Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Anti-Clockwise Rotation of the Wind Hodograph. Part I: Theoretical Study  

Science Conference Proceedings (OSTI)

In a first theoretical study, the reasons for anti-clockwise rotation (clockwise rotation in the Southern Hemisphere) of the wind hodograph in the boundary layer are investigated. As observations of wind hodographs show two different kinds of ...

M. Kusuda; P. Alpert

1983-02-01T23:59:59.000Z

2

Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part II: Analysis  

Science Conference Proceedings (OSTI)

The physics of frictional control for channelized rotating gravity currents are analyzed using an extensive dataset including hydrographic, current, and microstructure measurements from the western Baltic Sea. Rotational effects in these gravity ...

Lars Umlauf; Lars Arneborg

2009-10-01T23:59:59.000Z

3

The Structure, Energetics and Propagation of Rotating Convective Storms. Part II: Helicity and Storm Stabilization  

Science Conference Proceedings (OSTI)

Rotating “supercell” thunderstorms are shown to be characterized by high helicity, the vector inner product of velocity and vorticity, which is obtained both from the mean flow in which they are embedded and from buoyancy enrichment. Some unique ...

Douglas K. Lilly

1986-01-01T23:59:59.000Z

4

An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells  

Science Conference Proceedings (OSTI)

Following the approach developed for rods in Part 1 of this paper (Pimenta et al. in Comput. Mech. 42:715---732, 2008), this work presents a fully conserving algorithm for the integration of the equations of motion in nonlinear shell dynamics. We begin ... Keywords: Energy conservation, Momentum conservation, Nonlinear dynamics, Shells, Time integration

E. M. Campello; P. M. Pimenta; P. Wriggers

2011-08-01T23:59:59.000Z

5

Cooling system for rotating machine  

Science Conference Proceedings (OSTI)

An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

Gerstler, William Dwight (Niskayuna, NY); El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Alexander, James Pellegrino (Ballston Lake, NY); Quirion, Owen Scott (Clifton Park, NY); Palafox, Pepe (Schenectady, NY); Shen, Xiaochun (Schenectady, NY); Salasoo, Lembit (Schenectady, NY)

2011-08-09T23:59:59.000Z

6

Rotatable seal assembly. [Patent application; rotating targets  

DOE Patents (OSTI)

An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

Logan, C.M.; Garibaldi, J.L.

1980-11-12T23:59:59.000Z

7

Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm  

Science Conference Proceedings (OSTI)

A retrieval algorithm for processing multifilter rotating shadowband radiometer (MFRSR) data from clear and partially cloudy days is described and validated. This method, while complementary to the Langley approach, uses consistency between the ...

Mikhail D. Alexandrov; Andrew A. Lacis; Barbara E. Carlson; Brian Cairns

2002-02-01T23:59:59.000Z

8

Rotatable seal assembly  

DOE Patents (OSTI)

An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

Logan, Clinton M. (Pleasanton, CA); Garibaldi, Jack L. (Livermore, CA)

1982-01-01T23:59:59.000Z

9

Stator for a rotating electrical machine having multiple control windings  

DOE Patents (OSTI)

A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

Shah, Manoj R. (Latham, NY); Lewandowski, Chad R. (Amsterdam, NY)

2001-07-17T23:59:59.000Z

10

Stator for Rotating Electrical Machine Having Multiple Controlwindings  

DOE Patents (OSTI)

A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the biasfield.

Shah, Manoj R.; Lewandowski, Chad R.

1999-05-05T23:59:59.000Z

11

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network (OSTI)

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

12

Nuclear rotations  

Science Conference Proceedings (OSTI)

An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics modern physics

G. F. Bertsch; R. V. F. Janssens

1997-01-01T23:59:59.000Z

13

SEAL FOR ROTATING SHAFT  

DOE Patents (OSTI)

A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

Coffman, R.T.

1957-12-10T23:59:59.000Z

14

Film cooling effectiveness measurements on rotating and non-rotating turbine components  

E-Print Network (OSTI)

Detailed film cooling effectiveness distributions were measured on the stationary blade tip and on the leading edge region of a rotating blade using a Pressure Sensitive Paint technique. Air and nitrogen gas were used as the film cooling gases and the oxygen concentration distribution for each case was measured. The film cooling effectiveness information was obtained from the difference of the oxygen concentration between air and nitrogen gas cases by applying the mass transfer analogy. In the case of the stationary blade tip, plane tip and squealer tip blades were used while the film cooling holes were located (a) along the camber line on the tip or (b) along the span of the pressure side. The average blowing ratio of the cooling gas was controlled to be 0.5, 1.0, and 2.0. Tests were conducted in a five-bladed linear cascade with a blow down facility. The free stream Reynolds number, based on the axial chord length and the exit velocity, was 1,100,000 and the inlet and the exit Mach number were 0.25 and 0.59, respectively. Turbulence intensity level at the cascade inlet was 9.7%. All measurements were made at three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span. Results show that the locations of the film cooling holes and the presence of squealer have significant effects on surface static pressure and film-cooling effectiveness. Same technique was applied to the rotating turbine blade leading edge region. Tests were conducted on the first stage rotor of a 3-stage axial turbine. The Reynolds number based on the axial chord length and the exit velocity was 200,000 and the total to exit pressure ratio was 1.12 for the first rotor. The effects of the rotational speed and the blowing ratio were studied. The rotational speed was controlled to be 2400, 2550, and 3000 rpm and the blowing ratio was 0.5, 1.0, and 2.0. Two different film cooling hole geometries were used; 2-row and 3-row film cooling holes. Results show that the rotational speed changes the directions of the coolant flows. Blowing ratio also changes the distributions of the coolant flows. The results of this study will be helpful in understanding the physical phenomena regarding the film injection and designing more efficient turbine blades.

Ahn, Jaeyong

2005-12-01T23:59:59.000Z

15

ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES  

SciTech Connect

In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

Groot, Paul J., E-mail: pgroot@astro.ru.nl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

2012-01-20T23:59:59.000Z

16

Rotating Aperture System  

DOE Patents (OSTI)

A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

2005-01-18T23:59:59.000Z

17

Rotatable stem and lock  

DOE Patents (OSTI)

A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

Deveney, J.E.; Sanderson, S.N.

1981-10-27T23:59:59.000Z

18

Rotating Hairy Black Holes  

E-Print Network (OSTI)

We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

B. Kleihaus; J. Kunz

2000-12-20T23:59:59.000Z

19

Wave-driven Rotation in Supersonically Rotating Mirrors  

SciTech Connect

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

20

Stochastic Faraday Rotation  

E-Print Network (OSTI)

Different ray paths through a turbulent plasma can produce stochastic Faraday rotation leading to depolarization of any linearly polarized component. Simple theory predicts that the average values of the Stokes parameters decay according to $$, $\\propto\\exp(-\\delta_l)$, with $\\delta_l\\propto\\lambda^4$. It is pointed out that a definitive test for such depolarization is provided by the fact that $$ remains constant while $^2+^2$ decreases $\\propto\\exp(-2\\delta_l)$. The averages to which this effect, called polarization covariance, should apply are discussed; it should apply to spatial averages over a polarization map or temporal averages over a data set, but not to beamwidth and bandwidth averages that are intrinsic to the observation process. Observations of depolarization would provide statistical information on fluctuations in the turbulent plasma along the line of sight, specifically, the variance of the rotation measure. Other effects that can also cause depolarization are discussed.

D. B. Melrose; J. -P. Macquart

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rotating plug bearing and seal  

DOE Patents (OSTI)

A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

Wade, Elman E. (Ruffs Dale, PA)

1977-01-01T23:59:59.000Z

22

COMMISSIONING SPIN ROTATORS IN RHIC.  

Science Conference Proceedings (OSTI)

During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX.

Mackay, W W; Bai, M; Courant, E D; Fischer, W; Huang, H; Luccio, A; Montag, C; Pilat, F; Ptitsyn, V; Roser, T; Satogata, T; Trbojevic, D

2003-05-12T23:59:59.000Z

23

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

24

A compact rotating dilution refrigerator  

E-Print Network (OSTI)

We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 0.001 rad/s up to angular velocities in excess of 2.5 rad/s. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

Fear, M J; Chorlton, D A; Zmeev, D E; Gillott, S J; Sellers, M C; Richardson, P P; Agrawal, H; Batey, G; Golov, A I

2013-01-01T23:59:59.000Z

25

Part Functions  

Science Conference Proceedings (OSTI)

Table 1   Functions served by parts...Mechanical power Shafts, connecting rods, gears Electricity Wires, lightbulb elements, resistors Provide a barrier (for example: reflect, cover, enclose,

26

Rotation With Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rotation With Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialINITIALENTRYO...

27

Centrifugal torque in rotating matter  

E-Print Network (OSTI)

Thermal molecular motion in combination with rotation and differences in centrifugal forces causes a torque in matter. The effect is derived for gas but does also exist in liquid and solid matter.

Jonsson, David

2010-01-01T23:59:59.000Z

28

PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION  

SciTech Connect

We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)] [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2013-03-01T23:59:59.000Z

29

Spin rotation of polarized beams in high energy storage ring  

E-Print Network (OSTI)

The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

V. G. Baryshevsky

2006-03-23T23:59:59.000Z

30

PART I  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-AC02-09CH11466 DE-AC02-09CH11466 Section D i PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS PAGE NO. D.1 - PACKAGING D-1 D.2 - MARKING D-1 Contract No. DE-AC02-09CH11466 Section D D-1 PART I SECTION D - PACKAGING AND MARKING D.1 - PACKAGING Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to ensure acceptance by common carrier and safe transportation at the most economical rates. D.2 - MARKING Each package, report or other deliverable shall be accompanied by a letter or other document which: (a) Identifies the contract number under which the item is being delivered. (b) Identifies the contract requirement or other instruction which requires the

31

Rapidly Intensifying Hurricane Guillermo (1997). Part II: Resilience in Shear  

Science Conference Proceedings (OSTI)

This paper examines the structure and evolution of a mature tropical cyclone in vertical wind shear (VWS) using airborne Doppler radar observations of Hurricane Guillermo (1997). In Part I, the modulation of eyewall convection via the rotation of ...

Paul D. Reasor; Matthew D. Eastin

2012-02-01T23:59:59.000Z

32

Comparing the NEATM with a Rotating, Cratered Thermophysical Asteroid Model  

E-Print Network (OSTI)

A cratered asteroid acts somewhat like a retroflector, sending light and infrared radiation back toward the Sun, while thermal inertia in a rotating asteroid causes the infrared radiation to peak over the ``afternoon'' part. In this paper a rotating, cratered asteroid model is described, and used to generate infrared fluxes which are then interpreted using the Near Earth Asteroid Thermal Model (NEATM). Even though the rotating, cratered model depends on three parameters not available to the NEATM (the dimensionless thermal inertia parameter and pole orientation), the NEATM gives diameter estimates that are accurate to 10 percent RMS for phase angles less than 60 degrees. For larger phase angles, such as back-lit asteroids, the infrared flux depends more strongly on these unknown parameters, so the diameter errors are larger. These results are still true for the non-spherical shapes typical of small Near Earth objects.

Edward L. Wright

2007-03-05T23:59:59.000Z

33

Short Rotation Crops in the United States  

DOE Green Energy (OSTI)

responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy?s Bioenergy Feedstock Development Program are described in an appendix to the paper.

Wright, L.L.

1998-06-04T23:59:59.000Z

34

Holder for rotating glass body  

DOE Patents (OSTI)

A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

Kolleck, Floyd W. (Clarendon Hills, IL)

1978-04-04T23:59:59.000Z

35

Rotating control head applications increasing  

Science Conference Proceedings (OSTI)

Rotating control head technology has become an important tool for lowering drilling costs and increasing well productivity, especially in many hard-rock areas and mature oil and gas fields. Lower drilling costs are achieved primarily by the faster penetration rates, reduced nondrilling time, and reduced mud volume requirements associated with underbalanced drilling. Greater well productivity can sometimes be obtained because of reduced formation damage for mud. Recent advances in rotating head technology have increased the range of well conditions to which this technology can be applied. Even though the use of rotating control heads is growing rapidly, this topic has been largely neglected in most well control training programs. Many engineers are not yet familiar with this important emerging technology and some of the modern concepts and practices used. The paper discusses the high-pressure rotating head and its application to gas or air drilling, flow drilling, geothermal drilling, overbalanced drilling and workover operations. The paper also discusses operating guidelines and rig crew training.

Bourgoyne, A.T. Jr. [Louisiana State Univ., Baton Rouge, LA (United States)

1995-10-09T23:59:59.000Z

36

Hydrogen rotation-vibration oscillator  

DOE Patents (OSTI)

A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

Rhodes, C.K.

1974-01-29T23:59:59.000Z

37

Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring - new method of measuring of spin-dependent part of zero-angle coherent scattering amplitude  

E-Print Network (OSTI)

New experiment arrangement to study spin rotation and oscillation of particles of gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies. Life-time of particle beam in storage ring can reach several hours and even days. Life-time of particle in gas target (gas trap) is long too. Particles circulate in storage ring with frequency $\

Vladimir Baryshevsky

2002-01-22T23:59:59.000Z

38

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

39

Nuclear Maintenance Applications Center: Oil Lubrication Guide for Rotating Equipment  

Science Conference Proceedings (OSTI)

At a nuclear station, several types of safety-related and non-safety-related equipment rely on lubricating oil systems to provide lubrication to rotating components. These lubricating systems consist of gears, pumps, valves, heat exchangers, and other parts. In the event of a lubrication system failure, the supported equipment can be shut down, which in turn can lead to unanticipated entries into limiting conditions of operation, system degradation, or a unit trip. An understanding of how oil is affected...

2009-12-09T23:59:59.000Z

40

On computing givens rotations reliably and efficiently  

Science Conference Proceedings (OSTI)

We consider the efficient and accurate computation of Givens rotations. When f and g are positive real numbers, this simply amounts to computing the values of c = f/?f2 + g2, s ... Keywords: BLAS, Givens rotation, linear algebra

David Bindel; James Demmel; William Kahan; Osni Marques

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rotation generation and transport in tokamak plasmas  

E-Print Network (OSTI)

Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

Podpaly, Yuri Anatoly

2012-01-01T23:59:59.000Z

42

Accelerating and rotating black holes  

E-Print Network (OSTI)

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

43

Nonequilibrium stationary state for a damped rotator  

E-Print Network (OSTI)

Perturbative construction of the nonequilibrium steady state of a rotator under a stochastic forcing while subject to torque and friction

Giovanni Gallavotti; Alessandra Iacobucci; Stefano Olla

2013-10-20T23:59:59.000Z

44

Gravity controlled anti-reverse rotation device  

DOE Patents (OSTI)

A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

1983-01-01T23:59:59.000Z

45

Planetary waves in rotating ionosphere  

Science Conference Proceedings (OSTI)

The problem of propagation of ultralong planetary waves in the Earth's upper atmosphere is considered. A new exact solution to the MHD equations for the ionosphere is obtained in spherical coordinates with allowance for the geomagnetic field and Earth's rotation. A general dispersion relation is derived for planetary waves in the ionospheric E and F regions, and the characteristic features of their propagation in a weakly ionized ionospheric plasma are discussed.

Khantadze, A. G.; Jandieri, V. G. [Tbilisi State University (Georgia); Jandieri, G. V. [Georgian Technical University (Georgia)

2008-06-15T23:59:59.000Z

46

Project CARDS technical information record: parametric and sensitivity analysis and determination of response spectra for horizontal, vertical and rotational motion of a radioactive material shipping package relative to the motion of its support (railcar). Part 2. Continuation of CARDS-TIR-80-3 (Preliminary)  

Science Conference Proceedings (OSTI)

The generation of the response spectra was coupled to a parametric and sensitivity analysis. Support accelerations and tiedown forces are presented as functions of time. The parametric analysis found that the horizontal acceleration of the support and the MAR (max absolute relative) horizontal acceleration are relatively insensitive, while the corresponding vertical accelerations are highly sensitive to changes in 4 of the 13 parameters, and the corresponding rotational accelerations are highly sensitive to changes in 8 of the 13 parameters. The tiedown forces are moderately sensitive to changes in 3 of the parameters. (DLC)

Fields, S.R.

1980-11-26T23:59:59.000Z

47

Spin rotation and oscillation of high energy particles in storage ring  

E-Print Network (OSTI)

Phenomena of rotation and oscillations of particle spin are discussed for particles rotating in storage ring. The fact that these effects are described by spin-dependent part of zero-angle scattering amplitude allows to use them for the measurement of this amplitude at different energies of colliding particles. It is shown that effect magnitudes are large and they can be observed at the existing accelerators.

