National Library of Energy BETA

Sample records for rounding sources electric

  1. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  2. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff Round Three

    Office of Energy Efficiency and Renewable Energy (EERE)

    #EnergyFaceoff round three goes to the electric blanket, see how much more money it can save you over a space heater!

  3. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4?

    Broader source: Energy.gov [DOE]

    In the final #EnergyFaceoff round, the electric kettle takes on the microwave for the honor of heating your water.

  4. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  5. Prestressed glass, aezoelectric electrical power source

    DOE Patents [OSTI]

    Newson, Melvin M.

    1976-01-01

    An electrical power source which comprises a body of prestressed glass having a piezoelectric transducer supported on the body in direct mechanical coupling therewith.

  6. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  7. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  8. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  9. Compact portable electric power sources (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Compact portable electric power sources Citation Details In-Document Search Title: Compact portable electric power sources × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  10. Table 8.4b Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  11. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  12. Fact #753: November 12, 2012 Sources of Electricity by State | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3: November 12, 2012 Sources of Electricity by State Fact #753: November 12, 2012 Sources of Electricity by State Electric vehicles do not create emissions from a tailpipe like conventional vehicles do. The electricity used to fuel electric vehicles is generated at power plants all across the nation. Because each plant that generates electricity can use a different mix of energy sources, the emissions associated with electric vehicle charging can vary significantly depending on

  13. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  14. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory; Bruno, John D.; Kisin, Mikhail V.; Luryi, Serge; Shterengas, Leon; Suchalkin, Sergey; Tober, Richard L.

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  15. Electrode configuration for extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  16. Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: September 30, 2013 Electricity Generation by Source, 2003-2012 Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 With the increase in market penetration for electric vehicles, the upstream emissions from electricity generation become important. Those emissions are dependent upon the source of electricity generation. Although the generation of electricity varies greatly by region, the overall use of coal declined by about 24% from 2008 to 2012.

  17. 2015,"AK","Total Electric Power Industry","All Sources",18,8...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Industry","All Sources",1,1,12,12 2015,"AR","Total Electric Power Industry","Solar Thermal and Photovoltaic",1,1,12,12 2015,"AZ","Total Electric Power ...

  18. Roundness calibration standard

    DOE Patents [OSTI]

    Burrus, Brice M.

    1984-01-01

    A roundness calibration standard is provided with a first arc constituting the major portion of a circle and a second arc lying between the remainder of the circle and the chord extending between the ends of said first arc.

  19. Table 8.4a Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  20. Table 8.4c Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial ... Power Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum of ...

  1. Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Market » Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1 On June 11, 2009, DOE announced the first round of Photovoltaic (PV) Supply Chain and Cross-Cutting Technologies awardees. The funded projects target manufacturing and product cost reduction with the potential to have a near-term impact on a substantial segment of the PV industry. General Electric Global Research

  2. Ultrafast electrical control of a resonantly driven single photon source

    SciTech Connect (OSTI)

    Cao, Y.; Bennett, A. J. Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-08-04

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a filter to generate narrow bandwidth photons.

  3. International Technical Working Group Round Robin Tests

    SciTech Connect (OSTI)

    Dudder, Gordon B.; Hanlen, Richard C.; Herbillion, Georges M.

    2003-02-01

    The goal of nuclear forensics is to develop a preferred approach to support illicit trafficking investigations. This approach must be widely understood and accepted as credible. The principal objectives of the Round Robin Tests are to prioritize forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The HEU (Highly Enriched Uranium) Round Robin, and previous Plutonium Round Robin, have made tremendous contributions to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the nine participating internal laboratories. A prioritized list of techniques and methods has been developed based on this exercise. Current work is focused on the extent to which the techniques and methods can be generalized. The HEU Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability is combined with the appropriate knowledge/database, it results in a significant capability to attribute the source of the materials to a specific process or facility. A number of shortfalls were also identified in the current capabilities including procedures for non-nuclear forensics and the lack of a comprehensive network of data/knowledge bases. The results of the Round Robin will be used to develop guidelines or a ''recommended protocol'' to be made available to the interested authorities and countries to use in real cases.

  4. Piping inspection round robin

    SciTech Connect (OSTI)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  5. Metod And Apparatus For Debris Mitigation For An Electrical Discharge Source

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Silfvast, William T.; Rader, Daniel J.

    2005-05-03

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  6. Method and apparatus for debris mitigation for an electrical discharge source

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.; Silfvast, William T.

