Powered by Deep Web Technologies
Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

System manual for the University of Pennsylvania retrofitted solar heated Philadelphia row home (SolaRow)  

DOE Green Energy (OSTI)

The University of Pennsylvania SolaRow house, an urban row home retrofitted for comfort and domestic hot water heating, was extensively instrumented for performance monitoring and acquisition of weather and solar radiation data. This report describes the heating and instrumentation systems, provides the details for instrumentation, piping and valve identification, and specifies the operation and maintenance of the heating and data acquisition systems. The following are included: (1) system flow diagrams; (2) valve and cable identification tables; (3) wiring diagrams; and (4) start-up, normal operation, shut-down, maintenance and trouble-shooting procedures. It thus provides the necessary technical information to permit system operation and monitoring, overall system performance analysis and optimization, and acquisition of climatological data.

Zinnes, I.; Lior, N.

1980-05-01T23:59:59.000Z

2

PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES  

E-Print Network (OSTI)

PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES A Thesis Submitted April 1995 #12;PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES by Xiangwei Zhao Abstract The steady and time-dependentbehavior of a single-row heat exchanger with water and air in the in

Sen, Mihir

3

Numerical Analysis of a Multi-Row Multi-Column Compact Heat Exchanger  

E-Print Network (OSTI)

Numerical Analysis of a Multi-Row Multi-Column Compact Heat Exchanger Ashkan Motamedi1, Arturo of a compact heat exchanger to analyze the interaction between the fluid and its geometry. The overall as the inner-tube fluid. Two heat exchanger configurations, in which the tube arrangement is either in

Pacheco, Jose Rafael

4

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

5

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square...

6

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE...

7

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

8

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

than","and","Any","from Only","Other than","and","Row" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

9

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

10

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" 3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

11

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" 2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat"," ",," "

12

Decommissioning Yankee Rowe  

Science Conference Proceedings (OSTI)

This article describes the process and progress of the decommissioning of the Yankee Rowe Nuclear Power Plant in Massachusetts. In 32 years Yankee Rowe was a safe, reliable and economical power source for New England. The uncertain near-term availability of disposal facilities for low-level waste, spent fuel, and other high level waste presents special challenges to the decommissioning. The decommissioning plan was submitted to the USNRC in December 1993 with final approval anticipated in 1994. Topics highlighted in this article are the decommissioning plan and the component removal program.

Heider, K.J.; Mellor, R.A.

1994-07-01T23:59:59.000Z

13

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Electricity: Components of Net Demand, 2002;" 1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases"," In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

14

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

15

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

16

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

17

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,,"Sales and","Net Demand","RSE" "NAICS"," ",,,"Total Onsite","Transfers","for","Row" "Code(a)","Subsector and Industry","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,,"Total United States"

18

Factors Affecting Heat Transport in an Ocean General Circulation Model  

Science Conference Proceedings (OSTI)

A global ocean general circulation model with idealized geometry and coupled to a simple representation of atmospheric energy fluxes is used to investigate which physical factors determine meridional heat transport. A particular focus is on ...

Igor Kamenkovich; Jochem Marotzke; Peter H. Stone

2000-01-01T23:59:59.000Z

19

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

20

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

22

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

23

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

24

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

25

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

26

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

27

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

28

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

29

Heat-shock sigma factor RpoH from Geobacter sulfurreducens  

E-Print Network (OSTI)

Heat-shock sigma factor RpoH from Geobacter sulfurreducens Toshiyuki Ueki and Derek R. Lovley xanthus have suggested that homologues of the Escherichia coli heat-shock sigma factor, RpoH, may not be involved in the heat-shock response in this d-proteobacterium. The genome of another d

Lovley, Derek

30

Rights-Of-Way (ROW) Environmental Management: New ROW Development and Existing ROW Maintenance  

Science Conference Proceedings (OSTI)

During October 27-29, 1997, the Electric Power Research Institute (EPRI) and the Empire State Electric Energy Research Corporation (ESEERCO) sponsored a workshop to assess the need for a program of environmental research on Rights-of-Way (ROW) development and management, and to develop a research agenda. The workshop built on 1993 and 1996 EPRI meetings, and on the 6th International Symposium on Environmental Concerns in Rights-of-Way Management held in February, 1997. This document presents the proceedi...

1999-12-15T23:59:59.000Z

31

Factors affecting oscillating motion and heat transfer in an oscillating heat pipe .  

E-Print Network (OSTI)

??As demand has grown for thermal management solutions, interest in passive heat transfer devices such as heat pipes has grown as well. In particular, oscillating… (more)

Smoot, Christopher

2013-01-01T23:59:59.000Z

32

Two Row Mixed Integer Cuts Via Lifting?  

E-Print Network (OSTI)

Jun 22, 2008 ... the two-row mixed integer infinite-group problem), and to develop lifting ..... The next lemma analyzes the standard triangles with each side ...

33

" Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS...

34

Update rows? | OpenEI Community  

Open Energy Info (EERE)

Update rows? Update rows? Home > Groups > Databus Is it possible to update an existing row in a table? I'm thinking of the case of a table holding metadata about sensors. If the location changes, for example, can that row be changed/deleted/updated? thanks, Submitted by Hopcroft on 31 October, 2013 - 16:42 1 answer Points: 0 yes, it is done the same way you inserted the data, so just re-use your existing stuff and it will update. Deanhiller on 11 November, 2013 - 11:01 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart? if you are an administrator, s... more Group members (7) Managers: Deanhiller Recent members: Bradmin Hopcroft Vikasgoyal

35

Update rows? | OpenEI Community  

Open Energy Info (EERE)

Update rows? Update rows? Home > Groups > Databus Is it possible to update an existing row in a table? I'm thinking of the case of a table holding metadata about sensors. If the location changes, for example, can that row be changed/deleted/updated? thanks, Submitted by Hopcroft on 31 October, 2013 - 16:42 1 answer Points: 0 yes, it is done the same way you inserted the data, so just re-use your existing stuff and it will update. Deanhiller on 11 November, 2013 - 11:01 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart? if you are an administrator, s... more Group members (6) Managers: Deanhiller Recent members: Hopcroft Vikasgoyal Ksearight

36

" Row: NAICS Codes (3-Digit Only); Column...  

U.S. Energy Information Administration (EIA) Indexed Site

l","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Fact...

37

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

and",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","...

38

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

39

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

40

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

42

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

43

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

44

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in Energy-Management Activity, 2002;" 1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS"," "," ",,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know","Factors"

45

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)","RSE" " ","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Row"

46

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" 2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

47

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" 1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite","RSE" "NAICS"," ","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment","Row"

48

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

49

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

50

Yankee Rowe simulator core model validation  

Science Conference Proceedings (OSTI)

This paper presents the validation of the Yankee Rowe simulator core model. Link-Miles Simulation Corporation is developing the Yankee Rowe simulator and Yankee Atomic Electric Company is involved in input and benchmark data generation, as well as simulator validation. Core model validation by Yankee comprises three tasks: (1) careful generation of fuel reactivity characteristics (B constants); (2) nonintegrated core model testing; and (3) fully integrated core model testing. Simulator core model validation and verification is a multistage process involving input and benchmark data generation as well as interactive debugging. Core characteristics were brought within acceptable criteria by this process. This process was achieved through constant communication between Link-Miles and Yankee engineers. Based on this validation, the Yankee Rowe simulator core model is found to be acceptable for training purposes.

Napolitano, M.E.

1990-01-01T23:59:59.000Z

51

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

52

Yankee Rowe Decommissioning Experience Record: Volume 1  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic's experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume presents lessons learned during work finished by September 1997. A second volume, to be published in 1998, will complete the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shutdown plants.

1997-12-31T23:59:59.000Z

53

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

54

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

55

Yankee Rowe Decommissioning Experience Record: Volume 2  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic Electric Company's (YAEC) recent experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume supplements Volume 1 by presenting more lessons learned during work finished by September 1998. In 1999, EPRI will publish a final report completing the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shut down plants.

1998-12-18T23:59:59.000Z

56

" Row: Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of ","Establishment-Paid","Activity Cost","RSE" "NAICS"," "," ",,,,,,"Row" "Code(a)","Energy-Management Activity","No Participation","Participation(b)","All","Some","None","Don't Know","Factors"

57

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

58

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)","Factors"

59

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)","Factors"

60

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006;" 7 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)"

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2010;" 8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2886,79,130,5211,69,868

62

Research and design work on heat emission and aerodynamic resistance of tube bundles in air cooling equipment  

SciTech Connect

Results of studies of heat emission using methods of local and global thermal simulation of crossflow small-array bundles of tubes finned with wound aluminum strip, and flared into the load-bearing wall, are reported. Correction factors applicable to the method of simulating convective heat transfer over the range Re = (2.5-25).10/sup 3/ are given, with variation in the number of rows over the air course from one to four.

Kuntysh, V.B.; Fedotova, L.M.

1983-01-01T23:59:59.000Z

63

Optimization Online - Simultaneous Column-and-Row Generation ...  

E-Print Network (OSTI)

Nov 14, 2010 ... Simultaneous Column-and-Row Generation for Large-Scale Linear Programs with Column-Dependent- ... Entry Last Modified: 05/17/2012.

64

Globally Optimal Solutions for Large Single-Row Facility Layout ...  

E-Print Network (OSTI)

May 22, 2006 ... This paper is concerned with the single-row facility layout problem ..... A standard way to tighten linear or semidefinite relaxations of binary ...

65

Level: National Data; Row: Specific Energy-Management Activities...  

U.S. Energy Information Administration (EIA) Indexed Site

be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management...

66

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

67

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

68

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

69

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

70

Solving connected row convex constraints by variable elimination  

Science Conference Proceedings (OSTI)

We propose an algorithm for the class of connected row convex constraints. In this algorithm, we introduce a novel variable elimination method to solve the constraints. This method is simple and able to make use of the sparsity of the problem instances. ... Keywords: Connected row convex constraints, Constraint composition, Constraint satisfaction problems, Path consistency, Variable elimination

Yuanlin Zhang; Satyanarayana Marisetti

2009-08-01T23:59:59.000Z

71

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

72

Factors affecting the adoption of home-heating energy-conservation measures: a behavioral approach  

SciTech Connect

The basic aim of this research is to better understand homeowners' adoption of home-heating energy-conservation measures by analyzing a number of factors that are thought to be underlying determinants of adoption behavior. The basic approach is behavioral drawing on the knowledge built up in behavioral geography through studies on natural hazards and innovation diffusion, and borrowing from psychological theories of attitude formation and decision making. In particular, six factors (information, environmental personality, socio-economic and demographic factors, dwelling unit characteristics, psychological variables, and past experience) are shown to directly and indirectly affect adoption behavior. By this means, differences between adopters and nonadopters in the underlying cognitive structures and in the situational factors that affect their decisions are identified. The study focuses on the adoption of three measures: reducing winter night-time thermostat settings, changing or cleaning furnace filters, and installing an automatic setback thermostat. Personal interviews with a random sample of 159 homeowners in Decatur, Illinois serve as the main data base. Results indicate that adoption behavior is determined more by past experience, than by intention. Beliefs, attitudes, and social influences affect behavior indirectly through intention. These psychological variables also act as mediators between information, knowledge, environmental personality, situational variables and behavior. In particular, respondent's age, previous home ownership, and length of residence act indirectly on adoption behavior. Each of these reflects the amount of past experience the respondent is likely to have.

Macey, S.M.

1982-01-01T23:59:59.000Z

73

Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter  

SciTech Connect

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)] [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China)] [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)] [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China)] [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)] [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)] [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)] [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

2011-12-20T23:59:59.000Z

74

Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning ...  

