National Library of Energy BETA

Sample records for row energy-management activities

  1. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  2. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" "

  3. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2010;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  4. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  5. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  6. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS","

  7. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of

  8. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","No Steam Used" ,,"Total United States" "

  9. Level: National Data; Row: General Energy-Management Activities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.1 Number of ... 10,646 709 3,132 165 Electricity Load Control 154,406 ... 496 1,748 297 Technical Information (k) 152,416 17,751 8,431 ...

  10. DOE's New Checklist Helps Plants Assess Energy Management Activities

    Broader source: Energy.gov [DOE]

    DOE developed the Strategic Energy Management Checklist to help manufacturing facilities conduct a high-level assessment of their energy management practices and identify opportunities to achieve greater energy savings.

  11. Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Utilize energy efficiency to improve your industrial customer's business performance without the cost of major capital improvements. Energy efficiency is not...

  12. Interagency Energy Management Task Force

    Broader source: Energy.gov [DOE]

    The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate Federal government activities that encourage energy conservation and energy efficiency.

  13. Energy Management and Financing

    Broader source: Energy.gov [DOE]

    This Tuesday Webcast for Industry covers how to become a Certified Energy Manager and Certified Practitioner in Energy Management Systems

  14. An Extensible Sensing and Control Platform for Building Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anthony Rowe Assistant Research Professor ECE Department Carnegie Mellon University An Extensible Sensing and Control Platform for Building Energy Management DOE Award DE-EE0006353 Mario Bergés Assistant Professor CEE Department Carnegie Mellon University Chris Martin Senior Manager Bosch Research and Technology Center Pittsburgh Partners The Team Anthony Rowe ECE - CMU Mario Bergés CEE - CMU Chris Martin Bosch Patrick Lazik ECE Max Buevich ECE Emre Kara CEE Jingkun Gao CEE Sensor Andrew *

  15. High Performance Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Energy Management Reduce energy use and meet your business objectives By applying continuous improvement practices similar to Lean and Six Sigma, the BPA Energy Smart...

  16. Energy Manager Webinar Series

    Broader source: Energy.gov [DOE]

    Energy Managers from leading manufacturing companies share lessons learned from implementing energy savings projects in these one-hour webinars. Topics include real-world challenges like creating a climate for successful project implementation, gaining management support, and obtaining financing. Each webinar highlights a different topic and features an energy manager from a different Better Plants Partner.

  17. Energy Management Webinar Series

    Broader source: Energy.gov [DOE]

    Boost your knowledge on how to implement an energy management system through this four-part webinar series from the Superior Energy Performance program. Each webinar introduces various elements of the ISO 50001 energy management standard—based on the Plan-Do-Check-Act approach—and the associated steps of DOE's eGuide for ISO 50001 software tool.

  18. Row fault detection system

    DOE Patents [OSTI]

    Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Lead By Example with Smart Energy Management (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Brochure outlining the mission and activities of the Department of Energy's Federal Energy Management Program, which facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship.

  20. Strategies for Successful Energy Management

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on energy management for the portfolio manager initiative

  1. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--"

  2. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2000

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Federal Government Energy Management and Conservation Programs Fiscal Year 2000 December 13, 2002 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. OVERVIEW OF FEDERAL ENERGY MANAGEMENT ACTIVITIES . . . . . . 7 A. Overview of Federal Energy Management Policy and

  3. Energy Management and Marketing Specialist

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region (UGP), Power Marketing, Energy Management and Marketing...

  4. ISO 50001 Energy Management Standard

    SciTech Connect (OSTI)

    2013-08-12

    This powerful standard from the International Organization for Standardization (ISO) provides an internationally recognized framework for organizations to voluntarily implement an energy management system.

  5. EWEB- Energy Management Services Rebate

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board (EWEB) offers cash incentives and low interest loans to businesses as part of the Energy Management Services program for the installation of solar domestic,...

  6. DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero Floorplans: Row Homes at

  7. Federal Government Energy Management Conservation Programs Reports...

    Office of Environmental Management (EM)

    Government Energy Management Conservation Programs Reports to Congress Federal Government Energy Management Conservation Programs Reports to Congress Annual reports on federal ...

  8. Guardian Energy Management Solutions | Open Energy Information

    Open Energy Info (EERE)

    Guardian Energy Management Solutions Jump to: navigation, search Name: Guardian Energy Management Solutions Address: 753 Forest Street, Suite 110 Place: Marlborough, Massachusetts...

  9. Interagency Energy Management Task Force Members

    Broader source: Energy.gov [DOE]

    The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies.

  10. Southern Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Southern Energy Management Place: Morrisville, NC Website: www.southernenergymanagement.c References: Southern Energy...

  11. Gardner Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Gardner Energy Management Jump to: navigation, search Name: Gardner Energy Management Place: Bristol, United Kingdom Zip: BS1 2HS Product: UK-based steam trap manufacturer....

  12. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  13. Energy manager design for microgrids

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.

  14. "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 8.1;" " Unit: Percents." " "," "," " " "," ",,,"Source of Financial Support for Activity" "NAICS"," "," " "Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Other","Don't Know" ,,"Total United States" " 311 - 339","ALL

  15. Energy Management Mandates by Federal Legal Authority

    Broader source: Energy.gov [DOE]

    Federal agencies are required to meet energy management mandates outlined by the following federal legal authorities.

  16. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2001

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 February 4, 2004 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. OVERVIEW OF FEDERAL ENERGY MANAGEMENT ACTIVITIES . . . . . . 9 A. Overview of Federal Energy Management Policy and Legislative Mandates . . 9 B. Overall Federal Energy Consumption, Costs, and Carbon

  17. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2002

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 September 29, 2004 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. OVERVIEW OF FEDERAL ENERGY MANAGEMENT ACTIVITIES . . . . . . 9 A. Overview of Federal Energy Management Policy and Legislative Mandates . . 9 B. Overall Federal Energy Consumption, Costs, and

  18. Annual Report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 January 11, 2001 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. OVERVIEW OF FEDERAL ENERGY MANAGEMENT ACTIVITIES . . 7 A. Overview of Federal Energy Management Policy and Legislative Mandates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  19. Role of an Energy Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of an Energy Manager" Richard Miller Corporate Energy Manager Mannington Mills Presented at the U.S. Department of Energy Industrial Technologies Program July 1, 2010 Webcast Outline  Energy benchmarking  Goal-setting  Monitoring and verification of energy flows  Training and communications  Carbon footprint reduction initiatives  Scouting for new technologies and best practices Energy Benchmarking  Track energy consumption - Reduce energy intensity by 25% in 10

  20. Energy Management in Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management in Federal Facilities Energy Management in Federal Facilities Data Centers Data Centers Federal data centers used nearly 10% of federal electricity use in 2013. Find out how to make data centers more energy efficient. Read more Laboratories Laboratories Laboratory activities and ventilation requirements can be energy intensive. Find out how to make laboratories more efficient. Read more Operations and Maintenance Operations and Maintenance Facilities rely on pumps, motors, and

  1. Federal Energy Management Program (FEMP)

    Office of Environmental Management (EM)

    SMALL BUSINESS PROGRAM The Federal Energy Management Program (FEMP) is a U.S. Department of Energy (DOE) program focused on reducing the federal government's energy consumption by providing federal agencies with information, tools, and assistance toward tracking and meeting energy- related requirements and goals. FEMP seeks contracts with small businesses to aid in this effort. This fact sheet outlines essential resources and tips to get you started in small business contracting with FEMP.

  2. Implementing a Corporate Energy Management System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementing a Corporate Energy Management System" Steve ... Mr Micro- replication Pe Predictive Engineering & Modeling ... Environmental Legal Engineering Maintenance Purchasing ...

  3. Energy Management for Motor-Driven Systems

    Broader source: Energy.gov [DOE]

    This document assists in establishing an energy management plan, identifying energy savings opportunities, and designing a motor improvement plan.

  4. Federal Energy Management Program FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    term ends. The U.S. Navy Commander Fleet Activities Yokosuka features a 39 megawatt cogeneration plant financed through an ESPC. Photo Courtesy of the Federal Energy Management...

  5. US DOE Federal Energy Management Program (FEMP) | Open Energy...

    Open Energy Info (EERE)

    US DOE Federal Energy Management Program (FEMP) (Redirected from Federal Energy Management Program) Jump to: navigation, search Logo: Federal Energy Management Program (FEMP) Name...

  6. US DOE Federal Energy Management Program (FEMP) | Open Energy...

    Open Energy Info (EERE)

    US DOE Federal Energy Management Program (FEMP) (Redirected from Federal Energy Management Program (FEMP)) Jump to: navigation, search Logo: Federal Energy Management Program...

  7. Strategic Energy Management and Continuous Improvement Resouces |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategic Energy Management and Continuous Improvement Resouces Strategic Energy Management and Continuous Improvement Resouces A successful strategic energy management plan sets goals, tracks progress, and reports results while building long-term relationships with energy users and targeting persistent energy savings. Effective planning ensures continuous improvement of energy efficiency, increases the property value of buildings, and can reduce costs across many end

  8. Energy Management Systems: Maximizing Energy Savings

    Broader source: Energy.gov [DOE]

    This webinar covered how to optimize installations of new energy management systems, review EMS strategies following lighting/HVAC retrofit projects, and utilize excess EECBG funding.

  9. ISO 50001 Conformant Energy Management Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Building Pilots GaTech Energy Management Coaching LBNL Technical & Program Strategy DOE ... Experts * EnMS Implementation Coaching, Training, Tools * Document Review & ...

  10. Introduction to an Energy Management System

    Broader source: Energy.gov [DOE]

    This presentation provides an overview to energy management system (EnMS) implementation describing what an EnMS is and why an EnMS is useful.

  11. Energy Management Centre | Open Energy Information

    Open Energy Info (EERE)

    Centre Jump to: navigation, search Name: Energy Management Centre Place: Trivandrum, Kerala, India Zip: 695014 Sector: Efficiency Product: Focussed on energy efficiency and...

  12. Federal Energy Management Program (FEMP) Training Resources ...

    Open Energy Info (EERE)

    Management Program (FEMP) Training Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Federal Energy Management Program (FEMP) Training Resources AgencyCompany...

  13. Energy Management Inc EMI | Open Energy Information

    Open Energy Info (EERE)

    Inc EMI Jump to: navigation, search Name: Energy Management Inc (EMI) Place: Boston, Massachusetts Zip: 21160 Sector: Wind energy Product: Independent project developer and parent...

  14. DOE Tour of Zero: Row Homes at Perrin's Row by New Town Builders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Row Homes at Perrin's Row by New Town Builders DOE Tour of Zero: Row Homes at Perrin's Row by New Town Builders Addthis 1 of 14 New Town Builders, now known as Thrive, built 26 units at the Row Homes at Perrin's Row in Denver, Colorado, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 14 Homeowners in the three-story row homes are projected to save $682 in annual energy costs thanks to the homes' efficient

  15. Federal Energy Management Program Technical Assistance

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) offers technical assistance to help agencies identify energy-efficiency and renewable energy technologies and successfully implement them in their buildings and fleets.

  16. Implementing a Corporate Energy Management System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementing a Corporate Energy Management System" Steve Schultz Corporate Energy Manager 3M Presented at the U.S. Department of Energy Industrial Technologies Program June 3, 2010 Webcast 3M - Solving Problems Everywhere  Operate companies in more than 65 countries  35 international companies with manufacturing operations, 35 with laboratories  In the United States, operations in 28 states  R&D and related expenditures total $6.861 billion for the last five years  More

  17. Federal Energy Management Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools Federal Energy Management Tools logo_femp.png The Federal Energy Management Program (FEMP) offers links to tools that can help agencies reduce energy use and meet federal laws and requirements. Tools include software, calculators, data sets, and databases created by the U.S. Department of Energy and other federal organizations. To find a tool, browse by title, description, topic, or type. Click a column heading to sort the table. Title Description Type Category Building Life Cycle Cost

  18. Government Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Energy Management Government Energy Management EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of

  19. Data-Driven, Strategic Energy Management | Department of Energy

    Office of Environmental Management (EM)

    Data-Driven, Strategic Energy Management Data-Driven, Strategic Energy Management Strategic energy management is embodied by a set of processes that empower an organization to implement energy management actions and consistently achieve energy performance improvements. Strategic energy management allows for continuous energy performance improvement by providing the processes and systems needed to incorporate energy considerations and energy management into daily operations. Benchmarking is a key

  20. Automated Home Energy Management (AHEM) Standing Technical Committee...

    Office of Environmental Management (EM)

    Automated Home Energy Management (AHEM) Standing Technical Committee Strategic Plan - February 2012 Automated Home Energy Management (AHEM) Standing Technical Committee Strategic...

  1. General Recommendations for a Federal Data Center Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Recommendations for a Federal Data Center Energy Management Dashboard Display General Recommendations for a Federal Data Center Energy Management Dashboard Display Document ...

  2. Federal Energy Management Program Renewable Energy Project Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Projects Federal Energy Management Program Renewable Energy Project Assistance Federal Energy Management Program Renewable Energy Project Assistance The Federal ...

  3. Federal Energy Management Trade Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Trade Show Federal Energy Management Trade Show Addthis 1 of 4 Timothy Unruh, Program Manager for the Office of Energy Efficiency and Renewable Energy...

  4. Binhai Sino Japan Energy Management Corporation Tianjin | Open...

    Open Energy Info (EERE)

    Binhai Sino Japan Energy Management Corporation Tianjin Jump to: navigation, search Name: Binhai Sino-Japan Energy Management Corporation(Tianjin) Place: Tianjin Municipality,...

