI)

The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power regardless of speed for relative speeds, n = {omega}/{omega}{sub base} {ge} 2. Performance was also examined with efficiency measurements during the 30-kW PM motor test. Material requirements were examined with finite-element analyses (FEA) to determine the speed and location where yield starts and the corresponding deformations and stresses.

McKeever, J.W.

2005-02-11T23:59:59.000Z

418

Study of various models for estimation of penetration rate of hard rock \\{TBMs\\}  

Science Journals Connector (OSTI)

Various approaches for predicting penetration rate of hard rock tunnel boring machines (TBMs) have been studied by researchers since the early stages of TBM application in the 1950s. These studies resulted in the development of several penetration prediction models. For evaluation and validation of a model, it is important to test its predictive capability on new projects. A model should include parameters for machine specifications and ground conditions. The model validation process can reveal problems that an existing model may have in providing an accurate estimate for a given combination of specifications and conditions. This paper offers a brief review and discusses the capabilities of some of the more commonly used TBM performance prediction models. To evaluate the accuracy of these models, the predicted rates are compared with recorded TBM penetration rates in a database of recently completed tunnels. Comparison between predicted and recorded rates indicates that most of the existing models tend to overestimate TBM performance. This comparison highlights the on-going difficulties the industry continues to experience in estimating penetration rate. Even the use of normalized penetration rate indices has not been able to provide higher accuracy expected in related predictions. This paper discusses the development of new models to support an improved level of predictive accuracy in penetration rate estimating. These models are based on the analysis of a comprehensive database of more than 300 TBM projects records. Analyses of performance information within this database provided for the development of simpler models that are focused on quantifying the influence of primary factors, such as tunnel diameter, UCS, RPM, and rock type. These new models are introduced to provide alternative ways of penetration prediction. These models are especially useful at the planning stage of a tunneling project where \\{TBMs\\} can be used. These models also serve to provide secondary checks for other more in-depth analyses of TBM performance for an initial assessment of required boring time (inverse of penetration rate), and an estimate of utilization rate in an activity-based TBM model.

Ebrahim Farrokh; Jamal Rostami; Chris Laughton

2012-01-01T23:59:59.000Z

419

Integrating respiratory gating into a megavoltage cone-beam CT system  

SciTech Connect (OSTI)

We have previously described a low-dose megavoltage cone beam computed tomography (MV CBCT) system capable of producing projection image using one beam pulse. In this study, we report on its integration with respiratory gating for gated radiotherapy. The respiratory gating system tracks a reflective marker on the patient's abdomen midway between the xiphoid and umbilicus, and disables radiation delivery when the marker position is outside predefined thresholds. We investigate two strategies for acquiring gated scans. In the continuous rotation-gated acquisition, the linear accelerator (LINAC) is set to the fixed x-ray mode and the gantry makes a 5 min, 360 deg.continuous rotation, during which the gating system turns the radiation beam on and off, resulting in projection images with an uneven distribution of projection angles (e.g., in 70 arcs each covering 2 deg.). In the gated rotation-continuous acquisition, the LINAC is set to the dynamic arc mode, which suspends the gantry rotation when the gating system inhibits the beam, leading to a slightly longer (6-7 min) scan time, but yielding projection images with more evenly distributed projection angles (e.g., {approx}0.8 deg.between two consecutive projection angles). We have tested both data acquisition schemes on stationary (a contrast detail and a thoracic) phantoms and protocol lung patients. For stationary phantoms, a separate motion phantom not visible in the images is used to trigger the RPM system. Frame rate is adjusted so that approximately 450 images (13 MU) are acquired for each scan and three-dimensional tomographic images reconstructed using a Feldkamp filtered backprojection algorithm. The gated rotation-continuous acquisition yield reconstructions free of breathing artifacts. The tumor in parenchymal lung and normal tissues are easily discernible and the boundary between the diaphragm and the lung sharply defined. Contrast-to-noise ratio (CNR) is not degraded relative to nongated scans of stationary phantoms. The continuous rotation-gated acquisition scan also yields tomographic images with discernible anatomic features; however, streak artifacts are observed and CNR is reduced by approximately a factor of 4. In conclusion, we have successfully developed a gated MV CBCT system to verify the patient positioning for gated radiotherapy.