    2006-01-24

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  7. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  8. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  9. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  10. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  11. Michigan Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural Gas",11410,13141,9602,8420,12249 " Other Gases",412,282,264,203,299 "Nuclear",29066,31517,31484,21851,29625 "Renewables",3963,3687,3956,3995,4083 "Pumped Storage",-1039,-1129,-916,-857,-1023 "Other",563,303,286,344,332

  12. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  13. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  14. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  15. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  16. Oregon Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",37850,33587,33805,33034,30542 "Solar","-","-","-","-","-" "Wind",931,1247,2575,3470,3920 "Wood/Wood Waste",799,843,717,674,632 "MSW Biogenic/Landfill Gas",71,100,131,128,205 "Other

  17. Pennsylvania Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2844,2236,2549,2683,2332 "Solar","-","-","s",4,8 "Wind",361,470,729,1075,1854 "Wood/Wood Waste",683,620,658,694,675 "MSW Biogenic/Landfill Gas",1411,1441,1414,1577,1706 "Other Biomass",18,16,2,3,3

  18. Ohio Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",632,410,386,528,429 "Solar","-","-","-","-",13 "Wind",14,15,15,14,13 "Wood/Wood Waste",410,399,418,410,399 "MSW Biogenic/Landfill Gas",24,11,183,198,264 "Other Biomass",10,10,8,11,12 "Total",1091,846,1010,1161,1

  19. Source of electrical power for an electric vehicle and other purposes, and related methods

    DOE Patents [OSTI]

    LaFollette, Rodney M.

    2000-05-16

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (j) higher capacities (A.multidot.hr); and k) high specific capacitance.

  20. Source of electrical power for an electric vehicle and other purposes, and related methods

    DOE Patents [OSTI]

    LaFollette, Rodney M.

    2002-11-12

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form corrugated thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  1. Watching the Nanoparticles Go Round and Round | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watching the Nanoparticles Go Round and Round Until now, watching the detailed spinning motion of nano-objects within living cells has been impossible. Combining an existing technique, known as Differential Interference Contrast (DIC) Microscopy, with nanotechnology, researchers can now see how nanoparticles spin when they move across the interiors of living cells. Nano-sized rods made of gold are non-toxic to living cells and they scatter light differently depending on their orientation. DIC

  2. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  3. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  4. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  5. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  6. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " ","

  7. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  8. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  9. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  10. High School Academic Competition - Round Robin | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Round Robin National Science Bowl® (NSB) NSB Home About Regional Competitions National Finals Attending the National Finals 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000

  11. Middle School Academic Competition - Round Robin | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Academic Competition - Round Robin National Science Bowl® (NSB) NSB Home About Regional Competitions National Finals Attending the National Finals 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy

  12. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  13. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect (OSTI)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  14. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  15. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  16. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  17. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  18. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    SciTech Connect (OSTI)

    Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  19. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect (OSTI)

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  20. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect (OSTI)

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  1. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Energy Savers [EERE]

    Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? November 24, ...

  2. SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

    SciTech Connect (OSTI)

    Lee, Choonkyu; Min, Hyunsoo

    2013-12-15

    For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulate a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.

  3. DOE Announces Selections for SSL Core Technology Research (Round 10),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities | Department of Energy Announces Selections for SSL Core Technology Research (Round 10), Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities DOE Announces Selections for SSL Core Technology Research (Round 10), Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities The U.S. Department of Energy has announced the competitive selection of 10

  4. Community Leaders Round Table | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Leaders Round Table The Round Table consists of citizens with regional constituencies, including elected officials on the village, city, township, county and state levels; leaders of school districts, environmental boards and other agencies; and officers of labor unions and home owners associations. The Argonne National Laboratory/U.S. Department of Energy Community Leaders Round Table provides an informal and convenient forum for sharing information about Argonne plans and activities

  5. DOE's Round Robin Test Program FAQ Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions for: DOE's Round Robin Test Program May 2011 i Table of Contents Introduction ........................................................................................................................................ 1 What products will be tested? .......................................................................................................... 1 What is the testing process?

  6. Reverse electrodialysis using bipolar ion-exchange membranes as a source of electric energy

    SciTech Connect (OSTI)

    Pivovarov, N.Ya.; Greben`, V.P.; Kovarskii, N.Ya.

    1994-06-01

    It is established that, in the regime of the H{sup +} and OH{sup {minus}} ions recombination, voltage on the bipolar membranes and the efficiency of the latter, as a transformer of chemical energy into electric, increases in the series of ionogen groups contained in the bipolar region. This is due to an increase in the recombination rate constants in the bipolar contact for the H{sup +} and OH{sup {minus}} ions. As the sodium and chlorine ions penetrate the bipolar transition region, they sharply decrease the membrane potential and the voltage drop on the bipolar membranes, because the ionogen groups turn into salt form, which is catalytically inactive in the H{sup +} and OH{sup {minus}} ions recombination reaction. It is shown that the source of current, containing the MB-24 (bipolar), MF-4sk (cation-exchange), and AMV (anion-exchange) ion-exchange membranes, has a specific power of 0.11 W/dm{sup 2} (calculated in terms of one bipolar membrane) and efficiency of 29% for 0.5 M solution of hydrochloric acid and sodium hydroxide, and 0.5 A/dm{sup 2} current density.

  7. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    SciTech Connect (OSTI)

    Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

    2007-06-01

    The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

  8. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect (OSTI)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  9. Ball mounting fixture for a roundness gage

    DOE Patents [OSTI]

    Gauler, A.L.; Pasieka, D.F.

    1983-11-15

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball. 6 figs.

  10. Ball mounting fixture for a roundness gage

    DOE Patents [OSTI]

    Gauler, Allen L. (Los Alamos, NM); Pasieka, Donald F. (Los Alamos, NM)

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  16. International Round-Robin on Transport Properties of Bismuth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Round-Robin on Transport Properties of Bismuth Telluride International Round-Robin on Transport Properties of Bismuth Telluride IEA-AMT round-robin testing of n- and p-type bismuth ...