  5. South Asia Energy Management Systems Inc SAEMS | Open Energy...

    Open Energy Info (EERE)

    Energy Management Systems Inc SAEMS Jump to: navigation, search Name: South Asia Energy Management Systems, Inc. (SAEMS) Place: California Product: South Asia Energy is...

  6. Shenzhen City Zhongcai Energy Management Co | Open Energy Information

    Open Energy Info (EERE)

    Zhongcai Energy Management Co Jump to: navigation, search Name: Shenzhen City Zhongcai Energy Management Co. Place: China Product: EMC using the energy cost contract model...

  7. Practical Ocean Energy Management Systems Inc POEMS | Open Energy...

    Open Energy Info (EERE)

    Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name: Practical Ocean Energy Management Systems Inc (POEMS) Place: San Diego, California Zip: 92138 Sector:...

  8. " Row: Selected SIC Codes; Column: Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...lion","NGL(e)","(million","(million","Other(f)","Row" "Code(a)","Major Group and ... raw" "Natural Gas Liquids '(NGL).'" " (f) 'Other' includes all other energy that was ...

  9. EA-293-A Coral Energy Management, LLC | Department of Energy

    Energy Savers [EERE]

    3-A Coral Energy Management, LLC EA-293-A Coral Energy Management, LLC Order authorizing Coral Energy Management, LLC to export electric energy to Canada PDF icon EA-293-A Coral Energy Management, LLC More Documents & Publications EA-213-A Coral Power, LLC EA-212-C Coral Power, LLC EA-253-A Coral Canada US Inc

  10. Federal Energy Management Program Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Program Organization Chart Federal Energy Management Program Organization Chart Federal Energy Management Program Organization Chart Document shows the organization chart for the U.S. Department of Energy's Federal Energy Management Program. PDF icon Download the FEMP organization chart.

  11. Energy Management Programs at 3M Canada

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2014 . All Rights Reserved. © 3M Sustaining Our Future SEP and ISO 50001 at 3M Canada's Brockville Plant Andrew Hejnar, MS Energy Mgmt, CEM, CEA, CRM 1 July 2014 . All Rights Reserved. © 3M Energy Management at 3M Canada OVERVIEW An Introduction to 3M 3M Sustainability Energy Management Initiatives Results Insight 1 July 2014 . All Rights Reserved. © 3M 3M at a Glance  Established in 1902  84,000 employees  Operations in 65 countries  3M products sold in 200 countries  46

  12. Engaging Supply Chains in Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging Supply Chains in Energy Management Engaging Supply Chains in Energy Management Featuring presenters from PepsiCo and EUISSICA, this presentation covers ways of engaging industrial suppliers involved in energy management. PDF icon Engaging Supply Chains in Energy Management (April 10, 2012) PDF icon Questions & Answers More Documents & Publications Energy Management and Financing From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency CHP SYSTEM AT FOOD

  13. Planning for an Energy Management System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning for an Energy Management System Planning for an Energy Management System This presentation discusses the Planning step as part of an Energy Management System. Planning involves establishing your energy picture, defining the scope and boundary, setting an energy baseline, and developing action plans. PDF icon Planning for an Energy Management System (May 3, 2012) More Documents & Publications The Do and Check Processes of an Energy Management System Introduction to an Energy

  14. Role of an Energy Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of an Energy Manager Role of an Energy Manager This presentation discusses the role of an energy manager in benchmarking energy consumption, setting goals, monitoring energy flow, and providing training and communications. PDF icon Role of an Energy Manager (July 1, 2010) File webcast_20100701_role_energy_manager.wmv More Documents & Publications J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant Steam System Efficiency Optimized

  15. Role of an Energy Manager | Department of Energy

    Energy Savers [EERE]

    Role of an Energy Manager Role of an Energy Manager This presentation discusses the role of an energy manager in benchmarking energy consumption, setting goals, monitoring energy flow, and providing training and communications. PDF icon Role of an Energy Manager (July 1, 2010) File webcast_20100701_role_energy_manager.wmv More Documents & Publications J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant Steam System Efficiency Optimized

  16. Federal Energy Management Laws and Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laws and Requirements Federal Energy Management Laws and Requirements Federal Energy Management Laws and Requirements To help agencies comply with federal laws and requirements, the Federal Energy Management Program (FEMP) analyzes energy management mandates from legal authorities and publishes notices and rules related to federal energy management. FEMP also provides tools to help agencies report annual facility and fleet progress toward federal laws and requirements. Get Started Start meeting

  17. Federal Energy Management Program Director: Dr. Timothy Unruh | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy About the Federal Energy Management Program » Federal Energy Management Program Director: Dr. Timothy Unruh Federal Energy Management Program Director: Dr. Timothy Unruh photo_timothy_unruh.jpg Timothy Unruh, Ph.D., PE, Leadership in Energy and Environmental Design Accredited Professional (LEED AP), Certified Energy Manager (CEM), Certified Software Development Professional, is director of the Federal Energy Management Program (FEMP). As FEMP Director, Dr. Unruh oversees the

  18. Federal Energy Management Program News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program News Federal Energy Management Program News The Federal Energy Management Program (FEMP) publishes news about training opportunities, new documents and online tools, award winners, events, and more. January 7, 2016 Federal Energy Management Program News FEMP First Thursday Update Covers Updates to 2016 Federal Energy and Water Management Awards Criteria The U.S. Department of Energy Federal Energy Management Program (FEMP) will present a new First Thursday

  19. Federal Energy Management Program Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Federal Energy Management Program Contacts Federal Energy Management Program Contacts Federal Energy Management Program Contacts Contact information is available for Federal Energy Management Program (FEMP) leadership and staff members. The program is directed by Dr. Timothy Unruh. General Information Federal Energy Management Program U.S. Department of Energy EE-5S, 1000 Independence Ave., S.W. Washington, D.C. 20585-0121 202-586-5772 phone 202-586-3000 fax Media Inquiries

  20. BLM ROW Grant Template | Open Energy Information

    Open Energy Info (EERE)

    BLM ROW Grant TemplateLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  1. CSLB ROW Forms | Open Energy Information

    Open Energy Info (EERE)

    various forms and information related to surface Rights of Way on or across state trust lands. Published NA Year Signed or Took Effect 2014 Legal Citation CSLB ROW Forms DOI...

  2. Vehicle Energy Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Vehicle Energy Management Vehicles are complex systems with multiple power sources (such as an internal combustion engine and battery), multiple power conversion components (such as the motor and gearbox) and must satisfy numerous safety and comfort constraints, under various environmental constraints (such as temperature or grade). At Argonne, we explore how to control all these variables to make cars and trucks as energy-efficient as possible. Furthermore, vehicles are increasingly

  3. Predictive Technology Development and Crash Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACC 100 Predictive Technology Development and Crash Energy Management Khaled W. Shahwan, PhD - Project Leader Chair - ACC100 Chrysler Technology Center - Scientific Labs. Chrysler LLC Auburn Hills, Michigan, USA This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: lm_09_kia 2 * Materials' cost & availability * Materials' characterization & testing standards * Universally robust and truly predictive modeling tools * Complex

  4. Federal Energy Management Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program Register Now Register Now Learn about updates to the 2016 Federal Energy and Water Management Awards criteria. Read more Case Studies Map Case Studies Map Use FEMP's interactive map to find examples of efficient technologies deployed in federal applications across the nation. Read more Search for Technologies Search for Technologies Find technologies and products that meet efficiency goals and mandates using FEMP's new search tool. Read more Alternative Water

  5. EA-404 Chubu TT Energy Management Inc. | Department of Energy

    Energy Savers [EERE]

    EA-404 Chubu TT Energy Management Inc. EA-404 Chubu TT Energy Management Inc. Order authorizing Chubu TT to export electric energy to Canada. EA-404 Chubu TT (CN).pdf More...

  6. Graveson Energy Management Ltd GEM | Open Energy Information

    Open Energy Info (EERE)

    Graveson Energy Management Ltd GEM Jump to: navigation, search Name: Graveson Energy Management Ltd (GEM) Place: Wales, United Kingdom Zip: SA13 2EZ Product: UK based company that...

  7. Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 December 19, 2014 - 12:31pm Addthis Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 Attend the Pennsylvania Strategic Energy Management Showcase on April 7, 2015, at the Penn Stater Conference Center Hotel in State College, Pennsylvania, and learn about the Better Plants Program and Superior Energy Performance®

  8. Interagency Energy Management Task Force Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Energy Management Task Force Members Interagency Energy Management Task Force Members The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Organization Primary Contact Alternate Contact General Services Administration Mark Ewing Karren Curran National

  9. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss013_chambon_2012_p.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  10. SEE Action Series: Strategic Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEE Action Series: Strategic Energy Management SEE Action Series: Strategic Energy Management A presentation on Strategic Energy Management from a webinar hosted by the Existing Commercial Buildings Working Group at SEE Action. Strategic Energy Management Presentation More Documents & Publications SEE Action Series: Local Strategies for Whole-Building Energy Savings DOE Office of Indian Energy Fact Sheet The Path to Transforming Knowledge into Energy Projects: DOE Tribal Renewable Energy

  11. Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP).

  12. Federal Energy Management: Helping Agencies Achieve Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Energy Management: Helping Agencies Achieve Savings Federal Energy Management: Helping Agencies Achieve Savings October 30, 2013 - 1:30pm Addthis The Energy Department's Federal Energy Management Program guides and advises agencies on how to use funding more effectively in meeting federal and agency-specific energy goals. | Department of Energy photo The Energy Department's Federal Energy Management Program guides and advises agencies on how to use funding more effectively in meeting

  13. Notices and Rules Related to Federal Energy Management | Department of

    Energy Savers [EERE]

    Energy Laws & Requirements » Notices and Rules Related to Federal Energy Management Notices and Rules Related to Federal Energy Management The U.S. Department of Energy (DOE) is required by law to establish and periodically update mandatory federal energy-efficiency requirements. DOE's Federal Energy Management Program (FEMP) issues notices and rules related to federal energy management, which include new federal commercial and residential buildings, federal procurement of

  14. Federal Energy Management Program Recovery Act Technical Assistance |

    Office of Environmental Management (EM)

    Department of Energy About the Federal Energy Management Program » Federal Energy Management Program Recovery Act Technical Assistance Federal Energy Management Program Recovery Act Technical Assistance The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to complete nearly 120 technical assistance projects. FEMP national laboratory teams and contractor service providers visited more than 80 federal sites located throughout the

  15. Federal Government Energy Management Conservation Programs Reports to

    Office of Environmental Management (EM)

    Congress | Department of Energy Government Energy Management Conservation Programs Reports to Congress Federal Government Energy Management Conservation Programs Reports to Congress Annual reports on federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports

  16. ISO 50001 Energy Management Standard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » ISO 50001 Energy Management Standard ISO 50001 Energy Management Standard The ISO 50001 energy management standard is a proven framework for industrial facilities, commercial facilities, or entire organizations to manage energy-including all aspects of energy procurement and use. An energy management system establishes the structure and discipline to implement technical and management strategies that significantly cut energy costs and greenhouse gas emissions-and sustain

  17. Making a Difference: Federal Energy Management Down on the Farm |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Federal Energy Management Down on the Farm Making a Difference: Federal Energy Management Down on the Farm November 30, 2015 - 10:15am Addthis Making a Difference: Federal Energy Management Down on the Farm Timothy Unruh Timothy Unruh FEMP Director Above: design of Solar Shaded AgPort, showing sheltered area under photovoltaic-covered rooftop. Image courtesy of Gerald Robinson, Lawrence Berkeley National Laboratory The Energy Department's Federal Energy Management

  18. Federal Energy Management Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Federal Energy Management Success Stories Federal Energy Management Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in cost-effective energy management and investment practices save money by saving energy within federal government facilities and fleets. Explore EERE's federal energy management success stories below. July 21, 2015 The photovoltaic array on top of the U.S. Department of Energy headquarters. (Photo Credit: U.S.