Chang Jenghwa; Sillanpaa, Jussi; Ling, Clifton C.; Seppi, Edward; Yorke, Ellen; Mageras, Gikas; Amols, Howard [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Ginzton Technology Center, Varian Medical Systems, Mountain View, California 94043 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States)

2006-07-15T23:59:59.000Z

420

Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration  

SciTech Connect (OSTI)

The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have part or all of the surface in the less sulfur resistant {beta} phase.

Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "rpm confi guration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fumigation of a heavy duty common rail marine diesel engine with ethanol–water mixtures  

Science Journals Connector (OSTI)

A heavy duty common rail marine diesel engine operating with two stage injection is tested under load on a test bench with vapourised ethanol–water mixtures mixed into the inlet air at various rates. Ethanol/water mixture strengths of 93%, 72% and 45% by mass are tested. Results are presented for two engine loads at 1800 rpm, with brake mean effective pressure (BMEP) 17 bar and 20 bar. At each test point, constant engine speed and brake torque are maintained for various rates of aqueous ethanol addition. Small increases in brake thermal efficiency are measured with moderate rates of ethanol addition at a BMEP of 20 bar. Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbons, oxygen and carbon dioxide, and exhaust opacity are measured. CO emissions and exhaust opacity tend to increase with increased ethanol addition. \\{NOx\\} emissions tend to decrease with increased ethanol addition and with increased water content. Hydrocarbon emissions remain low, near the detection limit of the analyser. Cylinder pressure and the electronically controlled two stage liquid fuel injection timing are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. The apparent heat release rate and fuel injection timing together allow analysis of the mechanism of the combustion process with ethanol fumigation. Two stage injection involves a small pre-injection of diesel fuel to reduce early pressure rise rates in normal diesel engine combustion. Even though injection timing is retarded by the Engine Control Unit as more ethanol is added, combustion timing effectively advances due to the effect of two stage injection. Where the ethanol/air mixture strength is above the lower flammability limit at compression temperatures, the mixture is ignited by the pre-injection and begins to burn rapidly by flame propagation and/or autoignitive propagation before the main liquid fuel injection begins. This occurs for ethanol energy substitution rates greater than 30%. Two distinct peaks in heat release rate appear at the higher ethanol rates. Severe knock becomes apparent for 34% ethanol. Two stage injection may be disadvantageous in these circumstances.

L. Goldsworthy

2013-01-01T23:59:59.000Z

422

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

423

Report on Testing to Expand the Rotary Mode Core Sampling Operating Envelope  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) Characterization Equipment Group requested that the Numatec Hanford Corporation--Engineering Testing Laboratory (ETL) perform Rotary Mode Core Sampling (RMCS) Operating Envelope (OE) testing. This testing was based upon Witwer 1998a and was performed at different time periods between May and September 1998. The purpose of this testing was to raise the maximum down force limit for rotary mode core sampling as outlined in the current OE. If testing could show that a higher down force could be used while drilling into a concrete/pumice block simulant while still remaining below the 60 C limitation, then the current OE could be revised to include the new, higher, down force limit. Although the Test Plan discussed varying the purge flow rate and rotation rate to find ''optimal'' drilling conditions, the number of drill bits that could be destructively tested was limited. Testing was subsequently limited in scope such that only the down force would be varied while the purge flow rate and rotation rate were kept constant at 30 scfm and 55 rpm respectively. A second objective, which was not part of the original test plan, was added prior to testing. The Bit Improvement testing, mentioned previously, revealed that the drill bits tested in the OE testing were made of a slightly different metal matrix than the ones currently used. The older bits, a Longyear part number 100IVD/5 (/5 bit), had tungsten carbide mixed into the metal matrix that forms the cutting teeth. The currently used bits, Longyear part number 100IVD/8 (/8 bit), instead have tungsten metal in the matrix and no tungsten carbide. Rockwell C hardness testing showed that the /5 bit was significantly harder than the /8 bit, with values of /8 vs. 8, respectively. The change from the /5 bit to the /8 bit was made immediately after the previous OE testing in 1996 because of sparking concerns with the tungsten carbide in the /5 bit. This difference in hardness between the two bit materials was discovered in the Bit Improvement Testing and was expected to affect this OE testing. The second objective, therefore, was to quantify what affect this change in material had and define the OE, based on the current /8 bit design rather than the old /5 bit design.