  17. First round of NISE awards posted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 13, 2011 by Francesca Verdier The first round of NERSC Initiative for Scientific Exploration (NISE) awards have been posted. 36 projects were awarded 34.77 million hours. ...

  18. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  19. DOE Announces Selections for SSL Core Technology Research (Round...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Selections for SSL Core Technology Research (Round 7), Product Development ... Eight projects were chosen in response to the Core Technology (Round 7), Product ...

  20. PDF Study of Round Turbulent Condensing Jet using GPU Hardware...

    Office of Scientific and Technical Information (OSTI)

    Conference: PDF Study of Round Turbulent Condensing Jet using GPU Hardware. Citation Details In-Document Search Title: PDF Study of Round Turbulent Condensing Jet using GPU ...

  1. Second Round of American Energy Data Challenge Winners Announced...

    Energy Savers [EERE]

    Second Round of American Energy Data Challenge Winners Announced Second Round of American Energy Data Challenge Winners Announced April 29, 2014 - 10:39am Addthis Patricia A. ...

  2. The Mesaba Energy Project: Clean Coal Power Initiative, Round...

    Office of Scientific and Technical Information (OSTI)

    The Mesaba Energy Project: Clean Coal Power Initiative, Round 2 Citation Details In-Document Search Title: The Mesaba Energy Project: Clean Coal Power Initiative, Round 2 You ...

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Small Modular Reactors and U.S. Clean Energy Sources for Electricity

    Broader source: Energy.gov [DOE]

    For the clean energy goal to be met, then, the non-carbon emitting sources must provide some 2900 TWhr. Hydropower is generally assumed to have reached a maximum of 250 TWhr, so if we assume...

  5. Venezuela slates second oil field revival round

    SciTech Connect (OSTI)

    Not Available

    1992-12-07

    This paper reports that Venezuela will accept bids under a second round next year from private foreign and domestic companies for production contracts to operate marginal active as well as inactive oil fields. The first such round came earlier this year, involving about 55 other marginal, inactive fields. It resulted in two contractors signed with domestic and foreign companies. It represented the first time since nationalization of the petroleum industry in Venezuela in 1976 that private companies were allowed to produce oil in the country. A public bid tender was expected at presstime last week.

  6. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",23050,23419,23615,23642,23642,23285,23144,23182,23218,23252,23346,22943,23429,22532,22366,21461,21292,20840,20692,20463,19878,19972,19972,19902,19354,95,72.9,72.1

  7. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11526,11559,13131,11464,11488,11456,11459,11467,10669,10434,9769,9774,9551,9615,9330,9279,9619,9688,9639,9639,9168,9033,9000,8996,8944,96,71.9,78.1

  8. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",2313,2205,1946,1891,1889,1868,1847,1820,1736,1769,1722,1752,1740,1770,1775,1725,1702,1763,1739,1737,1740,1715,1679,1551,1547,84,91.4,93.9

  9. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",21311,20668,20277,20168,20115,20127,19717,19551,19566,18860,16854,15542,15516,15284,15140,15091,15084,15164,15147,15222,15067,14990,14970,14911,14906,98.9,76.2,75.4

  10. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",28201,28165,30294,29011,28685,28021,26467,26334,26346,25248,23739,23171,24390,24347,24321,24324,30665,43711,43936,43303,42329,43140,42673,42780,42822,46.5,42.6,37.8

  11. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",10204,10238,10475,10580,9114,8454,8142,8008,8034,7955,7954,7883,7596,7479,7271,7255,6938,6851,6795,6648,6675,6637,6629,6610,6533,86.6,66.2,68.3

  12. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",161,152,152,154,160,111,111,111,37,25,174,210,78,185,2204,2454,5617,6295,6321,6723,6579,6600,6600,6764,7079,34.2,1.9,1.8

  13. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",51775,50967,51373,51298,50853,50781,47222,47224,45184,45196,42619,41996,40267,38238,37265,36537,36472,39460,36899,35857,34769,33663,33403,32204,32103,89.7,86,87.1

  14. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",28873,28875,29293,27146,26639,26558,26462,26432,26542,26538,25404,24804,25821,24099,24861,23331,23392,23148,22791,22299,21698,21163,21160,20752,20731,89.6,72.7,75.5

  15. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",1732,1821,1821,1821,1828,1859,1730,1730,1730,1705,1691,1624,1622,1622,1627,1609,1617,1597,1611,1603,1603,1603,1602,1522,1488,68.1,72.1,64.8

  16. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",3413,3394,3394,3035,3035,3029,2686,2547,2558,2558,2394,2439,2674,2521,2585,2571,2576,2576,2553,2559,2500,2300,2308,2282,2282,85.7,76.1,69

  17. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",5263,5269,5274,5280,4789,4819,4680,4630,4731,3976,4233,3007,4151,4420,17497,16817,30367,33550,33169,33143,32951,32770,33644,32644,32597,48.1,10.9,11.8