DTEM – Team Members: Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning, Judy Kim, Michael Armstrong Back Row (left to right): Thomas LaGrange ...

75

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

76

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

77

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

78

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

79

Row-Action Inversion of the Barrick–Weber Equations  

Science Conference Proceedings (OSTI)

The Barrick–Weber equations describe the interaction of radar signals with the dynamic ocean surface, and so provide a mathematical basis for oceanic remote sensing. This report considers the inversion of these equations with several of the row-...

J. J. Green; L. R. Wyatt

2006-03-01T23:59:59.000Z

80

The Chooser-Picker 7-in-a-row-game  

E-Print Network (OSTI)

One of the main objective of this paper is to relate Beck's conjecture for k-in-a-row games. The conjecture states that playing on the same board Picker is better off in a Chooser-Picker game than the second player in the Maker-Breaker version. It was shown that the 8-in-a-row game is a blocking draw that is a Breaker win. To give the outcome of 7-, or 6-in-a-row-games is hopeless, but these games are widely believed to be Breaker's win. If both conjectures hold, Picker must win the Chooser-Picker version of the 7-in-a-row game, and that is what we prove.

Csernenszky, András

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A competitive genetic algorithm for single row facility layout  

E-Print Network (OSTI)

Feb 22, 2012 ... The single row facility layout is the NP-Hard problem of arranging facilities ..... with a user-specified probability p, the second fittest solution with ...

82

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

83

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

84

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

85

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

86

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

87

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

88

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

89

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

90

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different influential factors, e.g., the distance between heat sources, temperature of heat source, heat characteristics of the wall and outdoor temperature. It was found that the human requirement for comfort is satisfied easily when the distance between heat sources is long. Under the conditions simulated in this paper, when the distance was more than 0.8m, the temperature distribution tended to be average and steady, and it did not change as the distance changed. Second, the temperature change of the thermal current has a large influence on the indoor temperature. The rise in thermal current temperature makes the vertical temperature gradient in the room increase. The upper temperature of the room becomes higher, as does the height of the high temperature air level that lies in the upper part of the room. Finally, both the heat loss of the surrounding structure and the change in outdoor temperature have a large influence on indoor temperature. However, it does not influence the thermal stratification characteristics of DV. The only thing that has changed is the thermal stratification height.

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

91

Microsoft Word - CX_Memo_SchultzROW.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Brandee Shoemaker Project Manager - TERM-TPP-4 Proposed Action: Schultz-Raver No.1 Right-Of-Way (ROW) Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Kittitas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to survey and mark the northern boundary of its transmission line ROW for the Schultz-Raver No.1 and Schultz-Echo Lake No.1 transmission line corridor in Kittitas County, WA. Due to high development pressure, a lack of visible signage, and incomplete county records, encroachments into the ROW have occurred in the

92

Factors Regulating the Air–Sea Heat Fluxes Regime over the Aegean Sea  

Science Conference Proceedings (OSTI)

The authors examine the impact of low-frequency atmospheric forcings on the air–sea heat fluxes over the Aegean Sea. The correlation between the air–sea heat flux components and three established [North Atlantic Oscillation (NAO), east Atlantic–...

Vassilis P. Papadopoulos; Aristides Bartzokas; Themistoklis Chronis; Dimitris Georgopoulos; George Ferentinos

2012-01-01T23:59:59.000Z

93

Improving Data Center Efficiency with Rack or Row Cooling Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

94

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

95

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

96

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

97

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

98

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

99

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

100

Ten Weirdest Computers By DUNCAN GRAHAM-ROWE  

E-Print Network (OSTI)

Ten Weirdest Computers By DUNCAN GRAHAM-ROWE April 15, 2008 -- Today's computers use pulses, weirder, ways& 1. Optical computing There's nothing weird about encoding data in light global computations is still not practical. Optical computers are a worthwhile goal because using light could increase

Braun, Paul

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas turbine row #1 steam cooled vane  

DOE Patents (OSTI)

A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

Cunha, Frank J. (Longwood, FL)

2000-01-01T23:59:59.000Z

102

Heat exchanger design: why guess a design fouling factor when it can be optimized  

DOE Green Energy (OSTI)

A new general surface heat exchanger design relationship is derived that uniquely relates the optimum design fouling resistance and the optimum design heat transfer coefficient with the ratio of cleaning cost to capital plus operating costs, at the optimum design condition. Implementation of this simple result to practical problems in design, however, requires numerical techniques. A new shell and tube heat exchanger design program, SIZEHX, is applied to a problem of current interest to confirm the derivation. SIZEHX can cost effectively perform single-step, multiparameter cost optimizations on single phase or supercritical exchanger arrays with variable fluid properties and arbitrary linear fouling for single-pass, segmentally baffled shell-and-tube configurations for a variety of fluid pairs, including hydrocarbon mixtures. The economic influence of several general design parameters on a geothermal exchanger are presented in the form of 3-D computer generated plots.

Pope, W.L.; Pines, H.S.; Fulton, R.L.; Doyle, P.A.

1978-06-01T23:59:59.000Z

103

The July 1995 Heat Wave in the Midwest: A Climatic Perspective and Critical Weather Factors  

Science Conference Proceedings (OSTI)

A brief but intense heat wave developed in the central and eastern United States in mid-July 1995, causing hundreds of fatalities. The most notable feature of this event was the development of very high dewpoint temperature (Td) over the southern ...

Kenneth E. Kunkel; Stanley A. Changnon; Beth C. Reinke; Raymond W. Arritt

1996-07-01T23:59:59.000Z

104

High Energy-Efficiency Retrofits to Baltimore's Row Homes  

SciTech Connect

The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

1999-04-19T23:59:59.000Z

105

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

106

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006;" 4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

107

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

108

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

109

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2010;" 3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

110

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010;" 1.1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",75652,21,5666,347,80993

111

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

112

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

113

" Row: NAICS Codes; Column: Electricity Components;"  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006;" 1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)" ,,"Total United States" 311,"Food",73242,309,4563,111,78003

114

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2006;" 3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million"

115

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

116

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

117

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

118

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

119

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

120

Solar heating apparatus  

SciTech Connect

The disclosure concerns a collector for solar heating apparatus which is adapted for vertical mounting and utilizes air as the heat exchange medium. The collector comprises a glazed insulated box containing a group of energy transfer units, each of which is formed by a pair of similar open top metal foil pans having flat bottom walls which are in abutment and outwardly flaring conical side walls. The pans carry a black energy-absorbing coating and preferably their abutting walls contain registering air flow openings. The energy transfer units are stacked in interfitting relationship in rows and columns, with the axes of adjacent interfitted units in each row and in each column extending in mutually perpendicular directions. The collector may be combined with a fan unit adapted to fit a standard window, thereby providing a portable, economical, auxiliary heater for a room of a building.

Decker, C.R.

1981-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

List of Geothermal Heat Pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

Heat Pumps Incentives Heat Pumps Incentives Jump to: navigation, search The following contains the list of 729 Geothermal Heat Pumps Incentives. CSV (rows 1-500) CSV (rows 501-729) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs (Arkansas) Utility Rebate Program Arkansas Commercial Fed. Government Industrial Institutional Local Government

122

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

123

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

124

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

125

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

126

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

127

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

128

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

129

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

130

Heat Transfer Simulation of Reactor Cavity Cooling System Experimental Facility using RELAP5-3D and Generation of View Factors using MCNP  

E-Print Network (OSTI)

As one of the most attractive reactor types, The High Temperature Gas-cooled Reactor (HTGR) is designed to be passively safe with the incorporation of Reactor Cavity Cooling System (RCCS). In this paper, a RELAP5-3D simulation model is set up based on the 1/16 scale experimental facility established by Texas A&M University. Also, RELAP5-3D input decks are modified to replicate the experiment procedures and the experimental results are compared with the simulation results. The results show there is a perfect match between experimental and simulation results. Radiation heat transfer dominates in the heat transfer process of high temperature gas-cooled reactor due to its high operation temperature. According to experimental research done with the RCCS facility in Texas A&M University, radiation heat transfer takes up 80% of the total heat transferred to standing pipes. In radiation heat transfer, the important parameters are view factors between surfaces. However, because of the geometrical complexity in the experimental facility, it is hard to use the numerical method or analytical view factor formula to calculate view factors. In this project, MCNP based on the Monte Carlo method is used to generate view factors for RELAP5-3D input. MCNP is powerful in setting up complicated geometry, source definition and tally application. In the end, RCCS geometry is set up using MCNP and view factors are calculated.

Wu, Huali

2013-08-01T23:59:59.000Z

131

Burnup Credit -- Contribution to the Analysis of the Yankee Rowe Radiochemical Assays  

Science Conference Proceedings (OSTI)

This report presents a methodology for validation of the isotopic contents of spent light water reactor fuel for actinide-only burnup credit with additional high-quality radiochemistry assay (RCA) data obtained from the Yankee Rowe pressurized water reactor. The additional Yankee Rowe RCA data were not included in previous isotopic validation studies for burnup credit due to the difficulty of accurately modeling the complex Yankee Rowe fuel assembly design using the SAS2H one-dimensional sequence of the ...

2011-10-11T23:59:59.000Z

132

Provably Near-Optimal Solutions for Very Large Single-Row Facility ...  

E-Print Network (OSTI)

Mar 14, 2009 ... This paper is concerned with the single-row facility ..... A standard way to tighten linear or semidefinite relaxations of integer optimization ...

133

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

134

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

135

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

136

Energy Conservation Analysis of Three-Row-Hole Hollow Blocks  

E-Print Network (OSTI)

In recent years, solid clay blocks have been forbidden in large and middle cities with the wall reformation policy issued in China. Many kinds of new wall materials have appeared in the market, but little research has been done on these new materials' energy conserving effects. The government of China adopted forcible energy conserving measures in the building industry in 2005. Because of this, more attention is being paid to the energy-conserving ability of the wall material. In this paper, we investigate the thermal properties of two different kinds of three-row-hole blocks through experiments, analyze their energy conserving index, and suggest ways to save energy based on the results of the investigation.

Chen, G.; Li, H.; Liu, Z.

2006-01-01T23:59:59.000Z

137

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

138

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

139

Automatic expert system based on images for accuracy crop row detection in maize fields  

Science Conference Proceedings (OSTI)

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification ... Keywords: Crop row detection in maize fields, Expert system, Image segmentation, Image thresholding, Linear regression, Machine vision, Theil-Sen estimator

J. M. Guerrero; M. Guijarro; M. Montalvo; J. Romeo; L. Emmi; A. Ribeiro; G. Pajares

2013-02-01T23:59:59.000Z

140

Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes  

SciTech Connect

Experimental investigation of heat transfer, friction factor and thermal performance of twisted tape solar water heater with various twist ratios has been conducted and the results are compared with plain tube collector for the same operating conditions with Reynolds number varied from 3000 to 23,000. Experimental data from plain tube collector is validated with the fundamental equations and found that the discrepancy is less than {+-}5.35% and {+-}8.80% for Nusselt number and friction factor, respectively. Correlations have been developed for Nusselt number and friction factor with various twist ratios (Y = 3, 4, 5, 6) and are compared with the experimental values. Results conclude that, heat transfer and pressure drop are higher in twisted tape collector compared to the plain one. Among the various twist ratios, the minimum twist ratio 3 is found to enhance the heat transfer and pressure drop due to swirl generation. As the twist ratio increases, the swirl generation decreases and minimizes the heat transfer and friction factor. (author)

Jaisankar, S. [Department of Mechanical Engineering, Oxford Engineering College, Tiruchirappalli 620009, Tamil Nadu (India); Radhakrishnan, T.K.; Sheeba, K.N. [Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India)

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GRR/Section 3-AK-b - Right of Ways (ROWs) | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-b - Right of Ways (ROWs) GRR/Section 3-AK-b - Right of Ways (ROWs) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-b - Right of Ways (ROWs) 03AKBRightOfWaysROWs.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKBRightOfWaysROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Division of Mining Land and Water (ML&W) oversees land use within the state and issues right of ways, easements or permit to use state

142

GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW GRR/Section 3-HI-e - Permit to Construct Upon a State Highway ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-e - Permit to Construct Upon a State Highway ROW 03HIEConstructionUponAStateHighwayROW.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Highways Division Regulations & Policies Hawaii Revised Statute Chapter 264 Hawaii Administrative Rules Title 19, Chapter 102 Hawaii Administrative Rules Title 19, Chapter 105 Triggers None specified Click "Edit With Form" above to add content 03HIEConstructionUponAStateHighwayROW.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

143

Level: National and Regional Data; Row: Values of Shipments and...  