Vladimir G. Baryshevsky

2001-09-12T23:59:59.000Z

48

Trirotron: triode rotating beam radio frequency amplifier  

DOE Patents (OSTI)

High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

Lebacqz, Jean V. (Stanford, CA)

1980-01-01T23:59:59.000Z

49

Short rotation Wood Crops Program  

DOE Green Energy (OSTI)

This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

Wright, L.L.; Ehrenshaft, A.R.

1990-08-01T23:59:59.000Z

50

In-line rotating capacitive torque sensor  

DOE Patents (OSTI)

Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

Kronberg, J.W.

1991-09-10T23:59:59.000Z

51

Contained Modes In Mirrors With Sheared Rotation  

SciTech Connect

In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

Abraham J. Fetterman and Nathaniel J. Fisch

2010-10-08T23:59:59.000Z

52

Molecular heat pump for rotational states  

E-Print Network (OSTI)

In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems.

C. Lazarou; M. Keller; B. M. Garraway

2010-01-25T23:59:59.000Z

53

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...

54

Impurity ions in a rotating tokamak  

SciTech Connect

It is pointed out that the impurity ions in rotating toroidal plasmas tend to behave like trapped particles. That may explain the observed fact.

Yoshikawa, S.

1980-10-01T23:59:59.000Z

55

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

the large-scale pattern. Research reported by Su et al. shows how to address such esoteric questions, while specifically suggesting that hidden rotational symmetries may play...

56

SPARSE FARADAY ROTATION MEASURE SYNTHESIS  

Science Conference Proceedings (OSTI)

Faraday rotation measure synthesis is a method for analyzing multichannel polarized radio emissions, and it has emerged as an important tool in the study of Galactic and extragalactic magnetic fields. The method requires the recovery of the Faraday dispersion function from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we discuss a recovery method that assumes a sparse approximation of the Faraday dispersion function in an overcomplete dictionary of functions. We discuss the general case when both thin and thick components are included in the model, and we present the implementation of a greedy deconvolution algorithm. We illustrate the method with several numerical simulations that emphasize the effect of the covered range and sampling resolution in the Faraday depth space, and the effect of noise on the observed data.

Andrecut, M.; Stil, J. M.; Taylor, A. R. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

2012-02-15T23:59:59.000Z

57

Stellar Models with Microscopic Diffusion and Rotational Mixing I: Application to the Sun  

E-Print Network (OSTI)

The Yale stellar evolution code has been modified to include the combined effects of diffusion and rotational mixing on $^1$H, $^4$He and the trace elements $^3$He, $^6$Li, $^7$Li, and $^9$Be. The interaction between rotational mixing and diffusion is studied by calculating a number of calibrated solar models. The rotational mixing inhibits the diffusion in the outer parts of the models, leading to a decrease in the envelope diffusion by 25 -- 50\\%. Conversely, diffusion leads to gradients in mean molecular weight which can inhibit the rotational mixing. The degree to which gradients in mean molecular weight inhibits the rotational mixing is somewhat uncertain. A comparison to the observed solar oblateness suggests that gradients in the mean molecular weight play a smaller role in inhibiting the rotational mixing previously believed. This is reinforced by the fact that the model with the standard value for the inhibiting effect of mean molecular weight on the rotational mixing depletes no Li on the main sequence. This is in clear contrast to the observations. A reduction in the inhibiting effect of mean molecular weight gradients by a factor of ten leads to noticeable main sequence Li depletion.

Brian Chaboyer; P. Demarque; M. H. Pinsonneault

1994-08-17T23:59:59.000Z

58

Torques in atmospheres of rotating planets  

E-Print Network (OSTI)

Molecular motion in combination with planetary rotation and gravity causes a torque in gas when seen from a coordinate system fixed in the planet. The torque is caused by the difference in centrifugal forces when gas molecules are moving along or opposite to the planets rotation.

Jonsson, David

2010-01-01T23:59:59.000Z

59

Novel approach for rotation invariant texture recognition  

Science Conference Proceedings (OSTI)

In machine vision, rotation invariant feature extraction is one of the most challenging texture analysis tasks, because pattern orientation itself contributes substantially to extracted features. As a consequence, the prime objective of such techniques ... Keywords: Hu moments, moment invariants, moment masks, probabilistic neural network, rotation invariance, texture segmentation

Naeem Qaiser; Mutawarra Hussain; Nadeem Qaiser; Muhammad Iqbal

2007-07-01T23:59:59.000Z

60

EDDY CURRENT EXAMINATION OF STEAM GENERATOR TUBES FROM PHWR POWER PLANTS USING ROTATING MAGNETIC FIELD TRANSDUCER  

E-Print Network (OSTI)

Abstract. This paper present the results obtained at examination of steam generator tubes samples made from Incoloy 800, using eddy current transducer with rotating magnetic field. The emission part creates a magnetic rotating field which induces eddy currents in the walls of tubes, the reception being made with an array of sensors. The method presents the advantages of a complete inspection of tube’s surface at one passing. To increase the precision of discontinuity localization, a super resolution algorithm is used. The results are comparables with those obtained at the inspection with rotating probe, being obtained a good correlation, the speed of control being superior in the case of transducer with rotating magnetic field. 1.

Raimond Grimberg; Lalita Udpa; Alina Bruma; Rozina Steigmann; Adriana Savin; Satish S. Udpa

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Testimonials: Presidents Management Council Interagency Rotational Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testimonials: Presidents Management Council Interagency Rotational Testimonials: Presidents Management Council Interagency Rotational Program Testimonials: Presidents Management Council Interagency Rotational Program Diane Turchetta - Department of Transportation My rotation in EERE's Clean Cities Program has helped me to better understand how the program works and the great strides it is making, though it's coalitions, to reduce petroleum use across the country. The rotation has also provided me with an opportunity to learn more about the other efforts and initiatives underway in the Vehicle Technology Program including wireless charging for electric vehicles, research on materials technologies, and technology improvements for both light-duty and heavy-duty vehicles. I plan to use the information and knowledge I have

62

In-line rotating capacitive torque sensor  

DOE Patents (OSTI)

A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotting portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 8 figs.

Kronberg, J.W.

1990-01-08T23:59:59.000Z

63

The role of short-rotation woody crops in sustainable development  

DOE Green Energy (OSTI)

One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

1996-12-31T23:59:59.000Z

64

Short Rotation Crops in the United States  

SciTech Connect

The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy?s Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy?s Bioenergy Feedstock Development Program are described in an appendix to the paper.

Wright, L.L.

1998-06-04T23:59:59.000Z

65

Tracking Rotational Diffusion of Colloidal Clusters  

E-Print Network (OSTI)

We describe a novel method of tracking the rotational motion of clusters of colloidal particles. Our method utilizes rigid body transfor- mations to determine the rotations of a cluster and extends conventional proven particle tracking techniques in a simple way, thus facilitating the study of rotational dynamics in systems containing or composed of colloidal clusters. We test our method by measuring dynamical properties of simulated Brownian clusters under conditions relevant to microscopy experiments. We then use the technique to track and describe the motions of a real colloidal cluster imaged with confocal microscopy.

Gary L. Hunter; Kazem V. Edmond; Mark T. Elsesser; Eric R. Weeks

2011-07-13T23:59:59.000Z

66

Rotation invarient simultaneous clustering and dictionary learning  

E-Print Network (OSTI)

In this paper, we present an approach that simultaneously clusters database members and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain, while clustering in the image domain. The main feature of the proposed approach is that it provides rotation invariant clustering which is useful in Content Based Image Retrieval (CBIR). We demonstrate through experimental results that the proposed rotation invariant clustering provides better retrieval performance than the standard Gabor-based method that has similar objectives. Index Terms — Radon transform, rotation invariance, clustering, dictionary learning, CBIR.

Yi-chen Chen; Challa S. Sastry; Vishal M. Patel; P. Jonathon Phillips

2012-01-01T23:59:59.000Z

67

Alpha Channeling in a Rotating Plasma  

E-Print Network (OSTI)

The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.

Fetterman, Abraham J

2008-01-01T23:59:59.000Z

68

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

69

Baroclinic Instability of a Rotating Hadley Cell  

Science Conference Proceedings (OSTI)

The stability of a thin fluid layer between two rotating plates which are subjected to a horizontal temperature gradient is studied. First, the solution for the stationary basic state is obtained in a closed form. This solution identifies Ekman ...

Basil N. Antar; William W. Fowlis

1981-10-01T23:59:59.000Z

70

On the Use of Rotating Hydraulic Models  

Science Conference Proceedings (OSTI)

Two problems regarding the use of rotating hydraulic channel flow models are addressed. The first concerns the difficulties encountered when trying to identify the “potential” depth for a flow of uniform (but nonzero) potential vorticity in a ...

K. M. Borenäs; L. J. Pratt

1994-01-01T23:59:59.000Z

71

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

72

Turbulent Channel Flows on a Rotating Earth  

Science Conference Proceedings (OSTI)

This paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes ...

Robert A. Handler; Richard P. Mied; Gloria J. Lindemann; Thomas E. Evans

2009-04-01T23:59:59.000Z

73

A Numerical Study of a Rotating Downburst  

Science Conference Proceedings (OSTI)

Previous studies have revealed that convective storms often contain intense small-scale downdrafts, termed “downbursts,” that are a significant hazard to aviation. These downbursts sometimes possess strong rotation about their vertical axis in ...

David B. Parsons; Morris L. Weisman

1993-08-01T23:59:59.000Z

74

Flow Properties in Rotating, Stratified Hydraulics  

Science Conference Proceedings (OSTI)

This paper discusses three distinct features of rotating, stratified hydraulics, using a reduced-gravity configuration. First, a new upstream condition is derived corresponding to a wide, almost motionless basin, and this is applied to flow ...

Peter D. Killworth

1992-09-01T23:59:59.000Z

75

Spin Rotation of Formalism for Spin Tracking  

SciTech Connect

The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

Luccio,A.

2008-02-01T23:59:59.000Z

76

Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

Paulson, Leland E. (Morgantown, WV)

1990-01-01T23:59:59.000Z

77

Paleomagnetic and structural evidence for middle Tertiary counterclockwise block rotation in the Dixie Valley region, west-central Nevada  

Science Conference Proceedings (OSTI)

Paleomagnetic data from late Oligocene to early Miocene ash-flow tuffs at four localities in the northern Dixie Valley region, west-central Nevada, indicate that parts of the crust have rotated counterclockwise by at least 25/sup 0/ and perhaps significantly more in late Cenozoic time. Field relations in White Rock Canyon, Stillwater Range, suggest that rotation (1) was accommodated by right-lateral slip on northwest-trending faults, (2) spanned ash-flow tuff emplacement, and (3) probably ceased before eruption of overlying middle Miocene basalts. Accurate estimates of Cenozoic extension, as well as evaluation of earlier Mesozoic structures, must include the strain partitioned into rotation in the area.

Hudson, M.R.; Geissman, J.W.

1987-07-01T23:59:59.000Z

78

MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW  

SciTech Connect

Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

Law Jr., C.G.; Pierini, P.; Newman, J.

1980-07-01T23:59:59.000Z

79

Position, rotation, and intensity invariant recognizing method  

DOE Patents (OSTI)

A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

Ochoa, E.; Schils, G.F.; Sweeney, D.W.

1987-09-15T23:59:59.000Z

80

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons having their angular momentum aligned with the rotational axis. Discrete phonon energy and parity conservation generate oscillations of the energy difference between the lowest rotational bands with positive and negative parity. Anharmonicities tend to synchronize the the rotation of the condensate and the quadrupole shape of the nucleus forming a rotating heart shape.

S. Frauendorf

2007-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Magnetic Domain Patterns Print Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

82

Position, rotation, and intensity invariant recognizing method  

SciTech Connect

A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

1989-01-01T23:59:59.000Z

83

Rotating preventers; Technology for better well control  

Science Conference Proceedings (OSTI)

This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs.

Tangedahl, M.J.; Stone, C.R. (Signa Engineering Corp. (United States))

1992-10-01T23:59:59.000Z

84

Rotating Black Holes with Monopole Hair  

E-Print Network (OSTI)

We study rotating black holes in Einstein-Yang-Mills-Higgs theory. These black holes emerge from static black holes with monopole hair when a finite horizon angular velocity is imposed. At critical values of the horizon angular velocity and the horizon radius, they bifurcate with embedded Kerr-Newman black holes. The non-Abelian black holes possess an electric dipole moment, but no electric charge is induced by the rotation. We deduce that gravitating regular monopoles possess a gyroelectric ratio g_el=2.

B. Kleihaus; J. Kunz; F. Navarro-Lerida

2004-06-23T23:59:59.000Z

85

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Blinne, Alexander

2013-01-01T23:59:59.000Z

86

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Alexander Blinne; Holger Gies

2013-11-07T23:59:59.000Z

87

Rapidly Rotating Suns and Active Nests of Convection  

E-Print Network (OSTI)

In the solar convection zone, rotation couples with intensely turbulent convection to drive a strong differential rotation and achieve complex magnetic dynamo action. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the global-scale patterns of convection in such stars and the flows of differential rotation and meridional circulation which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of localized convection emerges. Convection near the equator in these systems is dominated by one or two nests in longitude of locally enhanced convection, with quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation Delta Omega grows with more rapid rotation while the relative shear Delta Omega/Omega_0 decreases. In contrast, at more rapid rotation the meridional circulations decrease in energy and peak velocities and break into multiple cells of circulation in both radius and latitude.

Benjamin P. Brown; Matthew K. Browning; Allan Sacha Brun; Mark S. Miesch; Juri Toomre

2008-08-12T23:59:59.000Z

88

THE ROTATIONAL SPECTRUM OF HCl{sup +}  

SciTech Connect

The rotational spectrum of the radical ion HCl{sup +} has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state {sup 2}{Pi}{sub 3/2} ladder and two in the {sup 2}{Pi}{sub 1/2} ladder (643 cm{sup -1} above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and {Lambda}-doubling, and the detection of lines of H{sup 37}Cl{sup +} at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the {sup 2}{Pi}{sub 1/2} ladder of HCl{sup +} for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq{sub 2}. The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the {sup 2}{Pi}{sub 3/2} J = 5/2 - 3/2 transition observed in space to within 0.2 km s{sup -1}, and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s{sup -1}.

Gupta, H.; Drouin, B. J.; Pearson, J. C., E-mail: Harshal.Gupta@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

2012-06-01T23:59:59.000Z

89

Internal Rotation, Mixing and Lithium Abundances  

E-Print Network (OSTI)

Lithium is an excellent tracer of mixing in stars as it is destroyed (by nuclear reactions) at a temperature around $\\sim 2.5\\times 10^6$ K. The lithium destruction zone is typically located in the radiative region of a star. If the radiative regions are stable, the observed surface value of lithium should remain constant with time. However, comparison of the meteoritic and photospheric Li abundances in the Sun indicate that the surface abundance of Li in the Sun has been depleted by more than two orders of magnitude. This is not predicted by solar models and is a long standing problem. Observations of Li in open clusters indicate that Li depletion is occurring on the main sequence. Furthermore, there is now compelling observational evidence that a spread of lithium abundances is present in nearly identical stars. This suggests that some transport process is occurring in stellar radiative regions. Helioseismic inversions support this conclusion, for they suggest that standard solar models need to be modified below the base of the convection zone. There are a number of possible theoretical explanations for this transport process. The relation between Li abundances, rotation rates and the presence of a tidally locked companion along with the observed internal rotation in the Sun indicate that the mixing is most likely induced by rotation. The current status of non-standard (particularly rotational) stellar models which attempt to account for the lithium observations are reviewed.

Brian Chaboyer

1998-03-10T23:59:59.000Z

90

Rotatable superconducting cyclotron adapted for medical use  

DOE Patents (OSTI)

A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

1985-01-01T23:59:59.000Z

91

Hydromagnetic Instability in Differentially Rotating Flows  

E-Print Network (OSTI)

We study the stability of a compressible differentially rotating flows in the presence of the magnetic field, and we show that the compressibility profoundly alters the previous results for a magnetized incompressible flow. The necessary condition of newly found instability can be easily satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A

2006-01-01T23:59:59.000Z

92

Convective heat transfer in rotating, circular channels  

E-Print Network (OSTI)

Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

Hogan, Brenna Elizabeth

2012-01-01T23:59:59.000Z

93

NIST Part 2.pmd  

Science Conference Proceedings (OSTI)

... 14 Spin Echo Spectrometer offering neV energy resolution, based upon Jülich design, sponsored by NIST, Jülich and ExxonMobil — part of CHRNS ...

2003-11-10T23:59:59.000Z

94

Asymmetric error field interaction with rotating conducting walls  

Science Conference Proceedings (OSTI)

The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-07-15T23:59:59.000Z

95

Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part I: Observation of Transverse Structure  

Science Conference Proceedings (OSTI)

A detailed dataset describing a quasi-stationary bottom gravity current, approximately 10 m thick and 10 km wide, passing through a channel-like constriction in the western Baltic Sea is presented. The data include full-depth, synoptic, and ...