  18. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",23319,23309,23031,22763,23008,23631,23598,22012,22021,22017,21261,21016,20392,20616,20554,20358,20337,20201,20681,20712,20632,20901,20901,20702,20588,85.9,83.2,84.8

  19. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",12655,12092,12179,11863,11282,11479,11274,10669,9562,10090,9895,9039,8457,8402,8511,8438,8370,8217,8161,8237,8219,8069,8074,8093,7702,93.5,77.3,76.7

  20. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11468,11485,11593,11746,11732,11733,11246,10944,10829,10734,10705,10729,10244,10223,10089,10023,9918,9789,9697,9678,9525,9525,9518,9507,9475,99.5,93.5,80.6

  1. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",19473,19599,19681,19601,18945,18763,16759,16819,16878,16234,15860,15349,15419,15229,14781,14708,13995,15660,15686,15425,15397,15297,15297,15333,15511,88,92.6,93.3

  2. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",18120,17297,16661,15991,16471,15615,15755,14756,15176,15137,14249,12728,14233,14165,14317,16339,17014,17080,17150,17019,16433,16221,16221,15883,15839,67.8,61.6,68

  3. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",10,14,19,19,19,19,19,19,19,19,19,19,16,17,21,63,1457,1502,2388,2433,2253,2222,2222,2379,2369,0.5,0.4,0.2

  4. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",85,85,85,81,80,80,80,80,79,79,79,70,70,70,753,10955,10971,11105,10958,10958,10838,10709,10709,10723,9758,7.2,0.6,0.7

  5. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",971,969,991,956,936,930,829,827,837,983,981,981,945,993,997,2216,3386,11295,9366,9289,9219,9461,9452,9770,9909,8.1,6.8,7.4

  6. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",22260,22148,22517,22401,21639,21759,21885,21894,22734,23029,23310,23345,23575,22833,22757,22378,21948,21916,21990,21986,22396,22395,22347,22258,22298,88.3,72.6,73.1

  7. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11557,11901,11685,11650,11547,11639,11432,10719,10458,10543,10175,10129,10073,9885,9069,8988,9090,9217,9181,8925,8936,8853,8830,8854,8806,88.4,78.5,74

  8. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",20538,20562,20767,20831,20360,19600,19621,19570,19675,18970,18602,18587,18409,18221,17182,16757,16284,16215,15980,15727,15490,15429,15405,15311,15179,99.4,93.7,94.3

  9. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",3209,2568,2570,2483,2340,2232,2190,2179,2163,2186,2189,2274,2237,2235,2265,2257,4945,4943,4943,4943,4907,4871,4871,4829,4912,38.7,39.9,50.7

  10. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",7913,7911,7810,7834,7647,7675,7011,6959,7056,7007,6722,6667,6154,6112,6043,5963,5944,5894,5765,5663,5651,5645,5637,5584,5586,99.7,97.3,90.6

  11. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",8480,7915,7807,8939,8713,8741,8741,6998,6771,5611,5389,5323,5384,5388,5434,5434,5642,5642,5643,5556,5478,5235,5235,5125,4944,80.9,76.3,80.9

  12. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",1121,1121,1121,1134,1132,1118,1125,1121,1116,1121,1121,1121,1105,1128,2290,2294,2292,2715,2705,2698,2692,2692,2692,2793,2821,80.2,27.1,25.4

  13. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",6094,5912,6359,6321,6345,6344,6324,6324,6223,5692,5348,5398,5463,5250,5250,5299,5294,5183,5077,5078,4940,4967,4967,4950,4947,93.8,78,75.5

  14. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",10989,10736,10739,11022,11032,11871,11784,12056,12046,11927,11386,11902,11675,11572,15807,17679,29587,29987,30061,32149,31567,32323,30163,31177,31020,44.4,28,27.2

  15. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",26941,26706,27265,26158,25398,25376,25405,25345,24553,23822,23984,24036,23650,23478,22015,21182,21020,21054,20923,20597,19691,20041,20043,19990,20049,89.9,91.8,88.3

  16. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",5516,5292,5217,4908,4912,4852,4691,4668,4634,4622,4673,4561,4659,4677,4679,4676,4657,4733,4208,4485,4487,4476,4476,4497,4476,99.2,79.4,81.2

  17. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11134,20779,21072,20120,20179,20356,20340,20012,20147,19312,27713,27547,27304,27081,26301,27083,26768,26630,27279,27365,26347,26388,26388,26939,25365,92.3,61,35.3

  18. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",17045,16951,17148,16487,16015,16187,15913,14495,14648,13992,13460,13463,13387,12941,13438,12861,12622,12931,13092,12928,12546,12348,12348,12308,12284,94.6,76.2,70.9

  19. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11175,10973,10888,10892,10846,10683,10491,10502,9971,9839,9805,10298,10357,10354,10337,10293,10449,10537,10526,10445,10165,10132,10132,11235,11235,91.7,76.1,70.4

  20. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",39,455,455,455,455,455,455,455,455,455,4921,4921,4887,4887,13394,25251,33781,33825,34060,33699,32710,32509,32505,32423,32526,36.3,1,0.1