Gasoline and Diesel Fuel Update (EIA)

consumption of energy originally produced offsite, acquired as a result of a purchase or transfer and consumed onsite for the production of heat and power. This definition is...

144

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006; 3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 979.3 10.3

145

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

146

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

147

Level: National Data; Row: Values of Shipments within NAICS Codes;  

Gasoline and Diesel Fuel Update (EIA)

3 Consumption Ratios of Fuel, 2010; 3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2 2.8 250-499 1,905.2 7.4 3.6 500 and Over 4,225.4 7.5 3.1 Total 1,449.6 6.4 2.8 311 FOOD Value of Shipments and Receipts (million dollars) Under 20 576.6 5.9

148

Level: National Data; Row: Employment Sizes within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2006; 4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9 10.6 4.5 1000 and Over 1,415.5 5.7 2.5 Total 1,278.4 6.9 3.1 311 FOOD Employment Size Under 50 1,266.8 8.3 3.2 50-99 1,587.4 9.3 3.6 100-249 931.9 3.6 1.5 250-499 1,313.1 6.3

149

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

150

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

151

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

152

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

153

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

154

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

155

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

156

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

157

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

158

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives (Redirected from List of Heat Pumps Incentives) Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial

159

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet and a fluid outlet. Shingles are assembled in a normal overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive shingles to provide a fluid path through the complete array. An inlet manifold is contained in a cap used at the peak of the roof and an outlet manifold is connected to the lowest row of shingles.

Straza, G.T.

1984-01-31T23:59:59.000Z

160

PreHeat: controlling home heating using occupancy prediction  

Science Conference Proceedings (OSTI)

Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more efficiently heat homes by using occupancy sensing and occupancy prediction to automatically control home heating. We deployed PreHeat in five homes, three in the ... Keywords: energy, environment, home heating, prediction, sensing

James Scott; A.J. Bernheim Brush; John Krumm; Brian Meyers; Michael Hazas; Stephen Hodges; Nicolas Villar

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor Residential Central Air conditioners

162

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW | Open Energy  

Open Energy Info (EERE)

GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW GRR/Section 3-NV-c - Encroachment Permit for NDOT ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-NV-c - Encroachment Permit for NDOT ROW 03NVCEncroachment (1).pdf Click to View Fullscreen Contact Agencies Nevada Department of Transportation Regulations & Policies NRS Chapter 405 Control and Preservation of Public Highways Triggers None specified Click "Edit With Form" above to add content 03NVCEncroachment (1).pdf 03NVCEncroachment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Department of Transportation (NDOT) grants permits for permanent installations within State rights-of-way and in areas maintained by the

163

Microsoft Word - CX-Pearl-Keeler_ROW_Marking_10June2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rick Teiper Rick Teiper Project Manager - TERM-TPP-4 Proposed Action: Pearl-Keeler Right-of-Way (ROW) Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Washington County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to survey and mark the Pearl-Keeler No. 1 transmission line ROW boundary in Washington County, Oregon. The installation of markers to demarcate BPA's ROW would prevent encroachment from homeowners and developers, ensure the safety of nearby residents, and allow for the continued safe maintenance and operation of BPA's transmission lines. The proposed Project would install yellow carsonite markers and monuments along an

164

A numerical study of bench blast row delay timing and its influence on percent-cast  

SciTech Connect

The computer program, DMC (Distinct Motion Code), which was developed for simulating the rock motion associated with blasting, has been used to study the influence of row delay timing on rock motion. The numerical simulations correspond with field observations in that very short delays (< 50ms) and very long delays (> 300ms) produce a lower percent-cast than a medium delay (100 to 200 ms). The DMC predicted relationship between row delay timing and percent-cast is more complex than expected with a dip in the curve where the optimum timing might be expected. More study is required to gain a full understanding of this phenomenon.

Preece, D.S.

1993-11-01T23:59:59.000Z

165

ROW 2.0 - Right-of-Way Environmental Stewardship Bibliographic Database, Version 2.0  

Science Conference Proceedings (OSTI)

The Right-of-Way Environmental Stewardship Bibliographic Database Version 2.0 (ROW 2.0) allows users to search in multiple ways for citations and retrieve summaries of published documents that focus on environmental concerns related to utility corridor design, siting, construction, or management.

2007-03-08T23:59:59.000Z

166

Shelley J. Row, P.E., PTOE Director, ITS Joint Program Office  

E-Print Network (OSTI)

Shelley J. Row, P.E., PTOE Director, ITS Joint Program Office Research and Innovative Technology of Transportation's Intelligent Transportation Systems (ITS) Joint Program Office (JPO), a position she has held 1996, Shelley joined the ITS Joint Program Office as the ITS Travel Management Coordinator and later

Minnesota, University of

167

The removal and segmentation of the Yankee Rowe reactor vessel internals  

Science Conference Proceedings (OSTI)

A major element of the reactor decommissioning of the Rowe Yankee reactor was the segmentation and packaging of the reactor internals. PCI Energy Services, specializing in remote cutting, machining, and welding, performed this work under contract to Yankee Atomic Electric Company. Removal techniques are described.

Child, C.; McGough, M.; Smith, G. [Power Cutting Inc., Lake Bluff, IL (United States)

1995-12-31T23:59:59.000Z

168

Qualification of In-Service Examination of the Yankee Rowe Reactor Pressure Vessel  

Science Conference Proceedings (OSTI)

An effective in-service examination of the reactor pressure vessel was an essential part of the restart program for the Yankee Atomic Power Company plant in Rowe, Massachusetts. This report describes development of an effective examination strategy, demonstration of performance of the examination procedures, and development of data on the distribution of flaws in reactor pressure vessels.

1993-01-01T23:59:59.000Z

169

Outline of a qualitative analysis for the human motion in case of ergometer rowing  

Science Conference Proceedings (OSTI)

Today, there are numerous methods of quantitative analysis of the human movement. Basic quality of these methods is the high degree of accuracy and reliability of the obtained data. According to systematic approach human movement is qualified as a complex ... Keywords: fuzzification, human motion, qualitative analysis, quantitative analysis, rowing

Ante Panjkota; Ivo Stan?ic; Tamara Šupuk

2009-09-01T23:59:59.000Z

170

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

171

Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al-Ar and the first row atoms B-Ne revisited  

Science Conference Proceedings (OSTI)

Correlation consistent basis sets for accurately describing core-core and core-valence correlation effects in atoms and molecules have been developed for the second row atoms Al - Ar. Two different optimization strategies were investigated, which led to two families of core-valence basis sets when the optimized functions were added to the standard correlation consistent basis sets (cc-pVnZ). In the first case, the exponents of the augmenting primitive Gaussian functions were optimized with respect to the difference between all-electron and valence-electron correlated calculations, i.e., for the core-core plus core-valence correlation energy. This yielded the cc-pCVnZ family of basis sets, which are analogous to the sets developed previously for the first row atoms[D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995)]. Although the cc-pCVnZ sets exhibit systematic convergence to the all-electron correlation energy at the complete basis set limit, the intershell (core-valence ) correlation energy converges more slowly than the intrashell (core-core) correlation energy. Since the effect of including the core electrons on the calculation of molecular properties tends to be dominated by core-valence correlation effects, a second scheme for determining the augmenting functions was investigated. In this approach, the exponents of the functions to be added to the cc-pVnZ sets were optimized with respect to just the core-valence (intershell) correlation energy, except that a small amount of core-core correlation energy was included in order to ensure systematic convergence to the complete basis set limit. These new sets, denoted weighted core-valence basis sets (cc-pwCVnZ), significantly improve the convergence of many molecular properties with n. Optimum cc-pwCVnZ sets for the first-row atoms were also developed and show similar advantages.

Peterson, Kirk A. (WASHINGTON STATE UNIV TC); Dunning, Thom H. (BATTELLE (PACIFIC NW LAB))

2002-12-15T23:59:59.000Z

172

Book Review: Thieves of Book Row: New York's Most Notorious Rare Book Ring and the Man Who Stopped It by Travis McDade  

E-Print Network (OSTI)

Thieves of Book Row: New York'sMost Notorious Rare Book Ring and the Man Who Stopped It bypp. ISBN 0199922667. In Thieves of Book Row: New York’s Most

Montoya, Robert D.

2013-01-01T23:59:59.000Z

173

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

174

Microsoft Word - CX-Rattlesnake-Garrison_ROW_Marking_06June2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum P. Hastings Project Manager - TERM-TPP-4 Proposed Action: Rattlesnake-Garrison Right-of-Way Marking Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Missoula County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to survey and mark the Rattlesnake- Garrison transmission line right-of-way (ROW) boundary in Missoula County, Montana. The installation of signs to mark BPA's ROW would prevent encroachment from homeowners and developers, ensure the safety of nearby residents, and allow for the continued safe maintenance and operation of BPA's transmission lines.

175

A Parallel Row-Based Algorithm For Standard Cell Placement With Integrated Error Control  

E-Print Network (OSTI)

A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cellplacement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control. 1. INTRODUCTION Simulated annealing is a general-purpose optimization method that has been successfully applied to solve a large variety of combinatorial optimization problems including many in VLSI design. Annealing is computationally very expensive, hence efforts to improve execution time has proceeded along two fronts: (1) accelerating the annealing schedule, and (2) parallelizing the annealing algorithm for execution on multiprocessors. Parallel implementations of annealing as applied to the cell placement application either attempt multiple cell moves in parallel [1-7], or distribute ...

Jeff S. Sargent; Prith Banerjee

1989-01-01T23:59:59.000Z

176

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" 11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)"

177

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

178

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " 7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Receipts(d)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)"," "

179

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

180

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Reasons that Made Coal Unswitchable, 2006;" 2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Coal Consumed ","Unswitchable","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

182

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

183

Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1047-2008 DOE-STD-1047-2008 August 2008 DOE STANDARD Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS) U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1047-2008 TABLE OF CONTENTS FOREWORD ....................................................................................................................... i 1. SCOPE AND PURPOSE .........................................................................................1 2. APPLICABILITY ....................................................................................................1 3. NORMATIVE REFERENCES................................................................................2

184

Qualification of in-service examination of the Yankee Rowe reactor pressure vessel  

SciTech Connect

Technical support was provided to assist the Yankee Atomic Electric Company with their restart effort for the Yankee plant in Rowe, Massachusetts. Demonstration of adequate margin during a postulated pressurized thermal shock accident was an important part of the justification for restarting the plant, and effective inservice examination of the critical inner surface of the vessel in the beltline region was a key objective and a significant component of the safety analysis. This report discussed this inservice inspection.