BOGER, R.M.

1999-12-13T23:59:59.000Z

424

Geologic Framework Model Analysis Model Report  

SciTech Connect (OSTI)

The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

R. Clayton

2000-12-19T23:59:59.000Z

425

A COMPARISON OF MEASURED AND CALCULATED GAMMA RAY ATTENUATION FOR A COMMON COUNTING GEOMETRY  

SciTech Connect (OSTI)

In order to perform quantitative gamma spectroscopy, it is necessary to know the sample-specific detection efficiency for photons as a function of energy. The detection efficiency, along with the branching ratio for the isotope and gamma ray of interest, is used to convert observed counts/second to actual disintegrations/second, and, hence, has a large effect on the accuracy of the measurement. In cases where the geometry of the source is simple and reproducible, such as a point source, small vial of solid, or jar of liquid, geometry-specific standards may be counted to determine the detection efficiency. In cases where the samples are large, irregular, or unique, this method generally cannot be used. For example, it is impossible to obtain a NIST-traceable standard glovebox or 55-gallon drum. In these cases, a combination of measured absolute detector efficiency and calculated sample-specific correction factors is commonly used. The correction factors may be calculated via Monte Carlo simulation of the item (the method used by Canberra's ISOCS system), or via semi-empirical calculation of matrix and container attenuations based on the thickness and composition of the container and radioactive matrix (ISOTOPIC by EG&G Ortec uses this method). The accuracy of these correction factors for specific geometries is often of vital interest when assessing the quality of gamma spectroscopy data. During the Building 251 Risk-Reduction Project, over 100 samples of high activity actinides will be characterized via gamma spectroscopy, typically without removing the material from the current storage containers. Most of the radioactive materials in B-251 are stored in cylindrical stainless steel canisters (called USV containers, after the Underground Storage Vaults they are commonly stored in), 13 cm in diameter, by 28 cm high, with walls that are 1.8 mm thick. While the actual samples have a variety of configurations inside the USV container, a very common configuration is the material (usually as an oxide powder pellet of approximately 2 cm diameter by {approx}2 mm thick) in a squat glass jar, with the jar placed in a thin steel food-pack can, which is then placed in the bottom of the USV canister. During data acquisition, the USV containers are typically rotated at approximately 4 rpm on a turntable to eliminate errors due to the material not being centered in the can, or attenuation not being isotropic. An aluminum plate is placed over the container, secured by three vertical rods, to securely hold the container. Pictures of both the containers, and this typical counting configuration are shown below.