Lars Umlauf; Lars Arneborg

2009-10-01T23:59:59.000Z

96

Gap Flows through Idealized Topography. Part II: Effects of Rotation and Surface Friction  

Science Conference Proceedings (OSTI)

Numerical simulations are conducted of geostrophically balanced flow over an isolated mountain cut by a horizontal gap. The relative importance of the along-gap synoptic-scale pressure gradient and terrain-induced mesoscale circulations for the ...

Saša Gaberšek; Dale R. Durran

2006-11-01T23:59:59.000Z

97

A Baroclinic Laminar State for Rotating Stratified Flows  

Science Conference Proceedings (OSTI)

A baroclinic laminar model is developed as the late-time equilibrium state in the free decay of rotating stratified turbulence under low-Froude-number scaling. Vertical motions are suppressed by stratification and ambient rotation, and in the ...

Che Sun

2008-08-01T23:59:59.000Z

98

Centrifugally activated bearing for high-speed rotating machinery  

SciTech Connect

A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

Post, Richard F. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

99

Entrainment in Shallow Rotating Gravity Currents: A Modeling Study  

Science Conference Proceedings (OSTI)

The physics of shallow gravity currents passing through a rotating channel at subcritical Froude number is investigated here with a series of idealized numerical experiments. It is found that the combined effects of friction and rotation set up a ...

Lars Umlauf; Lars Arneborg; Richard Hofmeister; Hans Burchard

2010-08-01T23:59:59.000Z

100

Rotating Shocks in a Separated Laboratory Channel Flow  

Science Conference Proceedings (OSTI)

Laboratory studies of the effects of wall separation on a hydraulic jump in a rotating channel of rectangular cross section are described. Separation is induced by increasing the rotation rate while maintaining a constant flow rate through the ...

L. J. Pratt

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Three-Dimensional Balance Theory for Rapidly Rotating Vortices  

Science Conference Proceedings (OSTI)

A three-dimensional balance formulation for rapidly rotating vortices, such as hurricanes, is presented. The asymmetric balance (AB) theory represents a new mathematical framework for studying the slow evolution of rapidly rotating fluid systems. ...

Lloyd J. Shapiro; Michael T. Montgomery

1993-10-01T23:59:59.000Z

102

BOUNDARY EFFECTS IN ROTATING-PLASMA EXPERIMENTS  

SciTech Connect

The problem of current continuity and viscous drag at the boundaries in rotating-plasma experiments is discussed. A hypothetical model having a steady state with axial symmetry is emphasized; it is shown that the discharge impedance derived from this model does not agree with many observations. The Homopolar III'' experiment is described in which the flux surfaces were strongly convex and parallel to the toroidal-shaped electrodes. In this way friction at the insulators was reduced. But the structure of the discharge deviated drastically from axial symmetry near the outer surface. Several studies led to the conclusion that the flow pattern probably involved secondary flows. A detailed analysis of this structure was not possible. It was also found that the rotational speed could not be raised above a few cm/ mu sec because the insulators failed in spite of the special design of the experiment. 28 references. (auth)

Kunkel, W.B.; Baker, W.R.; Bratenahl, A.; Halbach, K.

1962-08-01T23:59:59.000Z

103

A renormalization approach to irrational rotations  

E-Print Network (OSTI)

We introduce a renormalization procedure which allows us to study in a unified and concise way different properties of the irrational rotations on the unit circle $\\beta \\mapsto \\set{\\alpha+\\beta}$, $\\alpha \\in \\R\\setminus \\Q$. In particular we obtain sharp results for the diffusion of the walk on $\\Z$ generated by the location of points of the sequence $\\{n\\alpha +\\beta\\}$ on a binary partition of the unit interval. Finally we give some applications of our method.

Bonanno, Claudio

2007-01-01T23:59:59.000Z

104

Quantum Key Distribution Using Quantum Faraday Rotators  

E-Print Network (OSTI)

We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against eavesdropping for single-photon source on a noisy environment and robust against impersonation attacks. It also allows for unconditionally secure key distribution for multiphoton source up to two photons. The protocol could be implemented experimentally with the current spintronics technology on semiconductors.

Choi, T; Choi, Mahn-Soo; Choi, Taeseung

2006-01-01T23:59:59.000Z

105

Rotating sample holder at low temperature  

SciTech Connect

A low temperature rotary device (cryoturbine) for use in extended x-ray-absorption fine structure measurements in fluorescence mode has been designed and manufactured. The instrument works at a temperature close to liquid Nitrogen and can reach frequencies up to 100 Hz with good stability. The rotation speed is measured with a light-emitting diode driven in stroboscopic mode by a simple electronic circuit.

Pasternak, Sebastien; Perrin, Florian; Ciatto, Gianluca; Palancher, Herve; Steinmann, Ricardo [European Synchrotron Radiation Facility, 38043 Grenoble (France)

2007-07-15T23:59:59.000Z

106

Spin-stabilized magnetic levitation without vertical axis of rotation  

DOE Patents (OSTI)

The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aaronson, Gene (Albuquerque, NM)

2009-06-09T23:59:59.000Z

107

Measurement of turbulent wind velocities using a rotating boom apparatus  

DOE Green Energy (OSTI)

The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

Sandborn, V.A.; Connell, J.R.

1984-04-01T23:59:59.000Z

108

THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS  

Science Conference Proceedings (OSTI)

We present the results of a search for unusually rapidly rotating giant stars in a large sample of K giants ({approx}1300 stars) that had been spectroscopically monitored as potential targets for the Space Interferometry Mission's Astrometric Grid. The stars in this catalog are much fainter and typically more metal-poor than those of other catalogs of red giant star rotational velocities, but the spectra generally only have signal-to-noise ratio (S/N) of {approx}20-60, making the measurement of the widths of individual lines difficult. To compensate for this, we have developed a cross-correlation method to derive rotational velocities in moderate S/N echelle spectra to efficiently probe this sample for rapid rotator candidates. We have discovered 28 new red giant rapid rotators as well as one extreme rapid rotator with a vsin i of 86.4 km s{sup -1}. Rapid rotators comprise 2.2% of our sample, which is consistent with other surveys of brighter, more metal-rich K giant stars. Although we find that the temperature distribution of rapid rotators is similar to that of the slow rotators, this may not be the case with the distributions of surface gravity and metallicity. The rapid rotators show a slight overabundance of low-gravity stars and as a group are significantly more metal-poor than the slow rotators, which may indicate that the rotators are tidally locked binaries.

Carlberg, Joleen K.; Majewski, Steven R.; Patterson, Richard J. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM (United States); Smith, Verne V.; Cunha, Katia, E-mail: jkm9n@virginia.edu, E-mail: srm4n@virginia.edu, E-mail: ricky@virginia.edu, E-mail: dmbiz@apo.nmsu.edu, E-mail: vsmith@noao.edu, E-mail: cunha@noao.edu [NOAO, Tucson, AZ (United States)

2011-05-01T23:59:59.000Z

109

Rotational and Parabolic Surfaces in PSL2(R, ) and Applications  

E-Print Network (OSTI)

Rotational and Parabolic Surfaces in PSL2(R, ) and Applications By Carlos Espinoza Pe~nafiel 1 of either rotational isometries or parabolic isometries, immersed into the homogeneous manifold PSL2(R, ). Also, we give some applications. Keywords. Constant mean curvature. Rotational surfaces. Parabolic

Paris-Sud XI, Université de

110

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons carrying three units of angular momentum aligned with the rotational axis. The condensation represents a quantum phase transition. Discrete phonon energy and parity conservation generate oscillations of the rotational sequences with positive and negative parity. The phonon condensate co-rotates with quadrupole shape forming a rotating heart shape. The coupling between the quadrupole and octupole modes reaches a maximum in the $N\\approx 136$ isotones, approaching the limit of a static heart shape.

Frauendorf, S

2007-01-01T23:59:59.000Z

111

Dust-induced instability in a rotating plasma  

SciTech Connect

The effect of immobile dust on stability of a magnetized rotating plasma is analyzed. In the presence of dust, a term containing an electric field appears in the one-fluid equation of plasma motion. This electric field leads to an instability of the magnetized rotating plasma called the dust-induced rotational instability (DRI). The DRI is related to the charge imbalance between plasma ions and electrons introduced by the presence of charged dust. In contrast to the well-known magnetorotational instability requiring the decreasing radial profile of the plasma rotation frequency, the DRI can appear for an increasing rotation frequency profile.

Mikhailovskii, A. B.; Vladimirov, S. V.; Lominadze, J. G.; Tsypin, V. S.; Churikov, A. P.; Erokhin, N. N.; Galvao, R. M. O. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); School of Physics, University of Sydney, Sydney, N.S.W. 2006 (Australia); Kharadze Abastumani National Astrophysical Observatory, 2a, Kazbegi Ave., Tbilisi 0160 (Georgia); Brazilian Center for Physics Research, Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro (Brazil); Syzran Branch of Samara Technical University, 45, Sovetskaya Str., Syzran, Samara Region 446001 (Russian Federation); Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); Physics Institute, University of Sao Paulo, Cidade Universitaria, 05508-900, Sao Paulo, Brazil and Brazilian Center for Physics Research, Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro (Brazil)

2008-01-15T23:59:59.000Z

112

Lithium depletion and the rotational history of exoplanet host stars  

E-Print Network (OSTI)

Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We have developed rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a high degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that lithium-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.

Jerome Bouvier

2008-08-28T23:59:59.000Z

113

Calorimetric method of ac loss measurement in a rotating magnetic field  

Science Conference Proceedings (OSTI)

A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

2010-07-15T23:59:59.000Z

114

Isorotation and differential rotation in a magnetic mirror with imposed E Multiplication-Sign B rotation  

SciTech Connect

Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.

Romero-Talamas, C. A.; Elton, R. C.; Young, W. C.; Reid, R.; Ellis, R. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2012-07-15T23:59:59.000Z

115

Little Climates -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

Part One Part One Nature Bulletin No. 478-A January 27, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Part One: Weather in the Soi. Climate vitally affects our lives. Wherever we live, climate has largely determined the plant and animal life in that region, the development of civilization there and what people do. The climate of any region represents its overall weather picture: the sum of its weather today, tomorrow, and during past centuries. We are accustomed to think of climate as a set of conditions occurring entirely in the atmosphere above the earth's surface, and it may sound silly when we say that there are climates underground -- little climates just as real as those above -- but it's true, There are special kinds of weather in the soil.

116

A charged rotating cylindrical shell 1  

E-Print Network (OSTI)

We give an example of a spacetime having an infinite thin rotating cylindrical shell constituted by a charged perfect fluid as a source. As the interior of the shell the Bonnor–Melvin universe is considered, while its exterior is represented by Datta– Raychaudhuri spacetime. We discuss the energy conditions and we show that our spacetime contains closed timelike curves. Trajectories of charged test particles both inside and outside the cylinder are also examined. Expression for the angular velocity of a circular motion inside the cylinder is given.

P. Klepá?; J. Horsk´y

2003-01-01T23:59:59.000Z

117

Rotating Einstein-Yang-Mills Black Holes  

E-Print Network (OSTI)

We construct rotating hairy black holes in SU(2) Einstein-Yang-Mills theory. These stationary axially symmetric black holes are asymptotically flat. They possess non-trivial non-Abelian gauge fields outside their regular event horizon, and they carry non-Abelian electric charge. In the limit of vanishing angular momentum, they emerge from the neutral static spherically symmetric Einstein-Yang-Mills black holes, labelled by the node number of the gauge field function. With increasing angular momentum and mass, the non-Abelian electric charge of the solutions increases, but remains finite. The asymptotic expansion for these black hole solutions includes non-integer powers of the radial variable.

B. Kleihaus; J. Kunz; F. Navarro-Lerida

2002-07-10T23:59:59.000Z

118

Two-component Bose gases under rotation  

SciTech Connect

We examine the formation of vortices in a one- and two-component gas of bosonic atoms in a harmonic trap that is set rotating. Both the mean-field Gross-Pitaevskii approach, and the numerical diagonalization method are employed. For a two-component Bose gas, we show that beside the well-known coreless vortices of single quantization, the interatomic interactions between the two species may lead to coreless vortices of multiple quantization. We furthermore comment on the geometries of the interlaced vortex patterns. In the limit of weak interactions, we finally demonstrate a number of exact results.

Bargi, S.; Kaerkkaeinen, K.; Christensson, J.; Reimann, S. M. [Mathematical Physics, LTH, Lund University, SE-22100 Lund (Sweden); Kavoulakis, G. M. [Department of Sciences, TEI of Crete, P.O. Box 1939 Heraklion, 71004 Greece (Greece); Manninen, M. [NanoScience Center, Department of Physics, FIN-40014 University of Jyvaeskylae (Finland)

2008-04-04T23:59:59.000Z

119

Manipulator for rotating and examining small spheres  

SciTech Connect

A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

Weinstein, Berthold W. (Livermore, CA); Willenborg, David L. (Livermore, CA)

1980-01-01T23:59:59.000Z

120

Plutonium microstructures. Part 1  

Science Conference Proceedings (OSTI)

This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures.

Cramer, E.M.; Bergin, J.B.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

Paulson, L.E.

1988-05-13T23:59:59.000Z

122

MPIF Parts Recognition  

Science Conference Proceedings (OSTI)

...ultimate tensile strength of 296 MPa (43 ksi). Brass forging, stainless casting, and zinc die casting were also considered, but could not approach the economies of powder metallurgy. The part also provides high hardness, wear resistance, and net shape. The new mortise lock design can change function...

123

Redundant CORDIC Rotator Based on Parallel Prediction  

E-Print Network (OSTI)

In this work we present a Cordic rotator, using carry--save arithmetic, based on the prediction of all the coefficients into which the rotation angle is decomposed. The prediction algorithm is based on the use of radix--2 microrotations with multiple shifts in the first iterations and the use of a redundant radix--2 and radix--4 representation for the coefficients in the rest of the microrotations. The use of multiple shifts facilitates the prediction of the coefficients in the case of microrotations where i n=4, being n the precision of the algorithm, and the use of radix--4 microrotations helps to reduce the total number of iterations. The prediction is carried out using the redundant representation of the z coordinate, without any need for conversions to a non--redundant representation. Finally, we present a VLSI architecture based on this algorithm. As the production of the coefficients is very fast, and they are known before starting each microrotation, the resulting architecture...

E. Antelo; J.D. Bruguera; J. Villalba; E.L. Zapata; Elisardo Antelo; Javier D. Bruguera Julio Villalba; Emilio L. Zapata

1995-01-01T23:59:59.000Z

124

Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows  

SciTech Connect

Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.

Lim, Chjan [RPI

2013-12-18T23:59:59.000Z

125

President's Management Council Interagency Rotation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President's Management Council Interagency Rotation Program President's Management Council Interagency Rotation Program President's Management Council Interagency Rotation Program To maximize effectiveness and broaden perspectives and potential, Federal agencies should invest in and emphasize career development. The Federal Government must continue to prepare its talent for challenges on the horizon. In 2011, the President's Management Council (PMC) and the Chief Human Capital Officers Council (CHCO) launched the PMC Interagency Rotation Program to bolster cross-agency exposure for high-potential GS 13-15s. Agency representatives designed the program and provide both participants and rotational opportunities. The PMC Interagency Rotation Program strengthens agency collaboration, facilitates best practice sharing across Departments, and builds a pipeline

126

Rotational actuator of motor based on carbon nanotubes  

DOE Patents (OSTI)

A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

Zettl, Alexander K. (Kensington, CA); Fennimore, Adam M. (Berkeley, CA); Yuzvinsky, Thomas D. (Berkeley, CA)

2008-11-18T23:59:59.000Z

127

A Review, Part II  

E-Print Network (OSTI)

This paper is the second of a two-part review of methods for automated fault detection and diagnostics (FDD) and prognostics whose intent is to increase awareness of the HVAC&R research and development community to the body of FDD and prognostics developments in other fields as well as advancements in the field of HVAC&R. The first part of the review focused on generic FDD and prognostics, provided a framework for categorizing methods, described them, and identified their primary strengths and weaknesses (Katipamula and Brambley 2005). In this paper we address research and applications specific to the fields of HVAC&R, provide a brief discussion on the current state of diagnostics in buildings, and discuss the future of automated diagnostics in buildings.