  19. EO 13123-Greening the Government Through Efficient Energy Management |

    Office of Environmental Management (EM)

    Department of Energy 123-Greening the Government Through Efficient Energy Management EO 13123-Greening the Government Through Efficient Energy Management This order directs the Federal Government to significantly improve its energy management in order to save taxpayer dollars and reduce emissions that contribute to air pollution and global climate change. PDF icon EO 13123-Greening the Government Through Efficient Energy Management More Documents & Publications Executive Order 12123

  20. Video: Federal Energy Management Program eTraining Core Courses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Video: Federal Energy Management Program eTraining Core Courses Video: Federal Energy Management Program eTraining Core Courses Video summarizes the Federal Energy Management Program's eTraining core courses available anytime online on the Whole Building Design Guide website

  1. Federal Energy Management Program Report Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program Report Template Federal Energy Management Program Report Template Template to create reports for the Federal Energy Management Program (FEMP) PDF icon 53483.pdf More Documents & Publications DOE Fuel Cell Subprogram (Presentation) Testing and Validation of Vehicle to Grid Communication Standards Risk Management Tool Attributes:

  2. Federal Energy Management Program Training Offers IACET Continuing

    Office of Environmental Management (EM)

    Education Units | Department of Energy Federal Energy Management Program Training Offers IACET Continuing Education Units Federal Energy Management Program Training Offers IACET Continuing Education Units Video explains how the Federal Energy Management Program (FEMP) offers International Association for Continuing Education and Training (IACET) continuing education units for eTraining core courses

  3. Federal Energy Management Program Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us » Federal Energy Management Program Website Contact Federal Energy Management Program Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Federal Energy Management Program (FEMP) website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  4. What the World's GREATEST Energy Managers Do Differently | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy This presentation describes some tips and practices to help energy managers understand the goal, build a coalition, and sustain momentum. PDF icon What the World's GREATEST Energy Managers Do Differently (July 10, 2012) More Documents & Publications Energy Management and Financing Unveiling the Implementation Guide Communicating Success, Measuring Improvements, Sharing Results

  5. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 8.1;" " Unit: Percents." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","In-house","Utlity/Energy Suppler","Product/Service Provider","Federal Program","State/Local Program","Don't Know" ,,"Total United States" " 311 - 339","ALL MANUFACTURING

  6. Federal Government Energy Management and Conservation Programs Fiscal Year 2009

    SciTech Connect (OSTI)

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  7. Federal Government Energy Management and Conservation Programs Fiscal Year 2008

    SciTech Connect (OSTI)

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  8. 2008 Federal Energy Management Program (FEMP) Market Report

    SciTech Connect (OSTI)

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  9. Automated Home Energy Management (AHEM) Standing Technical Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Plan - February 2012 | Department of Energy Home Energy Management (AHEM) Standing Technical Committee Strategic Plan - February 2012 Automated Home Energy Management (AHEM) Standing Technical Committee Strategic Plan - February 2012 This report outlines the gaps, barriers, and opportunities in automated home energy management tools, as outlined by the Building America Standing Technical Committee. PDF icon strategic_plan_ahem_2_12.pdf More Documents & Publications Automated

  10. Tuesday Webcasts for Industry: Engaging Supply Chains in Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging Supply Chains in Energy Management April 10, 2012 2 | Advanced Manufacturing Office eere.energy.gov * Overview and Welcome * Engaging Supply Chains in Energy Management - Ron Reising, EUISSCA * 2012 Supplier Sustainability Outreach Program - Eric Battino, PepsiCo * Questions and Answers * Accessing Slides Agenda April 10, 2012 Engaging Supply Chains in Energy Management 4 Current members include 16 of the largest electric utilities in the U.S. Electric Utility Sustainable Supply Chain

  11. FEMP Offers New Training on Energy Management Basics

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Federal Energy Management Program (FEMP) will present a live training course on June 24, 2015, from 1:30 p.m. to 3 p.m. Eastern time on Energy Management Basic Training: Tools and Resources for Results. This course provides federal personnel with a concise overview of federal energy management, and the most current tools and resources for success.

  12. Federal Energy Management Program Recovery Act Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Technical Assistance Projects Federal Energy Management Program Recovery Act Technical Assistance Projects Federal Energy Management Program Recovery Act Technical Assistance Projects The Federal Energy Management Program (FEMP) issued a Call for Technical Services in May 2010 to help federal agencies identify and prioritize energy efficiency, water efficiency, and renewable energy projects. Read information about the Call for Technical Services (including

  13. Reporting Guidance for Federal Agency Annual Report on Energy Management

    Energy Savers [EERE]

    (Per 42 U.S.C. 8258) | Department of Energy Reporting Guidance for Federal Agency Annual Report on Energy Management (Per 42 U.S.C. 8258) Reporting Guidance for Federal Agency Annual Report on Energy Management (Per 42 U.S.C. 8258) Guidance includes three attachments that were developed to assist agencies with their reporting requirements. Open "2015_reporting_requirements.docx" below to access: Attachment 1: Energy Management Report Summary Template Attachment 2: Energy

  14. About the Federal Energy Management Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Federal Energy Management Program About the Federal Energy Management Program With more than 350,000 buildings and 600,000 road vehicles, the federal government is our nation's largest energy consumer. Federal agencies have a tremendous opportunity and an obligation to reduce energy, water, and petroleum use, as well as greenhouse gas emissions in their operations. Directed by Dr. Timothy Unruh, the Federal Energy Management Program (FEMP) provides agencies with the information, tools,

  15. Become an Energy Management Professional | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Professional Become an Energy Management Professional Superior Energy Performance logo Capturing the greatest savings and establishing the system to sustain those savings over time requires a broad range of skills in today's market. Gain those skills through the professional training and certification program for Certified Practitioners in Energy Management Systems (CP EnMS). CP EnMS professionals are experienced, trained, and qualified experts who can help companies establish

  16. General Recommendations for a Federal Data Center Energy Management

    Office of Environmental Management (EM)

    Dashboard Display | Department of Energy General Recommendations for a Federal Data Center Energy Management Dashboard Display General Recommendations for a Federal Data Center Energy Management Dashboard Display Document explains the benefits of developing dashboards to track energy use in Federal data centers and discusses typical dashboard content that is useful for energy management. PDF icon dc_dashboards_guide.pdf More Documents & Publications Wireless Sensors Improve Data Center

  17. Federal Energy Management Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Case Studies Federal Energy Management Case Studies logo_femp.png The Federal Energy Management Program (FEMP) offers case studies featuring federal agencies that have successfully implemented energy- and water-efficient technologies and measures into their buildings and operations. Examples of the successful use of FEMP financing mechanisms are also available. Explore case studies by clicking the topics below. FEMP publications are also available. Awards Air Force

  18. Federal Energy Management Reporting and Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting and Data Federal Energy Management Reporting and Data The Federal Energy Management Program (FEMP) provides agencies with guidance on how to report progress made toward federal energy management laws and requirements. FEMP also collects and manages performance data for the federal government. Learn about reporting and data for: Federal facilities: Find guidance on comprehensive annual reporting and Energy Independence and Security Act Section 432 (EISA 432) facility management and

  19. Facility Energy Management Guidelines and Criteria for Energy...

    Office of Environmental Management (EM)

    Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations...

  20. DOE-Energy 101: Energy Management Monthly Training | Open Energy...

    Open Energy Info (EERE)

    DOE-Energy 101: Energy Management Monthly Training (Redirected from Energy 101 Training) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy 101 Training Agency...

  1. DOE-Energy 101: Energy Management Monthly Training | Open Energy...

    Open Energy Info (EERE)

    Energy 101: Energy Management Monthly Training Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy 101 Training AgencyCompany Organization: United States Department...

  2. Better Buildings Workforce Guidelines for Facility Energy Manager...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidelines for Facility Energy Manager - 2014 BTO Peer Review Better Buildings Workforce Guidelines for Facility ... More Documents & Publications Workforce Overview - 2015 BTO Peer ...

  3. DOE Announces Webinars on Real Time Energy Management, Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Standard Time. This webinar will feature three Better Buildings Challenge partners that are employing real-time energy management to achieve their energy reduction goals. ...

  4. Optimal Energy Management of a PHEV Using Trip Information |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Energy Management Electric Drive Vehicle Level Control Development Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  5. Association of Energy Engineers Certified Energy Manager Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who have demonstrated high levels of experience, competence, proficiency, and ethical fitness in the energy management profession. Since 1981, over 15,000 professionals have...

  6. Federal Energy Management Program Recovery Act Project Stories

    Broader source: Energy.gov [DOE]

    Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

  7. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Home Energy Management Systems on Distribution Utilities and Feeders under Various Market Structures Preprint Mark Ruth, Annabelle Pratt, Monte Lunacek, Saurabh Mittal,...

  8. Small Business Program: The Federal Energy Management Program

    Broader source: Energy.gov [DOE]

    This fact sheet by the Small Business Program provides general information on the Federal Energy Management Program and the training courses it offers.

  9. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  10. Strategic Energy Management for State and Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides policymakers with information on how to design and implement whole-building, continuous-improvement energy management programs for commercial buildings.

  11. Strategic Energy Management for Regulators of Ratepayer-Funded Programs

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides regulators with information on how to design and implement whole-building, continuous-improvement energy management programs for commercial buildings.

  12. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Package for Small Commercial Buildings Energy Management Systems Package for Small Commercial Buildings Commercial Buildings Integration Project for the 2013 Building...

  13. Anaheim Public Utilities- Small Business Energy Management Assistance Program

    Broader source: Energy.gov [DOE]

    The Small Business Energy Management System Program provides participating customers with free electrical energy use evaluations, retrofit funding, and installation assistance. Anaheim Public...

  14. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and ...

  15. Notices and Rules Related to Federal Energy Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Federal Energy Management Program (FEMP) issues notices and rules related to federal ... Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise ...

  16. Federal Energy Management Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy's (EERE) successes in cost-effective energy management and investment practices save money by saving energy within federal government facilities and fleets. Explore...

  17. New England Energy Management Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: New England Energy Management Inc Address: 5 Shelter Rock Road Place: Danbury, Connecticut Zip: 06810 Region: Northeast - NY NJ CT PA Area...

  18. Energy Management Company Association EMCA | Open Energy Information

    Open Energy Info (EERE)

    Company Association EMCA Jump to: navigation, search Name: Energy Management Company Association (EMCA) Place: Beijing, Beijing Municipality, China Zip: 100053 Product: ESCOEMC...

  19. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," ","

  20. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1. Enclosed Floorspace and Number of Establishment Buildings, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  1. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Enclosed Floorspace and Number of Establishment Buildings, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  3. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  4. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  6. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  7. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  8. Energy management system for a rotary machine and method therefor

    DOE Patents [OSTI]

    Bowman, Michael John; Sinha, Gautam (NMN); Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  9. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss013_chambon_2011_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  10. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss013_chambon_2010_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy Advanced LD Engine Systems and Emissions Control Modeling and Analysis

  11. Federal Energy Management Program Golden Field Office Contacts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Golden Field Office Contacts Federal Energy Management Program Golden Field Office Contacts The following field contacts at the U.S. Department of Energy's Golden Field Office support the Federal Energy Management Program (FEMP). FEMP staff contact information is also available. Wayne Latham Energy Savings Performance Contract (ESPC) Contracting Officer 720-356-1507

  12. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    SciTech Connect (OSTI)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  13. Facilitating Sound, Cost-Effective Federal Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The Federal Government, as the nation's largest energy consumer, has a tremendous opportunity and acknowledged responsibility to lead by example. The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) plays a critical role in this effort. FEMP facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP does this by focusing on the needs of its Federal customers, delivering an array of services across a variety of program areas.

  14. Improving Data Center Efficiency with Rack or Row Cooling Devices |

    Office of Environmental Management (EM)

    Department of Energy Improving Data Center Efficiency with Rack or Row Cooling Devices Improving Data Center Efficiency with Rack or Row Cooling Devices Brochure describes the results of "Chill-Off 2" comparative testing and improving data center efficiency with rack or row cooling devices. PDF icon dc_chilloff2.pdf More Documents & Publications Top ECMs for Labs and Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case Study:

  15. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  16. DOE Announces Webinars on Kick-Starting an Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department will present a live webinar titled "Kick-Starting Your Energy Management Program" on Tuesday, January 7, from 3:00 p.m. to 4:00 p.m. Eastern Standard Time. ...

  17. Federal Energy Management Program Training | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Read more Complete sets of accredited courses for comprehensive instruction on timely energy-management topics. Read more New eTraining course explains how to get more out of...

  18. Automated Home Energy Management Standing Technical Committee Presentation

    Broader source: Energy.gov [DOE]

    This presentation outlines the goals of the Automated Home Energy Management Standing Technical Committee, as presented at the Building America Spring 2012 Stakeholder meeting on February 29, 2012, in Austin, Texas.

  19. Annual report to Congress on Federal Government Energy Management and Conservation Programs

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report on Federal Energy Management for Fiscal year (FY) 1992 provides information on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet the statutory requirements of Title V, Part 3, of the National Energy Conservation Policy Act (NECPA), as amended, 42 U.S.C. 8251-8261, and Title VIII of NECPA, 42 U.S.C. 8287-8287b. This report also describes the energy conservation and management activities of the Federal Government under the authorization of section 381 of the Energy Policy and Conservation Act (EPCA), as amended, 42 U.S.C. 6361. Implementation activities undertaken during FY 1992 by the Federal agencies under Executive Order 12759 on Federal Energy Management are also described in this report.