Gaylord, R F

2004-02-26T23:59:59.000Z

426

Characteristics of isopentanol as a fuel for HCCI engines.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity. Similar to ethanol but unlike gasoline, isopentanol does not show two-stage ignition even at very low engine speed (350 rpm) or with considerable intake pressure boost (200 kPa abs.). However, isopentanol does show considerable intermediate temperature heat release (ITHR) that is comparable to gasoline. Our previous work has found that ITHR is critical for maintaining combustion stability at the retarded combustion phasings required to achieve high loads without knock. The stronger ITHR causes the combustion phasing of isopentanol to be less sensitive to intake temperature variations than ethanol. With the capability to retard combustion phasing, a maximum IMEP{sub g} of 5.4 and 11.6 bar was achieved with isopentanol at 100 and 200 kPa intake pressure, respectively. These loads are even slightly higher than those achieved with gasoline. The ITHR of isopentanol depends on operating conditions and is enhanced by simultaneously increasing pressures and reducing temperatures. However, increasing the temperature seems to have little effect on ITHR at atmospheric pressure, but it does promote hot ignition. Finally, the dependence of ignition timing on equivalence ratio, here called {phi}-sensitivity, is measured at atmospheric intake pressure, showing that the ignition of isopentanol is nearly insensitive to equivalence ratio when thermal effects are removed. This suggests that partial fuel stratification, which has been found effective to control the HRR with two-stage ignition fuels, may not work well with isopentanol at these conditions. Overall, these results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Simmons, Blake Alexander; Dec, John E.; Yang, Yi; Dronniou, Nicolas

2010-05-01T23:59:59.000Z

427

Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby  

SciTech Connect (OSTI)

Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine. The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.

Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi [Ecole Polytechnique Federale de Lausanne (EPFL), School of Engineering (STI), Mechanical Systems Design Laboratory - LCSM, Station No. 9, CH-1015 Lausanne (Switzerland)

2011-05-04T23:59:59.000Z

428

Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan  

Science Journals Connector (OSTI)

Wave tank testing of scaled models is standard practice during the development of floating wind turbine platforms for the validation of the dynamics of conceptual designs. Reliable recreation of the dynamics of a full scale floating wind turbine by a scaled model in a basin requires the precise scaling of the masses and inertias and also the relevant forces and its frequencies acting on the system. The scaling of floating wind turbines based on the Froude number is customary for basin experiments. This method preserves the hydrodynamic similitude, but the resulting Reynolds number is much lower than in full scale. The aerodynamic loads on the rotor are therefore out of scale. Several approaches have been taken to deal with this issue, like using a tuned drag disk or redesigning the scaled rotor. This paper describes the implementation of an alternative method based on the use of a ducted fan located at the model tower top in the place of the rotor. The fan can introduce a variable force that represents the total wind thrust by the rotor. A system controls this force by varying the rpm, and a computer simulation of the full scale rotor provides the desired thrust to be introduced by the fan. This simulation considers the wind turbine control, gusts, turbulent wind, etc. The simulation is performed in synchronicity with the test and it is fed in real time by the displacements and velocities of the platform captured by the acquisition system. Thus, the simulation considers the displacements of the rotor within the wind field and the calculated thrust models the effect of the aerodynamic damping. The system is not able currently to match the effect of gyroscopic momentum. The method has been applied during a test campaign of a semisubmersible platform with full catenary mooring lines for a 6MW wind turbine in scale 1/40 at Ecole Centrale de Nantes. Several tests including pitch free decay under constant wind and combined wave and wind cases have been performed. Data from the experiments are compared with aero-servo-hydro-elastic computations with good agreement showing the validity of the method for the representation of the scaled aerodynamics. The new method for the aerodynamic thrust scaling in basin tests is very promising considering its performance, versatility and lower cost in comparison with other methods.

José Azcona; Faisal Bouchotrouch; Marta González; Joseba Garciandía; Xabier Munduate; Felix Kelberlau; Tor A Nygaard

2014-01-01T23:59:59.000Z

429

GROUT HOPPER MODELING STUDY  

SciTech Connect (OSTI)

The Saltstone facility has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The dry feeds and the salt solution are already mixed in the mixer prior to being transferred to the hopper tank. The hopper modeling study through this work will focus on fluid stirring and agitation, instead of traditional mixing in the literature, in order to keep the tank contents in motion during their residence time so that they will not be upset or solidified prior to transferring the grout to the Saltstone disposal facility. The primary objective of the work is to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed with the FLUENT{trademark} codes. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. The modeling results show that when the two-stage agitator consisting of a 45{sup o} pitched propeller and radial flat-plate blades is run at 140 rpm speed with 28 in diameter, the agitator provides an adequate stirring of the feed materials for a wide range of yield stresses (1 to 21 Pa) and the vortex system is shed into the remote region of the tank boundary by the blade passage in an efficient way. The results of this modeling study were used to develop the design guidelines for the agitator stirring and dispersion of the Saltstone feed materials in a hopper tank.