Prognostics For Building Systems; Srinivas Katipamula; Phd Michael; R. Brambley

2004-01-01T23:59:59.000Z

128

Clause Matrix Part 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 23 K Clause Matrix for Department Of Energy Management and Operating Contracts Part I - FAR Clauses (Thru FAC 05-08 and DEAR Final Rule dated November 25, 2005) (1/10/2006) KEY: R = Required A = Required when applicable O = Optional M&O = Management and Operating contract UCF = Uniform Contract Format General instruction: Set forth below are clauses prescribed in FAR Part 52 (identified in the FAR Matrix for use in CR R&D, CR SVC, or CR CON contracts) which are to be used in DOE M&O contracts. This listing does not include solicitation provisions. FAR Clause Number Title Secondary DEAR Clause Citation M&O For Profit M&O Non- Profit UCF Prescribed In FAR Prescription/Notes 52.202-1 Definitions

129

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

130

Neoclassical diffusion of heavy impurities in a rotating tokamak plasma  

SciTech Connect

Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle simulation is carried out and the results offer a qualitative explanation for some experimental data from the Tokamak Test Reactor (TFTR). 13 refs., 2 figs.

Wong, K.L.; Cheng, C.Z.

1987-08-01T23:59:59.000Z

131

Alpha Channeling in Rotating Plasma with Stationary Waves  

SciTech Connect

An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

132

Sphere Lower Bound for Rotated Lattice Constellations in Fading Channels  

E-Print Network (OSTI)

We study the error probability performance of rotated lattice constellations in frequency-flat Nakagami-$m$ block-fading channels. In particular, we use the sphere lower bound on the underlying infinite lattice as a performance benchmark. We show that the sphere lower bound has full diversity. We observe that optimally rotated lattices with largest known minimum product distance perform very close to the lower bound, while the ensemble of random rotations is shown to lack diversity and perform far from it.

Fabregas, Albert Guillen i

2007-01-01T23:59:59.000Z

133

Forming rotated SAR images by real-time motion compensation.  

SciTech Connect

Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

Doerry, Armin Walter

2012-12-01T23:59:59.000Z

134

NBS Monograph 115: 2. Symmetry prop. rotational energy ...  

Science Conference Proceedings (OSTI)

... The rotational energy levels of homonuclear diatomic ... in the usual group theory tables [6] (pp. ... symmetry operations on nuclear displacement vectors ...

135

Radial Segregation of Granular Materials in Rotating Cylinders  

Science Conference Proceedings (OSTI)

... tablet manufacturing to cement production to rock cutting transportation with drilling fluids. Rotating cylinders are used as kilns, mixers, dryers and granulators .

136

Electromagnetic Analysis of Rotating Permanent Magnet Exciters for Hydroelectric Generators.  

E-Print Network (OSTI)

??The purpose of this project is to analyse different design possibilities for a rotating permanent magnet exciter for a hydroelectric generator. This is done through… (more)

Nöland, Jonas

2013-01-01T23:59:59.000Z

137

An Unexpected Connection Between Rotation Reversal and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

rotation can have a strong beneficial effect on plasma transport and stability, but in a fusion reactor, unlike most current experiments, there will be little or no external...

138

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

139

NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband Radiometer v2....

140

Educational Assessment of Medical Student Rotation in Emergency Ultrasound  

E-Print Network (OSTI)

Bedside echocardiography by emergency physicians. Ann Emergno . 3 : August 2007 Western Journal of Emergency MedicineStudent Rotation in Emergency Ultrasound J. Christian Fox,

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rotating heat pipe for air-conditioning  

SciTech Connect

A unique rotary hermetic heat pipe is disclosed for transferring heat from an external source to an external heat sink. The heat pipe has a tapered condensing surface which is curved preferably to provide uniform pumping acceleration, the heat pipe being rotated at a velocity such that the component of centrifugal acceleration in an axial direction parallel to the tapered surface is greater than lG and so that the condensing surface is kept relatively free of liquid at any attitude. The heat pipe may be incorporated in an air conditioning apparatus so that it projects through a small wall opening. In the preferred air conditioning apparatus, a hollow hermetic air impeller is provided which contains a liquefied gaseous refrigerant, such as freon, and means are provided for compressing the refrigerant in the evaporator region of the heat pipe.

Gray, V.H.

1976-12-28T23:59:59.000Z

142

Energy usage of rotating biological contractor facilities  

SciTech Connect

A recent US Environmental Protection Agency field study investigated the energy requirements for rotating biological contactor (RBC) units. The energy measurements for mechanically driven units varied considerably, but the overall average of 2.03 kW/shaft was very close to current manufacturer estimates. The power factor of most of the mechanically driven units was very low, and most installations could benefit from power factor correction. The energy requirements of air driven units also were highly variable and must be evaluated on an individual plant basis. The results of this study provide factual data on energy usage of RBC units, as well as a basis for developing design and operational considerations to reduce energy usage and maximize operational flexibility and plant performance. 9 references, 7 tables.

Gilbert, W.G.; Wheeler, J.F.; MacGregor, A.

1986-01-01T23:59:59.000Z

143

The influence of cracks in rotating shafts  

E-Print Network (OSTI)

In this paper, the influence of transverse cracks in a rotating shaft is analysed. The paper addresses the two distinct issues of the changes in modal properties and the influence of crack breathing on dynamic response during operation. Moreover, the evolution of the orbit of a cracked rotor near half of the first resonance frequency is investigated. The results provide a possible basis for an on-line monitoring system. In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by using the alternate frequency/time domain approach. It is shown that this method evaluates the nonlinear behaviour of the rotor system rapidly and efficiently by modelling the breathing crack with a truncated Fourier series. The dynamic response obtained by applying this method is compared with that evaluated through numerical integration. The resulting orbit during transient operation is presented and some distinguishing features of a cracked rotor are examined.

Jean-Jacques Sinou; A. W. Lees

2008-01-19T23:59:59.000Z

144

Bunch Profiling Using a Rotating Mask  

Science Conference Proceedings (OSTI)

The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

Miller, Mitchell; /SLAC /IIT, Chicago

2012-08-24T23:59:59.000Z

145

_Part II - Contract Clauses  

National Nuclear Security Administration (NNSA)

M515 dated 9/9/13 M515 dated 9/9/13 Contract DE-AC04-94AL85000 Modification No. M202 Part II - Contract Clauses Section I TABLE OF CONTENTS 1. FAR 52.202-1 DEFINITIONS (JAN 2012) (REPLACED M473) ............................................................... 8 2. FAR 52.203-3 GRATUITIES (APR 1984)..................................................................................................... 8 3. FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (APR 1984) ............................................. 9 4. FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) (REPLACED M264) ............................................................................................................................ 10 5. FAR 52.203-7 ANTI-KICKBACK PROCEDURES (OCT 2010) (REPLACED M443) ......................... 10

146

On a problem in the Stability Discussion of Rotating black  

E-Print Network (OSTI)

On a problem in the Stability Discussion of Rotating black holes Irina Craciun Research Student metric · Kerr metric #12;Kerr black holes · A more complex solution to EFE, discovered by Roy Kerr in 1963, the Kerr metric describes the geometry of spacetime around a rotating massive body · Kerr black

Allen, Gabrielle

147

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

148

A preconditioned method for rotating flows at arbitrary mach number  

Science Conference Proceedings (OSTI)

An improved preconditioning is proposed for viscous flow computations in rotating and nonrotating frames at arbitrary Mach numbers. The key to the current method is the use of both free stream Mach number and rotating Mach number to construct a preconditioning ...

Chunhua Sheng

2011-01-01T23:59:59.000Z

149

Magnetic and antimagnetic rotation in covariant density functional theory  

Science Conference Proceedings (OSTI)

Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.

Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J. [State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China) and Physik Department, Technische Universitat Muenchen, D-85747 Garching (Germany); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China) and Department of Physics, University of Stellenbosch, Stellenbosch (South Africa)

2012-10-20T23:59:59.000Z

150

Fuzzy-wavelet based prediction of Earth rotation parameters  

Science Conference Proceedings (OSTI)

Prediction of Earth rotation parameters (ERPs) is of importance especially for near real-time applications including navigation, remote sensing, and hazard monitoring. Therefore, prediction of ERPs at least over a few days in the future is necessary. ... Keywords: Earth rotation, Fuzzy-inference systems, Prediction, Wavelet transform

O. Akyilmaz; H. Kutterer; C. K. Shum; T. Ayan

2011-01-01T23:59:59.000Z

151

Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling*  

E-Print Network (OSTI)

Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling* Institut für Angewandte. The condensate was set into such a fast rotation that the centrifugal force in the corotating frame potential becomes sombrero shaped. We present an analysis for an ideal Bose gas that is confined

Pelster, Axel

152

Short rotation woody crops: Using agroforestry technology for energy in the United States  

DOE Green Energy (OSTI)

Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC`s and environmental concerns are described.

Wright, L.L.; Ranney, J.W.

1991-12-31T23:59:59.000Z

153

Short rotation woody crops: Using agroforestry technology for energy in the United States  

DOE Green Energy (OSTI)

Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

Wright, L.L.; Ranney, J.W.

1991-01-01T23:59:59.000Z

154

Energetics Analysis of a Multilevel Global Spectral Model. Part I: Balanced Energy and Transient Energy  

Science Conference Proceedings (OSTI)

We introduce a new energetics concept and apply it to the NCAR Community Climate Model. The new features of our approach are that the energy is split into balanced and transient parts and that the balanced energy consists of rotational energy and ...

Shun Der Ko; Joseph J. Tribbia; John P. Boyd

1989-09-01T23:59:59.000Z

155

Orbit effects on impurity transport in a rotating tokamak plasma  

SciTech Connect

Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs.

Wong, K.L.; Cheng, C.Z.

1988-05-01T23:59:59.000Z

156

Gravity-induced resonances in a rotating trap  

E-Print Network (OSTI)

It is shown that in an anisotropic harmonic trap that rotates with the properly chosen rotation rate, the force of gravity leads to a resonant behavior. Full analysis of the dynamics in an anisotropic, rotating trap in 3D is presented and several regions of stability are identified. On resonance, the oscillation amplitude of a single particle, or of the center of mass of a many-particle system (for example, BEC), grows linearly with time and all particles are expelled from the trap. The resonances can only occur when the rotation axis is tilted away from the vertical position. The positions of the resonances (there are always two of them) do not depend on the mass but only on the characteristic frequencies of the trap and on the direction of the angular velocity of rotation.

Iwo Bialynicki-Birula; Tomasz Sowinski

2004-12-01T23:59:59.000Z

157

Rotational dynamics of cargos at pauses during axonal transport  

SciTech Connect

Direct visualization of axonal transport in live neurons is essential for our understanding of the neuronal functions and the working mechanisms of microtubule-based motor proteins. Here we use the high-speed single particle orientation and rotational tracking technique to directly visualize the rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport, with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause.

Gu, Yan; Sun, Wei; Wang, Gufeng; Jeftinija, Ksenija; Jeftinija, Srdija; Fang, Ning

2012-08-28T23:59:59.000Z

158

Ex Parte Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tuesday, April 10, 2012, members of the Office of Security Policy and Office of Tuesday, April 10, 2012, members of the Office of Security Policy and Office of Physical Protection, both within the Department of Energy's Office of Health, Safety and Security, met with members of senior management team from the contractor providing protective force services for the Department of Energy Headquarters Forrestal and Germantown buildings. Participants to the meeting were as follows: Bill Dwyer, DOE Office of Physical Protection John Cronin, DOE Office of Security Policy Dave Dietz, DOE Office of Security Policy Mark Jamsay, Paragon Technical Services Terry Cuba, Paragon Technical Services DOE staff provided opening remarks. DOE noted that since the public comment period for the proposed amendments to 10 CFR Part 1046 is still open, areas of specific concern

159

Parts of Quantum States  

E-Print Network (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that Real Algebraic Geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Nick S. Jones; Noah Linden

2004-07-15T23:59:59.000Z

160

Parts of quantum states  

Science Conference Proceedings (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that real algebraic geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Jones, Nick S.; Linden, Noah [Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

_PART I - THE SCHEDULE  

National Nuclear Security Administration (NNSA)

15 dated 9/9/13 Contract No. DE-AC04-94AL85000 15 dated 9/9/13 Contract No. DE-AC04-94AL85000 Modification No. M202 Part I - The Schedule Sections B through H TABLE OF CONTENTS B-1 SERVICES BEING ACQUIRED ...................................................................................... 4 B-2 CONTRACT TYPE AND VALUE (Rev. M218, M222, M236, M241, M261, M266, M288, M293, M312, M319, M344, M365, M400, M404, M443, M448, M473, M484, M0512, A0514) ............................................................................................................................ 4 B-3 AVAILABILITY OF APPROPRIATED FUNDS ................................................................. 8 B-9999 AMERICAN RECOVERY AND REINVESTMENT ACT WORK VALUES (Added M331; Modified: A335, A336, A340, A341, A342, A346, A347, A348, A349, A350,

162

Ex Parte Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wednesday, March 14, 2012, members of the Protective Forces Career Options Wednesday, March 14, 2012, members of the Protective Forces Career Options Committee (PFCOC) met to discuss proposed changes to 10 CFR part 1046, which was published in the Federal Register on March 6, 2012 (77 FR 13206). 1 Participants to the meeting were as follows: Donald Barnes, DOE Office of Nuclear Energy Jason Brown, NCSP Oak Ridge John Cronin, DOE Office of Health, Safety and Security Jeffrey Cutler, Wohlner, Kaplon, Phillips, Young & Cutler (on behalf of NCSP) Dave Dietz, DOE Office of Health, Safety and Security Ken Freeman, DOE, Los Alamos National Laboratory Doug Fremont, DOE, National Nuclear Security Administration Steve Gibbs, WSI Rex A. Harding, NCSP, UPPSR Local 12S Martin Hewitt, NCSP, UPPSR Local 12S Rod Johnson, Pantex

163

Rotating electrical machines. Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles)  

E-Print Network (OSTI)

Applies to d.c. machines and to a.c. synchronous and induction machines. The principles can be applied to other types of machines such as rotary converters, a.c. commutator motors and single-phase induction motors for which other methods of determining losses are used.

International Electrotechnical Commission. Geneva

1972-01-01T23:59:59.000Z

164

Round Robin Study of Rotational Strain Rheometers  

DOE Green Energy (OSTI)

A round robin of testing was performed to compare the performance of rotational dynamic mechanical spectrometers being used within the nuclear weapons complex. Principals from Sandia National Laboratories/New Mexico; Lockheed Martin Y12 Plant at Oak Ridge, Tennessee; Los Alamos National Laboratory, New Mexico (polycarbonate only); and Honeywell Federal Manufacturing and Technologies (FM and T), Kansas City, MO, performed identical testing of hydrogen blown polysiloxane S5370 and bisphenol-A polycarbonate. Over an oscillation frequency sweep from 0.01 Hz to 15.9 Hz at 135 C, each site produced shear storage modulus values with standard deviations of less than 5%. The data from Sandia, Y12, and Kansas City agreed to within 4%, while the Los Alamos data differed by as much as 13%. Storage modulus values for a frequency sweep of the S5370 at 35 C had standard deviations between 6% and 8%, and site-to-site agreement averaged 3%. The shear loss modulus values had standard deviations of 5%, 7%, and 52% for the sites participating, while the results differed by 12% on average.

Clifford, M.J.

2000-02-16T23:59:59.000Z

165

Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook  

SciTech Connect

The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

Hodges, GB; Michalsky, JJ

2011-02-07T23:59:59.000Z

166

Short Rotation Woody Crops Program: Project summaries  

DOE Green Energy (OSTI)

This document is a compilation of summaries describing research efforts in the US Department of Energy's Short Rotation Woody Crops Program (SRWCP). The SRWCP is sponsored by DOE's Biofuels and Municipal Waste Technology Division and is field-managed at Oak Ridge National Laboratory. The SRWCP is an integrated basic research program with 18 field research projects throughout the United States. The overall objective of the program is to improve the productivity and increase the cost efficiency of growing and harvesting woody trees and shrubs. In a competitive technical review, 25 projects were chosen to form a new research program. Although some of the original projects have ended and new ones have begun, many of the long-term research projects still form the core of the SRWCP. This document contains individual summaries of each of the 18 research projects in the SRWCP from October 1985 to October 1986. Each summary provides the following information: name and address of the contracting institution, principal investigator, project title, current subcontract or grant number, period of performance, and annual funding through fiscal year 1986. In addition, each summary contains a brief description of the project rationale, objective, approach, status, and future efforts. A list of publications that have resulted from DOE-sponsored research follows many of the summaries.

Not Available

1986-11-01T23:59:59.000Z

167

Part B - Requirements & Funding Information PART B - Requirements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authorities) B.3. Part B Identifier If this is a new IA, then leave this blank. After STRIPES creates the IA identifier number, the number will appear in Part A Section A.3....

168

Part B - Requirements & Funding Information PART B - Requirements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authorities B.3. Part B Identifier If this is a new IA, then leave this blank. After STRIPES creates the IA identifier number, the number will appear in Part A Section A.3....