  1. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",20836,21039,21280,22227,22082,22100,22062,21730,21019,20787,20406,19402,19103,18246,17717,17682,17627,17431,17165,16693,16152,16131,16118,16162,14909,94.8,92.1,91.3

  2. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",3450,3480,3428,3130,2994,3042,2911,2826,2889,2759,2618,2650,2752,2712,2710,2763,2791,2795,2822,2818,2831,2543,2543,2519,2517,100,82.6,87.4

  3. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",20490,20635,20635,20474,20761,20211,20249,19770,19768,19120,19044,19011,19137,18600,17893,17253,17546,18212,17253,16144,16334,16076,16076,16121,16848,92,96.9,97.6

  4. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",29113,28705,28463,27389,26533,25140,25005,24569,24991,24033,23587,22629,38903,38940,65384,65293,65209,64858,64768,64425,63351,63214,63213,61420,61261,79.8,24.5,25.8

  5. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",337,329,329,265,260,257,259,258,259,258,261,260,261,262,778,783,775,904,901,899,902,911,911,908,882,78.9,23,51.8

  6. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",22062,20601,20626,19999,19430,19131,18824,18372,18162,18087,17547,17045,15817,15761,15608,15312,15316,15293,14764,14300,13764,14055,14020,13652,13661,79.5,80.6,83.9

  7. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",27376,27070,27037,26375,26498,26322,26243,24511,24303,24046,23828,24166,24132,24191,23841,25190,25236,25274,24277,24278,24254,24243,24242,24243,24173,91.5,86.9,88.5

  8. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",11981,10625,10590,11740,11719,11698,11698,11711,11975,10890,10164,10164,10172,10188,14475,14505,14495,14491,14492,14495,14510,14448,14448,14435,14435,95.9,71,73.6

  9. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",14377,13358,13464,13408,13098,12998,12975,11767,12911,12877,12405,12523,12335,12246,12211,12086,11862,11866,11866,11536,11264,10909,10747,10504,10545,89.8,73.4,83.8

  10. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",7233,7279,7278,7333,6931,6713,6450,6142,6137,6241,6086,6088,6083,6050,6048,6012,6018,6045,5966,5971,5864,5842,5842,5817,5800,97.1,86.8,85.5

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",523,597,168,754,1759,867,1080,1317,489,827,1121,1409,865,0,2781,1189273,3549008,3222785,7800149,2668381,9015544,8075919,8334852,9518506,9063595,0,0,0

  12. Contribution of electric energy to the process of elimination of low emission sources in Cracow

    SciTech Connect (OSTI)

    Lach, J.; Mejer, T.; Wybranski, A.

    1995-12-31

    At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact, that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.

  13. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect (OSTI)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  14. District of Columbia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",806,806,790,790,790 " Coal","-","-","-","-","-" " Petroleum",806,806,790,790,790 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  15. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric utilities",8,8,8,7,7,7,7,8,8,6,7,9,9,7,6,7,7,441,441,442,148,148,148,162,263,0.5,0.4,0.4 "Hydroelectric",0,0,0,0,0,0,0,1,1,1,0,1,1,1,2,2,2,2,2,2,2,2,1,1,1,0.2,0,0

  16. International Round-Robin Testing of Bulk Thermoelectrics

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Smith, Charlene; Harris, Fred; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2011-11-01

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  17. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  18. Maine Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,1645 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1418,1462,1478,1606,1692 "Pumped

  19. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  20. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  1. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  2. Minnesota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9714,9550,10548,10752,10519 " Coal",5444,5207,5235,4826,4789 " Petroleum",746,764,782,801,795 " Natural Gas",3524,3579,4531,5126,4936 " Other Gases","-","-","-","-","-" "Nuclear",1668,1668,1668,1668,1594 "Renewables",1259,1658,2008,2192,2588 "Pumped

  3. Nevada Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6996 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1236,1316,1355,1446,1507 "Pumped

  4. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  5. Vermont Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",309,308,322,322,324 "Solar","-","-","-","-","-" "Wind",5,5,5,5,5 "Wood/Wood Waste",76,76,76,76,76 "MSW/Landfill Gas","-","-",3,3,3 "Other

  6. Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",671,675,677,716,866 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",410,418,422,409,331 "MSW/Landfill Gas",170,254,269,278,290 "Other

  7. Washington Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",21156,21333,21203,21088,21181 "Solar","-",1,1,1,1 "Wind",821,1162,1365,2006,2296 "Wood/Wood Waste",326,296,314,369,368 "MSW/Landfill Gas",35,36,36,41,39 "Other Biomass",4,"-","-","-","-"

  8. West Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",264,264,264,264,285 "Solar","-","-","-","-","-" "Wind",66,66,330,330,431 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  9. Wisconsin Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",476,488,485,492,492 "Solar","-","-","-","-","-" "Wind",53,44,231,430,449 "Wood/Wood Waste",220,232,208,208,239 "MSW/Landfill Gas",62,71,72,72,76 "Other Biomass",1,1,8,11,12

  10. Wyoming Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  11. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  12. Kansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural Gas",3824,3932,4262,4611,4573 " Other Gases","-","-","-","-","-" "Nuclear",1166,1166,1160,1160,1160 "Renewables",366,366,815,1014,1082 "Pumped