Lee, S.

2011-08-30T23:59:59.000Z

430

3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory  

SciTech Connect (OSTI)

A current area of research interest in national security is to effectively and efficiently determine the contents of the many shipping containers that enter ports in the United States. This interest comes as a result of the 9/11 Commission Act passed by Congress in 2007 that requires 100% of inbound cargo to be scanned by 2012. It appears that this requirement will be achieved by 2012, but as of February of 2009 eighty percent of the 11.5 million inbound cargo containers were being scanned. The systems used today in all major U.S. ports to determine the presence of radioactive material within cargo containers are Radiation Portal Monitors (RPM). These devices generally exist in the form of a gate or series of gates that the containers can be driven through and scanned. The monitors are effective for determining the presence of radiation, but offer little more information about the particular source. This simple pass-fail system leads to many false alarms as many everyday items emit radiation including smoke detectors due to the Americium-241 source contained inside, bananas, milk, cocoa powder and lean beef due to the trace amounts of Potassium-40, and fire brick and kitty litter due to their high clay content which often contains traces of uranium and thorium. In addition, if an illuminating source is imposed on the boundary of the container, the contents of the container may become activated. These materials include steel, aluminum and many agricultural products. Current portal monitors also have not proven to be that effective at identifying natural or highly enriched uranium (HEU). In fact, the best available Advanced Spectroscopic Portal Monitors (ASP) are only capable of identifying bare HEU 70-88% of the time and masked HEU and depleted uranium (DU) only 53 percent of the time. Therefore, a better algorithm that uses more information collected from better detectors about the specific material distribution within the container is desired. The work reported here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the locations where measurements were collected, the optical thickness of the domain, the amount of sign

Jean Ragusa; Wolfgang Bangerth

2011-08-01T23:59:59.000Z

431

INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - ADAMANT CIRCULAR SAW OENHP{number_sign}: 2001-05, VERSION A  

SciTech Connect (OSTI)

Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting up specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactive contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The Adamant circular saw was assessed on August 14, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The Adamant was only used during a limited ''test'' on a regular plywood crate due to safety considerations of the tool for this application. The Adamant circular saw, a counter-rotating twin-cutter, constructed with blades that work differently than conventional cutting wheels with twin blades, each rotating in opposite directions. It is used to cut wood and metals. Each blade is approximately 8 3/4 inches in diameter with a maximum cutting depth of 2 1/2 inches. The machine has two rotation speeds: 1,900 and 2,900 rotations per minute (rpm). The saw is operated with an interlocked, guarded trigger switch located at the end of the saw opposite the cutting blades. To operate the saw, the safety interlock must be depressed prior to powering the saw with the trigger control. The saw is supported by a handle at the front of the saw near the cutting blades. The top part of the blades is guarded near the handle, with approximately three-fourths of the face of the blades exposed. The Adamant circular saw is an innovative technology used to cut metals and wood. Its safety features include: interlocking switch for powering the saw, overload indicator and shutoff, and an electronic brake that stops the engine immediately when the start button is released. The top part of the blades is guarded near the motor. With approximately three-fourths of the face of the blades open, the operator is exposed to the potential risk of serious and minor cuts and abrasions when using and handling the saw. There is also potential for damage to the blades if the saw is not stored properly. Without guarding on the lower part of the blades, these can be damaged if the saw is dropped or rested on the cutting blades. Based upon the industrial hygiene sampling conducted for the other four saws demonstrated at FIU, noise levels, nuisance dust, and airborne fiberglass may be a problem when using this technology for the cutting of fiberglass-reinforced plywood crates. No industrial hygiene sampling was conducted while the Adamant saw was in use. Engineering controls should be used to eliminate these problems whenever possible. Where this is not possible, administrative controls, training, and proper personal protective equipment (PPE) should be used. Respirators should be used if engineering controls do not sufficiently control the dust or fiberglass generated. Respirators should be equipped with an organic vapor and acid gas cartridge with High Efficiency Particulate Air (HEPA) filter, since during the demonstration, the workers complained of an odd smell, which may have been the breakdown of the fiberglass.