Ammirato, F.; Kietzman, K.; Becker, L.; Ashwin, P.; Selby, G.; Krzywosz, K.; Findlan, S. (Electric Power Research Inst., Charlotte, NC (United States). Nondestructive Evaluation Center); Lance, J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1992-12-01T23:59:59.000Z

185

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

186

File:App Misc Easement ROW.pdf | Open Energy Information  

Open Energy Info (EERE)

App Misc Easement ROW.pdf App Misc Easement ROW.pdf Jump to: navigation, search File File history File usage Metadata File:App Misc Easement ROW.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.54 MB, MIME type: application/pdf, 4 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:36, 20 June 2013 Thumbnail for version as of 09:36, 20 June 2013 1,275 × 1,650, 4 pages (1.54 MB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

187

File:Guidelines-for-leasing-row-tracts.pdf | Open Energy Information  

Open Energy Info (EERE)

Guidelines-for-leasing-row-tracts.pdf Guidelines-for-leasing-row-tracts.pdf Jump to: navigation, search File File history File usage Metadata File:Guidelines-for-leasing-row-tracts.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 23 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:06, 13 June 2013 Thumbnail for version as of 15:06, 13 June 2013 1,275 × 1,650, 2 pages (23 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

188

File:03AKBRightOfWaysROWs.pdf | Open Energy Information  

Open Energy Info (EERE)

AKBRightOfWaysROWs.pdf AKBRightOfWaysROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03AKBRightOfWaysROWs.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 38 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:00, 3 July 2013 Thumbnail for version as of 12:00, 3 July 2013 1,275 × 1,650 (38 KB) Alevine (Talk | contribs) 09:55, 18 October 2012 Thumbnail for version as of 09:55, 18 October 2012 1,275 × 1,650 (53 KB) Jnorris (Talk | contribs) 10:36, 6 August 2012 Thumbnail for version as of 10:36, 6 August 2012 1,275 × 1,650 (34 KB) Jnorris (Talk | contribs)

189

File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open Energy  

Open Energy Info (EERE)

CAAStateLandLeasingProcessAndLandAccessROWs.pdf CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 75 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:03, 29 November 2012 Thumbnail for version as of 16:03, 29 November 2012 1,275 × 1,650 (75 KB) Jnorris (Talk | contribs) 12:06, 12 September 2012 Thumbnail for version as of 12:06, 12 September 2012 1,275 × 1,650 (82 KB) Djenne (Talk | contribs) 15:45, 26 June 2012 Thumbnail for version as of 15:45, 26 June 2012 1,275 × 1,650 (75 KB) Jnorris (Talk | contribs) June 26th version

190

DisClose: Discovering Colossal Closed Itemsets via a Memory Efficient Compact Row-Tree  

SciTech Connect

Itemset mining has recently focused on discovery of frequent itemsets from high-dimensional datasets with relatively few rows and a larger number of items. With exponentially in-creasing running time as average row length increases, mining such datasets renders most conventional algorithms impracti-cal. Unfortunately, large cardinality closed itemsets are likely to be more informative than small cardinality closed itemsets in this type of dataset. This paper proposes an approach, called DisClose, to extract large cardinality (colossal) closed itemsets from high-dimensional datasets. The approach relies on a memory-efficient Compact Row-Tree data structure to represent itemsets during the search process. The search strategy explores the transposed representation of the dataset. Large cardinality itemsets are enumerated first followed by smaller ones. In addition, we utilize a minimum cardinality threshold to further reduce the search space. Experimental result shows that DisClose can complete the extraction of colossal closed itemsets in the considered dataset, even for low support thresholds. The algorithm immediately discovers closed itemsets without needing to check if each new closed itemset has previously been found.

Zulkurnain, Nurul F.; Keane, John A.; Haglin, David J.

2013-02-01T23:59:59.000Z

191

File:03HIEConstructionUponAStateHighwayROW.pdf | Open Energy Information  

Open Energy Info (EERE)

HIEConstructionUponAStateHighwayROW.pdf HIEConstructionUponAStateHighwayROW.pdf Jump to: navigation, search File File history File usage File:03HIEConstructionUponAStateHighwayROW.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:02, 23 October 2012 Thumbnail for version as of 13:02, 23 October 2012 1,275 × 1,650 (42 KB) Dklein2012 (Talk | contribs) 14:00, 24 July 2012 Thumbnail for version as of 14:00, 24 July 2012 1,275 × 1,650 (35 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

192

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching  

DOE Green Energy (OSTI)

A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows form a magnetic rail. Levitation and lateral stability is provided when the induced field in the magnetic rails interacts with the superconducting magnets (SCM) mounted on the magnetic levitation vehicle. A multiphase propulsion system interconnects specific coils in a given magnetic rail and interacts with the SCM to produce a propulsion force to the vehicle.

He, J.; Rote, D.M.

1994-12-31T23:59:59.000Z

193

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet socket at the upper end and a fluid outlet plug at the lower end with a skirt at the lower end overlapping the plug. Shingles are assembled in an overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive longitudinally positioned shingles to provide fluid paths through the complete array. An inlet manifold is positioned at the upper end of the array or in the alternative contained in a cap used at the peak of the roof and an outlet manifold is connected to the outlet of the lowest row of shingles.

Straza, G.T.

1981-01-13T23:59:59.000Z

194

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

195

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

196

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

197

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" 4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable Distillate","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, "

198

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)"

199

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" 9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

200

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" 3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)"

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2006;" 1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",879.8,5,2.2 3112," Grain and Oilseed Milling",6416.6,17.5,5.7

202

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

203

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

204

" Row: General Energy-Management Activities within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" 1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States"

205

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" 5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)"

206

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

207

Observations and comments on the turbine failure at Yankee Atomic Electric Company, Rowe, Massachusetts  

Science Conference Proceedings (OSTI)

A preliminary analysis is presented of the catastrophic disc failure in the low-pressure turbine at the Yankee Rowe nuclear reactor plant. The analysis is based on on-site inspection and documentation of fractured components. Heavily oxidized thumbnail cracks were observed on fractured surfaces of the first-stage generator-end disc, indicating stress corrosion cracking as the precursor to the catastrophic failure of this disc. No evidence of such cracks was seen on the corresponding fractured governor-end disc. We propose a number of alternative possible causes for the failures and for the differences observed between the two discs.

Goldberg, A.; Streit, R.D.

1980-11-15T23:59:59.000Z

208

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

capacitance of clothing. Heat capacity of the clothing hasSuffix a cl c e m n r s area (m²) specific heat capacity (J/kgK) heat capacity (J/K) clothing surface area factor view

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

209

Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results  

Science Conference Proceedings (OSTI)

A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

2002-08-01T23:59:59.000Z

210

List of Heat recovery Incentives | Open Energy Information  

Open Energy Info (EERE)

recovery Incentives recovery Incentives Jump to: navigation, search The following contains the list of 174 Heat recovery Incentives. CSV (rows 1 - 174) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government

211

Heating Energy Meter Validation for Apartments  

E-Print Network (OSTI)

Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second-stage buildings of the Kouan residential area in Baotou. Through the collection and processing of heat meters' data, reliability of data is analyzed, the main influencing factors for heat meters are discussed, and recommendations for heating pricing are presented.

Cai, B.; Li, D.; Hao, B.

2006-01-01T23:59:59.000Z

212

Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel  

SciTech Connect

The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117.

Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A. [Oak Ridge National Lab., TN (United States)

1993-08-01T23:59:59.000Z

213

Short-term dynamics of soil carbon, microbial biomass, and soil enzyme activities as compared to longer-term effects of tillage in irrigated row crops  

E-Print Network (OSTI)

rates by tillage and crop rotation: a global data analysis.of tillage in irrigated row crops Daniel Geisseler & Williamthe cropping season in all crop sequences D. Geisseler (*) :

Geisseler, Daniel; Horwath, William R.

2009-01-01T23:59:59.000Z

214

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW 03AKGUtilityPermitToConstructOnADOTROW (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities U S Army Corps of Engineers United States Coast Guard Bureau of Indian Affairs Bureau of Land Management Federal Aviation Administration Alaska Department of Natural Resources Regulations & Policies 11 AAC 195.010: Anadromous Fish 17 AAC 15.021: Application for Utility Permit Triggers None specified Click "Edit With Form" above to add content 03AKGUtilityPermitToConstructOnADOTROW (1).pdf

215

The effects of agricultural land use patterns on pollutant runoff from watersheds: rangeland/pastureland and row cropping  

E-Print Network (OSTI)

Much attention is being focused on water quality in rivers, lakes and streams. One of the contributors of pollution to rivers, lakes and streams is runoff from agriculture in the form of nutrients, pesticides and suspended solids. This study was designed to look at the amount of these substances produced in subwatersheds from corn, grain sorghum and cotton farming along the Colorado River in Travis and Bastrop counties. The study also looked at rangeland and row cropped familand to estimate which land use type produced more runoff and pollution to receiving streams. Best management practices were also looked at as a means of limiting the amount of runoff and pollution transport from row cropped areas. Three automated sampling sites were set up to collect water samples after rainfall events. Two of the sites were set up to sample from streams that drained subwatersheds of a tributary to the Colorado River. The land use at one subwatershed consisted primarily of rangeland and pastureland while the land use at the other site consisted mainly of row cropped farmland. The third site was set up to sample on a row cropped farm that employed certain best management practices. The accepted convention is that rangeland produces less runoff @ row cropped areas and therefore contributes less pollutants to receiving waters. The findings from this project generally support this. Additionally, it was found, through computer modeling, that best management practices in the form of terracing, contour plowing and filter strips significantly reduced the amount of runoff and pollutants that move off site from row cropped areas during rainfall events. The implications of these findings are that, where possible, efforts should be made to implement best management practices to reduce the amount of runoff and pollution to receiving waters. Producers also need to be educated as to how to implement and maintain best management practices to obtain optimal benefits.

Jayne, Andrew A.

1995-01-01T23:59:59.000Z

216

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

217

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

218

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

219

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

220

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1 12.6 31131 Sugar Manufacturing 7,755.9 32.6 13.4 3114 Fruit and Vegetable Preserving and Specialty Foods 861.3 4.8 2.2 3115 Dairy Products 854.8 3.5 1.1 3116 Animal Slaughtering and Processing 442.9 3.5 1.2 312

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

On undrained test using Rowe's relation and Incremental Modelling: Generalisation of the notion of Characteristic State  

E-Print Network (OSTI)

It is recalled that stress-strain incremental modelling is a common feature of most theoretical description of the mechanical behaviour of granular material. An other commonly accepted characteristics of the mechanical behaviour of granular material is the Rowe's relation which links the dilatancy K to the ratio B of vertical-to-lateral stress during a test at constant lateral stress, i.e. B =(1+M)(1+K). Using an incremental modelling, this law shall be interpreted as a pseudo-Poisson coefficient. We combine these two features to solve the problem of an axial compression under undrained condition. We demonstrate that the sample is submitted to a bifurcation of the transcritical type when it reaches the q=Mp line. This allows extending the notion of the characteristic state introduced by Luong to other situations and to anisotropic systems. We show also that these undrained tests are quite appropriate to study the characteristic-state behaviour.