169

INTRODUCTION PART I 11 Introduction Part I Solid State NMR  

E-Print Network (OSTI)

10 PART I #12;INTRODUCTION ­ PART I 11 Introduction Part I ­ Solid State NMR OVERVIEW Nuclear magnetic resonance (NMR) spectroscopy can provide atomic-resolution structures of biological molecules. The exact resonance frequency depends on the chemical environment of each spins, as a result the NMR

Watts, Anthony

170

ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances  

DOE Data Explorer (OSTI)

The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

Hodges, Gary

171

Novel rotating field probe for inspection of tubes  

SciTech Connect

Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S. [Nondestructive Evaluation Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824 (United States)

2012-05-17T23:59:59.000Z

172

The empirical Earth rotation model from VLBI observations  

E-Print Network (OSTI)

AIMS: An alternative to the traditional method for modeling kinematics of the Earth's rotation is proposed. The purpose of developing the new approach is to provide a self-consistent and simple description of the Earth's rotation in a way that can be estimated directly from observations without using intermediate quantities. METHODS: Instead of estimating the time series of pole coordinates, the UT1--TAI angles, their rates, and the daily offsets of nutation, it is proposed to estimate coefficients of the expansion of a small perturbational rotation vector into basis functions. The resulting transformation from the terrestrial coordinate system to the celestial coordinate system is formulated as a product of an a priori matrix of a finite rotation and an empirical vector of a residual perturbational rotation. In the framework of this approach, the specific choice of the a priori matrix is irrelevant, provided the angles of the residual rotation are small enough to neglect their squares. The coefficients of the expansion into the B-spline and Fourier bases, together with estimates of other nuisance parameters, are evaluated directly from observations of time delay or time range in a single least square solution. RESULTS: This approach was successfully implemented in a computer program for processing VLBI observations. The dataset from 1984 through 2006 was analyzed. The new procedure adequately represents the Earth's rotation, including slowly varying changes in UT1--TAI and polar motion, the forced nutations, the free core nutation, and the high frequency variations of polar motion and UT1.

L. Petrov

2006-11-26T23:59:59.000Z

173

Activity-rotation relations for lower main-sequence stars  

Science Conference Proceedings (OSTI)

It has been known for some time that stellar rotation and activity are related, both for chromospheric activity (e.g., Noyes et al. 1984) and coronal activity (e.g., Pallavicini et al. 1981; Maggio et al. 1987). Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun, activity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity we may expect to see. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. This thesis examines the relationship between activity (both chromospheric and coronal) and rotation in order to better define and express such a relation (or relations).

Dobson-Hockey, A.K.

1987-01-01T23:59:59.000Z

174

Classroom Projects -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 609 September 17, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist CLASSROOM PROJECTS -- PART ONE The essence, the fundamental purpose, of the outdoor education program conducted by our department is stated briefly in the introductory words of a book -- Natural Science Through the Seasons, by J. A. Partridge -- which we use and recommend for teachers: "To initiate children into the romance and wonder of science, and to enhance their natural desire to get to know the world around them and find an explanation of its phenomena. In this bulletin are a few examples of many projects that appeal to younsters and have proven successful in giving pupils more insight into their surroundings, including the flora and fauna, than can be obtained solely from books. These brief outlines are offered as starting points in areas of exploration and study. They may be supplemented by use of our nature bulletins, Partridge's book, the Golden Nature Guides, and publications by agencies such as the Illinois State Museum and the Illinois Office of Public Instruction.

175

CFD analysis of rotating two-bladed flatback wind turbine rotor.  

DOE Green Energy (OSTI)

The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

2008-04-01T23:59:59.000Z

176

Transformation of quantum states using uniformly controlled rotations  

E-Print Network (OSTI)

We consider a unitary transformation which maps any given state of an $n$-qubit quantum register into another one. This transformation has applications in the initialization of a quantum computer, and also in some quantum algorithms. Employing uniformly controlled rotations, we present a quantum circuit of $2^{n+2}-4n-4$ CNOT gates and $2^{n+2}-5$ one-qubit elementary rotations that effects the state transformation. The complexity of the circuit is noticeably lower than the previously published results. Moreover, we present an analytic expression for the rotation angles needed for the transformation.

Mikko Mottonen; Juha J. Vartiainen; Ville Bergholm; Martti M. Salomaa

2004-07-01T23:59:59.000Z

177

Simulations of Jets Driven by Black Hole Rotation  

E-Print Network (OSTI)

The origin of jets emitted from black holes is not well understood, however there are two possible energy sources, the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.

Vladimir Semenov; Sergey Dyadechkin; Brian Punsly

2004-08-20T23:59:59.000Z

178

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network (OSTI)

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

179

Dynamics of lettuce drop incidence and Sclerotinia minor inoculum under varied crop rotations  

E-Print Network (OSTI)

Koike, S. T. 1998. Effects of crop rotation and irrigationImplications for yield and crop rotation. Asp. Appl. Biol.minor Inoculum Under Varied Crop Rotations J. J. Hao and K.

Hao, J J; Subbarao, K V

2006-01-01T23:59:59.000Z

180

Impact of tillage and crop rotation on aggregate-associated carbon in two oxisols  

E-Print Network (OSTI)

Oades. 1980. The effect of crop rotation on aggregation in aand J.H. Long. 1990. Crop rotation and tillage effects onImpact of Tillage and Crop Rotation on Aggregate-Associated

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cryogenic Treatment of Metal Parts  

SciTech Connect

Cryogenic treatment and its variables have been described. Results of eight engineering tests carried out on cryotreated parts have been presented. Cryogenic treatment of metal parts enhances useful properties which in turn, improves various strengths. Our tests viz. Abrasion, Torsion, Fatigue, Tensile, Shear, Hardness and Impact on Mild steel, Cast Iron, Brass and Copper show that the cryogenic treatment improved useful properties of mild steel parts appreciably but did not show promise with brass and copper parts.

Chillar, Rahul [S. P. College of Engineering, Andheri (W), Mumbai - 400 058 (India); Agrawal, S. C. [Tata Institute of Fundamental Research, Colaba, Mumbai - 400 005 (India)

2006-03-31T23:59:59.000Z

182

Bunch by Bunch Profiling with a Rotating X-ray Mask  

SciTech Connect

It is desirable to monitor the cross sections of each positron bunch in the Low Energy Ring (LER) storage rings of the Positron Electron Project II (PEP-II) located at the Stanford Linear Accelerator Center. One method is to pass the x-rays given off by each bunch through a scintillator, thereby studying a visible image. A rotating x-ray mask with three slots scans the beam image in three different orientations, allowing us to mechanically collect data to characterize and profile each image. Progress was made in designing the x-ray mask, researching and procuring parts, as well as advancing project plans. However, due to time constraints and difficulties in procuring special parts, the full system was not completed. A simpler setup was built to test the hardware as well as the feasibility of characterizing a circular image with a rotating mask. A blinking green light emitting diode (LED) simulated a single positron bunch stored in the LER ring. The selected hardware handled this simulation setup well and produced data that led to a reasonable estimation of the LED image diameter.

Lee, Christopher J.; /UC, San Diego

2007-11-07T23:59:59.000Z

183

Effect of Working Fluid and Fluid Loading on the Performance of Rotating Heat Pipes.  

E-Print Network (OSTI)

?? The steady state heat transfer performance of axially rotating heat pipes with methanol, ethanol and water as working fluid was measured for rotational speeds… (more)

Home, Deepayan

2004-01-01T23:59:59.000Z

184

Crop rotation and genetic resistance reduce risk of damage from Fusarium wilt in lettuce  

E-Print Network (OSTI)

ReVIEW Article Crop rotation and genetic resistance reduceon lettuce, not on any other crops tested (Hubbard and Gerikapproach that includes crop rotation to reduce soil inoculum

2012-01-01T23:59:59.000Z

185

Physics of Intrinsic Plasma Rotation Explained for the First Time  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics of Intrinsic Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors such as ITER July 23, 2013 | Tags: Fusion Energy Sciences (FES), Hopper CHANG.JPG Flamelets or hot spots along the plasma edge (a) drive turbulence intensity (b), temperature intensity (c), and intrinsic torque (d) inward, converting heat into toroidal rotation. (S. Ku et al.) If humans could harness nuclear fusion, the process that powers stars like our sun, the world could have an inexhaustible, clean energy source. Scientists have taken another step towards that goal with research that uncovers why the hot, gaseous stews used in fusion reactions sometimes spontaneously rotate in their donut-shaped containment "pots," called

186

Disky: a DIY Rotational Interface with Inherent Dynamics  

E-Print Network (OSTI)

Disky: a DIY Rotational Interface with Inherent Dynamics Karl Yerkes University of California dynamics, DIY 1. INTRODUCTION We describe Disky, a USB turntable controller, as a do- it-yourself project

California at Santa Barbara, University of

187

Design and cavitation performance of contra-rotating propellers  

E-Print Network (OSTI)

Improvement of the propulsive efficiency of ships has always been one of the main objectives for naval architects and marine engineers. Contra-Rotating propellers (CRP) are propulsor configurations offering higher efficiency ...

Laskos, Dimitrios

2010-01-01T23:59:59.000Z

188

Aerodynamic performance measurements in a counter-rotating aspirated compressor.  

E-Print Network (OSTI)

??This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives… (more)

Onnée, Jean-François

2005-01-01T23:59:59.000Z

189

Carderock Rotating Arm Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Rotating Arm Tow Tank Rotating Arm Tow Tank Jump to: navigation, search Basic Specifications Facility Name Carderock Rotating Arm Tow Tank Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Beam(m) 79.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Rotating Arm facility is a circular indoor basin 79.2m in diameter. The arm is a bridge-like structure with a span of 39.3m and pivots on a pedestal in the center of the basin. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 25.8 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

190

Low-Frequency Oscillations in a Rotating Annulus with Topography  

Science Conference Proceedings (OSTI)

Experiments were performed in a rotating, differentially heated annulus, with and without bottom topography of azimuthal wavenumber 2. Both water and a viscous glycerol-water mixture were used as a working fluid. In one series of experiments, ...

P. Bernardet; A. Butet; M. Déqué; M. Ghil; R. L. Pfeffer

1990-12-01T23:59:59.000Z

191

Obliquely Rotated Principal Components: An Improved Meteorological Map Typing Technique?  

Science Conference Proceedings (OSTI)

A detailed analysis of obliquely rotated principal components as a map typing technique was performed. This type of transformation does not constrain orthogonality of the vectors, allowing the components or map types the freedom to better reflect ...

Michael B. Richman

1981-10-01T23:59:59.000Z

192

Magnetic instabilities in collisionless astrophysical rotating plasma with anisotropic pressure  

Science Conference Proceedings (OSTI)

A technique is developed for analytical study of instabilities in collisionless astrophysical rotating plasma with anisotropic pressure that may lead to magnetic turbulence. Description is based on a pair of equations for perturbations of the radial magnetic field and the sum of magnetic field and perpendicular plasma pressures. From these equations, a canonical second-order differential equation for the perturbed radial magnetic field is derived and, subsequently, the dispersion relation for local perturbations. The paper predicts two varieties of hybrid instabilities due to the effects of differential plasma rotation and pressure anisotropy: The rotational-firehose and rotational-mirror ones. When the gravitation force is weak compared with the perpendicular pressure gradient, a new family of instabilities (the pressure-gradient-driven) is revealed.

Mikhailovskii, A. B.; Pustovitov, V. D.; Erokhin, N. N. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); Lominadze, J. G. [Kharadze Abastumani National Astrophysical Observatory, 2a, Kazbegi Ave., Tbilisi 0160 (Georgia); Nodia Institute of Geophysics, 1, Aleksidze Str., Tbilisi 0193 (Georgia); Smolyakov, A. I. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Churikov, A. P. [Syzran Branch of Samara Technical University, 45, Sovetskaya Str., Syzran, Samara Region 446001 (Russian Federation)

2008-06-15T23:59:59.000Z

193

Aerodynamic performance measurements in a counter-rotating aspirated compressor  

E-Print Network (OSTI)

This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

Onnée, Jean-François

2005-01-01T23:59:59.000Z

194

Spontaneous Emission by Rotating Objects: A Scattering Approach  

E-Print Network (OSTI)

We study the quantum electrodynamics vacuum in the presence of a body rotating along its axis of symmetry and show that the object spontaneously emits energy if it is lossy. The radiated power is expressed as a general ...

Jaffe, Robert L.

195

Laboratory Study of Rotating, Stratified, Oscillatory Flow over a Seamount  

Science Conference Proceedings (OSTI)

Pure oscillatory flow of a rotating, linearly stratified fluid in the vicinity of an isolated topography of revolution is considered in the laboratory. The pertinent dimensionless parameters governing the motion are the Rossby (Ro), temporal ...

Xiuzhang Zhang; Don L. Boyer

1993-06-01T23:59:59.000Z

196

Effects of Rotation on Convective Plumes from Line Segment Sources  

Science Conference Proceedings (OSTI)

Effects of rotation on finite-length line plumes are studied with a three-dimensional nonhydrostatic numerical model. Geophysical convection with this source geometry occurs, for example, as the result of fissure releases of hot hydrothermal ...

J. W. Lavelle; D. C. Smith IV

1996-06-01T23:59:59.000Z

197

Tracking 3-D Rotations with the Quaternion Bingham Filter  

E-Print Network (OSTI)

A deterministic method for sequential estimation of 3-D rotations is presented. The Bingham distribution is used to represent uncertainty directly on the unit quaternion hypersphere. Quaternions avoid the degeneracies of ...

Glover, Jared

2013-03-27T23:59:59.000Z

198

The Time-dependent Collapse of a Rotating Fluid Cylinder  

Science Conference Proceedings (OSTI)

The behavior of a reduced-gravity cylinder of fluid, released from rest in a rotating system, is considered. The eventual steady state, found by normal principles of conservation of angular momentum, mass, and potential vorticity, is shown to ...

Peter D. Killworth

1992-04-01T23:59:59.000Z

199

New Methodology For Use in Rotating Field Nuclear Magnetic Resonance  

E-Print Network (OSTI)

MHz and the permanent magnet’s motor’s mechanical rotationa stepping motor held away from the magnet, a pulley system,permanent magnet mechanically is rotated with a motor while

Jachmann, Rebecca C.

2007-01-01T23:59:59.000Z

200

Stability of the toroidal magnetic field in rotating stars  

E-Print Network (OSTI)

The magnetic field in stellar radiation zones can play an important role in phenomena such as mixing, angular momentum transport, etc. We study the effect of rotation on the stability of a predominantly toroidal magnetic field in the radiation zone. In particular we considered the stability in spherical geometry by means of a linear analysis in the Boussinesq approximation. It is found that the effect of rotation on the stability depends on a magnetic configuration. If the toroidal field increases with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation. Rotation can only decrease the growth rate of instability. If the field decreases with the radius, the instability has a threshold and can be completey suppressed.

Bonanno, Alfio

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rotational suppression of the Tayler instability in stellar radiation zones  

E-Print Network (OSTI)

The study of the magnetic field in stellar radiation zones is an important topic in modern astrophysics because the magnetic field can play an important role in several transport phenomena such as mixing and angular momentum transport. We consider the influence of rotation on stability of a predominantly toroidal magnetic field in the radiation zone. We find that the effect of rotation on the stability depends on the magnetic configuration of the basic state. If the toroidal field increases sufficiently rapidly with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation although the strength of the instability can be significantly reduced. On the other hand, if the field increases slowly enough with the radius or decreases, the instability has a threshold and can be completely suppressed in rapidly rotating stars. We find that in the regions where the instability is entirely suppressed a particular type of magnetohydrodynamic waves may exist which are marginally stabl...

Bonanno, Alfio

2013-01-01T23:59:59.000Z

202

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

203

Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX  

Science Conference Proceedings (OSTI)

This paper describes the Verification of the Origins of Rotation in Tornadoes Experiment planned for 1994 and 1995 to evaluate a set of hypotheses pertaining to tornadogenesis and tornado dynamics. Observations of state variables will be obtained ...

Erik N. Rasmussen; Jerry M. Straka; Robert Davies-Jones; Charles A. Doswell III; Frederick H. Carr; Michael D. Eilts; Donald R. MacGorman

1994-06-01T23:59:59.000Z

204

System design description for the HMT Rotation Motor Heater System  

SciTech Connect

This document is the design description for the Rotation Motor Heater System on waste tank 241-SY-101. The description includes the certified vendor (CV) file number, operators instructions, and heater sizing calculations.

Vargo, G.F. Jr.

1995-05-18T23:59:59.000Z

205

Thermally Driven Flow in a Rotating Spherical Shell: Axisymmetric States  

Science Conference Proceedings (OSTI)

Numerical models are utilized to study a spherical analogue of the rotating annulus experiments modeling atmospheric motion. Motivation for this work is partially provided by NASA's proposal to conduct such an experiment on Spacelab (the ...