  13. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  14. Texas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",681,673,673,689,689 "Solar","-","-","-","-",14 "Wind",2738,4490,7427,9378,9952 "Wood/Wood Waste",130,130,180,180,215 "MSW/Landfill Gas",42,72,73,79,88 "Other Biomass",16,21,29,28,28

  15. New York Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4307,4301,4299,4310,4314 "Solar","-","-","-","-","-" "Wind",370,425,707,1274,1274 "Wood/Wood Waste",37,37,87,86,86 "MSW/Landfill Gas",313,324,340,344,359 "Other

  16. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  17. North Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1954,1960,1952,1952,1956 "Solar","-","-",3,3,35 "Wind","-","-","-","-","-" "Wood/Wood Waste",324,324,318,318,481 "MSW/Landfill Gas",14,18,20,20,27 "Other

  18. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  19. North Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  20. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  1. Ohio Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",101,101,101,101,101 "Solar","-","-","-","-",13 "Wind",7,7,7,7,7 "Wood/Wood Waste",64,64,65,65,60 "MSW/Landfill Gas",4,41,41,41,48 "Other Biomass","-","-","-",1,2

  2. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  3. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  4. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  5. Oregon Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",8374,8385,8364,8430,8425 "Solar","-","-","-","-","-" "Wind",399,885,1059,1659,2004 "Wood/Wood Waste",195,215,230,241,221 "MSW/Landfill Gas",14,20,20,26,31 "Other Biomass",3,18,3,3,3

  6. Oregon Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " Coal",585,585,585,585,585 " Petroleum","-","-","-","-","-" " Natural Gas",2764,3101,3068,3041,2992 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  7. Pennsylvania Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",748,748,751,747,747 "Solar","-","-",2,2,9 "Wind",150,293,361,696,696 "Wood/Wood Waste",108,108,108,108,108 "MSW/Landfill Gas",359,379,397,419,424 "Other Biomass","-","-","-","-","-"

  8. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  9. Rhode Island Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4,4,3,3,3 "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  10. Rhode Island Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " Coal","-","-","-","-","-" " Petroleum",31,29,26,16,16 " Natural Gas",1712,1725,1728,1738,1738 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  11. South Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1345,1337,1337,1337,1340 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",220,220,220,220,255 "MSW/Landfill Gas",29,29,35,23,29 "Other

  12. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  13. South Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  14. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  15. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the direction and maintanence of the core code * The code base is platform- neutral ... Its core function is to allow users to merge multiple sources of building energy data into ...

  16. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  17. DOE ZERH Second Leading Builder Round Table Meeting Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ZERH Second Leading Builder Round Table Meeting Report On October 23rd-24th, 2014, the ZERH program held its Second Leading Production Builder Round Table Meeting in Suwanee, ...

  18. Black Friday Savings All Year 'Round | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Friday Savings All Year 'Round Black Friday Savings All Year 'Round November 21, 2011 - 3:58pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy ...

  19. Rooftop Solar Challenge Round 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs » Rooftop Solar Challenge Round 1 Rooftop Solar Challenge Round 1 -- These projects are inactive -- The first round of the Rooftop Solar Challenge supported 22 teams working to spur solar power deployment by cutting red tape and improving finance options. By streamlining and standardizing permitting, zoning, metering, and connection processes, these teams helped reduce barriers and lower costs for residential and small commercial rooftop solar systems. DOE announced a second round of

  20. Photovoltaic Supply Chain and Cross-Cutting Technologies Round 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Market » Photovoltaic Supply Chain and Cross-Cutting Technologies Round 2 Photovoltaic Supply Chain and Cross-Cutting Technologies Round 2 Four projects are working to accelerate the development of revolutionary products or processes for the photovoltaic (PV) industry through the High Impact Supply Chain R&D for PV Technologies/Systems program, which represents the second round of PV Supply Chain and Cross-Cutting Technologies funding. These projects

  1. Round Robin Testing of Commercial Hydrogen Sensor Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Round Robin Testing of Commercial Hydrogen Sensor Performance-Observations and Results Preprint W. Buttner, R. Burgess, C. Rivkin, and M. Post National Renewable Energy Laboratory ...

  2. Initial Results of IEC 62804 Draft Round Robin Testing (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Koch, S.; Weber, T.; Berghold, J.; Hoffmann, S.; Ambrosi, H.; Koehl, M.; Dietrich, S.; Ebert, M.; Mathiak, G.

    2013-05-01

    This presentation discusses the Initial round robin results of the IEC 62804 system voltage durability qualification test for crystalline silicon modules.

  3. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  4. DOE's Round Robin Test Program FAQ Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Round Robin Test Program FAQ Sheet DOE's Round Robin Test Program FAQ Sheet This document is the May 2011 version of the Frequently Asked Questions about the US Department of Energy's Round Robin Test Program. roundrobintestprogram_faq_may2011.pdf (177.44 KB) More Documents & Publications 6450-01-P, DOE 10 CFR Parts 430 and 431, Docket No. EERE-2010-BT-CE-0014 RIN 1904-AC23, Draft Submission to Federal Register, Notice of Revisions to Energy Efficiency Enforcement Regulations, Request

  5. The Mesaba Energy Project: Clean Coal Power Initiative, Round...

    Office of Scientific and Technical Information (OSTI)

    Mesaba Energy Project: Clean Coal Power Initiative, Round 2 Stone, Richard; Gray, Gordon; Evans, Robert 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS The Mesaba Energy...