  20. federal energy management prog | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Energy Management Program The U.S. Department of Energy's Federal Energy Management Program (FEMP) plays a critical role in reducing energy use and increasing the use of renewable energy at Federal agencies. The U.S. Federal government is the nation's largest energy user, and it has both a tremendous opportunity and an acknowledged responsibility to lead by example in saving energy. Thanks in part to the technical assistance provided by FEMP, the energy intensity of Federal facilities

  1. Annual Report on Federal Government Energy Management and Conservation

    Office of Scientific and Technical Information (OSTI)

    Programs, Fiscal Year 2012 (Technical Report) | SciTech Connect 2 Citation Details In-Document Search Title: Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2012 Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy

  2. Annual Report on Federal Government Energy Management and Conservation

    Office of Scientific and Technical Information (OSTI)

    Programs, Fiscal Year 2013 (Technical Report) | SciTech Connect 3 Citation Details In-Document Search Title: Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2013 Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy

  3. Presidential Memorandum Boosts Federal Energy Management | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Presidential Memorandum Boosts Federal Energy Management Presidential Memorandum Boosts Federal Energy Management December 11, 2013 - 12:00am Addthis President Obama on December 5 signed a memorandum directing the federal government to consume 20% of its electricity from renewable sources by 2020 - €more than double the current level. In 2009, the president directed the federal government to become a leader in clean energy and energy efficiency when he signed Executive Order 13514

  4. Freescale Semiconductor Successfully Implements an Energy Management System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freescale Semiconductor Successfully Implements an Energy Management System The Superior Energy Performance (SEP) plant certifcation program is being tested through pilot projects, and one of the earliest participants was the Freescale Semiconductor Oak Hill Fab plant in Austin, Texas. Working with the Department of Energy's (DOE's) Industrial Technologies Program, the Oak Hill site implemented an energy management system in accor- dance with American National Standards Institute Management

  5. Energy Management Systems Package for Small Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnMS (energy management systems) Package for Small Commercial Buildings Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov 510.486.6792 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Small commercial buildings present two challenges for implementing energy efficiency strategies 1) high transaction cost relative to total savings 2) lack of personnel time or skill available for energy management Objective:

  6. Federal Energy Management Program Recovery Act Project Stories | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Project Stories Federal Energy Management Program Recovery Act Project Stories Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies. U.S. Pacific Command The U.S. Department of Defense (DOD) U.S. Pacific Command (USPACOM) collaborated with FEMP and six DOE national laboratories to solve some of USPACOM's most pressing energy needs. The USPACOM energy

  7. Better Buildings Workforce Guidelines Energy Manager and Federal Facility Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Workforce Guidelines Energy Manager and Federal Facility Manager 2014 Building Technologies Office Peer Review Framework for a Better Buildings Workforce Phil Coleman, pecoleman@lbl.gov LBNL Project Summary Timeline Start date: August 2013 Planned end date: December 2014 Key Milestones 1. Present draft plan for energy manager and facility manager to CWCC Board of Direction (11/7/13) 2. Coordinate with NIBS to convene subject matter experts (SMEs) for the development of job task

  8. Building Energy Management Open-Source Software Development (BEMOSS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Building Energy Management Open-Source Software Development (BEMOSS) Building Energy Management Open-Source Software Development (BEMOSS) Lead Performer: Virginia Tech Advanced Research Institute - Alexandria, VA Project Partners: -- Arlington County, Virginia -- Danfoss Corporation - Baltimore, MD -- Virginia Tech Foundation - Blacksburg, VA DOE Funding: $1,918,034 Cost Share: $69,861 Project Term: November 1, 2013 - January 31, 2017 -- Phase 1 has been completed and

  9. The Department of Energy's Management of Foreign Travel, IG-0872

    Energy Savers [EERE]

    The Department of Energy's Management of Foreign Travel DOE/IG-0872 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 16, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert: "The Department of Energy's Management of Foreign Travel" INTRODUCTION The Department of Energy and its workforce of 116,000 Federal and contractor

  10. Predictive Technology Development and Crash Energy Management | Department

    Energy Savers [EERE]

    of Energy Predictive Technology Development and Crash Energy Management Predictive Technology Development and Crash Energy Management 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_09_kia.pdf More Documents & Publications Advanced Materials and Processing of Composites for High Volume Applications Vehicle Technologies Office Merit Review 2015: Validation of Material Models for

  11. Presidential Memorandum on Federal Leadership on Energy Management |

    Energy Savers [EERE]

    Department of Energy Presidential Memorandum on Federal Leadership on Energy Management Presidential Memorandum on Federal Leadership on Energy Management December 5, 2013 - 2:52pm Addthis In the latest step under his Climate Action Plan, President Obama today signed a Memorandum directing the Federal Government to consume 20 percent of its electricity from renewable sources by 2020 - more than double the current level. Meeting this renewable energy goal will reduce pollution in our

  12. Facility Energy Management Guidelines and Criteria for Energy and Water

    Office of Environmental Management (EM)

    Evaluations in Covered Facilities | Department of Energy Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities Guidelines and criteria describe meeting requirements within Section 432 of the Energy Independence and Security Act of 2007 (EISA 2007), including defining facilities covered by the provision, designating facility energy

  13. Federal Energy Managment Program Investment Grade Audit Tool | Department

    Office of Environmental Management (EM)

    of Energy Managment Program Investment Grade Audit Tool Federal Energy Managment Program Investment Grade Audit Tool Zip file contains the Federal Energy Management Program's Investment Grade Audit (IGA) Tool that is used by energy service companies during the ESPC ENABLE process. Package icon enable_igatool.zip More Documents & Publications Energy Savings Performance Contract (ESPC) ENABLE Program ESPC ENABLE NOTICE OF INTENT TO AWARD GUIDE AND TEMPLATE Energy Savings Performance

  14. Federal Energy Management Program Launches New Training Series | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Federal Energy Management Program Launches New Training Series Federal Energy Management Program Launches New Training Series September 30, 2015 - 2:22pm Addthis Timothy Unruh Timothy Unruh FEMP Director What does this project do? FEMP Certificate Series are groupings of eTraining core courses on various topics that allow learners to reach a higher level of expertise in certain series topic areas. Examples of the topics include: building operations, renewables, project financing,

  15. Federal Energy Management Program National Laboratory Liaison Contacts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Liaison Contacts Federal Energy Management Program National Laboratory Liaison Contacts The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program (FEMP). FEMP staff contact information is also available. Charles H. Williams Lawrence Berkeley National Laboratory 510-495-2892 Jerry Davis National Renewable Energy Laboratory 303-275-3199 John Shonder Oak Ridge National

  16. Federal Energy Management Program Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Federal Energy Management Program Publications logo_femp.png The Federal Energy Management Program (FEMP) offers publications to help agencies meet federal laws and requirements, understand and implement energy-saving technologies and methods, use FEMP financing mechanisms, and more. To find a publication, browse by title, topic, or type. Click a column heading to sort the table. Case studies are also available. Title Topic Type Buy Energy-Efficient Products: A Guide for Federal

  17. Federal Energy Management Program Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Federal Energy Management Program Training Register now to learn about updates to the 2016 Federal Energy and Water Management Awards criteria. Read more Complete sets of accredited courses for comprehensive instruction on timely energy-management topics. Read more This eTraining core course offers a concise introduction to comprehensive water management in key areas. Read more New eTraining course explains how to get more out of an energy savings performance contract. Read more Brush

  18. Companies pocket savings from better energy management | Department of

    Office of Environmental Management (EM)

    Energy Superior Energy Performance » Companies pocket savings from better energy management Companies pocket savings from better energy management ClimateWire, July 23, 2014 (Reprinted with permission from Environment & Energy Publishing, LLC.) In 2010, Nissan was looking to save money at its manufacturing plant in Smyrna, Tenn. The 5.5-million-square-foot plant made SUVs and cars, including the all-electric Leaf. However, it was the height of the recession. Cash was tight, and whatever

  19. Federal Energy Management Program Technical Assistance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Federal Energy Management Program Technical Assistance Federal Energy Management Program Technical Assistance Apply for Technical Assistance Apply for Technical Assistance Visit the FEMP Technical Assistance Request Portal to apply for help with sustainable federal fleet and renewable energy projects. Read more Ask Questions Ask Questions Contact FEMP's project leaders with questions related to implementing energy efficiency and renewable energy projects. Read more Learn About AFFECT

  20. 2001 ''You Have the Power'' campaign [Federal Energy Management Program]. Final technical report

    SciTech Connect (OSTI)

    2002-01-01

    The Tasks of 2001 ''You Have the Power'' campaign by the Federal Energy Management Program (FEMP) are: Task 1--Interagency Planning Meetings; Task 2--Ear Day Event; Task 3--Earth Day and Energy Awareness Month Activities; Task 4--Regional Target; Task 5--Outreach Tools and Campaign Products; Task 6--Private Sector Participation; Task 7--''You Have the Power'' on the FEMP Web Site; and Task 8--Effective Communications.

  1. Department of Energy Management of Cultural Resources

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-02

    The purpose of this Policy is to ensure that Department of Energy (DOE) programs, including the National Nuclear Security Administration (NNSA), and field elements integrate cultural resources management into their missions and activities. Certified 1-28-11. No cancellation.

  2. Blazing the energy trail: The Municipal Energy Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  3. DOE's New Checklist Helps Plants Assess Energy Management Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    they have already completed and identify missing elements needed to achieve SEP certification or ISO 50001. This information can help users access DOE technical resources...

  4. Meeting Minutes from Automated Home Energy Management System Expert Meeting

    Energy Savers [EERE]

    Automated Home Energy Management System Expert Meeting October 1-2, 2009 AGENDA - Day 1 8:30 - 8:45 Welcome and Debriefing of Building America and Home Energy Management Research- Lew Pratsch, DOE 8:45 - 9:15 Utilities Trends- Smart Grid Projects and Integration With Home Controls - Mike Keesee, SMUD 9:15 - 9:45 Thoughts on Controls System Performance Requirements - Rich Brown, LBL 9:45 - 10:15 Efficiency Trends in Consumer Electronics - Kurtis McKenney, TIAX 10:15 - 10:30 Session Break 10:30 -

  5. Getting Data Center Energy Management Started with Profiler Tools |

    Energy Savers [EERE]

    Department of Energy Getting Data Center Energy Management Started with Profiler Tools Getting Data Center Energy Management Started with Profiler Tools March 31, 2016 2:00PM to 3:00PM EDT Webinar will introduce the Data Center Profiler (DC Pro) Tools available to help data centers estimate power usage effectiveness (PUE) without submetering. DC Pro and the PUE Estimator are "early stage" scoping tools designed for data center owners and operators to diagnose how energy use is

  6. What the World's Greatest Energy Managers Do Differently

    Broader source: Energy.gov (indexed) [DOE]

    the World's GREATEST Energy Managers Do Differently? Nasr Alkadi, PhD, CEM U.S. DOE Advanced Manufacturing Office (AMO) Tuesday Webcast for Industry Role of an Energy Manager July 10, 2012 Oak Ridge National Laboratory (ORNL) is DOE's Largest Science and Energy Laboratory  World's most powerful open scientific computer  Operating the world's most intense pulsed neutron source and a world-class research reactor  $1.4B budget  4,550 employees  4,000 research guests annually 

  7. Federal Energy Management Program Recovery Act Technical Assistance Projects

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) issued a Call for Technical Services in May 2010 to help federal agencies identify and prioritize energy efficiency, water efficiency, and renewable energy projects. Read information about the Call for Technical Services (including technical service opportunities, application process, selection criteria, reporting requirements, and contacts).

  8. NMSLO Affidavit of Completion of ROW Construction | Open Energy...

    Open Energy Info (EERE)

    NMSLO Affidavit of Completion of ROW Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMSLO Affidavit of Completion of...

  9. NMSLO Application for ROW Easement | Open Energy Information

    Open Energy Info (EERE)

    Application for ROW EasementLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org...

  10. NMSLO Surface Division ROW FAQs | Open Energy Information

    Open Energy Info (EERE)

    Surface Division ROW FAQsLegal Published NA Year Signed or Took Effect 2007 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  11. Level: National and Regional Data; Row: Values of Shipments and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    than 50 percent. NANot available. Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding RSE column and RSE row factors. Totals may not equal...

  12. Improving Data Center Efficiency with Rack or Row Cooling Devices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-foors that are used for cooling air distribution. Such under-foor air distribution is not required by the new rack/row-mounted

  13. Annual Report on Federal Government Energy Management and Conservation

    Office of Scientific and Technical Information (OSTI)

    Programs, Fiscal Year 2012 (Technical Report) | SciTech Connect 2 Citation Details In-Document Search Title: Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2012 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  14. Annual Report on Federal Government Energy Management and Conservation

    Office of Scientific and Technical Information (OSTI)

    Programs, Fiscal Year 2013 (Technical Report) | SciTech Connect 3 Citation Details In-Document Search Title: Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2013 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  15. Building Energy Management Open-Source Software Development (BEMOSS) |

    Office of Environmental Management (EM)

    Department of Energy Management Open-Source Software Development (BEMOSS) Building Energy Management Open-Source Software Development (BEMOSS) Lead Performer: Virginia Tech Advanced Research Institute - Alexandria, VA Project Partners: -- Arlington County, Virginia -- Danfoss Corporation - Baltimore, MD -- Virginia Tech Foundation - Blacksburg, VA DOE Funding: $1,918,034 Cost Share: $69,861 Project Term: November 1, 2013 - January 31, 2017 -- Phase 1 has been completed and the project has

  16. Energy Management Strategies for Fast Battery Temperature Rise and Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement at Very Cold Conditions | Department of Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss014_shidore_2010_o.pdf More Documents &

  17. Energy Management and Information Systems, BBA Technical Team

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management and Information Systems, BBA Technical Team 2014 Building Technologies Office Peer Review Hourly to 15-min interval meter data mete r mete r mete r Communicatio n hardware EIS server, data analysis & storage Web-based user access Weather data, energy price Jessica Granderson, JGranderson@lbl.gov Lawrence Berkeley National Laboratory Project Summary Timeline: Start date: October 2012 Planned end date: Ongoing BBA Tech Team Key Milestones 1. EIS costs and benefits study

  18. Building Energy Management Open-Source Software (BEMOSS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Management Open-Source Software (BEMOSS) 2014 Building Technologies Office Peer Review Saifur Rahman (srahman@vt.edu) Virginia Tech Project Summary Timeline: Key Partners: Start date: November 1, 2013 Planned end date: October 31, 2014 Key Milestones 1.First cut of the BEMOSS software - 10/31/2014 2.User interface app - 10/31/2014 3.Functioning plug & play compatible controllers - 10/31/2014 Arlington County, VA Danfoss Corporation Virginia Tech Foundation Project Goal:

  19. The Department of Energy's Management of Contractor Responsibility Determinations

    Energy Savers [EERE]

    Management of Contractor Responsibility Determinations OAS-M-13-07 September 2013 Department of Energy Washington, DC 20585 September 4, 2013 MEMORANDUM FOR THE SENIOR PROCUREMENT EXECUTIVES FOR THE DEPARTMENT OF ENERGY AND THE NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Management of Contractor Responsibility

  20. Smart Energy Management of Multiple Full Cell Powered Applications

    SciTech Connect (OSTI)

    MOhammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  1. Federal Energy Management Program FY14 Budget At-a-Glance | Department...

    Energy Savers [EERE]

    FY14 Budget At-a-Glance Federal Energy Management Program FY14 Budget At-a-Glance Fact sheet describes the Federal Energy Management Program Fiscal Year 2014 budget at-a-glance....