Timothy L. Miller; Robert L. Gall

1983-04-01T23:59:59.000Z

206

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Descriptions Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (Site Descriptions) West, T.O., and W.M. Post. 2002. Soil Organic Carbon...

207

MHK Technologies/Sub Surface Counter Rotation Current Generator | Open  

Open Energy Info (EERE)

Sub Surface Counter Rotation Current Generator Sub Surface Counter Rotation Current Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sub Surface Counter Rotation Current Generator.jpg Technology Profile Primary Organization Cyclocean LLC Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Self regulated sub surface current generators that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology Dimensions Device Testing Date Submitted 20:10.1 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sub_Surface_Counter_Rotation_Current_Generator&oldid=681657

208

Interval Translation Maps of three intervals reduce to Double Rotations  

E-Print Network (OSTI)

We show that any interval translation map (ITM) of three intervals can be reduced either to a rotation or a double rotation. As a consequence, the subset of ITMs of finite type in the space of all ITMs of three intervals is open, dense, and full Lebesgue measure. The set of ITMs of infinite type is a Cantor set of zero measure and of Hausdorff dimension less than full.

Volk, Denis

2012-01-01T23:59:59.000Z

209

Manipulator for rotating and translating a sample holder  

DOE Patents (OSTI)

A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

van de Water, Jeroen (Breugel, NL); van den Oetelaar, Johannes (Eindhoven, NL); Wagner, Raymond (Gorinchem, NL); Slingerland, Hendrik Nicolaas (Venlo, NL); Bruggers, Jan Willem (Eindhoven, NL); Ottevanger, Adriaan Huibert Dirk (Malden, NL); Schmid, Andreas (Berkeley, CA); Olson, Eric A. (Champaign, IL); Petrov, Ivan G. (Champaign, IL); Donchev, Todor I. (Urbana, IL); Duden, Thomas (Kensington, CA)

2011-02-08T23:59:59.000Z

210

Differential rotation in solar-like stars from global simulations  

E-Print Network (OSTI)

To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a subadiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear...

Guerrero, G; Kosovichev, A G; Mansour, N N

2013-01-01T23:59:59.000Z

211

Influence of Rotations on the Critical State of Soil Mechanics  

E-Print Network (OSTI)

The ability of grains to rotate can play a crucial role on the collective behavior of granular media. It has been observed in computer simulations that imposing a torque at the contacts modifies the force chains, making support chains less important. In this work we investigate the effect of a gradual hindering of the grains rotations on the so-called critical state of soil mechanics. The critical state is an asymptotic state independent of the initial solid fraction where deformations occur at a constant shear strength and compactness. We quantify the difficulty to rotate by a friction coefficient at the level of particles, acting like a threshold. We explore the effect of this particle-level friction coefficient on the critical state by means of molecular dynamics simulations of a simple shear test on a poly-disperse sphere packing. We found that the larger the difficulty to rotate, the larger the final shear strength of the sample. Other micro-mechanical variables, like the structural anisotropy and the distribution of forces, are also influenced by the threshold. These results reveal the key role of rotations on the critical behavior of soils and suggest the inclusion of rotational variables into their constitutive equations.

W. F. Oquendo; J. D. Muñoz; A. Lizcano

2010-11-23T23:59:59.000Z

212

Magneto-Rotational Transport in the Early Sun  

E-Print Network (OSTI)

Angular momentum transport must have occurred in the Sun's radiative zone to explain its current solid body rotation. We survey the stability of the early Sun's radiative zone with respect to diffusive rotational instabilities, for a variety of plausible past configurations. We find that the (faster rotating) early Sun was prone to rotational instabilities even if only weak levels of radial differential rotation were present, while the current Sun is not. Stability domains are determined by approximate balance between dynamical and diffusive timescales, allowing generalizations to other stellar contexts. Depending on the strength and geometry of the weak magnetic field present, the fastest growing unstable mode can be hydrodynamic or magneto-hydrodynamic (MHD) in nature. Our results suggest that diffusive MHD modes may be more efficient at transporting angular momentum than their hydrodynamic (``Goldreich-Schubert-Fricke'') counterparts because the minimum spatial scale required for magnetic tension to be destabilizing limits the otherwise very small scales favored by double-diffusive instabilities. Diffusive magneto-rotational instabilities are thus attractive candidates for angular momentum transport in the early Sun's radiative zone.

Kristen Menou; Joel LeMer

2006-06-14T23:59:59.000Z

213

PART 1. RESPONDENT IDENTIFICATION DATA PART 2. SUBMISSION ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids (NGPL) and Liquefied Refinery Gases (LRG)*: PART 4. TOTAL U.S. CRUDE OIL IMPORTS BY COUNTRY OF ORIGIN (Thousand Barrels) ...

214

Vibrational, rotational, and isotopic dependence of CaBr X/sup 2/. sigma. spin-rotational and HFS parameters  

Science Conference Proceedings (OSTI)

The previously published molecular-beam, laser-rf, double-resonance study of the rotational and isotopic dependences of the spin-rotational and hyperfine interactions in the v'' = 0, X/sup 2/..sigma.. state of CaBr is supplemented here with data for v''=1. The vibrational dependence of the parameters is now obtained. The results for CaBr are displayed along with analogous, previously published results for CaF and CaCl.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1982-01-01T23:59:59.000Z

215

Rotation and magnetism in massive stars  

E-Print Network (OSTI)

and Ai are constants to be determined. Substituting these solutions into equation (1.36) gives A1 = ? s + iku1 q ?0 (1.42) and A2 = s + iku2 q ?0. (1.43) Further substituting these solutions into equation (1.38) gives ?1 ( qg + (s + iku1)2 ) = ?2 ( qg... ? (s + iku2)2 ) (1.44) which simplifies to s = ?ik ( ?1u1 + ?2u2 ?1 + ?2 ) ± ( k2?1?2(u1 ? u2)2 (?1 + ?2)2 ? qg(?1 ? ?2) ?1 + ?2 ) 1 2 . (1.45) We get instability in the system if the real part of s is positive. This can only occur when 18 CHAPTER 1...

Potter, Adrian Thomas

2012-07-03T23:59:59.000Z

216

Viscosity and Rotation in Core-Collapse Supernovae  

E-Print Network (OSTI)

We construct models of core-collapse supernovae in one spatial dimension, including rotation, angular momentum transport, and viscous dissipation employing an alpha-prescription. We compare the evolution of a fiducial 11 M_sun non-rotating progenitor with its evolution including a wide range of imposed initial rotation profiles (1.25rotation period of the iron core). This range of P_0 covers the region of parameter space from where rotation begins to modify the dynamics (P_0~8 s) to where angular velocities at collapse approach Keplerian (P_0~1 s). Assuming strict angular momentum conservation, all models in this range leave behind neutron stars with spin periods <10 ms, shorter than those of most radio pulsars, but similar to those expected theoretically for magnetars at birth. A fraction of the gravitational binding energy of collapse is stored in the free energy of differential rotation. This energy source may be tapped by viscous processes, providing a mechanism for energy deposition that is not strongly coupled to the mass accretion rate through the stalled supernova shock. This effect yields qualitatively new dynamics in models of supernovae. We explore several potential mechanisms for viscosity in the core-collapse environment: neutrino viscosity, turbulent viscosity caused by the magnetorotational instability (MRI), and turbulent viscosity by entropy- and composition-gradient-driven convection. We argue that the MRI is the most effective. We find that for rotation periods in the range P_0<~5 s, and a range of viscous stresses, that the post-bounce dynamics is significantly effected by the inclusion of this extra energy deposition mechanism; in several cases we obtain strong supernova explosions.

Todd A. Thompson; Eliot Quataert; Adam Burrows

2004-03-09T23:59:59.000Z

217

Study on Processing Condition of Submerged Rotating MBR for Wastewater Treatment  

Science Conference Proceedings (OSTI)

A submerged rotating membrane bioreactor (SRMBR), with a rotatable, rounded, flat-sheet Poly(vinyldiene fluoride) (PVDF) membrane module fixed on the hollow axes and moved by an electromotor, was used for wastewater reclamation. The efficiencies of SRMBR, ... Keywords: Submerged rotating MBR, rotation speed, permeate flux, PVDF flat-sheet composite membrane

Danying Zuo; Hongjun Li

2009-10-01T23:59:59.000Z

218

NMR system and method having a permanent magnet providing a rotating magnetic field  

DOE Patents (OSTI)

Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

2009-05-19T23:59:59.000Z

219

ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE  

SciTech Connect

The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

Martinez Gonzalez, M. J. [Instituto de Astrofisica de Canarias, Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Asensio Ramos, A. [Departamento de Astrofisica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain)

2012-08-20T23:59:59.000Z

220

New portable sensor system for rotational seismic motion measurements  

SciTech Connect

A new mechanical sensor system for recording the rotation of ground velocity has been constructed. It is based on measurements of differential motions between paired sensors mounted along the perimeter of a rigid (undeformable) disk. The elementary sensors creating the pairs are sensitive low-frequency geophones currently used in seismic exploration to record translational motions. The main features of the new rotational seismic sensor system are flat characteristics in the wide frequency range from 1 to 200 Hz and sensitivity limit of the order of 10{sup -8} rad/s. Notable advantages are small dimensions, portability, easy installation and operation in the field, and the possibility of calibrating the geophones in situ simultaneously with the measurement. An important feature of the instrument is that it provides records of translational seismic motions together with rotations, which allows many important seismological applications. We have used the new sensor system to record the vertical rotation velocity due to a small earthquake of M{sub L}=2.2, which occurred within the earthquake swarm in Western Bohemia in autumn 2008. We found good agreement of the rotation record with the transverse acceleration as predicted by theory. This measurement demonstrates that this device has a much wider application than just to prospecting measurements, for which it was originally designed.

Brokesova, Johana [Department of Geophysics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Malek, Jiri [Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holesovickach 41, 18209 Prague (Czech Republic)

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Regenerative braking device with rotationally mounted energy storage means  

DOE Patents (OSTI)

A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

Hoppie, Lyle O. (Birmingham, MI)

1982-03-16T23:59:59.000Z

222

Well apparatuses and anti-rotation device for well apparatuses  

SciTech Connect

This patent describes an anti-rotation device for an item used in wellbores for inhibiting relative rotation between the item and an adjacent apparatus having apparatus protrusions, the apparatus protrusions having tips, the anti-rotation device. It comprises a cylindrical body member having two circular ends with a projecting lip protruding from one end thereof and extending around that end, the lip having an inner wall, a recess in the body member, the recess defined by the inner wall of the lip and a bottom surface within the body member, the lip extending above the bottom surface, a plurality of device protrusions extending from the bottom surface of the recess and beyond the lip, the device protrusions disposed for engaging the apparatus protrusions of the adjacent apparatus, and the inner wall of the lip sloping from the lip to the bottom surface of the body member.

Glaser, M.C.

1992-05-19T23:59:59.000Z

223

Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part II: Climatological Applications  

Science Conference Proceedings (OSTI)

Measurements from ground-based sun photometer networks can be used both to provide ground-truth validation of satellite aerosol retrievals and to produce a land-based aerosol climatology that is complementary to satellite retrievals that are ...

Mikhail D. Alexandrov; Andrew A. Lacis; Barbara E. Carlson; Brian Cairns

2002-02-01T23:59:59.000Z

224

Semigeostrophic Flow over Orography in a Stratified Rotating Atmosphere. Part III. Evaluation of a Lee Cyclogenesis Mechanism  

Science Conference Proceedings (OSTI)

Three-dimensional, adiabatic, inviscid flow over orography is examined by means of a semigeostrophic model expressed in isentropic coordinates. A nondimensional mountain height ?/D 0.5, based on the deformation depth D 3 × 103 m, and a Rossby ...

Brian D. Gross

1990-04-01T23:59:59.000Z

225

A differential rotation driven dynamo in a stably stratified star  

E-Print Network (OSTI)

We present numerical simulations of a self-sustaining magnetic field in a differentially rotating non-convective stellar interior. A weak initial field is wound up by the differential rotation; the resulting azimuthal field becomes unstable and produces a new meridional field component, which is then wound up anew, thus completing the `dynamo loop'. This effect is observed both with and without a stable stratification. A self-sustained field is actually obtained more easily in the presence of a stable stratification. The results confirm the analytical expectations of the role of Tayler instability.

J. Braithwaite; H. C. Spruit

2005-09-22T23:59:59.000Z

226

Well apparatuses and anti-rotation device for well apparatuses  

Science Conference Proceedings (OSTI)

This patent describes an anti-rotation device for an item used in wellbores for inhibiting relative rotation between the item and an adjacent apparatus having apparatus protrusions. It comprises a substantially cylindrical body member having two ends, a recess in one of the ends of the body member, the recess having a bottom surface within the body member and a circular ring load member extending above the bottom surface and about the body member and encircling the recess, teeth extending from the bottom surface of the recess and beyond the circular ring load member, and the teeth disposed for engaging the apparatus protrusions of the adjacent apparatus.

Glaser, M.C.

1991-06-25T23:59:59.000Z

227

Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth  

Science Conference Proceedings (OSTI)

Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

Batzill M.; Sutter P.; Dahal, A.; Addou, R.

2012-06-11T23:59:59.000Z

228

Plasma rotation and rf heating in DIII-D  

SciTech Connect

In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current.

deGrassie, J.S.; Baker, D.R.; Burrell, K.H. [General Atomics, San Diego, CA (United States)] [and others

1999-05-01T23:59:59.000Z

229

QTR Ex Parte Communications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ex Parte Communications QTR Ex Parte Communications Ex parte communications received during the Department of Energy Quadrennial Technology Review. qtrexpartecommunications0.pd...

230

Ex parte Communication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication Ex parte Communication Ex parte communication on AHAM's development of an ice maker energy test procedure Ex parte Communication More Documents & Publications...

231

RECURSIVELY RENEWABLE WORDS AND CODING OF IRRATIONAL ROTATIONS  

E-Print Network (OSTI)

RECURSIVELY RENEWABLE WORDS AND CODING OF IRRATIONAL ROTATIONS SHIGEKI AKIYAMA AND MASAYUKI us come back to a general A = {0, 1, . . . , m - 1}. An element z = z0z1 · · · AN is k-renewable is called recursively k-renewable. To be more precise, z = z0z1 . . . is recursively k- renewable when

Akiyama, Shigeki

232

Meridional Flow Field of Axisymmetric Flows in a Rotating Annulus  

Science Conference Proceedings (OSTI)

Measurements of the flow field were made of the axisymmetric flow in a differentially heated rotating fluid annulus by using a long-term tracking of a tracer particle. Its meridional flow profile is composed of a flow circulating in a large ...

T. Tajima; T. Nakamura

2000-09-01T23:59:59.000Z

233

A rotation invariant face recognition method based on complex network  

Science Conference Proceedings (OSTI)

Face recognition is an important field that has received a lot of attention from computer vision community, with diverse set of applications in industry and science. This paper introduces a novel graph based method for face recognition which is rotation ... Keywords: complex network, face recognition, graph

Wesley Nunes Gonçalves; Jonathan De Andrade Silva; Odemir Martinez Bruno

2010-11-01T23:59:59.000Z

234

Counter Rotating Open Rotor Animation using Particle Image Velocimetry  

E-Print Network (OSTI)

This article describes the two accompanying fluid dynamics videos for the "Counter rotating open rotor flow field investigation using stereoscopic Particle Image Velocimetry" presented at the 64th Annual Meeting of the APS Division of Fluid Dynamics in Baltimore, Maryland, November 20-22, 2011.

Roosenboom, E W M; Geisler, R; Pallek, D; Agocs, J; Neitzke, K -P

2011-01-01T23:59:59.000Z

235

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

236

TRANSIT LIGHTCURVES OF EXTRASOLAR PLANETS ORBITING RAPIDLY ROTATING STARS  

Science Conference Proceedings (OSTI)

Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbit alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.

Barnes, Jason W., E-mail: jwbarnes@uidaho.ed

2009-11-01T23:59:59.000Z

237

Testing and Error Analysis of Acceleration of Rotating Transformer  

Science Conference Proceedings (OSTI)

From the working principle of rotary transformers, the paper in-depth analyses the relationship between output voltage and rotor angle as well as speed. By using the method of series expansion and discrete, angular acceleration formula which is used ... Keywords: Rotating Transformer, Acceleration, Error of Measurement, slip frequency

Lu Xiuhe; Xue Peng

2010-07-01T23:59:59.000Z

238

Solar activity and earth rotation variability R. Abarca del Rioa,  

E-Print Network (OSTI)

Solar activity and earth rotation variability R. Abarca del Rioa, *, D. Gambisb , D. Salsteinc , P to investigate a possible connection with solar activity fluctuations from interannual to secular time scales in AAM and LOD agrees with that in solar activity with regard to the decadal cycle in the stratospheric

Dai, Aiguo

239

Solar differential rotation and properties of magnetic clouds  

E-Print Network (OSTI)

The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

2005-11-09T23:59:59.000Z

240

The solar interior - radial structure, rotation, solar activity cycle  

E-Print Network (OSTI)

Some basic properties of the solar convection zone are considered and the use of helioseismology as an observational tool to determine its depth and internal angular velocity is discussed. Aspects of solar magnetism are described and explained in the framework of dynamo theory. The main focus is on mean field theories for the Sun's magnetic field and its differential rotation.