P. Evesque

2005-06-14T23:59:59.000Z

222

Core design study of a supercritical light water reactor with double row fuel rods  

SciTech Connect

An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

Zhao, C.; Wu, H.; Cao, L.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China); Yang, J.; Zhang, Y. [China Nuclear Power Technology Research Inst., Yitian Road, ShenZhen, GuangDong, 518026 (China)

2012-07-01T23:59:59.000Z

223

Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4 3114 Fruit and Vegetable Preserving and Specialty Foods 13 13 0 3115 Dairy Products 0 0 0 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products * * 0 3121 Beverages

224

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

225

Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT  

Science Conference Proceedings (OSTI)

We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H. [Siemens Medical Solutions, Computed Tomography CTE PA Siemensstr. 1, 91301 Forchheim (Germany) and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet Tuebingen (Germany); Siemens Medical Solutions, Computed Tomography CTE PA Siemensstr. 1, 91301 Forchheim (Germany); Mayo Clinic College of Medicine, Department of Radiology, Rochester, Minnesota (United States)

2007-05-15T23:59:59.000Z

226

Wednesday November 10, 4:01 AM Tokyo 3RD LD: Japan-EU row delays decision on nuke reactor  

E-Print Network (OSTI)

Wednesday November 10, 4:01 AM Tokyo 3RD LD: Japan-EU row delays decision on nuke reactor site (EDS the location to host a global nuclear fusion project during the latest round of talks in Vienna with four other ministry's nuclear fusion development office, told reporters that neither Japan nor the EU is in a mood

227

Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

2010-11-01T23:59:59.000Z

228

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

229

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

230

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

231

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

232

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85 250-499 297 * * 121 154 3 5 13 500 and Over 2,547 * * 130 2,043 301 6 66 Not Ascertained (f) 3,399 0 0 0 0 0 0 3,399 Total 6,962 64 17 398 2,299 417 56 3,711 Employment Size Under 50 161 4 Q 48 15 19 0 64 50-99 390 41 1 97 145 27 1 77 100-249

233

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15 1,210 W 3112 Grain and Oilseed Milling 580 580 15 183 449 269 35 0 148 W 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 0 31131 Sugar Manufacturing 78 78 11 45 61 35 26 15 45 0 3114 Fruit and Vegetable Preserving and Specialty Food 1,125

234

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006; 3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197 100-249 2,443 607 25 19 994 11 263 10 512 250-499 2,092 413 53 13 633 4 244 3 730 500 and Over 7,551 781 115 17 2,271 31 240 344 3,752 Total 15,657 2,851 251 129 5,512 79 1,016 374 5,445 Employment Size Under 50 1,103 334 10 45 550 10

235

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2006; 2 Consumption Ratios of Fuel, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value Economic per Employee of Value Added of Shipments Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Total United States Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2 50-99 830.1 5.9 2.7 100-249 1,130.0 6.7 3.1 250-499 1,961.4 7.6 3.6 500 and Over 3,861.9 9.0 3.6 Total 1,278.4 6.9 3.1 Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3 7.7 3.6 500-999 2,328.9

236

Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6 18.2 31131 Sugar Manufacturing 6,629.2 31.3 12.2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,075.3 5.5 2.8 3115 Dairy Products 956.3 4.3 1.3 3116 Animal Slaughtering and Processing 493.8 4.4 1.6 312

237

Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2006; 1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing 920 54 951 7 1,919 3114 Fruit and Vegetable Preserving and Specialty Foo 9,720 1 268 13 9,976 3115 Dairy Products 10,079 0 44 0 10,123 3116 Animal Slaughtering and Processing 17,545 0 17 0 17,562 312 Beverage and Tobacco Products

238

Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 17 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 35 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 95

239

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,166 367 23 48 540 15 41 3 140 12 20-49 1,209 333 20 26 550 8 104 5 182 20 50-99 1,507 349 51 19 575 98 190 9 256 40 100-249 2,651 607 53 20 1,091 23 310 53 566 73 250-499 2,362 413 52 13 754 158 247 9 732 16 500 and Over

240

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

Gasoline and Diesel Fuel Update (EIA)

1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7 1,668 W 3112 Grain and Oilseed Milling 602 602 9 201 490 286 30 0 165 W 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 29 0 31131 Sugar Manufacturing 73 73 3 36 67 13 11 7 15 0 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; 6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 28 28 0 20-49 307 227 80 50-99 2,218 1,673 545 100-249 2,647 1,437 1,210 250-499 3,736 2,271 1,464 500 and Over 10,814 5,665 5,149 Total 19,750 11,301 8,449 Employment Size Under 50 516 230 287 50-99 1,193 1,180 13 100-249 3,825 3,231 594 250-499 3,796 2,675 1,120 500-999 4,311 1,921 2,390

242

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2006; 4 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,447 450 Q Q 20-49 5,220 5,106 29 Q 50-99 3,784 3,579 29 Q 100-249 17,821 17,115 484 222 250-499 28,464 27,202 334 927 500 and Over 86,249 85,028 106 1,114 Total 142,986 138,480 1,030 3,476 Employment Size Under 50 2,193 1,177 Q Q 50-99 6,617 6,438 13 166 100-249 12,403 12,039 266 98 250-499

243

Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts  

SciTech Connect

In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting the average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.

Sylvain, D.C.

1996-10-01T23:59:59.000Z

244

Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)  

SciTech Connect

The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the ``primary acceptance criterion`` in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States)

1992-03-01T23:59:59.000Z

245

Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)  

Science Conference Proceedings (OSTI)

The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the primary acceptance criterion'' in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K. (Oak Ridge National Lab., TN (United States))

1992-03-01T23:59:59.000Z

246

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

247

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching  

DOE Patents (OSTI)

A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

He, Jianliang (Naperville, IL); Rote, Donald M. (Lagrange, IL)

1996-01-01T23:59:59.000Z

248

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching  

DOE Patents (OSTI)

A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

He, J.; Rote, D.M.

1996-05-21T23:59:59.000Z

249

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

250

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

251

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

252

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

253

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

254

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

255

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

256

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

257

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

258

Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data  

Science Conference Proceedings (OSTI)

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

NONE

1997-11-01T23:59:59.000Z

259

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

260

A study of two phases heat transport capacity in a micro heat pipe  

Science Conference Proceedings (OSTI)

Present study modifies Cotter's model by using the dimensionless liquid flow shape factor, K1, to predict the maximum heat transport capacity and to discus the effects of contact angle. The results indicated that as the dimensionless ... Keywords: Cotter's model, contact angle, dimensionless, heat pipe, heat transport capacity, shape factor

Cheng-Hsing Hsu; Kuang-Yuan Kung; Shu-Yu Hu; Ching-Chuan Chang

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

262

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

263

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

264

Cooperation of heat pump and solar system in the common power unit  

Science Conference Proceedings (OSTI)

The paper explains new possibilities of heat pumps usage in the common power units. The result of applied research is an examination of heat pump and active solar system cooperation eligibility. The aspects of such a cooperation are examined mainly from ... Keywords: combined heating system, heat pump, heating factor, heating factor increase, natural energy, solar system

Mastny Petr

2007-05-01T23:59:59.000Z

265

Ingham County Geriatric Medical Care Facility solar water-heating system refurbishments. Final technical report  

DOE Green Energy (OSTI)

The tasks of the refurbishment of a damaged solar water heating system are outlined. The system is a closed loop, 50% glycol antifreeze system consisting of 14 rows of 6 series manifolds each containing 6 solar collectors connected in parallel for a total of 504 modules. The Wyle Laboratories' test report for the Revere Model 132 flat plate collector is appended. A collector test plan and photographs are also appended. Reference CAPE-2834. (LS)

Not Available

1983-07-01T23:59:59.000Z

266

Temperature measurement and sensor selection for solar heating and cooling systems  

DOE Green Energy (OSTI)

The different methods for temperature and temperature difference measurement are critically described as to their applicability to solar heating and cooling systems. The major commercial temperature sensors are surveyed, and their technical and economic aspects are discussed. Installation and calibration techniques are recommended. The temperature measuring system implemented in the University of Pennsylvania Solar Row House as a consequence of the above considerations is described.

Lior, N.

1978-01-01T23:59:59.000Z

267

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

268

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

269

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

270

Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx  

National Nuclear Security Administration (NNSA)

Future Challenges Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Fuel Cycle Source: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle Information System (NFCIS) web site IAEA Safeguards Begins Here 4 Future Challenges for Global Fuel Cycle Material Accounting Nuclear Weapons Cycle Conversion

271

Technical evaluation of the adequacy of station electric distribution system voltages for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Yankee Rowe Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis shows that the station electric distribution system has the capacity and capability to supply voltage to the Class 1E equipment with their design ratings for the worst case loading condition.

Selan, J.C.

1981-05-29T23:59:59.000Z

272

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

273

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

274

The Role of Filtration in Maintaining Clean Heat Exchanger Coils  

SciTech Connect

The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h eat transfer coefficient. In most cases, the EER was reduced with fouling primarily due to increased fan power. However, the changes in EER were relatively small, in the range of 1%-9% (10%). For most cases, equipment having low efficiency filters had higher EER after fouling than equipment with high efficiency filters, because the high efficiency filter caused significantly higher pressure drops than the low efficiency filters. The extra filter pressure drop outweighed the reduced coil pressure drop after fouling. The impact of fan efficiency curves was also investigated in the study. The energy penalty associated with high efficiency filters was reduced considerably with higher efficiency fans. There is an energy penalty associated with the use of high efficiency filtration. However, the primary reason for selecting high efficiency filters for a particular application would be improved air quality. For HX8L, the quantity of dust passing through the coil with a MERV4 filter was approximately 30 times the dust passing the coil with a MERV14 filter. Without an upstream filter, the quantity of dust passing through the coil was approximately 60 times the value for a MERV14 filter.

Li Yang; James E. Braun; Eckhard A. Groll

2004-06-30T23:59:59.000Z

275

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

276

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

277

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

278

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

a Primary Consumption for All Purposes Inputs for Heat, Power, and Generation of Electricity Primary Consumption for Nonfuel Purposes RSE Row Factors LPG Distillate b...

279

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Industry Primary Consumption for All Purposes Inputs for Heat, Power, and Generation of Electricity Primary Consumption for Nonfuel Purposes RSE Row Factors LPG Distillate b...

280

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner  

Science Conference Proceedings (OSTI)

Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo [Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan) and Department of Medical Technology, Nagoya Daini Red Cross Hospital, Myouken-chou, Showa-ku, Nagoya 466-8650 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan); Section of Radiological Protection, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan)

2010-11-15T23:59:59.000Z

282

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

283

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

284

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

285

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

286

Table A13. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Combustible Inputs of Energy for Heat, Power, and" 3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural Gas(c)",,"and Breeze)","RSE" ,"Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","LPG","(1000 short","Row"

287

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

288

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

289

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

290

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

291

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

292

ROW BY ROW METHODS FOR SEMIDEFINITE PROGRAMMING ...  

E-Print Network (OSTI)

Apr 28, 2009 ... Research supported in part by NSF Grant DMS. 06-06712, ONR Grant N00014- 08-1-1118 and DOE Grant DE-FG02-08ER58562. 1 ...

293

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

294

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870â??1230 1600â??2250 Fe, Si, alkalis Solar Turbines â?¦ 4â??8 OD Ã? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25â??46 Multiple 870â??1370 1600â??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 Ã? 30 Ã? 46 Multiple Clean (good), alkalis (poor) Radiant...

295

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

296

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

297

The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers  

Science Conference Proceedings (OSTI)

Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected the hydrodynamics of the falling film and a droplet flow regime was evident for testing at all tube spacings. The mechanical mixing of the advanced surfaces increased the mass transfer to about 75% of that observed on a smooth tube bundle, tested with heat and mass transfer additive. Testing with heat and mass transfer additive and advanced surfaces demonstrated a synergistic effect which doubled the mass absorbed from that observed with only the advanced surface. The overall film-side heat transfer coefficient for the advanced tube bundles doubled with the addition of 500-wppm of 2-ethyl-1- hexanol.

Miller, W.A.