  2. Kentucky Launches State-Wide School Energy Manager Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Paul Lester Digital

  3. Peer Review of the Federal Energy Management Program Energy-Efficient Product Procurement Portfolio

    Broader source: Energy.gov [DOE]

    Document details the peer review of the Federal Energy Management Program Energy-Efficient Product Procurement portfolio.

  4. SEP Success Story: Kentucky Launches State-Wide School Energy Manager

    Energy Savers [EERE]

    Program | Department of Energy Kentucky Launches State-Wide School Energy Manager Program SEP Success Story: Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 9:29am Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution

  5. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Electricity: Components of Net Demand, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ",,,,,," " " "," ",,,"Total ","Sales and","Net Demand","RSE" "NAICS"," ",,"Transfers ","Onsite","Transfers","for","Row"

  6. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2011

    SciTech Connect (OSTI)

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  7. Annual Report on Federal Government Energy Management and Conservation Programs, Fiscal Year 2010

    SciTech Connect (OSTI)

    None, None

    2014-03-01

    Annual reports on Federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in Federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities conducted by Federal agencies under the: Energy management and energy consumption requirements of section 543 of NECPA, as amended (42 U.S.C. § 8253); Energy savings performance contract authority of section 801 of NECPA, Pub. L. No. 95-619, as amended (42 U.S.C. §§ 8287-8287d); Renewable energy purchase goal of section 203 of the Energy Policy Act (EPAct) of 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 15852); Federal building performance standard requirements under Section 109 of EPAct 2005, Pub. L. No. 109-58 (codified at 42 U.S.C. § 6834(a)); Requirements on the procurement and identification of energy efficient products under section 161 of EPAct 1992, Pub. L. No. 102-486 (codified at 42 U.S.C. § 8262g); Sections 431, 432, and 434 of the Energy Independence and Security Act of 2007 (EISA), Pub. L. No. 110-140 (42 U.S.C. § 8253) and section 527 of EISA (42 U.S.C. § 17143); Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, 72 Fed. Reg. 3,919 (Jan. 26, 2007); Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, 74 Fed. Reg. 52,117 (Oct. 5, 2009).

  8. Resource file: practical publications for energy management, edition III

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The Resource File is an in-depth bibliography of 166 practical and action-oriented energy conservation publications and materials. It is a reference tool, designed for Federal, state, and local energy managers or people who are asked to recommend how-to conservation guides to the public. Each listing describes a publication's intended audience and provides a summary of its contents. Included are operations and maintenance manuals, life-cycle costing handbooks, home insulation manuals, films on fuel-saving driving techniques, and courses devoted exclusively to home weatherization. 166 items.

  9. Final row of solar panels installed at Livermore | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration row of solar panels installed at Livermore | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  10. Strategic Energy Management Plan For Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.

    2001-10-31

    This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

  11. File:03-CO-b - ROW Process for State Land Board Land.pdf | Open...

    Open Energy Info (EERE)

    CO-b - ROW Process for State Land Board Land.pdf Jump to: navigation, search File File history File usage Metadata File:03-CO-b - ROW Process for State Land Board Land.pdf Size of...

  12. File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf | Open...

    Open Energy Info (EERE)

    03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Size of...

  13. File:03AKBRightOfWaysROWs.pdf | Open Energy Information

    Open Energy Info (EERE)

    AKBRightOfWaysROWs.pdf Jump to: navigation, search File File history File usage Metadata File:03AKBRightOfWaysROWs.pdf Size of this preview: 463 599 pixels. Other resolution:...

  14. File:03HIEConstructionUponAStateHighwayROW.pdf | Open Energy...

    Open Energy Info (EERE)

    HIEConstructionUponAStateHighwayROW.pdf Jump to: navigation, search File File history File usage Metadata File:03HIEConstructionUponAStateHighwayROW.pdf Size of this preview: 463...

  15. Save Energy Now Assessment Helps Expand Energy Management Program at Shaw

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries | Department of Energy Assessment Helps Expand Energy Management Program at Shaw Industries Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries This case study details how a DOE energy assessment helped Shaw Industries identify significant energy savings opportunities in their Dalton, Georgia, plant's steam system. PDF icon Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries (July 2008) More Documents &

  16. Annual Report on Federal Government Energy Management and Conservation Programs Fiscal Year 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report on Federal Government Energy Management and Conservation Programs Fiscal Year 2010 Report to Congress March 2014 United States Department of Energy Washington, DC 20585 Department of Energy |March 2014 Message from the Assistant Secretary We are enclosing the Annual Report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year (FY) 2010. This report on Federal energy management for FY 2010 provides information on energy consumption in Federal

  17. The Do and Check Processes of an Energy Management System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Do and Check Processes of an Energy Management System The Do and Check Processes of an Energy Management System This presentation covers the Do and Check processes of an Energy Management System. "Do" processes include training, documents, operational control, communication, design, and procurement. "Check" processes include measuring and monitoring, legal requirements, internal auditing, non-conformance (corrective and preventive), and records. PDF icon The Do

  18. General Recommendations for a Federal Data Center Energy Management Dashboard Display

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Recommendations for a Federal Data Center Energy Management Dashboard Display Prepared for the U.S. Department of Energy's Federal Energy Management Program Prepared By Lawrence Berkeley National Laboratory Rod Mahdavi, PE, LEED AP July 2014 i Contacts Rod Mahdavi, P.E., LEED AP Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94270 (510) 495-2259 rmahdavi@lbl.gov For more information on the Federal Energy Management Program, please contact: Will Lintner, P.E., CEM

  19. Federal Energy Management Program FY 2016 Budget At-A-Glance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FY 2016 Budget At-A-Glance Federal Energy Management Program FY 2016 Budget At-A-Glance The Federal Energy Management Program (FEMP) works with key individuals to accomplish energy change within organizations by bringing expertise at all levels of project and policy implementation to enable federal agencies to meet energy-related goals and provide energy leadership to the country. PDF icon FEMP FY 2016 Budget At-A-Glance More Documents & Publications Federal Energy Management

  20. Federal Energy Management Program FY14 Budget At-a-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FY14 Budget At-a-Glance Federal Energy Management Program FY14 Budget At-a-Glance Federal Energy Management Program FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon femp_ataglance_2014.pdf More Documents & Publications Federal Energy Management Program FY14 Budget At-a-Glance DOE Sustainability Performance Office

  1. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect (OSTI)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were developed under this project. As an outgrowth of this program, Eaton developed a patented energy-optimizing drive control technology that is complementary to a traditional variable frequency drives (VFD) to enable significant energy savings for motors with variable torque applications, such as fans, pumps, and compressors. This technology provides an estimated energy saving of 2%-10% depending on the loading condition, in addition to the savings obtained from a traditional VFD. The combination of a VFD with the enhanced energy-optimizing controls will provide significant energy savings (10% to 70% depending on the load and duty cycle) for motors that are presently connected with across the line starters. It will also provide a more favorable return on investment (ROI), thus encouraging industries to adopt VFDs for more motors within their facilities. The patented technology is based on nonintrusive algorithms that estimate the instantaneous operating efficiency and motor speed and provide active energy-optimizing control of a motor, using only existing voltage and current sensors. This technology is currently being commercialized by Eatons Industrial Controls Division in their next generation motor control products. Due to the common nonintrusive and inferential nature of various algorithms, this same product can also include motor and equipment condition monitoring features, providing the facility owner additional information to improve process uptime and the associated energy savings. Calculations estimated potential energy savings of 261,397GWh/Yr ($15.7B/yr), through retrofitting energy-optimizing VFDs into existing facilities, and incorporating the solution into building equipment sold by original equipment manufacturers (OEMs) and installed by mechanical and electrical contractors. Utilizing MCSA and MPSA for predictive maintenance (PM) of motors and connected equipment reduces process downtime cost and the cost of wasted energy associated with shutting down and restarting the processes. Estimated savings vary depending on the industry segment and equipment criticality per facility/process. Average downtime for an industrial facility is 4-12 hours with a cost/hr of $7500/hr, with large, critical processes reaching $50-100k/hr. Specific downtime costs are not included in this report because of customer confidentiality, but projected savings across the Industries of the Future (IoF) are still expected to be comparable to the original program estimates. Two generations of customer field deployments and evaluation have been completed during the course of this project. Results from these customer sites have been used for identifying the scope and improving the developed energy and wellness algorithms. The field deployments have confirmed that the hardware for sensing and sampling motor currents and voltages are reliable and able to provide an adequate signal-to-noise ratio from the electrical noise present on the motor signals.

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  3. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    Gasoline and Diesel Fuel Update (EIA)

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  4. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Electricity: Components of Net Demand, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  6. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  10. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  13. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," ","

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  1. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  2. Urban energy management: a course on the administration of public energy programs. An instructor's guide

    SciTech Connect (OSTI)

    Mandelbaum, Dr., Len; Olsen, Dr., Marvin; Hyman, Dr., Barry; Sheridan, Mimi; Dahlberg, Judy; O'Brien, Jeremy

    1980-12-01

    The course provides local government administrators, staff, and students with the background knowledge to deal with a broad range of energy management concerns and is not to train technical energy conservation specialists. Section II contains the Instructor's Guide and Section III provides the Student Outlines and Handouts on the following subjects: The Energy Problem; National Energy Politics and Programs; State and Local Energy Programs; Techniques of Energy Planning; Techniques of Energy Conservation; Techniques of Renewable Energy Production; Strategies for Voluntary Energy Management; Strategies for Finan. Energy Management; and Strategies for Mandatory Energy Management. (MCW)

  3. Update: U.S. Leaders in Energy Management Eligible for New Global Award |

    Energy Savers [EERE]

    Department of Energy Superior Energy Performance » Update: U.S. Leaders in Energy Management Eligible for New Global Award Update: U.S. Leaders in Energy Management Eligible for New Global Award February 23, 2016 - 11:40am Addthis U.S. LEADERS IN ENERGY MANAGEMENT ELIGIBLE FOR NEW GLOBAL AWARD Organizations certified to ISO 50001 standard will elevate U.S. profile in clean energy Update: The submission deadline for the Clean Energy Ministerial (CEM) Energy Management Leadership Awards has

  4. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  5. Energy Productivity is the Best Medicine Medicine: Corporate Energy Management at Merck & Co., Inc.

    SciTech Connect (OSTI)

    2010-06-25

    Alliance to Save Energy case study on corporate energy management at Merck & Co., Inc. sponsored by the U.S. Department of Energy Industrial Technologies Program.

  6. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    SciTech Connect (OSTI)

    Padama, Allan Abraham B. [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrence of reconstructed surface.

  7. Energy management study: A proposed case of government building

    SciTech Connect (OSTI)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  8. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect (OSTI)

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  9. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2005

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Federal Government Energy Management and Conservation Programs Fiscal Year 2005 September 26, 2006 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................E-1 I. Overview of Federal Energy Consumption and Costs ................................................1 A. Standard

  10. Register today! Professional Training for Certified Practitioners in Energy Management Systems

    Broader source: Energy.gov [DOE]

    Energy professionals are invited to the Certified Practitioner in Energy Management Systems training on February 24–27, 2015 in Chicago, IL. The training provides energy professionals with the ability to lead an industrial organization through the development and maintenance of an energy management system, helping to implement ISO 50001 requirements and prepare for Superior Energy Performance (SEP) certification.

  11. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    SciTech Connect (OSTI)

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey; Ferguson, Kelly

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for understanding, managing, and developing energy resources by identifying training, distribution of information materials, and community meeting needs and opportunities

  12. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  13. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  9. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  10. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  11. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.1 Electricity: Components of Net Demand, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," " " "," ",,,"Total ","Sales and","Net Demand" "NAICS"," ",,"Transfers ","Onsite","Transfers","for" "Code(a)","Subsector and

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  13. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  15. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  16. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  17. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  18. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," "

  2. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  3. Federal Energy Management Program FY 2015 Budget At-A-Glance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5 Budget At-A-Glance Federal Energy Management Program FY 2015 Budget At-A-Glance The Federal Energy Management Program (FEMP) works with key individuals to accomplish energy change within organizations by bringing expertise from all levels of project and policy implementation to enable federal agencies to meet energy-related goals and provide energy leadership to the country. PDF icon fy15_at-a-glance_femp.pdf More Documents & Publications Federal Energy Management Program FY

  4. U.S. Leaders in Energy Management Eligible for New Global Award

    Broader source: Energy.gov [DOE]

    The United States Department of Energy (DOE) is taking part in a prestigious new global awards program to recognize companies or organizations that use an ISO 50001-certified energy management system (EnMS) to save energy and reduce costs.

  5. DOE P 141.1 Department of Energy Management of Cultural Resources

    Energy Savers [EERE]

    U.S. Department of Energy POLICY Washington, D.C. Approved: 5-2-01 SUBJECT: DEPARTMENT OF ENERGY MANAGEMENT OF CULTURAL RESOURCES PURPOSE AND SCOPE The purpose of this Policy is- *...

  6. Five Questions for an Expert: Paul Scheihing on Industrial Energy Management

    Broader source: Energy.gov [DOE]

    Paul Scheihing is a technology manager within the Energy Department’s Advanced Manufacturing Office (AMO) and a recognized expert in industrial energy management discusses the importance of his work.

  7. Building America Expert Meeting: Minutes from Automated Home Energy Management System

    Broader source: Energy.gov [DOE]

    These meeting minutes are from the U.S. Department of Energy Building America program expert meeting titled "Automated Home Energy Management System," held on October 1-2, 2010 in Denver, Colorado.