Unknown

2002-01-01T23:59:59.000Z

432

DOE/NNSA/DE-FG03-03NA00069 Annual Report 1  

SciTech Connect (OSTI)

OAK-B135 This project was undertaken to enhance our understanding and control of the response of ductile materials to extreme loading conditions such as those involved in impact loading. The project was designed with a focus on the role of friction in high rate deformation and shock studies. The work involves collaboration of the tribology group in Materials Science and Engineering at OSU and two groups at LANL, an impact loading group in the dynamic experimentation division and a computer simulation group in the applied physics division. The two teams are investigating the same materials pairs: Cu/Cu, Al/stainless steel (SS) and Ta/Al. The LANL team is providing impacted specimens for characterization at OS U. The LANL team has designed and built a rotating barrel gas gun apparatus that allows measurement of frictional force at an impacted interface over time scales of 0 to 50 {micro}s. Impact pressures are 0-150 MPa and sliding speeds can be up to 50 m/s. The stainless steel barrel can rotate at rates from 0-5000 rpm. An impactor rod is driven at up to 12 m/s against a target rod of the specimen material. Initial tests have been with OFHC Cu/Cu annealed to relax strains from the machining process. The grains are equiaxed and have 40 {micro}m grain size. In the velocity range 0-6 m/s, the friction force increases with velocity for time scales of order 25 {micro}s. The LANL team has also performed molecular dynamics (MD) simulations of sliding for Cu/Cu and Al/Ta using embedded atom potentials as well as simpler systems using Lennard-Jones potentials (also used at OSU). The results show extensive plastic deformation and, in some cases, the formation of nanocrystals at the sliding interface. The dependence of friction force on sliding velocity, v, shows two regimes: a low speed regime in which friction force rises with v and a high speed regime in which it decreases. The experimental work at OSU has focused on three tasks: (1) designing and building an improved system for sliding tests at intermediate velocities, (2) developing appropriate pre-testing surface preparation and (3) developing post-test characterization techniques. The new pin/disk wear testing system can achieve sliding speeds up to 1 m/s in a range of environments and contact times as small as 0.1 s. Transmission Electron Microscopy (TEM) was done on cross-sections of the as-machined annular OFHC copper samples. This revealed substructures consistent with extensive subsurface. These features would complicate our efforts to study the changes produced by impact with sliding. The samples should have a minimal amount of subsurface deformation prior to testing, so the deformation due to sliding will not be obscured. Therefore, a study was conducted to find a test specimen preparation method that would minimize subsurface deformation. Three machining methods were analyzed: lathe turning, fly-cutting, and electrical discharge machining (EDM). Post-machining annealing at 275 C for one hour in a vacuum furnace was also performed to remove deformation remaining from the machining processes. Microhardness was measured as a function of the distance from the machined surface. This was a simple way to determine the extent of subsurface deformation. The results show that annealed fly-cut samples are best for our purposes. Similar tests on pure aluminum samples suggest that annealing of fly-cut samples at 200 C for an hour is sufficient to remove subsurface deformation. The material tested at OSU was characterized using optical microscopy, SEM and TEM. Wear tracks and wear debris were analyzed using SEM and energy dispersive spectroscopy (EDS). TEM samples were prepared using different techniques including dimpling, jet-polishing and chemical polishing. Innovative techniques involving a Focused Ion Beam (FIB) have also been explored. MD modeling at OSU has focused on simple amorphous materials. The results suggest that the flow of material close to the sliding interface is characterized by the formation of eddies, intimate mixing and ''diffusion-like'' growth of the mixed

Rigney, David A.