  6. International Round-Robin on Transport Properties of Bismuth Telluride

    Broader source: Energy.gov [DOE]

    IEA-AMT round-robin testing of n- and p-type bismuth telluride transport properties showed significant measurement issues and highlighted need for standardization of measurements of thermoelectric material properties

  7. Carrying Semiautomatic Pistols with a Round in the Chamber

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-10-28

    Sets forth requirements for a DOE security police officer who must carry a round in the chamber of a semiautomatic pistol while on duty. Does not cancel other directives.

  8. Solar Foundational Program to Advance Cell Efficiency Round 2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 Solar Foundational Program to Advance Cell Efficiency Round 2 The SunShot Foundational Program to Advance Cell Efficiency (F-PACE) aims to increase the efficiency of photovoltaic (PV) cells achieved in the laboratory and on manufacturing lines. Launched in September 2011, the first round of the F-PACE program supported 18 research projects over a 36-month performance period. These efforts laid the technical foundation for significant increases in PV efficiency by identifying cost

  9. Next Generation Photovoltaics Round 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Next Generation Photovoltaics Round 2 Next Generation Photovoltaics Round 2 Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On Sept. 1, 2011, the U.S. Department of Energy (DOE) announced $24.5 million to fund the Next Generation Photovoltaics II projects

  10. 2015 Leading Builder Round Table Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading Builder Round Table Report 2015 Leading Builder Round Table Report The nation is on the cusp of a dramatic movement to zero energy ready homes. This includes statewide codes, large developments, and a growing amount of commitment to the DOE Zero Energy Ready Home program. Much of this progress can be attributed to a small contingent of our nation's leading builders who are demonstrating the technical, cost, and design feasibility for this level of excellence At the 2015 Leading Builder

  11. 2016 Leading Rater Round Table Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading Rater Round Table Report 2016 Leading Rater Round Table Report A dramatic movement to zero energy ready homes is just beginning. This includes statewide codes, large developments, and a growing commitment to the DOE Zero Energy Ready Home program. Continued progress will rely on an increasing number of Home Energy Rating System (HERS) raters effectively bringing the business case, technical solutions, and verification services for Zero Energy Ready Home to our nation's builders. At this

  12. Nuclear Waste Analytical Round Robins 1-6 summary report

    SciTech Connect (OSTI)

    Smith, G.L.; Marschman, S.C.

    1993-12-31

    The MCC has conducted six round robins for the waste management, research, and development community from 1987 to present. The laboratories participating regularly are Ames, Argonne, Catholic University, Lawrence Livermore, Pacific Northwest Laboratory, Savannah River, and West Valley Nuclear. Glass types analyzed in these round robins all have been simulated nuclear waste compositions expected from vitrification of high-level nuclear waste. A wide range of analytical procedures have been used by the participating laboratories including Atomic Absorption spectroscopy, inductively coupled plasma-atomic emission spectroscopy, direct current plasma-emission spectroscopy, and inductively coupled plasma-mass spectroscopy techniques. Consensus average relative error for Round Robins 1 through 6 is 5.4%, with values ranging from 9.4 to 1.1%. Trend on the average improved with each round robin. When the laboratories analyzed samples over longer periods of time, the intralaboratory variability increased. Lab-to-lab variation accounts for most of the total variability found in all the round robins. Participation in the radiochemistry portion has been minimal, and analytical results poor compared to nonradiochemistry portion. Additional radiochemical work is needed in future round robins.

  13. EA-1980: Spar Canyon-Round Valley Access Road System Improvements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho Summary...

  14. Electrical resistivity change in Al:ZnO thin films dynamically deposited by bipolar pulsed direct-current sputtering and a remote plasma source

    SciTech Connect (OSTI)

    Yang, Wonkyun; Joo, Junghoon

    2010-07-15

    The Al-doped ZnO (AZO) thin films for a transparent conducting oxide in solar cell devices were deposited by bipolar pulsed dc magnetron sputtering. This work was performed in an in-line type system and investigated AZO films in a static deposition mode and dynamic one, which is more important in the practical fields. Because of this dynamic deposition process, the zigzagged columnar structure was observed. This resulted in the decreasing electrical property, optical properties, and surface roughness. As a deposition in the dynamic mode, the resistivity increased from 1.64x10{sup -3} to 2.50x10{sup -3} {Omega} cm, as compared to that in the static mode, and the transmittance also decreased from 83.9% to 78.3%. To recover the disadvantage, a remote plasma source (RPS) was supported between the substrate and target for reducing zigzagged formation during the deposition. The deposition rate decreased by using RPS, but the electrical and optical properties of films got better than only dynamic mode. The resistivity and transmittance in the dynamic mode using RPS were 2.1x10{sup -3} {Omega} cm and 85.5%, respectively. In this study, the authors found the possibility to advance the electrical and optical properties of AZO thin films in the industry mode.