  8. Extension of DOE O 430.2, In-House Energy Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-13

    This Notice extends DOE O 430.2, IN-HOUSE ENERGY MANAGEMENT, dated 6-13-96 until 6-13-01, unless sooner rescinded. The Order is being revised to implement Executive Order 13123, Greening of the Government Through Efficient Energy Management, and a Secretarial Memorandum, Pollution Prevention and Energy Efficiency Leadership Goals, and to include the acquisition, planning and management of utilities. Does not cancel other directives.

  9. Federal Energy Management Program (FEMP) Technical Assistance Request Portal User Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Program Technical Assistance Request Portal User Guide Version 1, August 1, 2014 Thank you for using the Federal Energy Management Program's (FEMP) Technical Assistance request portal (the portal). This user guide will help you navigate the registration process, submit a request for assistance, and review your submitted and saved requests. At the end of this guide, you'll find contact information for FEMP in case you require additional support. The portal itself also provides

  10. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL-23318 The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence May 2014 C McDermott EL Malone PNNL-23318 The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence C McDermott EL Malone May 2014 Prepared for the U.S. Department of Energy under Contract DEAC0576RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 PNNL-23318 Summary This report assesses the use of institutional change principles and the

  11. The Second US-China Energy Efficiency Forum: Energy Management Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Implementation | Department of Energy The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation Presentation from James Quinn outlining Energy Efficiency standards and certifications, and their implementation. PDF icon session_2_industry_track_quinn_en.pdf PDF icon session_2_industry_track_quinn_cn.pdf More Documents & Publications International Cooperation on

  12. Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB September 2006 LESSONS LEARNED FROM CYBER SECURITY ASSESSMENTS OF SCADA AND ENERGY MANAGEMENT SYSTEMS Raymond K. Fink David F. Spencer Rita A. Wells NSTB INL/CON-06-11665 iii ABSTRACT Results from ten cyber security vulnerability assessments of process control, SCADA, and energy management systems, or components of those systems, were reviewed to identify

  13. U.S. gasoline price decreases for 17th week in a row (short version)

    Gasoline and Diesel Fuel Update (EIA)

    gasoline price decreases for 17th week in a row (short version) The U.S. average retail price for regular gasoline fell for the 17th week in a row to $2.04 a gallon on Monday. That's down 2.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. DOE Announces Webinars on Kick-Starting an Energy Management Program,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Incubator Projects, and More | Department of Energy Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More DOE Announces Webinars on Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More December 20, 2013 - 8:58am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however,

  15. "Turn-Key" Open Source Software Solutions for Energy Management of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small to Medium Sized Buildings (DE-FOA-0000822) | Department of Energy "Turn-Key" Open Source Software Solutions for Energy Management of Small to Medium Sized Buildings (DE-FOA-0000822) "Turn-Key" Open Source Software Solutions for Energy Management of Small to Medium Sized Buildings (DE-FOA-0000822) March 28, 2013 - 12:00pm Addthis This funding opportunity is closed Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the

  16. Self-organization of S adatoms on Au(111): ?3R30 rows at low coverage

    SciTech Connect (OSTI)

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Lim, Hyunseob; Evans, J. W.; Kim, Yousoo; Thiel, P. A.

    2015-07-06

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed cleansurface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30 from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by ?3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, we derived using a limited cluster expansion based on density functional theory energetics. Furthermore, models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.

  17. Special Study of The Department of Energy's Management of Suspect/Counterfeit Items

    Office of Environmental Management (EM)

    SPECIAL STUDY Independent Oversight Special Study of The Department of Energy's Management of Suspect/Counterfeit Items August 2003 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ............................................................... 1 1.0 INTRODUCTION ...................................................................... 3 2.0 DOE HEADQUARTERS SUSPECT/COUNTERFEIT ITEM PROCESSES .................................................................... 6 3.0 IMPLEMENTATION OF

  18. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2003

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 August 9, 2005 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 i TABLE OF CONTENTS I. Overview of Federal Energy Consumption and Costs . . . . . . . . . . . . . . . . . . . . . . . 1 A. Standard Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B. Industrial, Laboratory and Other Energy Intensive Facilities . . . . . . . . . . . . . . 5 C. Exempt

  19. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Conservation Programs Fiscal Year 2004 February 24, 2006 U.S. Department of Energy Assistant Secretary, Energy Efficiency and Renewable Energy Federal Energy Management Program Washington, DC 20585 TABLE OF CONTENTS I. Overview of Federal Energy Consumption and Costs . . . . . . . . . . . . . . . . . . . . . . . 1 A. Standard Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B. Industrial, Laboratory and Other Energy Intensive

  20. Extension of DOE O 430.2, In-House Energy Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-13

    The Order is in the process of being revised to implement E.O. 13123, Greening of the Government Through Efficient Energy Management, and a Secretarial Memorandum, Pollution Prevention and Energy Efficiency Leadership Goals. The revision will also include the acquisition, planning and management of utilities. Does not cancel other directives.

  1. ETA-HTP12 - Evaluation of Hybrid Vehicle Energy Management System(s) [EMS]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP12 Revision 0 Effective May 1, 2004 Evaluation of Hybrid Vehicle Energy Management System(s) [EMS] Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Roberta Brayer Approved by: ______________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP12 Revision 0 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. Objective 1 2. Purpose 1 3. Documentation 1 4.

  2. Energy Management

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will review energy basics and what they have learned in energy conservation efforts to report this improved knowledge to their home and school communities.

  3. Community energy auditing: experience with the comprehensive community energy management program

    SciTech Connect (OSTI)

    Moore, J.L.; Berger, D.A.; Rubin, C.B.; Hutchinson, P.A. Sr.; Griggs, H.M.

    1980-09-01

    The report provides local officials and staff with information on lessons from the audit, projection, and general planning experiences of the Comprehensive Community Energy Management Program (CCEMP) communities and provides ANL and US DOE with information useful to the further development of local energy management planning methods. In keeping with the objectives, the report is organized into the following sections: Section II presents the evaluation issues and key findings based on the communities' experiences from Spring of 1979 to approximately March of 1980; Section III gives an organized review of experience of communities in applying the detailed audit methodology for estimating current community energy consumption and projecting future consumption and supply; Section IV provides a preliminary assessment of how audit information is being used in other CCEMP tasks; Section V presents an organized review of preliminary lessons from development of the community planning processes; and Section VI provides preliminary conclusions on the audit and planning methodology. (MCW)

  4. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  5. Superior Energy Performance: Getting the Most Value from ISO 50001-Energy Management Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance cm : Getting the Most Value from ISO 50001- Energy Management Systems US Department of Energy Advanced Manufacturing Office March 13, 2012 Aimee McKane Lawrence Berkeley National Laboratory 2 | Industrial Energy Efficiency eere.energy.gov * Time and again, industrial energy efficiency has been demonstrated to be cost effective while having a positive effect on productivity * Despite this, energy efficiency improvements with very favorable payback periods often do not

  6. Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based on recommendations from their Save Energy Now assessment, Shaw Industries plant #20 in Dalton, Georgia, installed a waste water heat exchanger on their Kuster dye line to capture excess heat and save a significant amount of money and energy. Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency Industrial Technologies Program Case Study Benefits Implemented $872,000 annually in

  7. Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) 25 November 2008 I. Background A. Authority Section 432 of the Energy Independence and Security Act of 2007 (EISA) amends section 543 of the National Energy Conservation Policy Act, by adding a new subsection (f) Use of Energy and Water Efficiency Measures in Federal Buildings (42 U.S.C.

  8. Report on Audit of Department of Energy Management and Operating Contractor Available Fees, IG-0390

    Energy Savers [EERE]

    AUDIT OF DEPARTMENT OF ENERGY MANAGEMENT AND OPERATING CONTRACTOR AVAILABLE FEES The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative address: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov

  9. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A.

    2011-08-11

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  10. Final Scientific/Technical Report: Context-Aware Smart Home Energy Manager (CASHEM)

    SciTech Connect (OSTI)

    Foslien, Wendy K; Curtner, Keith L

    2013-01-15

    Because of growing energy demands and shortages, residential home owners are turning to energy conservation measures and smart home energy management devices to help them reduce energy costs and live more sustainably. In this context, the Honeywell team researched, developed, and tested the Context Aware Smart Home Energy Manager (CASHEM) as a trusted advisor for home energy management. The project focused on connecting multiple devices in a home through a uniform user interface. The design of the user interface was an important feature of the project because it provided a single place for the homeowner to control all devices and was also where they received coaching. CASHEM then used data collected from homes to identify the contexts that affect operation of home appliances. CASHEMâ??s goal was to reduce energy consumption while keeping the userâ??s key needs satisfied. Thus, CASHEM was intended to find the opportunities to minimize energy consumption in a way that fit the userâ??s lifestyle.

  11. U.S. gasoline price decreases for 17th week in a row (long version)

    Gasoline and Diesel Fuel Update (EIA)

    26, 2015 U.S. gasoline price decreases for 17th week in a row (long version) The U.S. average retail price for regular gasoline fell for the 17th week in a row to $2.04 a gallon on Monday. That's down 2.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.33 a gallon, down 5.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 1.85 a gallon, up 6-tenths of a penny

  12. Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents

    Office of Environmental Management (EM)

    Consider Fuel Economy Most Important When Purchasing a Vehicle | Department of Energy 77: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle A 2012 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next

  13. Association of Energy Engineers Certified Energy Manager Program Becomes First Credential Recognized under Better Buildings Workforce Guidelines

    Broader source: Energy.gov [DOE]

    This week, the Department announced that the Association of Energy Engineers’ (AEE) Certified Energy Manager® is the first certification program to be recognized under the Better Buildings Workforce Guidelines program.

  14. Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS)

    Energy Savers [EERE]

    DOE-STD-1047-2008 August 2008 DOE STANDARD Safety Functions and Other Features of Remotely Operated Weapon Systems (ROWS) U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1047-2008 TABLE OF CONTENTS FOREWORD ....................................................................................................................... i 1. SCOPE AND PURPOSE

  15. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal

  16. The FEMP Awards Program: Fostering Institutional Change and Energy Management Excellence

    SciTech Connect (OSTI)

    McDermott, Christa; Malone, Elizabeth L.

    2014-05-20

    This report assesses the use of institutional change principles and the institutional impact of award-winning projects through interviews with 22 Department of Energy Federal Energy Management Program (DOE FEMP) award winners. Award winners identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. We found that award winners do use strategies based on eight principles of institutional change, most frequently in terms of making changes to infrastructure, engaging leadership, and capitalizing on multiple motivations for making an energy efficiency improvement. The principles drawn on the least often were commitment and social empowerment. Award winners also faced five major types of obstacles that were institutional in nature: lack of resources, constraints of rules, psychological barriers, lack of information, and communication problems. We also used the seven categories of Energy Management Excellence (EME) as a lens to interpret the interview data and assess whether these categories relate to established institutional change principles. We found that the eight principles reflect strategies that have been found to be useful in improving energy efficiency in organizations, whereas the EME categories capture more of a blend of social contextual factors and strategies. The EME categories fill in some of the social context gaps that facilitate institutional change and energy management excellence, for example, personal persistence, a culture that supports creativity and innovation, regular engagement with tenants, contractors, and staff at all levels. Taking together the use of principles, EME criteria, and obstacles faced by interviewees, we make recommendations for how FEMP can better foster institutional change in federal agencies.

  17. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect (OSTI)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  18. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  19. A Fuzzy-Logic Subsumption Controller for Home Energy Management Systems

    SciTech Connect (OSTI)

    Ainstworth, Nathan; Johnson, Brian; Lundstrom, Blake

    2015-10-05

    Presentation for NAPS 2015 associated with conference publication CP-64392. Home Energy Management Systems (HEMS) are controllers that manage and coordinate the generation, storage, and loads in a home. These controllers are increasingly necessary to ensure that increasing penetrations of distributed energy resources are used effectively and do not disrupt the operation of the grid. In this paper, we propose a novel approach to HEMS design based on behavioral control methods, which do not require accurate models or predictions and are very responsive to changing conditions.

  20. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior: Preprint

    SciTech Connect (OSTI)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.; Zimmerle. D.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  1. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    SciTech Connect (OSTI)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.; Zimmerle, D.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  2. Reducing energy costs in multifamily housing: guidelines for using energy-management companies

    SciTech Connect (OSTI)

    Shafer, P.

    1986-03-01

    This publication is designed to provide guidelines to help sponsors of multi-family projects assisted or insured by the U.S. Department of Housing and Urban Development (HUD), as well as other building owners, utilize performance agreements as a way to make energy-efficiency improvements. These guidelines are based on experience gained in a demonstration project initiated by HUD to test the feasibility of using Energy Management Companies (EMCs) to make energy improvements in assisted housing for the elderly or handicapped.

  3. LESSONS LEARNED FROM CYBER SECURITY ASSESSMENTS OF SCADA AND ENERGY MANAGEMENT SYSTEMS

    SciTech Connect (OSTI)

    Ray Fink

    2006-10-01

    The results from ten cyber security vulnerability assessments of process control, SCADA and energy management systems, or components of those systems were reviewed to identify common problem areas. The common vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. In each vulnerability category, relative measures were assigned to the severity of the vulnerability and ease with which an attacker could exploit the vulnerability. Suggested mitigations are identified in each category. Recommended mitigations having the highest impact on reducing vulnerability are listed for asset owners and system vendors.

  4. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  5. A study in the application of energy management at a table service restaurant

    SciTech Connect (OSTI)

    Balmer, A.; Nodolf, K.M.