Axel Brandenburg

2007-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Numerical Discretization of Rotated Diffusion Operators in Ocean Models  

Science Conference Proceedings (OSTI)

A method to improve the behavior of the numerical discretization of a rotated diffusion operator such as, for example, the isopycnal diffusion parameterization used in large-scale ocean models based on the so-called z-coordinate system is ...

J-M. Beckers; H. Burchard; E. Deleersnijder; P. P. Mathieu

2000-08-01T23:59:59.000Z

242

Energy Partitioning and Horizontal Dispersion in a Stratified Rotating Lake  

Science Conference Proceedings (OSTI)

The response of a stratified rotating basin to the release of a linearly tilted interface is derived. This case is compared with a uniformly forced basin in the two limits when the duration of the forcing is much greater than the period of the ...

Roman Stocker; Jörg Imberger

2003-03-01T23:59:59.000Z

243

Transient Eddies and the Seasonal Mean Rotational Flow  

Science Conference Proceedings (OSTI)

Virtually all investigations of transient-eddy effects on the large-scale mean vorticity start from the premise that only the rotational transient motion need be considered. In this paper, the seasonal mean vorticity balance at 250 mb is examined,...

Brian J. Hoskins; Prashant D. Sardeshmukh

1987-01-01T23:59:59.000Z

244

Microsoft Word - PART 970.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PART 970 PART 970 - DOE MANAGEMENT AND OPERATING CONTRACTS Subpart 970.01 - Management and Operating Contract Regulatory System Sec. 970.0100 Scope of part. 970.0103 Publication and codification. Subpart 970.03 - Improper Business Practices and Personal Conflicts of Interest 970.0309 Whistleblower protection of contractor employees. 970.0309-1 Applicability. 970.0370 Management controls and improvements. 970.0370-1 Policy. 970.0370-2 Contract clause. 970.0371 Conduct of employees of DOE management and operating contractors. 970.0371-1 Scope of section. 970.0371-2 Applicability. 970.0371-3 Definition. 970.0371-4 Gratuities. 970.0371-5 Use of privileged information. 970.0371-6 Incompatibility between regular duties and private interests. 970.0371-7 Outside employment of contractor employees.

245

Ultrasonic Assembly of Thermoplastic Parts  

SciTech Connect

Four ultrasonic methods were evaluated for assembly of experimental plastic parts for detonators: (1) welding, (2) crimping and staking, (3) insertion, and (4) reactivation of adhesives. For welding, staking and insertion, plastics with low elastic moduli, such as acrylics and polycarbonate, produced the best results. Thermosetting, hot-melt, and solution adhesives could all be activated ultrasonically to form good bonds on plastics and other materials. This evaluation indicated that thermoplastic detonator parts could be assembled ultrasonically in shorter times than by present production techniques with high bond strengths and high product acceptance rates.

Schurman, W. R.

1970-03-31T23:59:59.000Z

246

Rapid Rotation, Active Nests of Convection and Global-scale Flows in Solar-like Stars  

E-Print Network (OSTI)

In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation, as measured by latitudinal angular velocity contrast, Delta_Omega, increases with more rapid rotation while the relative shear, Delta_Omega/Omega, decreases. In contrast, at more rapid rotation the meridional circulations decrease in both energy and peak velocities and break into multiple cells of circulation in both radius and latitude.

Benjamin P. Brown; Matthew K. Browning; Allan Sacha Brun; Mark S. Miesch; Juri Toomre

2008-01-10T23:59:59.000Z

247

Live visuals tutorial: part III  

Science Conference Proceedings (OSTI)

In this part of the course, we give a tutorial on how to compose live visuals. First, we talk about hardware and software setup needed for a live visual performance. Then we present concepts to prepare and organize huge media libraries allowing for instant ...

Pascal Mueller

2007-08-01T23:59:59.000Z

248

Ferrofluid spin-up flows from uniform and non-uniform rotating magnetic fields  

E-Print Network (OSTI)

When ferrofluid in a cylindrical container is subjected to a rotating azimuthally directed magnetic field, the fluid "spins up" into an almost rigid-body rotation where ferrofluid nanoparticles have both a linear and an ...

Khushrushahi, Shahriar Rohinton

2010-01-01T23:59:59.000Z

249

Classification of 500 mb Height Anomalies Using Obliquely Rotated Principal Components  

Science Conference Proceedings (OSTI)

The objective of this study was to classify 500 mb height anomaly patterns for North America using principal component analysis with oblique rotation. Two versions of the oblique rotation, oblimax and direct oblimin, were applied to two gridded ...

Stewart J. Cohen

1983-12-01T23:59:59.000Z

250

The behavior of rotator cuff tendon cells in three-dimensional culture  

E-Print Network (OSTI)

The rotator cuff is composed of the supraspinatus, infraspinatus, subcapularis, and teres minor tendons. Rotator cuff injuries are common athletic and occupational injuries that surgery cannot fully repair. Therefore tendon ...

Gill, Harmeet (Harmeet Kaur)

2007-01-01T23:59:59.000Z

251

ARM - Publications: Science Team Meeting Documents: Rotating Shadowband  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Processing, and Value-Added Products Kiedron, Piotr State University of New York Albany Schlemmer, Jim The first ARM owned RSS was deployed at SGP central site in May 2003. This RSS provides direct-normal, diffuse-horizontal andtotal-horizontal components of irradiance at 1001 pixels in 360nm-1050nm spectral range every minute between dawn and dusk. The instrument operated continuously since the deployment date. At first bi-weekly radiometric calibrations were instituted and upon the discovery of significant responsivity drift this rigorous calibration schedule was continued till present. However the rate of change was steadily decreasing. By September 2004 the drift was less than 1% per month. Within three month from deployment date a slight

252

Nonlinear stability of magnetic islands in a rotating helical plasma  

Science Conference Proceedings (OSTI)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

Nishimura, S.; Toda, S.; Narushima, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yagi, M. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

2012-12-15T23:59:59.000Z

253

Electron beam machining using rotating and shaped beam power distribution  

DOE Patents (OSTI)

An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

Elmer, John W. (Pleasanton, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

254

Dual annular rotating "windowed" nuclear reflector reactor control system  

DOE Patents (OSTI)

A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

Jacox, Michael G. (Idaho Falls, ID); Drexler, Robert L. (Idaho Falls, ID); Hunt, Robert N. M. (Idaho Falls, ID); Lake, James A. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

255

Aerodynamic testing of a rotating wind turbine blade  

DOE Green Energy (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

256

Are vortices in rotating superfluids breaking the Weak Equivalence Principle?  

E-Print Network (OSTI)

Due to the breaking of gauge symmetry in rotating superfluid Helium, the inertial mass of a vortex diverges with the vortex size. The vortex inertial mass is thus much higher than the classical inertial mass of the vortex core. An equal increase of the vortex gravitational mass is questioned. The possibility that the vortices in a rotating superfluid could break the weak equivalence principle in relation with a variable speed of light in the superfluid vacuum is debated. Experiments to test this possibility are investigated on the bases that superfluid Helium vortices would not fall, under the single influence of a uniform gravitational field, at the same rate as the rest of the superfluid Helium mass.

Clovis Jacinto de Matos

2009-09-15T23:59:59.000Z

257

Electromagnetic Forces and Fields in a Rotating Reference Frame  

E-Print Network (OSTI)

Maxwell’s equations and the equations governing charged particle dynamics are presented for a rotating coordinate system with the global time coordinate of an observer on the rotational axis. Special care is taken in defining the relevant entities in these equations. Ambiguities in the definitions of the electromagnetic fields are pointed out, and in fact are shown to be essential in such a system of coordinates. The Lorentz force is found to have an extra term in this frame, which has its origins in relativistic mass. A related term in the energy equation, which allows inertia to be gained even during strict corotation, suggests ways existing pulsar magnetosphere models may be modified to match observed ‘braking indices ’ more closely. Subject headings: magnetic fields — relativity — pulsars: general – 3 –

Paul N. Arendt

1998-01-01T23:59:59.000Z

258

X-ray Detection of a Rotating Radio Transient  

E-Print Network (OSTI)

Abstract “Rotating RAdio Transients ” (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.

Bryan M. Gaensler; Maura Mclaughlin; Stephen Reynolds Kazik; Borkowski N; Burgay Fern; Andrew Lyne; Ingrid Stairs; B. M. Gaensler; S. Chatterjee; M. Mclaughlin; S. Reynolds; K. Borkowski; N. Rea; A. Possenti; M. Burgay; Osservatorio Astronomico Di Roma; F. Camilo; M. Kramer; A. Lyne

2006-01-01T23:59:59.000Z

259

Thermodynamic geometry of charged rotating BTZ black holes  

SciTech Connect

We study the thermodynamics and the thermodynamic geometries of charged rotating Banados-Teitelboim-Zanelli black holes in (2+1)-gravity. We investigate the thermodynamics of these systems within the context of the Weinhold and Ruppeiner thermodynamic geometries and the recently developed formalism of geometrothermodynamics. Considering the behavior of the heat capacity and the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot describe completely the thermodynamics of these black holes and of their limiting case of vanishing electric charge. In contrast, the Legendre invariance imposed on the metric in geometrothermodynamics allows one to describe the charged rotating Banados-Teitelboim-Zanelli black holes and their limiting cases in a consistent and invariant manner.

Akbar, M. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Quevedo, H. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70543, Mexico, DF 04510 (Mexico); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Saifullah, K. [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan); Sanchez, A. [Departamento de Posgrado, CIIDET, AP 752, Queretaro, QRO 76000 (Mexico); Taj, S. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy)

2011-04-15T23:59:59.000Z

260

Design of Energy Scavengers Mounted on Rotating Shafts  

E-Print Network (OSTI)

In this paper, a novel energy scavenger is proposed. The scavenger consists of a cantilever beam on which piezoelectric films and a mass are mounted. The mass at the tip of the beam is known as the proof mass and the device is called either an energy scavenger or a beam-mass system. The beam-mass system is mounted on a rotating shaft, where the axis of the shaft is horizontal. A single-degree-of-freedom (SDOF) mathematical model is derived for the scavenger and its properties are carefully examined. From the model, it becomes clear that the rotation of the shaft and gravity cause both parametric excitations and exogenous forces which make the beam-mass system vibrate. Guidelines are provided as how to choose the scavenger parameters in order to have it resonate. Examples are given to illustrate the performance of the proposed scavenger.

Shahruz, S M

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Work plan for the Hydrogen Mitigation Test (HMT) rotation motor heater system  

DOE Green Energy (OSTI)

Workplan to design, fabricate, and install a heater system and cover hood for the HMT rotation motor and gearbox.

Vargo, G.F. Jr.

1995-02-16T23:59:59.000Z

262

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC electric motors or DC electric generators. but there is a significant difference in their working principle; in a DC electric motor or generator the Lorence force is the driving force, while in an LFEG the Coulomb force is the deriving force. So in despite to usual electric generators, this generator does not use a magnetic field and is purely electrical, which brings a similarity to bio mechanisms. We have investigated the characteristics of such a generator experimentally. This investigation sheds light on the physics of Electrohydrodynamics on liquid films.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2013-05-30T23:59:59.000Z

263

Compressibility and local instabilities of differentially rotating magnetized gas  

E-Print Network (OSTI)

We study the stability of compressible cylindrical differentially rotating flow in the presence of the magnetic field, and show that compressibility alters qualitatively the stability properties of flows. Apart from the well-known magnetorotational instability that can occur even in incompressible flow, there exist a new instability caused by compressibility. The necessary condition of the newly found instability can easily be satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A; Bonanno, Alfio; Urpin, Vadim

2007-01-01T23:59:59.000Z

264

Plasma Frequency Shift Due to a Slowly Rotating Compact Star  

E-Print Network (OSTI)

We investigate the effects of a slowly rotating compact gravitational source on plasma oscillations using the gravitoelectromagnetic approximation to General Relativity. It is shown that there is a shift in the plasma frequency and hence in the refractive index of the plasma due to the gravitomagnetic force. Estimates for the difference in frequency of radially transmitted electromagnetic signals are given for typical compact star candidates. 1

Babur M. Mirza; Hamid Saleem

2005-01-01T23:59:59.000Z

265

Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in  

E-Print Network (OSTI)

of the barrier heights of 1, n-butane, and ethane, the time constants for n-butane and ethane internal rotation is not completely free. (2) The trans-gauche isomerization of 1,2- disubstituted ethane derivatives, such as n-butane energy barrier of the n-butane (Ã?3.4 kcal/mol) and of other simple 1,2-disubstituted ethane derivatives

Fayer, Michael D.

266

HomoFaber 2010 Turbine hydraulique contra-rotative  

E-Print Network (OSTI)

HomoFaber 2010 Turbine hydraulique contra-rotative Personne de contact Dr. Pierre Maruzewski inexploitée à ce jour. Le projet « Micro Turbine » est un projet visant à récupérer une partie de cette énergie perdue. L'idée est de turbiner à même les conduites afin d'assurer la perte de pression désirée

267

On the toroidal plasma rotations induced by lower hybrid waves  

Science Conference Proceedings (OSTI)

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves.

Guan Xiaoyin; Fisch, Nathaniel J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2013-02-15T23:59:59.000Z

268

Trailing edge noise theory for rotating blades in uniform flow  

E-Print Network (OSTI)

This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.

Sinayoko, Samuel; Agarwal, Anurag

2013-01-01T23:59:59.000Z

269

Solar differential rotation and properties of magnetic clouds  

E-Print Network (OSTI)

The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they o...

Georgieva, K; Gavruseva, E; Javaraiah, J

2005-01-01T23:59:59.000Z

270

On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves  

SciTech Connect

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________

Xiaoyin Guan, Hong Qin, Jian Liu and Nathaniel J. Fisch

2012-11-14T23:59:59.000Z

271

An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction  

Science Conference Proceedings (OSTI)

Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ... Keywords: AUC, CRM, Customer churn prediction, Database marketing, Ensemble classification, ICA, Lift, RotBoost, Rotation Forest, Rotation-based ensemble classifiers

Koen W. De Bock; Dirk Van den Poel

2011-09-01T23:59:59.000Z

272

Study on the Maize Straw Process of Fast Pyrolysis in the Rotating Cone Reactor and Process  

Science Conference Proceedings (OSTI)

With maize straw as raw material and quartz sand as heat medium, the system of rapid pyrolysis of biology materials using a rotating cone reactor was established. seven main factors during the pyrolysis process including temperature, rotating rate, degree ... Keywords: biomass, maize straw, bio-oil, fast pyrolysis, rotating cone reactor

Li Junsheng

2010-03-01T23:59:59.000Z

273

Introducing knowledge redundancy practice in software development: Experiences with job rotation in support work  

Science Conference Proceedings (OSTI)

Context: Job rotation is a widely known approach to increase knowledge redundancy but empirical evidence regarding introduction and adoption in software development is scant. A lack of knowledge redundancy is a limiting factor for collaboration, flexibility, ... Keywords: Agile organizations, Empirical software engineering, Job rotation, Organizational learning, Personnel rotation, Software development

Tor Erlend Fægri; Tore Dybå; Torgeir Dingsøyr

2010-10-01T23:59:59.000Z

274

Comparison of Crop Rotation for Verticillium Wilt Management and Effect on Pythium Species in Conventional and Organic Strawberry Production  

E-Print Network (OSTI)

Koike, S. T. 1998. Effects of crop rotation and irrigationwww.apsnet.org Comparison of Crop Rotation for VerticilliumK. V. 2009. Comparison of crop rotation for Verticillium

Subbarao, Krishna V

2009-01-01T23:59:59.000Z

275

ACHRE Report: Part I Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Part I: Overview Part I: Overview When the Advisory Committee began work in April 1994 we were charged with determining whether "the [radiation] experiments' design and administration adequately met the ethical and scientific standards, including standards of informed consent, that prevailed at the time of the experiments and that exist today" and also to "determine the ethical and scientific standards and criteria by which it shall evaluate human radiation experiments." Although this charge seems straightforward, it is in fact difficult to determine what the appropriate standards should be for evaluating the conduct and policies of thirty or fifty years ago. First, we needed to determine the extent to which the standards of that time are similar to the standards of today. To the extent that there were differences we needed to determine the relative roles of each in making moral evaluations.