1999-03-24T23:59:59.000Z

298

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

299

Prediction and visualization for urban heat island simulation  

Science Conference Proceedings (OSTI)

The simulation and forecast of urban heat island effect was studied. Since the reason for the formation of urban heat island is complex, the current model cannot take all the influence factors into consideration. When a new influence factor is introduced, ... Keywords: genetic algorithm, information visual, neural network, urban air temperature simulation, urban heat island

Bin Shao; Mingmin Zhang; Qingfeng Mi; Nan Xiang

2011-01-01T23:59:59.000Z

300

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Proof of Operation in a Planar Loop Heat Pipe (LHP) Based on CPS Wick.  

E-Print Network (OSTI)

??As electronic design allows higher throughput in small packages, dissipating the heat load becomes a critical design factor. Available cooling approaches, such as extruded heat… (more)

Suh, Junwoo

2005-01-01T23:59:59.000Z

302

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

303

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

304

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

305

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

306

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

307

Efficiency of unitary heat pumps  

SciTech Connect

The efficiencies of approximately 500 unitary heat pumps, from 30 different manufacturers, certified by the Air Conditioning and Refrigeration Institute (ARI) were examined. The certified units account for about 90% of all unitary heat pumps manufactured in the U.S. with a rated cooling capacity below 135,000 Btu/hr, and thus represent a comprehensive data file of the efficiencies of unitary heat pumps offered for sale in the U.S. A computer was used to group the heat pumps according to type and capacity, and to calculate their coefficients of performance (COP) using the data contained in ARI current Directory (April 1 to July 31, 1973) of Certified Unitary Heat Pumps. The results show that the COP of the heat pumps varied from a low of 1.5 to a high of 3.15 or a factor of 2 between the lowest and the highest efficiency, and that the average COP was 2.1 in cooling and 2.4 in heating. The variations of COP with heat pump size, type, manufacturer and outdoor temperature are presented.

Nwude, J.K.; Roman, A.J.

1973-11-01T23:59:59.000Z

308

Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping  

SciTech Connect

The analysis of preconditioners based on incomplete Cholesky factorization in which the neglected (dropped) components are orthogonal to the approximations being kept is presented. General estimate for the condition number of the preconditioned system is given which only depends on the accuracy of individual approximations. The estimate is further improved if, for instance, only the newly computed rows of the factor are modified during each approximation step. In this latter case it is further shown to be sharp. The analysis is illustrated with some existing factorizations in the context of discretized elliptic partial differential equations.

Napov, Artem

2012-03-16T23:59:59.000Z

309

The Influence of Different Inflow Water Rate and Temperature on Heat Exchange Performance of Underground Heat Pump  

Science Conference Proceedings (OSTI)

in the paper, the influence of different inflow water rate and temperature on heat exchange performance of underground heat pump were discussed by experiment, two vital parameters was defined to measure the properties of ground heat exchanger: Energy ... Keywords: heat pump, underground tube, influential factors, parameters

Zheng Min; Li Bai-yi

2011-11-01T23:59:59.000Z

310

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

311

Heating systems for heating subsurface formations  

Science Conference Proceedings (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

312

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

313

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

314

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

315

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

316

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

317

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

318

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

319

Radiofrequency plasma heating: proceedings  

SciTech Connect

The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately. (WRF)

Swenson, D.G. (ed.)

1985-01-01T23:59:59.000Z

320

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer  

DOE Green Energy (OSTI)

The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering

1995-12-31T23:59:59.000Z

322

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

323

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

324

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

325

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

326

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

327

Enhanced boiling heat transfer in horizontal test bundles  

Science Conference Proceedings (OSTI)

Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

1994-08-01T23:59:59.000Z

328

Appendix A Conversion Factors for Standard Units  

U.S. Energy Information Administration (EIA)

Energy, work, heat(a) joule J ... a utility-specific factor that has incorporated actual fuel mix ... Arizona Colorado Idaho Montana Nevada New Mexico Utah Wyoming

329

Heat Shock Response Modulators as Therapeutic  

E-Print Network (OSTI)

Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation* Published shock tran- scription factor 1 (HSF1), the master stress-inducible regulator, and our current understanding of pharmacologically active small molecule regu- lators of the heat shock response

Morimoto, Richard

330

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

331

Thermal design of heat exchanger for a swimming pool.  

E-Print Network (OSTI)

??This paper tells about what is a heat exchanger made of in terms of thermal analysis and the important tools and factors which play vital… (more)

Teka, Addisu

2012-01-01T23:59:59.000Z

332

Texas Heat Wave, August 2011: Nature and Effects of an ...  

U.S. Energy Information Administration (EIA)

Emergency Actions. As the very high prices suggest, scarcity of operating reserves has been a crucial factor through the heat wave. On various days ...

333

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network (OSTI)

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design. Before the design process can begin, product specifications, such as steam or water pressures and temperatures, and equipment, such as absorption chillers and heat exchangers, need to be identified and defined. The Energy Engineering Laboratory of the Mechanical Engineering Department of the University of Louisiana at Lafayette and the Louisiana Industrial Assessment Center has been donated an 800kW diesel turbine and a 100 ton absorption chiller from industries. This equipment needs to be integrated with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller which cannot be altered.

Kozman, T. A.; Kaur, B.; Lee, J.

2009-05-01T23:59:59.000Z

334

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

335

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

336

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

337

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

338

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

339

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

340

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

342

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

343

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

344

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

345

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

346

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in...

347

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

348

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

349

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

350

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

351

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

352

Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board  

E-Print Network (OSTI)

In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system error analyses and design, the equation of measurement error of heat transfer in air side and water side about orifice meter for the finned-tube heat-exchanger was obtained. This paper studies the major factors that may influence the largest admitted measurement error of measurement instruments for heat transfer in water and air side, and analyzes the degree that water temperature and pressure measurement influence heat transfer in water side, and the degree that wet bulb temperature difference measurement influences heat transfer in air side. Finally, this paper indicates that the key problem of reducing heat transfer in water side is water temperature measurement of the in-out pipe of heat-exchanger, and wet bulb temperature difference is a key to decrease the heat transfer in air side for finned-tube heat-exchanger. This paper gives a theoretical instruction for designing the measurement system of a finned-tube heat-exchanger test-board

Chen, Y.; Zhang, J.

2006-01-01T23:59:59.000Z

353

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

354

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

355

Urban Heat Catastrophes  

NLE Websites -- All DOE Office Websites (Extended Search)

The curve shows the heat index, which reflects the combined effect of temperature and humidity. Last year's Chicago heat wave created a great deal of human discomfort and,...

356

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

357

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

358

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

359

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

360

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

362

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

363

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

364

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Conventional Boiler Use",3199,12,4,1271,2,11,5.6 " CHP andor Cogeneration Process",3515,8,2,834,"*",23,3.8 "Direct Uses-Total Process",768929,10,7,2907,16,17...

365

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel",12979,7,3,2074,3,26 " Conventional Boiler Use",12979,3,1,712,1,3 " CHP andor Cogeneration Process","--",4,3,1362,2,23 "Direct Uses-Total Process",675152,4,9,2549,7,13 "...

366

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

l",84,133,23,2119,8,547 " Conventional Boiler Use",84,71,17,1281,8,129 " CHP andor Cogeneration Process",0,62,6,838,1,417 "Direct Uses-Total Process",2639,62,52,2788,39,412 "...

367

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

Only","Other than","and","Any","from Only","Other than","and" "Code(a)","Subsector and Industry","Electricity(b)","Local Utility(c)","Local Utility(d)","Other Sources","Natural...

368

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

369

Predicting structure in nonsymmetric sparse matrix factorizations  

Science Conference Proceedings (OSTI)

Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

Gilbert, J.R. (Xerox Palo Alto Research Center, CA (United States)); Ng, E.G. (Oak Ridge National Lab., TN (United States))

1992-10-01T23:59:59.000Z

370

Vegetation Dynamics Along Utility Rights-of-Way Factors Affecting the Ability of Shrub and Herbaceous Communities to Resist Invasion by Trees  

Science Conference Proceedings (OSTI)

Traditional vegetation management programs along utility rights-of-way (ROW) have been designed to prevent tree growth into transmission wire security zones. This study of vegetation dynamics describes factors affecting the ability of shrub and herbaceous communities to resist tree invasion. Such information will allow ecologists to identify the critical pressure points where intervention in natural ecological processes will prove most effective.

1999-09-11T23:59:59.000Z

371

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

372

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

373

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

374

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

375

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

Total Fossil Fuels 6,7: ... 7 The fossil-fuels heat rate is used as the thermal conversion factor for ... approximate the quantity of fossil fuels replaced by these ...

376

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network (OSTI)

The vapor flow in a flat plate micro heat pipe with both uniform and linear heat flux boundary conditions has been numerically analyzed. For both types of boundary conditions, the Navier-Stokes equations with steady incompressible two-dimensional flow were solved using the SIMPLE method. The results indicate that the pressure, shear stress, and friction factor under linear heat flux boundary conditions are considerably smoother, and hence, more closely approximate the real situation. As the heat flux increases, the pressure drop increases, but the friction factor demonstrates only a slight change for different heat flux conditions. The size and shape of the micro heat pipe vapor space was shown to have a significant influence on the vapor flow behavior for micro heat pipes. When the vapor space area decreases, the pressure drop, shear stress, and friction factor all significantly increase.

Liu, Xiaoqin

1996-01-01T23:59:59.000Z

377

Geothermal Heat Pump Benchmarking Report  

SciTech Connect

A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

1997-01-17T23:59:59.000Z

378

Heat Exchanger Fouling- Prediction, Measurement and Mitigation  

E-Print Network (OSTI)

The U. S. Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200°F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

Peterson, G. R.

1989-09-01T23:59:59.000Z

379

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

380

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Woven heat exchanger  

DOE Patents (OSTI)

In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, Roger R. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

382

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

383

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network (OSTI)

Façade heating is a special application of radiant heating and cooling technology and is used to enhance the indoor comfort level of offices, hotels and museums. Mullion radiators are typically used to implement façade heating. This paper analyzes the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts the measured temperatures with a root mean squared error (RMSE) of the hot water return temperature, the mullion surface temperature, and the window surface temperature of 0.90°F, 0.98°F and 1.15°F, respectively. The factors which affect the heating capacity of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion surface temperature are quasi-linear functions often water supply temperature. Mullion surface temperature, indoor air temperature gradient on the glazing surface within one foot from mullions is much higher than in the central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost no influence by the mullion surface temperature. Also, the conductive thermal resistance of the mullion double tubes with fillings between two tubes plays a decisive role in controlling the mullion and window frame temperatures.

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

384

The role of brain-derived neurotrophic factor in cortical motor learning  

E-Print Network (OSTI)

Error Bars: ± 1 Standard Error(s) Row exclusion: 04-83/05-Error Bars: ± 1 Standard Error(s) Row exclusion: 05-120/06-± 1 Standard Error( s) Percent CFA Devoted to Wrist Row

Von dem Bussche, Mary

2007-01-01T23:59:59.000Z

385

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

386

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

387

Heat pipe system  

SciTech Connect

A heat pipe diode device for transferring heat from a heat source component to a heat sink wall is described. It contains a heat pipe body member attached to the best source; the heat source having a wall forming at least a portion of the normal evaporator section of the heat pipe diode; a working fluid within the body member; a cover for the heat pipe diode forming at least a portion of the heat sink wall; the cover forming the normal condenser for the heat pipe diode; a wick connected between the condenser and the evaporator of the heat pipe diode; means for retaining the wick adjacent the heat pipe wall; a wick support plate adjacent to the cover; the wick being attached to the support plate; means for holding the wick in contact with the cover; and means, responsive to excessive temperatures at the heat sink wall, for moving the support plate and a portion of the wick away from the cover to thereby substantially reduce heat flow in the reverse direction through said heat pipe diode device.

Kroebig, H.L.; Riha, F.J. III

1974-12-03T23:59:59.000Z

388

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat...