    1985-01-01

    This paper describes a study of the application of energy management including electric demand limit control in a 6656 ft/sup 2/ table service restaurant located in Minneapolis, which contained 30 tons of rooftop air conditioning, a 74 kW electric dishwasher, and natural gas space heating. Strategies were developed for applying demand-limit and time-of-day controls on rooftop air-conditioning units, refrigeration equipment, ventilation equipment, and a dishwasher electric booster heater. This study was conducted over a one-year period using a week-on/week-off test procedure in which the energy management controls were in operation alternately for one week and then manually disconnected for the following week. This testing method was chosen to reduce the effects of changes in the business operating procedures, changes in the connected electrical loads and irregularities in the climate that tend to distort results based on a year-to-year comparison. Extensive instrumentation was installed to monitor the operation of controlled loads, the impact on the space temperature, the operation of overrides and limit controls on critical loads, peak electric demand, and total energy consumption. The study demonstrated that electric demand charges were reduced 19.7% and that electric energy usage charges were reduced 8.7%. The total annual savings was $2440 which represented a 13% savings on the total energy bill and a 48% return-on-investment on a system installed cost of $5083.

  6. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    Gasoline and Diesel Fuel Update (EIA)

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  7. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    0 Reasons that Made Electricity Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million kWh. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Electricity Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Electricity Fuel Use Another Fuel the Products

  8. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  9. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    2 Reasons that Made Coal Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million short tons. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Coal Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Coal Fuel Use Another Fuel the Products Fuel

  10. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    Gasoline and Diesel Fuel Update (EIA)

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  11. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Nonswitchable Minimum and Maximum Consumption, 2010; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 745,247 727,194 770,790 Natural Gas (billion cubic feet) 5,064 4,331 5,298 Distillate Fuel Oil (thousand barrels) 22 20 82 Residual Fuel Oil (thousand barrels) 13 9 46 Coal (thousand short

  12. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed Milling * * * * * * * 0

  13. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed Milling * * * * * * 0 *

  14. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  15. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  17. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  18. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  19. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  20. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  1. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Natural Gas(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  2. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  3. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  4. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  5. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual"

  6. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  7. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  8. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  9. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  10. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  11. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total Establishments"," ","Not","Electricity","Natural","Distillate","Residual"

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  13. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  14. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  17. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments ","

  18. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  19. " Row: Energy Sources;" " Column: Consumption Potential;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonswitchable Minimum and Maximum Consumption, 2010; " " Level: National and Regional Data;" " Row: Energy Sources;" " Column: Consumption Potential;" " Unit: Physical Units." ,"Actual","Minimum","Maximum" "Energy Sources","Consumption","Consumption(a)","Consumption(b)" ,"Total United States" "Electricity Receipts(c) (million kilowatthours)",745247,727194,770790

  20. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  3. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  4. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.; Brown, T.

    2001-07-16

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  5. Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.

    2001-07-16

    This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  6. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect (OSTI)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  7. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect (OSTI)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  8. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Lim, Hyunseob; Evans, J. W.; Kim, Yousoo; Thiel, P. A.

    2015-07-06

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed cleansurface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, we derivedmore » using a limited cluster expansion based on density functional theory energetics. Furthermore, models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.« less

  9. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  10. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  11. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  12. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 618 165 379 8 109 12 1 38 0 10 3112 Grain and Oilseed Milling 115

  13. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  14. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 73,551 1,887 55,824 711 823 0 111 45 0 205 3112 Grain and Oilseed Milling

  15. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  16. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  17. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  18. Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments

    Gasoline and Diesel Fuel Update (EIA)

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    Gasoline and Diesel Fuel Update (EIA)

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7

  1. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 10.17 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from LPG to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent

  2. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  3. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  4. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  5. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  6. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  7. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  8. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2006; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 854,102 826,077 889,281 Natural Gas (billion cubic feet) 5,357 4,442 5,649 Distillate Fuel Oil (thousand barrels) 22,139 19,251 101,340 Residual Fuel Oil (thousand barrels) 39,925

  9. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 8 2 7 * 1 * * * * 3112 Grain and Oilseed Milling 6 1 4 0 1 * 0 * * 311221 Wet Corn

  10. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 563 139 416 12 72 26 4 35 * 13 3112 Grain and Oilseed Milling

  11. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2 1 1 * 1 * 0 0 0 * 3112 Grain and Oilseed Milling * * * 0 * * 0 0

  12. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 75,673 2,403 70,987 666 1,658 Q 406 Q Q 141 3112 Grain and Oilseed

  13. Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components;

    Gasoline and Diesel Fuel Update (EIA)

    1.1 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 73,242 309 4,563 111 78,003 3112 Grain and Oilseed Milling 15,283 253 2,845 72 18,310 311221 Wet Corn Milling 6,753 48 2,396 55 9,142 31131 Sugar Manufacturing

  14. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6

  15. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 871.7 4.3 1.8 3112 Grain and Oilseed Milling 6,239.5 10.5 3.6 311221 Wet Corn Milling 28,965.0 27.1

  16. Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;

    Gasoline and Diesel Fuel Update (EIA)

    3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit

  17. Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling 72 51 21 311221 Wet Corn Milling 55 42 13 31131 Sugar Manufacturing 7 3 4

  18. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  19. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes

    Gasoline and Diesel Fuel Update (EIA)

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,166 367 23

  20. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes

    Gasoline and Diesel Fuel Update (EIA)

    2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85

  1. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million Kilowatthours. Sales and Net Demand Economic Total Onsite Transfers for Characteristic(a) Purchases Transfers In(b) Generation(c) Offsite Electricity(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 107,618 56 1,447 28 109,094 20-49 97,570 181 5,220 307 102,664 50-99 104,082 Q 3,784 2,218

  2. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,447 450 Q Q 20-49 5,220 5,106 29 Q 50-99 3,784 3,579 29 Q 100-249 17,821 17,115 484

  3. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 28 28 0 20-49 307 227 80 50-99 2,218 1,673 545 100-249 2,647 1,437 1,210 250-499 3,736 2,271

  4. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197

  5. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4.3 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,066 367 23 45 535 13 21 3 59 20-49 1,063 334 13 18 530 8 93 5 63 50-99 1,233 357 22 16 549 10 157 8

  6. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value Economic per Employee of Value Added of Shipments Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Total United States Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2

  7. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," ","

  8. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," ","Any "," "," "," "," "," "," "," "," ",," " " "," ","Combustible",,,,,,,,"RSE"

  9. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  10. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  11. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  12. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  13. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million

  14. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " "Next MECS will be fielded in 2015" "Table 6.1 Consumption Ratios of Fuel, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments"

  15. " Row: Selected SIC Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",,"

  16. U.S. diesel fuel price decreases for the second week in a row

    Gasoline and Diesel Fuel Update (EIA)

    diesel fuel price decreases for the second week in a row The U.S. average retail price for on-highway diesel fuel fell to $2.86 a gallon on Monday. That's down 5.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the Central Atlantic region at 3.23 a gallon, down 8 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.72 a gallon, down 4.8 cents.

  17. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  18. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  19. Federal Energy Management Program technical assistance case study: Water conservation at the Denver Federal Center

    SciTech Connect (OSTI)

    1997-01-01

    As part of a national effort, Executive Order 12902 and the Energy Policy Act of 1992 mandated water conservation in all Federal facilities. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) was tasked with leading the effort providing the technical assistance needed to identify ways to comply with the order. To apply highly efficient water use technologies in the Federal sector, FEMP formed a partnership with DOE`s National Renewable Energy Laboratory (NREL); the General Services Administration (GSA); the Bureau of Reclamation; the Environmental Protection Agency (EPA); Denver Water, the local utility; and several manufacturers. The objectives of the partnership were: to improve energy and water efficiency in the Federal sector; to deploy US manufactured water technologies in the Federal sector; to reduce life-cycle cost and improve reliability of Federal installations; to establish a showcase site demonstrating technologies and operating practices of water conservation; to demonstrate effective government and industry partnerships. FEMP chose the 14-story Building 67 at the Denver Federal Center for the site of the water conservation project.

  20. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  1. Performance Assurance for Multi-Year Contracts Under the Utility Incentive Program; Federal Energy Management Program (FEMP) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Federal Energy Management Program Leading by example, saving energy and taxpayer dollars in federal facilities Fact Sheet Section 152(f) of the Energy Policy Act of 1992 (EPACT) Public Law 102-486 autho- rized and encouraged Federal agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utili- ties. Additionally Title 10 Section 2913 and 10 USC 2866 (a) authorizes and

  2. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe National Renewable Energy Laboratory INTRODUCTION OPPORTUNITY National Renewable Energy Laboratory Presented at the 4th International Conference on Integration of Renewable & Distributed Energy Resources, December 6-10 , 2010 * Albuquerque, New Mexico U.S. military bases, such as Fort Carson, are interested in opportunities to lower energy consumption and use renewable

  3. ETA-UTP012 - Evaluation of Electric Vehicle On-Board Battery Energy Management System(s) [BEMS]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Revision 0 Effective March 23, 2001 Evaluation of Electric Vehicle On-Board Battery Energy Management System(s) [BEMS] Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Steven R. Ryan Approved by: ______________________________________________ Date: _______________ Jude M. Clark Procedure ETA-UTP012 Revision 0 ©2001 Electric Transportation Applications All Rights Reserved 2 2 TABLE OF CONTENTS 1.0 Objective 3 2.0 Purpose 3 3.0

  4. Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011, Federal Energy Management Program (FEMP) (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices Guide for Energy-Efficient Data Center Design Revised March 2011 Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC. FEDERAL ENERGY MANAGEMENT PROGRAM Acknowledgements | Contacts Acknowledgements This report was prepared by John Bruschi, Peter Rumsey, Robin Anliker, Larry Chu, and Stuart Gregson of Rumsey

  5. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  6. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590

  7. Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Selected Subsectors and Industry Establishments(b) In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know In Use(e) Not in Use(f) Don't Know Total United States 311 Food 13,271 1,849 10,454 968

  8. table8.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002 Level: National Data; Row: Energy-Management Activities within NAICS Codes; Column: Participation and Source of Financial Support for Activity; Unit: Establishment Counts. RSE NAICS Row Code(a) Energy-Management Activity No Participation Participation(b) In-house Other Don't Know Factors Total United States RSE Column Factors: 0.9 1.4 0.9 0.9 1 311 - 339 ALL MANUFACTURING INDUSTRIES Participation in One or More of

  9. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Guidance for Federal Agencies on E.O. 13514 Section 12, Federal Fleet Management, April 2010, Federal Energy Management Program (FEMP)

    Office of Environmental Management (EM)

    ENERGY MANAGEMENT PROGRAM Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance Guidance for Federal Agencies on E.O. 13514 Section 12, Federal Fleet Management April 2010 FEDERAL ENERGY MANAGEMENT PROGRAM FEDERAL ENERGY MANAGEMENT PROGRAM E.O. 13514 Section 12 Guidance Page i Contacts Amanda Sahl Federal Energy Management Program (FEMP) U.S. Department of Energy (DOE) 202-586-1662 federal_fleets@ee.doe.gov FEMP General Contact Information EE-2L 1000

  10. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology-an energy management system-was identified as a promising method for reducing energy use

  11. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2005

    SciTech Connect (OSTI)

    None, None

    2006-09-26

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  12. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2006

    SciTech Connect (OSTI)

    None, None

    2008-11-26

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  13. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2007

    SciTech Connect (OSTI)

    2010-01-27

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  14. Annual report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 1999

    SciTech Connect (OSTI)

    None, None

    2001-05-01

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  15. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2000

    SciTech Connect (OSTI)

    None, None

    2002-12-13

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  16. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2002

    SciTech Connect (OSTI)

    None, None

    2004-09-29

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  17. Annual Report to Congress on Federal Government Energy Management and Conservation Programs Fiscal Year 2001

    SciTech Connect (OSTI)

    None, None

    2004-02-04

    This document provides information on energy consumption in Federal buildings, operations, and vehicles and equipment, and documents activities conducted by Federal agencies to meet the statutory requirements.

  18. Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts

    SciTech Connect (OSTI)

    Sylvain, D.C.

    1996-10-01

    In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting the average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.

  19. Study of Row Phase Dependent Skew Quadrupole Fields in Apple-II Type EPUs at the ALS

    SciTech Connect (OSTI)

    Steier, C.; Marks, S.; Prestemon, Soren; Robin, David; Schlueter, Ross; Wolski, Andrzej

    2004-05-07

    Since about 5 years, Apple-II type Elliptically Polarizing Undulators (EPU) have been used very successfully at the ALS to generate high brightness photon beams with arbitrary polarization. However, both EPUs installed so far cause significant changes of the vertical beamsize, especially when the row phase is changed to change the polarization of the photons emitted. Detailed measurements indicate this is caused by a row phase dependent skew quadrupole term in the EPUs. Magnetic measurements revealed the same effect for the third EPU to be installed later this year. All measurements to identify and quantify the effect with beam will be presented, as well as some results of magnetic bench measurements and numeric field simulations.

  20. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, Jianliang (Naperville, IL); Rote, Donald M. (Lagrange, IL)

    1996-01-01

    A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the super conducting magnets on the vehicle.

  1. Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching

    DOE Patents [OSTI]

    He, J.; Rote, D.M.

    1996-05-21

    A stabilization and propulsion system are disclosed comprising a series of loop-coils arranged in parallel rows wherein two rows combine to form one of two magnetic rails. Levitation and lateral stability are provided when the induced field in the magnetic rails interacts with the superconducting magnets mounted on the magnetic levitation vehicle. The loop-coils forming the magnetic rails have specified dimensions and a specified number of turns and by constructing differently these specifications, for one rail with respect to the other, the angle of tilt of the vehicle can be controlled during directional switching. Propulsion is provided by the interaction of a traveling magnetic wave associated with the coils forming the rails and the superconducting magnets on the vehicle. 12 figs.