  15. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  16. BAG (Continuous Round Robin Packet Capture)

    SciTech Connect (OSTI)

    Wood, C. Philip

    2006-03-10

    Bag is a miniature pcap filter which takes pcap input (or input off the wire) using a bpf filter, if specified, and then writes the output to stdout or a file (in pcap format). It depends for some aspects of its functionality on a libpcap library which uses a shared memory packet capture ring bugger. There are two build in modules: chcksum and session. the build in chcksum modules is used to anonymize the ip addresses and repair any checksums in the stream. % bag -r /tmp/*.pcap -Cchucksum, 128.1 65: 10.10 The session module generates sessions which are defined as a series of packets that have two things in common. the first is a unique five-tuple composed oi an IP protocol, IP source address, IP source port, IP destination address, and IP destination port. The second is that if the originating packet is associated with a bi-directional service such as ftpltcp, characteristics and data will be kept for both flows involved with the service. The only protocols evaluated beyond the IP header are ICMP, TCP and UDP. A session can last for as long as bag is running. However, under normal conditions, sessions are generated every time they appear to have closed down. There is a man page included with the distribution which goes into more detail.

  17. BAG (Continuous Round Robin Packet Capture)

    Energy Science and Technology Software Center (OSTI)

    2006-03-10

    Bag is a miniature pcap filter which takes pcap input (or input off the wire) using a bpf filter, if specified, and then writes the output to stdout or a file (in pcap format). It depends for some aspects of its functionality on a libpcap library which uses a shared memory packet capture ring bugger. There are two build in modules: chcksum and session. the build in chcksum modules is used to anonymize the ipmore » addresses and repair any checksums in the stream. % bag -r /tmp/*.pcap -Cchucksum, 128.1 65: 10.10 The session module generates sessions which are defined as a series of packets that have two things in common. the first is a unique five-tuple composed oi an IP protocol, IP source address, IP source port, IP destination address, and IP destination port. The second is that if the originating packet is associated with a bi-directional service such as ftpltcp, characteristics and data will be kept for both flows involved with the service. The only protocols evaluated beyond the IP header are ICMP, TCP and UDP. A session can last for as long as bag is running. However, under normal conditions, sessions are generated every time they appear to have closed down. There is a man page included with the distribution which goes into more detail.« less

  18. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    SciTech Connect (OSTI)

    Mays, Gary T; Belles, Randy; Blevins, Brandon R; Hadley, Stanton W; Harrison, Thomas J; Jochem, Warren C; Neish, Bradley S; Omitaomu, Olufemi A; Rose, Amy N

    2012-05-01

    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the

  19. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  20. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  1. START Program for Renewable Energy Project Development Assistance – Round Three Application

    Broader source: Energy.gov [DOE]

    Download the application for the START Program for Renewable Energy Project Development Assistance–Round Three.

  2. Round Robin Testing of Commercial Hydrogen Sensor Performance--Observations and Results: Preprint

    SciTech Connect (OSTI)

    Buttner, W.; Burgess, R.; Rivkin, C.; Post, M.; Boon-Bret, L.; Black, G.; Harskamp, F.; Moretto, P.

    2010-10-01

    This paper presented observations and results from round robin testing of commercial hydrogen sensor performance.

  3. Parylene coated microspheres: Operational parameters and round robin results

    SciTech Connect (OSTI)

    Williams, J.M.; Foreman, L.R.

    1987-01-01

    Achieving less than 0.1 micrometer defect and close thickness tolerances with parylene coatings has proven a challenge. Los Alamos has investigated how some parameters of coater design and operation affect coating quality. Numerous coater configurations (home-built and commercial) are being used at our Laboratory and elsewhere. In an effort to evaluate the ability of these various types of units to meet desired tolerances, we ran a round robin evaluation involving six coating operations (US and UK). Each participant received an identical and precharacterized set of targets. Results of both the round robin and coater design/operation evaluation are presented.

  4. CDFI Fund 2015 Round of New Markets Tax Credit Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of the Treasury’s Community Development Financial Institutions Fund (CDFI Fund) has opened the calendar year (CY) 2015 Notice of Allocation Availability (NOAA) funding round for the New Markets Tax Credit Program (NMTC Program). The NOAA makes up to $5 billion in tax credit allocation authority available for the CY 2015 round, pending Congressional authorization. Eligible parties must be certified as Community Development Entities (CDEs) by the CDFI Fund. The NMTC Program aims to break this cycle of disinvestment by attracting the private investment necessary to reinvigorate struggling local economies.

  5. Green Functions for the Radial Electric Component of the Monopole...

    Office of Scientific and Technical Information (OSTI)

    Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber Citation Details In-Document Search Title: Green Functions for the Radial...

  6. Pioneer round of translation occurs during serum starvation

    SciTech Connect (OSTI)

    Oh, Nara; Kim, Kyoung Mi; Cho, Hana; Choe, Junho; Kim, Yoon Ki

    2007-10-12

    The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons.

  7. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  8. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? Who

  9. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy

  10. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...