389

New and Underutilized Technology: Solar Water Heating | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

390

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

391

Latent heat accumulating greenhouse  

Science Conference Proceedings (OSTI)

This invention relates to a latent heat accumulating greenhouse utilizing solar heat. The object of the invention is to provide a greenhouse which is simple in construction, of high efficiency for heat absorbing and capable of much absorbing and accumulating of heat. A heat accumulating chamber partitioned by transparent sheets is provided between the attic and a floor surface facing north in the greenhouse. A blower fan is disposed to confront an opening provided at the lower portion in said heat accumulating chamber. Also, in the heat accumulating chamber, a heat accumulating unit having a large number of light transmitting windows and enclosing a phase transformation heat accumulating material such as CaC1/sub 2/.6H/sub 2/O, Na/sub 2/SO/sub 4/.10H/sub 2/O therein is detachably suspended in a position close to windowpanes at the north side.

Yano, N.; Ito, H.; Makido, I.

1985-04-16T23:59:59.000Z

392

Technical activities report: Heat, water, and mechanical studies  

SciTech Connect

Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at high flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.

Alexander, W.K.

1951-10-04T23:59:59.000Z

393

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

394

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

395

Laundry heat recovery system  

SciTech Connect

A laundry heat recovery system includes a heat exchanger associated with each dryer in the system, the heat exchanger being positioned within the exhaust system of the dryer. A controller responsive to the water temperature of the heat exchangers and the water storage for the washer selectively circulates the water through a closed loop system whereby the water within the exchangers is preheated by the associated dryers. By venting the exhaust air through the heat exchanger, the air is dehumidified to permit recirculation of the heated air into the dryer.

Alio, P.

1985-04-09T23:59:59.000Z

396

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

397

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

398

Heating Rate Profiles in Galaxy Clusters  

E-Print Network (OSTI)

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

399

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

400

Heat pipe fabrication  

SciTech Connect

A heat pipe is disclosed which is fabricated with an artery arranged so that the warp and weave of the wire mesh are at about a 45/sup 0/ angle with respect to the axis of the heat pipe.

Leinoff, S.; Edelstein, F.; Combs, W.

1977-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric Resistance Heating  

Energy.gov (U.S. Department of Energy (DOE))

Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to...

402

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

403

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

404

Heat recovery in building envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load. This paper discusses simplified analytical modeling and CFD simulations that examine infiltration heat recovery (IHR) in an attempt to quantify the magnitude of this effect for typical building envelopes. For comparison, we will also briefly examine the results of some full-scale field measurements of IHR based on infiltration rates and energy use in real buildings. The results of this work showed that for houses with insulated walls the heat recovery is negligible due to the small fraction of the envelope that participates in heat exchange with the infiltrating air. However; there is the potential for IHR to have a significant effect for higher participation dynamic walls/ceilings or uninsulated walls. This result implies that the existing methods for evaluating infiltration related building loads provide adequate results for typical buildings.

Walker, Iain S.; Sherman, Max H.

2003-08-01T23:59:59.000Z

405

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

CLOSED-FORM INTEGRAL SOLUTIONS FOR LINEAR HEAT CONDUCTION.For linear heat conduction in a homogeneous, isotropiclaw of similitude for linear heat conduction was utilized to

Chan, T.

2010-01-01T23:59:59.000Z

406

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

Analysis of. Nonlinear Heat Transfer Problems." Report no.Berkeley, Ca. , APPENDIX A. HEAT TRANSFER BY CONDUCTION ANDMeeting, Technical Session on Heat Transfer in Nuclear Waste

Chan, T.

2010-01-01T23:59:59.000Z

407

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

408

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

409

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

410

Flue heat reclaimer  

Science Conference Proceedings (OSTI)

A flue heat reclaimer is constructed to be mounted on the exterior of a flue duct of a heater and provide a spiral-shaped heat transfer passage extending around the flue duct. A fan causes air to flow through the heat transfer passage so that the temperature of this air is elevated by reason at its extended heat transfer relationship with the flue duct.

Paolino, R.J.

1983-05-03T23:59:59.000Z

411

Solar heat receiver  

DOE Patents (OSTI)

A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

1985-01-01T23:59:59.000Z

412

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

413

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

414

Study on Hybrid Solar Energy and Ground-Source Heat Pump System  

Science Conference Proceedings (OSTI)

Aim at the weakness of more influenced by the environment etc. factor and the heat flow density lower when the solar energy was make use of heating, so the design method of the hybrid solar energy and ground-source heat pump is proposed, and the operating ... Keywords: solar energy, ground-source, heat pump, coefficient of performance

Liu Yi; Li Bing-xi; Zhou Yi; Fu Zhong-bin; Xu Xin-hai

2009-10-01T23:59:59.000Z

415

HEAT TRANSFER MEANS  

DOE Patents (OSTI)

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

Fraas, A.P.; Wislicenus, G.F.

1961-07-11T23:59:59.000Z

416

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

417

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

418

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

419

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

420

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

422

Plasma heat pump and heat engine  

Science Conference Proceedings (OSTI)

A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

2010-08-15T23:59:59.000Z

423

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

424

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

law of similitude for linear heat conduction was utilized tothe analogy between heat conduction and fluid flow in por­the effects of heat conduction through the vermiculite heat

Chan, T.

2010-01-01T23:59:59.000Z

425

Heat pump apparatus  

DOE Patents (OSTI)

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

426

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

427

Switchable heat pipe assembly  

SciTech Connect

The heat pipe assembly is formed into an H-shape or a Y-shape. The H-shaped configuration comprises two heat pipes, each having condenser and evaporator sections with wicking therein coupled by a tube with wick at their evaporator sections. The Y-shaped configuration utilizes a common evaporator section in place of the two evaporator sections of the H-shaped configuration. In both configurations, the connection between the vapor spaces of the two heat pipes equalizes vapor pressure within the heat pipes. Although both heat pipes have wicks, they have sufficient fluid only to saturate a single pipe. If heat is applied to the condenser section of one of the pipes, this heat pipe becomes inoperative since all the fluid is transferred to the second pipe which can operate with a lower thermal load.

Sun, T.H.; Basiulis, A.

1977-02-15T23:59:59.000Z

428

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The active microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA); Roberts, Gary L. (West Richland, WA); Call, Charles J. (Pasco, WA); Wegeng, Robert S. (Richland, WA); Wang, Yong (Richland, WA)

2001-01-01T23:59:59.000Z

429

Carbon Material Based Heat Exchanger for Waste Heat Recovery ...  

Industrial processing plants Nuclear power Solar power ... Carbon Material Based Heat Exchanger for Waste Heat Recovery from Engine Exhaust Contact:

430

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

431

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.… (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

432

Experimental study of gas turbine blade film cooling and internal turbulated heat transfer at large Reynolds numbers  

E-Print Network (OSTI)

Film cooling effectiveness on a gas turbine blade tip on the near tip pressure side and on the squealer cavity floor is investigated. Optimal arrangement of film cooling holes, effect of a full squealer and a cutback squealer, varying blowing ratios and squealer cavity depth are also examined on film cooling effectiveness. The film-cooling effectiveness distributions are measured on the blade tip, near tip pressure side and the inner pressure and suction side rim walls using a Pressure Sensitive Paint (PSP) technique. A blowing ratio of 1.0 is found to give best results on the pressure side whereas the other tip surfaces give best results for blowing ratios of 2. Film cooling effectiveness tests are also performed on the span of a fully-cooled high pressure turbine blade in a 5 bladed linear cascade using the PSP technique. Film cooling effectiveness over the entire blade region is determined from full coverage film cooling, showerhead cooling and from each individual row with and without an upstream wake. The effect of superposition of film cooling effectiveness from each individual row is then compared with full coverage film cooling. Results show that an upstream wake can result in lower film cooling effectiveness on the blade. Effectiveness magnitudes from superposition of effectiveness data from individual rows are comparable with that from full coverage film cooling. Internal heat transfer measurements are also performed in a high aspect ratio channel and from jet array impingement on a turbulated target wall at large Reynolds numbers. For the channel, three dimple and one discrete rib configurations are tested on one of the wide walls for Reynolds numbers up to 1.3 million. The presence of a turbulated wall and its effect on heat transfer enhancement against a smooth surface is investigated. Heat transfer enhancement is found to decrease at high Re with the discrete rib configurations providing the best enhancement but highest pressure losses. Experiments to investigate heat transfer and pressure loss from jet array impingement are also performed on the target wall at Reynolds numbers up to 450,000. The heat transfer from a turbulated target wall and two jet plates is investigated. A target wall with short pins provides the best heat transfer with the dimpled target wall giving the lowest heat transfer among the three geometries studied.

Mhetras, Shantanu

2006-08-01T23:59:59.000Z

433

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

434

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

435

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

436

Evaluation of Heat Stress Risk for Workers in the Electric Power Industry: Project Update 2013  

Science Conference Proceedings (OSTI)

Heat stress remains an important risk factor affecting worker health and safety, due not only to the high and sustained workloads but also to heat contributions from the environment, machinery, and nature of protective clothing (such as arc- and fire-resistant clothing). In combination with individual factors, including age, common comorbidities (such as diabetes), fitness, and hydration levels, workers are at heat-related risk beyond overt clinical symptoms of heat stress. Regardless of the source, ...

2013-11-12T23:59:59.000Z

437

Value of solar thermal industrial process heat  

DOE Green Energy (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

438

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

439

Water-heating dehumidifier  

DOE Patents (OSTI)

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

440

MGCR HEAT EXCHANGER TEST PROGRAM. Final Report  

SciTech Connect

The Maritime Gas-cooled Reactor (MGCR) project has conipleted the study and design of a closed-cycle gasturbine propulsion plant utilizing a helium- cooled nuclear reactor as the heat source. The cycle employs a counterflow shell- and-tube regenerator to attain a high thermodynamic cycle efficiency. A heat exchanger test program was conducted to compile and correlate sufficient experimental data for the aerodynamic and thermal design of the prototype regenerator. The model heat exchanger was similar in configaration to the prototype unit. The pressure-drop and heat-transfer performance of a compact parallel-flow tube bundle is given hoth in the unsupported configuration and with airfoil-shaped tube supports distributed along the bundle. The Fanning friction factor with the airfoil-shaped supports is approximately 70% greater than for the unsupported tube configuration. The airfoil supports effect a 40% increase in Colburn's heat transfer factor, j, over the unsupported configuration. Determinations of the unsupported-tube values of friction factor and Colburn-j agreed well with the literature. A section is devoted to the application of these data to the design of exchangers. The correlated data, representing some 1200 individual runs, cover a range of Reynolds number from 10,000 to 500,000. The moderate pressure-drop increment due to the airfoil-shaped supports, in conjunction with the favorable increase in heat-transfer rate, becomes especially important in the design of compact gas-to-gas heat exchangers with very low friction pressure losses. The concluding section of the report compares the size, weight, and cost of conventional baffled-shell units and the MGCR design for the requirements of the MGCR cycle. The MGCR design was one-fifth the volume, one-fourth the weight, and one-third the cost of comparable baffled-shell units. (auth)

Paulson, H.C. II

1961-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

442

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

443

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

444

Heat pipe technology issues  

SciTech Connect

Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory has involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW/cm/sup 2/ axially and 300 W/cm/sup 2/ radially at temperatures in the 1400 to 1500 K range. Operation at conditions in the 10 kW/cm/sup 2/ range has been sustained for periods of up to 1000 hours without evidence of performance degradation. The effective length for heat transport in these heat pipes was from 1.0 to 1.5 M. Materials used were molybdenum alloys with lithium employed as the heat pipe operating fluid. Shorter, somewhat lower power, molybdenum heat pipes have been life tested at Los Alamos for periods of greater than 25,000 hours at 1700 K with lithium and 20,000 hours at 1500/sup 0/K with sodium. These life test demonstrations and the attendant performance limit investigations provide an experimental basis for heat pipe application in space reactor design and represent the current state-of-the-art of high temperature heat pipe technology.