  2. Annual report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 1997

    SciTech Connect (OSTI)

    1999-08-13

    In fulfillment of statutory requirements, this report provides information on energy consumption in Federal buildings and operations and also documents activities conducted by Federal agencies in fulfilling those requirements during Fiscal Year 1997.

  3. Annual report to Congress on Federal Government Energy Management and Conservation Programs, Fiscal Year 1998

    SciTech Connect (OSTI)

    2000-03-20

    In fulfillment of statutory requirements, this report provides information on energy consumption in Federal buildings and operations and also documents activities conducted by Federal agencies in fulfilling those requirements during Fiscal Year 1998.

  4. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  5. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  6. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  7. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  8. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  9. Annual report to Congress on Federal Government energy management and conservation programs, Fiscal year 1994

    SciTech Connect (OSTI)

    1995-10-06

    This report provides sinformation on energy consumption in Federal buildings and operations and documents activities conducted by Federal agencies to meet statutory requirements of the National Energy Conservation Policy Act. It also describes energy conservation and management activities of the Federal Government under section 381 of the Energy Policy and Conservation Act. Implementation activities undertaken during FY94 by the Federal agencies under the Energy Policy Act of 1992 and Executive Orders 12759 and 12902 are also described. During FY94, total (gross) energy consumption of the US Government, including energy consued to produce, process, and transport energy, was 1.72 quadrillion Btu. This represents {similar_to}2.0% of the total 85.34 quads used in US.

  10. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  11. DOE P 141.1 – Department of Energy Management of Cultural Resources (DOE, 2001)

    Broader source: Energy.gov [DOE]

    The purpose of this Policy is (1) to ensure that U.S. Department of Energy (DOE) programs, including the National Nuclear Security Administration (NNSA), and field elements integrate cultural resources management into their missions and activities, and (2) to raise the level of awareness and accountability among DOE (including NNSA) contractors concerning the importance of DOE's cultural resource-related legal and trust responsibilities.

  12. P.L. 100-615, "Federal Energy Management Improvement Act" (1988)

    SciTech Connect (OSTI)

    2011-12-13

    Requires agencies to improve construction designs for Federal buildings so that the energy consumption per gross square foot in use during FY 1995 is at least ten percent less than that of FY 1985. Sets forth implementation steps to meet such goal. Exempts from such requirement buildings in which energy intensive activities are implemented. Redescribes procedures involved in the establishment and use of life cycle cost methods for Federal buildings.

  13. DOE P 141.1 – Department of Energy Management of Cultural Resources

    Broader source: Energy.gov [DOE]

    The purpose of this Policy is (1) to ensure that U.S. Department of Energy (DOE) programs, including the National Nuclear Security Administration (NNSA), and field elements integrate cultural resources management into their missions and activities, and (2) to raise the level of awareness and accountability among DOE (including NNSA) contractors concerning the importance of DOE's cultural resource-related legal and trust responsibilities.

  14. Technical Assistance Activities | Department of Energy

    Energy Savers [EERE]

    Activities Technical Assistance Activities AMO's Industrial Technical Assistance supports the deployment of manufacturing technologies and practices, including strategic energy management and combined heat and power, across American industry to increase productivity and reduce water and energy use. Technical Assistance Programs Better Plants Program Better Plants Challenge Superior Energy Performance Industrial Assessment Centers CHP Deployment Energy Resource Center Software Tools Training

  15. Technical Assistance Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Technical Assistance Activities AMO's Industrial Technical Assistance supports the deployment of manufacturing technologies and practices, including strategic energy management and combined heat and power, across American industry to increase productivity and reduce water and energy use. Technical Assistance Programs Better Plants Program Better Plants Challenge Superior Energy Performance Industrial Assessment Centers CHP Deployment Energy Resource Center Software Tools Training

  16. Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2012-06-01

    As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

  17. Better Buildings Workforce Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETTER BUILDINGS WORKFORCE ACTIVITIES  Benjamin Goldstein, Better Buildings Workforce Project Manager, U.S. Department of Energy April 24, 2014 Housekeeping and Overview 1) Restroom location 2) Cell phones-silent please 3) Presentation format  15 min presentation; 15 minute Q&A (reviewers first, then audience) 4) Presenters  Phil Coleman, LBNL: Better Buildings Workforce Guidelines (Energy Manager and Federal Facility Manager)  Marta Milan, Waypoint Building: Commercial Buildings

  18. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  19. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  20. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer

  1. HIA 2015 DOE Zero Energy Ready Home Case Study: New Town Builders, Town Homes at Perrin's Row, Wheat Ridge, CO

    Energy Savers [EERE]

    Town Homes at Perrin's Row Wheat Ridge, CO DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in

  2. Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners

    SciTech Connect (OSTI)

    Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.

    2007-05-25

    This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.

  3. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 2/5/2014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste Isolation Pilot Plant (WIPP) 26 miles east of Carlsbad, New Mexico. The activation occurred as a result of an emergency incident at the site. More information will be provided as soon as the extent of the emergency is determined. The Joint Information Center (JIC), located at 4021 National Parks Highway, has been

  4. Strategic Energy Management

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) SEE Action Network and Weatherization and Intergovernmental Program Technical Assistance Program sponsored this webinar about strategic management in the public sector on November 7, 2012.

  5. Water Efficiency Improvements At Various Environmental Protection Agency Sites: Best Management Practices Case Study #12 „ Laboratory/Medical Equipment (Brochure), Federal Energy Management Program (FEMP)

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. EPA completed projects in all of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) 14 Best Management Practice (BMP) categories. The projects highlighted below demonstrate EPA's ability to reduce water use in the laboratory/medical equipment BMP category by implementing vacuum pump and steam steril-

  6. An Overview of Thermoelectric Waste Heat Recovery Activities in Europe |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D projects on thermoelectric power generation technology in Europe. PDF icon rowe.pdf More Documents & Publications Vehicular Applications of Thermoelectrics Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in

  7. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  8. The Department of Energy's Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc., OAS-RA-13-10

    Energy Savers [EERE]

    Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc. OAS-RA-13-10 February 2013 Department of Energy Washington, DC 20585 February 8, 2013 MEMORANDUM FOR THE UNDER SECRETARY OF ENERGY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "The Department of Energy's Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc." BACKGROUND The Department of Energy's Vehicle Technologies Program was

  9. U.S. gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (short version)

    Gasoline and Diesel Fuel Update (EIA)

    gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (short version) The U.S. average retail price for regular gasoline fell 7.3 cents from a week ago to $2.07 a gallon on Monday. This marks a record of 16 consecutive weeks of price drops and breaks the previous record set at the end of 2008, based on the weekly price survey by the U.S. Energy Information Administration.

  10. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (e)",280,3,5,417,5,5,6.6 " Facility Lighting",212,"--","--","--","--","--",1.1 " ... HVAC (e)",41,2,3,68,1,"*",6.4 " Facility Lighting",33,"--","--","--","--","--",1.3 " Other ...

  11. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",285,4,4,378,5,2 " Facility Lighting",215,"--","--","--","--","--" " Other ... HVAC (f)",38,3,3,57,1,"*" " Facility Lighting",29,"--","--","--","--","--" " Other ...

  12. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",236,"Q",4,306,4,3 " Facility Lighting",177,"--","--","--","--","--" " Other ... HVAC (f)",29,"Q",3,45,1,"Q" " Facility Lighting",22,"--","--","--","--","--" " Other ...

  13. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,79355,1,1,392,1,"*","--",5.7 " Facility Lighting","--",61966,"--","--","--","--","--","--...707,"*",1,57,"*","*","--",7.2 " Facility Lighting","--",9494,"--","--","--","--","--","--"...

  14. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",271,4,6,403,4,4,"--",5.7 " Facility Lighting","--",211,"--","--","--","--","--","--",... *","--",7.2 " Facility Lighting","--",32,"--","--","--","--","--","--",1...

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",83480,1,1,367,1,"*" " Facility Lighting",62902,"--","--","--","--","--" " Other ... (f)",11142,"*","*",56,"*","*" " Facility Lighting",8470,"--","--","--","--","--" " Other ...

  16. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...f)","--",265,4,4,378,5,2,"--" " Facility Lighting","--",198,"--","--","--","--","--","--" ...f)","--",34,3,3,57,1,"*","--" " Facility Lighting","--",26,"--","--","--","--","--","--" " ...

  17. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",77768,1,1,367,1,"*","--" " Facility Lighting","--",58013,"--","--","--","--","--","--...,9988,"*","*",56,"*","*","--" " Facility Lighting","--",7651,"--","--","--","--","--","--" ...

  18. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","--",222,"Q",4,306,4,3,"--" " Facility Lighting","--",165,"--","--","--","--","--","--" ...","--",26,"Q",3,45,1,"Q","--" " Facility Lighting","--",20,"--","--","--","--","--","--" " ...

  19. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",69090,"*",1,297,1,"*" " Facility Lighting",51946,"--","--","--","--","--" " Other ... (f)",8543,"*",1,43,"*","*" " Facility Lighting",6524,"--","--","--","--","--" " Other ...

  20. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (e)",81980,1,1,406,1,"*",6.6 " Facility Lighting",62019,"--","--","--","--","--",1.1 " ...)",12126,"*",1,66,"*","*",6.4 " Facility Lighting",9668,"--","--","--","--","--",1.3 " ...

  1. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",262,3,5,417,5,5,"--",6.6 " Facility Lighting","--",196,"--","--","--","--","--","--",..."--",38,2,3,68,1,"*","--",6.4 " Facility Lighting","--",30,"--","--","--","--","--","--",1...

  2. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,76840,1,1,406,1,"*","--",6.6 " Facility Lighting","--",57460,"--","--","--","--","--","--...241,"*",1,66,"*","*","--",6.4 " Facility Lighting","--",8831,"--","--","--","--","--","--"...

  3. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  4. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  5. " Row: NAICS Codes;" " Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Industry","Establishments(b)","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In ...

  6. U.S. gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (long version)

    Gasoline and Diesel Fuel Update (EIA)

    18, 2015 U.S. gasoline prices decreases for 16th week in a row; breaking previous record set in 2008 (long version) The U.S. average retail price for regular gasoline fell 7.3 cents from a week ago to $2.07 a gallon on Monday. This marks a record of 16 consecutive weeks of price drops and breaks the previous record set at the end of 2008, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.38 a gallon, down 10.8

  7. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  8. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  9. Energy Management and Marketing Specialist

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Power Marketing Merchant Real Time N6500 114 Parkshore Drive...

  10. In-House Energy Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-06-13

    Establishes DOE requirements to meet or exceed laws, Executive Orders, and Federal regulations for energy efficiency, use of renewable energy, and water conservation at Federal facilities. Cancels DOE 4330.2D

  11. Federal Energy Management Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...

  12. Guide to Government Witnessing and Review of Measurement and Verification Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Witnessing r. 3/28/2014 1 Guide to Government Witnessing and Review of Measurement and Verification Activities Rev. 3/28/2014 1. Introduction This document provides guidance pertaining to government witnessing of measurement and verification (M&V) activities in federal energy savings performance contract (ESPC) projects. The U.S. Department of Energy's Federal Energy Management Program (FEMP) recommends that government staff witness the M&V activities that are carried out by

  13. Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements

    SciTech Connect (OSTI)

    Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogrio; Pereira, Douglas Henrique; Departamento de Cincias Exatas e Biotecnolgicas, Universidade Federal do Tocantins, Campus de Gurupi, 77410-530 Gurupi, Tocantins

    2013-11-14

    G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup ?1} for G3(MP2)//B3 and 1.6 kcal mol{sup ?1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between 2 kcal mol{sup ?1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between 4.2 kcal mol{sup ?1} and 4.6 kcal mol{sup ?1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.

  14. American Recovery and Reinvestment Act, Federal Energy Management Program, Technical Assistance Project 228 - US Army Installation Management Command - Pacific Region, Honolulu, Hawaii

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30

    This report documents the activities of a resource efficiency manager that served the US Army Installation Management Command - Pacific Region during the period November 23, 2009 and August 31, 2010.

  15. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Energy Consumption Survey.'" X-Input-Content-Type: applicationvnd.ms-excel X-Translator-Status: translating "Table N13.1. Electricity: Components of Net Demand,...

  16. " Row: Industry-Specific Technologies...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... ," Forehearth Designed for Minimal Energy Use (i)",184,9122,2026,8.5 ," ... ," Forehearth Designed for Minimal Energy Use (i)",121,730,175,25 ," ...

  17. Pennsylvania Strategic Energy Management Showcase 2015

    Broader source: Energy.gov [DOE]

    The Showcase includes presentations on how Better Plants and SEP work and the valuable tools and resources they offer to industrial manufacturers and facilities.

  18. Federal Energy Management Program Report Template | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon 53483.pdf More Documents & Publications Testing and Validation of Vehicle to Grid Communication Standards Risk Management Tool Attributes: Taking It from Brown to Green:...

  19. Power Contro Energy Management and Market Systems

    SciTech Connect (OSTI)

    Tom Addison; Andrew Stanbury

    2005-12-15

    More efficient use of the nation's electrical energy infrastructure will result in minimizing the cost of energy to the end user. Using real time electrical market information coupled with defined rules, market opportunities can be identified that provide economic benefit for both users and marketers of electricity. This report describes the design of one such system and the features a fully functional system would provide. This report documents several investigated methods of controlling load diversity or shifting.

  20. Implementing a Corporate Energy Management System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replication into Corporate Culture 3M's Model Rewards and Recognition Program Engages Employees and Drives Energy Savings Efforts SEP and ISO 50001 at 3M Canada's Brockville Plant...