2004-03-13T23:59:59.000Z

433

New Accessory for Cleaning the Inside of the Machine Tool Cavity  

SciTech Connect (OSTI)

The best way to extend the life of a metalworking fluid (MWF) is to make sure the machine tool and MWF delivery system are properly cleaned at least once per year. The dilemma the MWF manager is faced with is: How does one clean the machine tool and the MWF system on a large machine tool with an enclosure in a timely manner without impacting production schedules? Remember the walls and roof of the machine enclosure are coated with a film of dried contaminated MWF that must also be removed. If not removed, the deposits on these surfaces can recontaminate the fresh charge of MWF. I have found a product that with this revised procedure helps to shorten the machine tool down time involved with machine cleaning. (1) Discuss with your MWF supplier if they have a machine cleaning product that can be used with your current water based MWF during normal machining operations. Most MWF manufacturers have a machine cleaner that can be used at a lower concentration (1-2% vs. 5%) and can be used while still making production parts for a short period of time (usually 24-48 hours). (2) Make sure this machine cleaner is compatible with the work-piece material you are machining into product. Most cleaners are compatible with ferrous alloys. Because of the increased alkalinity of the fluid you might experience staining if you are machining copper or aluminum alloys. (3) Remove the chips from the chips pans and fluid channels. (4) During off shift hours circulate the MWF using a new product marketed by Rego-Fix called a 'Hydroball'. This device has a 5/8 inch diameter straight shank which allows it to be installed in any collet or solid quick change tool holder. It has multiple nozzles so that the user can control the spray pattern generated when the MWF is circulated. It allows the user to utilize the high pressure, through spindle MWF delivery capability of your machine tool for cleaning purposes. The high pressure MWF system can now be effectively used for cleaning purposes. This will also work with standard pressure system but you must reduce the number of nozzles utilized. By combining the movement of the machine axis around the operating envelope and the MWF circulation you can do a reasonably effective job of washing the inside of the machine tool operating cavity. Way covers will be moved and surfaces exposed because of axis movement. Spray direction will change to better wash fixtures and machine tool components. Deposits will start to breakdown and be washed into the machine tool sump. Since the cycle will run four or more hours it can be done with a weaker cleaning solution. The distributor states that the unit can be rotated up to 50 RPM. When running it has the same effect as the washing rotor inside of your home dishwasher. Inside the cavity on a machining center there is a lot of splash. During normal operations, MWF deposits buildup on the walls and roof of the enclosures. If these deposits (containing bacteria, mold and other contaminants) are not removed they will inoculate the fresh charge of MWF when they are resaturated. When you clean the inside of machine tool cavity, time is spent removing these deposits on the walls and roof of the enclosure. Getting to these surfaces is very difficult usually requiring that a member of the cleaning crew get inside the machine tool to reach them. The Hydro ball is effective in distributing the cleaning solution on all surfaces of the enclosure under high pressure. The only negative we have found is you get to find all the gaps and leaks in your machine tool enclosure. By running the hydro ball with the machine cleaner enriched MWF during off shift (4-8 hours) you can effectively remove these deposits and buildups on the internal surfaces of the cavity of the machine tool and wash them down into the sump. You also clean the internal components of the MWF system without interrupting normal scheduled work. (5) Pump out the spent MWF. You will have found that most of the deposits have been washed from the internal surfaces of the enclosure. For extremely dirty machines you might have to

Lazarus, Lloyd

2009-04-21T23:59:59.000Z