Merrigan, M.A.

1984-04-01T23:59:59.000Z

445

Heat pump arrangement  

SciTech Connect

The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

Abrahamsson, T.; Hansson, K.

1981-03-03T23:59:59.000Z

446

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

447

Heat rejection system  

DOE Patents (OSTI)

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

448

Heat and mass exchanger  

Science Conference Proceedings (OSTI)

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

449

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

450

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

451

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

452

Controlling the Heat Transfer  

Science Conference Proceedings (OSTI)

Through experimental validation that air conduction is shown to be typically the dominant thermal transport mechanism in the contact region, the heat conduction

453

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

454

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

455

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

456

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

457

Heat capacity of a two-component superfluid Fermi gas  

E-Print Network (OSTI)

We investigate mean-field effects in two- component trapped Fermi gases in the superfluid phase, in the vicinity of s-wave Feshbach resonances. Within the resonance superfluidity approach (Holland et al., 2001) we calculate the ground state energy and the heat capacity as function of temperature. Heat capacity is analyzed for different trap aspect ratios. We find that trap anisotropy is an important factor in determining both the value of heat capacity near the transition temperature and the transition temperature itself.

Alexander V. Avdeenkov

2003-09-25T23:59:59.000Z

458

Heat transfer in bundles of finned tubes in crossflow  

SciTech Connect

This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.

1986-01-01T23:59:59.000Z

459

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network (OSTI)

and towns have (some) district heating, and DH currently supplies 1% of heating for buildings in Norway.2 to district heating if there is a supply. According to HP industry representatives, howeverProject Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12

460

An application of DCS device to a heat exchange process  

Science Conference Proceedings (OSTI)

In this paper, an application of distributed control system (DCS) device to a heat exchange process is shown. In details, first, nonlinear model and feedback tracking control scheme of a spiral heat exchange process are obtained. Second, the designed ... Keywords: DCS, nonlinear control, nonlinear model, right coprime factorization, robust stability

Junya Okazaki; Shengjun Wen; Mingcong Deng; Dongyun Wang

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Pipe Integrated Microsystems  

SciTech Connect

The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

1999-03-30T23:59:59.000Z

462

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

463

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

464

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

465

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

466

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

467

Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures  

E-Print Network (OSTI)

Local surface ooeffioients of heat t-ansfer, overall pressure drop data and mean friction factor are presented for heat flamms up to 3.52106 BtuAr ft2 for water flowing in a nickel tabe isder the following conditions: mass ...

Rohsenow, Warren M.

1951-01-01T23:59:59.000Z

468

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

469

Solar heat regulator  

Science Conference Proceedings (OSTI)

A solar heat regulating device is described for selectively heating with sunlight the air inside a building having a window and shielding and insulating the air inside the building from the heat of sunlight outside the building including: a frame for mounting the solar heat regulating device inside the building and adjacent to the window; a plurality of hollow vanes, each of the vanes having at least one passageway for passing air therethrough; the vanes having a heat absorptive surface on a first side thereof which allows solar radiation impinging on the heat absorptive surface to heat the air contained in the one passageway of the vanes; the vanes having a heat reflective surface on a second side of the vanes which reflects the solar radiation impinging on the second side of the vanes and shields the inside of the building from solar radiation impinging on the vanes; and the vanes having side portions extending between the first and second sides of the vanes, the side portions, and the first and second sides forming the one passageway through each of the vanes, the side portions and the first and second sides of the vanes terminating in top end and bottom end portions.

Boynton, S.L.

1987-04-07T23:59:59.000Z

470

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

471

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

472

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

473

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

474

Unstable heat pipes  

DOE Green Energy (OSTI)

Heat pipes are an important feature of models of vapor-dominated geothermal reservoirs. Numerical experiments reveal that a vapor-dominated heat pipe is unstable if pressure is controlled at shallow levels. This instability is discussed in physical terms, and some implications for geothermal reservoirs are considered. 9 refs., 10 figs.

McGuinness, M.J.; Pruess, K.

1987-10-01T23:59:59.000Z

475

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

476

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

477

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

478

Use advisability of heat pumps for building heating and cooling  

Science Conference Proceedings (OSTI)

In the actual economic and energetic juncture, the reduction of thermal energy consumption in buildings became a major, necessary and opportune problem, general significance. The heat pumps are alternative heating installations more energy efficiency ... Keywords: "Geoterm" system, building heating/cooling, energy and economic analysis, heat pump performances, heat pumps, renewable energy sources

Ioan Sârbu; C?lin Sebarchievici

2010-02-01T23:59:59.000Z

479

Heat pipe development status  

SciTech Connect

Test heat pipes have been operated in the 1400 K to 1700 K range for periods in excess of 20,000 hours with the objective of understanding and controlling corrosion and failure mechanisms. The results of a post test analysis of one of these heat pipes that was operated for 25,216 hours at 1700 K are reviewed and the implications for heat pipe lifetime discussed. An in-process report of an investigation of transient heat pipe behavior is presented. This investigation is being conducted as a result of restart problems encountered during life test of a 2 m. radiation cooled heat pipe. The results of a series of shut-down tests from power and temperature are given and probable causes of the restart problem discussed.

Merrigan, M.A.

1984-01-01T23:59:59.000Z

480

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "row factor heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

482

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

483

Induction Heating Stress Improvement Effectiveness on Crack Growth in Operating Plants (BWRVIP-61)  

Science Conference Proceedings (OSTI)

New reports of intergranular stress corrosion cracking prompted this review of factors that could influence the performance of the pipe cracking remedy known as induction heating stress improvement.

1999-01-27T23:59:59.000Z

484

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

485

Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems  

Science Conference Proceedings (OSTI)

This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

Vierow, Karen

2005-08-29T23:59:59.000Z

486

Solar Correction Factors of Building Envelope in Tebei  

E-Print Network (OSTI)

Tebei has very rich solar energy in China and needs heating in winter,but the present energy building design code has no solar correction factor for the overall heat transfer coefficient of building envelope for Tebei. Based on the typical year weather data, this paper compares the solar energy of a typical city, Lassa, in Tebei with that of another city that has the same degree-days of heating period, calculates the heating energy for the building, and proposes the solar correction factors for an overall heat transfer coefficient of building envelope in Tebei.

Wang, D.; Tang, M.

2006-01-01T23:59:59.000Z

487

Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery  

Science Conference Proceedings (OSTI)

This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

2011-01-01T23:59:59.000Z

488

Douglas Factors  

Energy.gov (U.S. Department of Energy (DOE))

The Merit Systems Protection Board in its landmark decision, Douglas vs. Veterans Administration, 5 MSPR 280, established criteria that supervisors must consider in determining an appropriate penalty to impose for an act of employee misconduct. These twelve factors are commonly referred to as “Douglas Factors” and have been incorporated into the Federal Aviation Administration (FAA) Personnel Management System and various FAA Labor Agreements.

489

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

490

Commercial laundry heat recovery system  

SciTech Connect

In a commercial laundry that is connected to a source of fresh water and generates heated waste water, a method is described for recovering heat from the heated waste comprising the steps of: (a) pumping the heated waste water through a heat exchanger; (b) introducing fresh water into the heat exchanger to receive heat from the waste water through a heat transfer effected by the heat exchanger; (c) withdrawing a first proportion of the heated fresh water at a first temperature; (d) conveying the first proportion of the heated fresh water to cold water storage tank; (e) withdrawing a second proportion of the heated fresh water at a second temperature higher than the first temperature; (f) conveying the second proportion of the heated fresh water to a hot water storage tank.

Kaufmann, R.O.

1986-07-29T23:59:59.000Z

491

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

492

Heat Exchangers for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat to water in a storage tank. Heat-transfer fluids, such as antifreeze, protect the solar collector from freezing in cold weather. Liquid-to-liquid heat exchangers have...

493

Water heater heat reclaimer  

SciTech Connect

This invention relates to the conservation of energy in a domestic gas water heater by utilizing the hot exhaust gases in a gas water heater for the preheating of the incoming unheated water into the water heater. The exhaust gases from a domestic gas water heater carry wasted heat and the present invention provides a mean to reclaim part of the wasted heat for the preheating of the incoming unheated water during hot water usage periods. During non hot water usage periods the heat in the exhaust gases is not reclaimed to prevent overheating of the water and also to prevent the formation of water deposit in the preheating assembly or heat reclaimer. During the non hot water usage periods the heat produced in the water heater is normally needed only to maintain the desired water temperature of the stored water in the water tank of the water heater. Due to the rapid heating or recovery rate, the present invention enables the use of a smaller water heater. The use of a smaller water heater reduces the normal heat loss from the stored hot water thereby further reduces energy consumption.

Wie, C.T.

1983-08-09T23:59:59.000Z

494

Integrating preconcentrator heat controller  

DOE Patents (OSTI)

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

495

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

496

Geothermal district heating: basics to success  

DOE Green Energy (OSTI)

A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

Lunis, B.C.

1985-01-01T23:59:59.000Z

497

Projecting market demand for residential heat pumps  

SciTech Connect

Primarily because of technological improvements and sharp increases in energy prices after the 1970s energy crises, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. This report describes current and future market demand for heat pumps used for space heating and cooling. A three-step approach was followed. In the first step, the historical growth of residential electric heat pumps was analyzed, and factors that may have affected market growth were examined. Also examined were installation trends of heat pumps in new single-family and multifamily homes. A market segmentation analysis was used to estimate market size by categories. In the second step, several methods for forecasting future market demand were reviewed and evaluated to select the most suitable one for this study. The discrete-choice approach was chosen. In the third step, a market penetration model based on selected discrete-choice methods was developed to project heat pump demand in key market segments such as home type (single-family or multifamily), new or existing construction, and race-ethnic origin of household (black, Hispanic, or white).

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-04-01T23:59:59.000Z

498

Geothermal field tests: heat exchanger evaluation  

DOE Green Energy (OSTI)

Results of the heat exchanger tests conducted on a scale model of a heat exchanger that has been designed and fabricated for the Geothermal Test Facility show that this exchanger will lose 60% of its heat transfer capability and fall below design requirements after 92 hours of operation. When the test exchanger was clean and operating as close as possible to design conditions, its overall heat transfer coefficient was 426 BTU/hr-ft/sup 2/ - /sup 0/f. when calculating in the fouling factor of .0035 this gave a design coefficient of 171 BTU/hr-ft/sup 2/ - /sup 0/f which was reached after less than four days of steady state operation. Thermal shocking of the test heat exchanger once each hour while the exchanger was operating at design conditions had no effect on scale removal or heat transfer. Results of tube cleaning showed that chemical treatment with 30% hydrochloric acid followed by a high pressure water jet (6000 psig), was effective in removing scale from tubes contacted with geothermal brine. After cleaning, the tubes were examined and some pitting was observed throughout the length of one tube.

Felsinger, D.E.

1973-07-06T23:59:59.000Z

499

Fundamental heat transfer experiments of heat pipes for turbine cooling  

SciTech Connect

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

Yamawaki, S. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Yoshida, T.; Taki, M.; Mimura, F. [National Aerospace Lab., Tokyo (Japan)

1998-07-01T23:59:59.000Z

500

Stirling engine heating system  

SciTech Connect

A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

Johansson, L.N.; Houtman, W.H.; Percival, W.H.

1988-06-28T23:59:59.000Z