276

Geometric Qualification of Production Parts  

SciTech Connect

Computer Aided Design (CAD) is a commonly utilized software tool to conceptualize and create the part designs that are then used as input for product definition, or for the manufacture of production parts within commercial industry and, more specifically, at the Kansas City Plant (KCP). However, data created on CAD systems is, at times, unable to regenerate within the originating CAD system or be shared or translated for use by a dissimilar CAD system. Commercial software has been developed to help identify or qualify these difficulties that occur in the usage of this data. This project reviewed the different commercial software packages available for the activity of qualification and made recommendations for availability and use in the design processes at the KCP prior to the release of the product definition.

J. A. Bradley

2005-09-30T23:59:59.000Z

277

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

278

The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars  

E-Print Network (OSTI)

It has been speculated that WR winds may have contaminated the forming solar system, in particular with short-lived radionuclides (half-lives in the approximate 10^5 - 10^8 y range) that are responsible for a class of isotopic anomalies found in some meteoritic materials. We revisit the capability of the WR winds to eject these radionuclides using new models of single non-exploding WR stars with metallicity Z = 0.02. The earlier predictions for non-rotating WR stars are updated, and models for rotating such stars are used for the first time in this context. We find that (1) rotation has no significant influence on the short-lived radionuclide production by neutron capture during the core He-burning phase, and (2) 26Al, 36Cl, 41Ca, and 107Pd can be wind-ejected by a variety of WR stars at relative levels that are compatible with the meteoritic analyses for a period of free decay of around 10^5 y between production and incorporation into the forming solar system solid bodies. We confirm the previously published conclusions that the winds of WR stars have a radionuclide composition that can meet the necessary condition for them to be a possible contaminating agent of the forming solar system. Still, it remains to be demonstrated from detailed models that this is a sufficient condition for these winds to have provided a level of pollution that is compatible with the observations.

M. Arnould; S. Goriely; G. Meynet

2006-03-21T23:59:59.000Z

279

Ex parte communication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

summary of ex parte discussion with Mitsubishi on Variable Refrigerant Flow HVAC systems Ex parte communication More Documents & Publications Mitsubishi Electric:...

280

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS Tutorial_ROTATION_WITH_INDUSTRY.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROTATION WITH INDUSTRY ROTATION WITH INDUSTRY REV: APRIL 2009 1 1. The PMCDP participant must request a rotation through a supervisor/first line manager according to his or her program office policy. 2. Rotation with Industry assignments are available to project managers certified at Level 1 or higher as career-broadening experiences. Whether for certification or for CE credit, a Rotation with Industry assignment must be included as an IDP activity. 3. The PSO, Field Element Manger, Office Manager or other program official must nominate candidates for Rotation with Industry assignments. The Certification Review Board then approves certified federal project directors for rotational assignments according to his or her developmental needs and qualifications.

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rotating-filaments-pairs in a hexagonal superlattice state in dielectric barrier discharge  

SciTech Connect

Rotating-filaments-pairs in a hexagonal superlattice state (HSS) are studied in a dielectric barrier discharge system. The evolution and phase diagrams of HSS are given. The wavelength of HSS and the mean diameter of the two rotating filaments all decrease with the increase of applied voltage. The instantaneous orientations of rotating-filaments-pairs are equal probability approximately. There is a larger peak and a smaller one in both the probability density functions of the rotation speed ({omega}) of rotating filaments and that of the distance (D) between two rotating filaments. According to the fitting curves of ln{omega}{sup 2} vs. lnD, {omega}{sup 2} is inversely proportional to D{sup 7}. The rotation of filaments is discussed theoretically by the force among surface charges.

Dong Lifang; Yang Yujie; Li Ben; Fan Weili; Song Qian [College of Physics Science and Technology, Hebei University, Baoding 071002 (China) and Hebei Key Laboratory of Optic-electronic Information Materials, Baoding 071002 (China)

2011-12-15T23:59:59.000Z

282

A CATALOG OF ROTATION AND ACTIVITY IN EARLY-M STARS  

Science Conference Proceedings (OSTI)

We present a catalog of rotation and chromospheric activity in a sample of 334 M dwarfs of spectral types M0-M4.5 populating the parameter space around the boundary to full convection. We obtain high-resolution optical spectra for 206 targets and determine projected rotational velocity, vsin i, and H{alpha} emission. The data are combined with measurements of vsin i in field stars of the same spectral type from the literature. Our sample adds 157 new rotation measurements to the existing literature and almost doubles the sample of available vsin i. The final sample provides a statistically meaningful picture of rotation and activity at the transition to full convection in the solar neighborhood. We confirm a steep rise in the fraction of active stars at the transition to full convection known from earlier work. In addition, we see a clear rise in rotational velocity in the same stars. In very few stars, no chromospheric activity but a detection of rotational broadening is reported. We argue that all of them are probably spurious detections; we conclude that in our sample all significantly rotating stars are active, and all active stars are significantly rotating. The rotation-activity relation is valid in partially and in fully convective stars. Thus, we do not observe any evidence for a transition from a rotationally dominated dynamo in partially convective stars to a rotation-independent turbulent dynamo in fully convective stars; turbulent dynamos in fully convective stars of spectral types around M4 are still driven by rotation. Finally, we compare projected rotational velocities of 33 stars to rotational periods derived from photometry in the literature and determine inclinations for a few of them.

Reiners, Ansgar; Joshi, Nandan [Institut fuer Astrophysik Goettingen, Physik Fakultaet, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Goldman, Bertrand, E-mail: Ansgar.Reiners@phys.uni-goettingen.de [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany)

2012-04-15T23:59:59.000Z

283

Rotating charged black holes accelerated by an electric field  

E-Print Network (OSTI)

The Ernst method of removing nodal singularities from the charged C-metric representing uniformly accelerated black holes with mass $m$, charge $q$ and acceleration $A$ by "adding" an electric field $E$ is generalized. Utilizing the new form of the C-metric found recently, Ernst's simple "equilibrium" condition $mA=qE$ valid for small accelerations is generalized for arbitrary $A$. The nodal singularity is removed also in the case of accelerating and rotating charged black holes, and the corresponding equilibrium condition is determined.

Jiri Bicak; David Kofron

2010-06-21T23:59:59.000Z

284

Control coil arrangement for a rotating machine rotor  

DOE Patents (OSTI)

A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

Shah, Manoj R. (Latham, NY); Lewandowsk, Chad R. (Amsterdam, NY)

2001-07-31T23:59:59.000Z

285

Control Coil Arrangement for a Rotating Machine Rotor  

DOE Patents (OSTI)

A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

Shah, Manoj R.; Lewandowski, Chad R.

1999-05-05T23:59:59.000Z

286

Plasma Frequency Shift Due to a Slowly Rotating Compact Star  

E-Print Network (OSTI)

We investigate the effects of a slowly rotating compact gravitational source on electron oscillations in a homogeneous electrically neutral plasma in the absence of an external electric or magnetic field. Neglecting the random thermal motion of the electrons we assume the gravitoelectromagnetic approximation to the general theory of relativity for the gravitational field. It is shown that there is a shift in the plasma frequency and hence in the dielectric constant of the plasma due to the gravitomagnetic force. We also give estimates for the difference in the frequency of radially transmitted electromagnetic signals for typical compact star candidates.

Babur M. Mirza; Hamid Saleem

2005-01-01T23:59:59.000Z

287

Development of a Compact Rotating-Wave Electron Beam Accelerator  

Science Conference Proceedings (OSTI)

We present the successful prototype development results of a novel compact rotating-wave electron beam accelerator (RWA). The RWA uses a single cylindrical cavity holding a transverse-magnetic resonant mode in combination with an axial static magnetic field to accelerate electrons to higher energies. With approximately 80 kilowatts of microwave power fed into a C-band cavity, we have been able to successfully accelerate a 3 keV electron beam to {approx}760 keV. The compact RWA accelerator could be the basis for a new class of compact and affordable 1-10 MeV microwave accelerators for military, medical and industrial applications.

Velazco, Jose E.; Ceperley, Peter H. [Microwave Technologies Incorporated, Fairfax, Virginia 22030 (United States); Departments of Physics and Electrical Engineering, George Mason University, Fairfax, Virginia 22030 (United States)

2003-08-26T23:59:59.000Z

288

Method of forming and assembly of parts  

DOE Patents (OSTI)

A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

Ripley, Edward B. (Knoxville, TN)

2010-12-28T23:59:59.000Z

289

Electromagnetic Detection and Real-Time DMLC Adaptation to Target Rotation During Radiotherapy  

SciTech Connect

Purpose: Intrafraction rotation of more than 45 Degree-Sign and 25 Degree-Sign has been observed for lung and prostate tumors, respectively. Such rotation is not routinely adapted to during current radiotherapy, which may compromise tumor dose coverage. The aim of the study was to investigate the geometric and dosimetric performance of an electromagnetically guided real-time dynamic multileaf collimator (DMLC) tracking system to adapt to intrafractional tumor rotation. Materials/Methods: Target rotation was provided by changing the treatment couch angle. The target rotation was measured by a research Calypso system integrated with a real-time DMLC tracking system employed on a Varian linac. The geometric beam-target rotational alignment difference was measured using electronic portal images. The dosimetric accuracy was quantified using a two-dimensional ion chamber array. For each beam, the following five delivery modes were tested: 1) nonrotated target (reference); 2) fixed rotated target with tracking; 3) fixed rotated target without tracking; 4) actively rotating target with tracking; and 5) actively rotating target without tracking. Dosimetric performance of the latter four modes was measured and compared to the reference dose distribution using a 3 mm/3% {gamma}-test. Results: Geometrically, the beam-target rotational alignment difference was 0.3 Degree-Sign {+-} 0.6 Degree-Sign for fixed rotation and 0.3 Degree-Sign {+-} 1.3 Degree-Sign for active rotation. Dosimetrically, the average failure rate for the {gamma}-test for a fixed rotated target was 11% with tracking and 36% without tracking. The average failure rate for an actively rotating target was 9% with tracking and 35% without tracking. Conclusions: For the first time, real-time target rotation has been accurately detected and adapted to during radiation delivery via DMLC tracking. The beam-target rotational alignment difference was mostly within 1 Degree-Sign . Dose distributions to fixed and actively rotating targets with DMLC tracking were significantly superior to those without tracking.

Wu Junqing [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); School of Health Sciences, Purdue University, West Lafayette, IN (United States); Ruan, Dan [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Cho, Byungchul [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Asan Medical Center, Seoul (Korea, Republic of); Sawant, Amit [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Petersen, Jay; Newell, Laurence J. [Calypso Medical Technologies, Seattle, WA (United States); Cattell, Herbert [Varian Medical Systems, Palo Alto, CA (United States); Keall, Paul J., E-mail: radphyslab@sydney.edu.au [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney (Australia)

2012-03-01T23:59:59.000Z

290

The Evolution of Distorted Rotating Black Holes I: Methods and Tests  

E-Print Network (OSTI)

We have developed a new numerical code to study the evolution of distorted, rotating black holes. We discuss the numerical methods and gauge conditions we developed to evolve such spacetimes. The code has been put through a series of tests, and we report on (a) results of comparisons with codes designed to evolve non-rotating holes, (b) evolution of Kerr spacetimes for which analytic properties are known, and (c) the evolution of distorted rotating holes. The code accurately reproduces results of the previous NCSA non-rotating code and passes convergence tests. New features of the evolution of rotating black holes not seen in non-rotating holes are identified. With this code we can evolve rotating black holes up to about $t=100M$, depending on the resolution and angular momentum. We also describe a new family of black hole initial data sets which represent rotating holes with a wide range of distortion parameters, and distorted non-rotating black holes with odd-parity radiation. Finally, we study the limiting slices for a maximally sliced rotating black hole and find good agreement with theoretical predictions.

Steven R. Brandt; Edward Seidel

1994-12-22T23:59:59.000Z

291

Rapid Rotation, Active Nests of Convection and Global-scale Flows in Solar-like Stars  

E-Print Network (OSTI)

In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and sl...

Brown, Benjamin P; Brun, Allan Sacha; Miesch, Mark S; Toomre, Juri

2008-01-01T23:59:59.000Z

292

CAPITAL PROGRAMMING GUIDE (PART 7)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAPITAL PROGRAMMING GUIDE CAPITAL PROGRAMMING GUIDE V 2.0 SUPPLEMENT TO OFFICE OF MANAGEMENT AND BUDGET CIRCULAR A-11, PART 7: PLANNING, BUDGETING, AND ACQUISITION OF CAPITAL ASSETS JUNE 2006 CAPITAL PROGRAMMING GUIDE LIST OF ABBREVIATIONS LIST OF ABBREVIATIONS ACP Agency Capital Plan CI Commercial Items COTS Commercial-off-the-shelf ESPC Energy Savings Performance Contract EVM Earned Value Management FAR Federal Acquisition Regulation FARA Federal Acquisition Reform Act (Clinger-Cohen Act) of 1996 1 (Division D of Pub. L. No. 104-106) FASA Federal Acquisition Streamlining Act of 1994 (Pub. L. No. 103-355) FRPC Federal Real Property Council GAO Government Accountability Office GPRA Government Performance and Results Act of 1993 (Pub. L. No. 103-62)

293

Spanwise aerodynamic loads on a rotating wind turbine blade  

DOE Green Energy (OSTI)

Wind turbine performance and load predictions depend on accurate airfoil performance data. Wind tunnel test data are typically used which accurately describe two-dimensional airfoil performance characteristics. Usually these data are only available for a range of angles of attack from 0 to 15 deg, which excludes the stall characteristics. Airfoils on stall-controlled wind turbines operate in deep stall in medium to high winds. Therefore it is very important to know how the airfoil will perform in these high load conditions. Butterfield et al. have shown that three-dimensional effects and rotation of the blade modify the two-dimensional performance of the airfoil. These effects are modified to different degrees throughout the blade span. The Solar Energy Research Institute (SERI) has conducted a series of tests to measure the spanwise variation of airfoil performance characteristics on a rotating wind turbine blade. Maximum lift coefficients were measured to be 200% greater than wind tunnel results at the 30% span. Stall characteristics were generally modified throughout the span. Lift characteristics were unmodified for low to medium angles of attack. This paper discusses these test results for four spanwise locations. 8 refs., 12 figs.

Butterfield, C.P.; Simms, D.; Musial, W.; Scott, G.

1990-10-01T23:59:59.000Z

294

Rotational Invariance, Phase Relationships and the Quantum Entanglement Illusion  

E-Print Network (OSTI)

Another Bell test "loophole" - imperfect rotational invariance - is explored, and novel realist ideas on parametric down-conversion as used in recent "quantum entanglement" experiments are presented. The usual quantum theory of entangled systems assumes we have rotational invariance (RI), so that coincidence rates depend on the difference only between detector settings, not on the absolute values. Bell tests, as such, do not necessarily require RI, but where it fails the presentation of results in the form of coincidence curves can be grossly misleading. Even if the well-known detection loophole were closed, the visibility of such curves would tell us nothing about the degree of entanglement! The problem may be especially relevant to recent experiments using "degenerate type II parametric down-conversion" sources. Logical analysis of the results of many experiments suggests realist explanations involving some new physics. The systems may be more nearly deterministic than quantum theory implies. Whilst this may be to the advantage of those attempting to make use of the so-called "Bell correlations" in computing, encryption, "teleportation" etc., it does mean that the systems obey ordinary, not quantum, logic.

Caroline H Thompson

1999-12-16T23:59:59.000Z

295

Short rotation wood crops program: Annual progress report for 1986  

DOE Green Energy (OSTI)

This report describes accomplishments in the Short Rotation Woody Crops Program (SRWCP) for the year ending September 30, 1986. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and consists of research projects at 29 institutions and corporations. The SRWCP is an integrated program of research and development devoted to a single objective: improving the productivity, cost efficiency, and fuel quality of wood energy crops as feedstocks for conversion to liquid and gaseous fuels. SRWCP directives have shifted from species-screening and productivity evaluations to large-scale viability trials of model species selected for their productivity potential and environmental compatibility. Populus was chosen the lead genera of five model species, and initial steps were taken toward organizing a Populus Research Consortium. Production yields from SRWCP research plots and coppice studies are discussed along with new efforts to model growth results and characteristics on a tree and stand basis. Structural and chemical properties of short-rotation intensive culture wood have been evaluated to determine the desirability of species traits and the potential for genetic improvements. Innovative wood energy crop handling techniques are presented as significant cost reduction measures. The conclusion is that new specialized wood energy crops can be feasible with the advances that appear technically possible over the next 10 years. 34 refs., 9 figs., 7 tabs.

Ranney, J.W.; Wright, L.L.; Layton, P.A.; McNabb, W.A.; Wenzel, C.R.; Curtin, D.T.

1987-11-01T23:59:59.000Z

296

The rotating wind of the quasar PG 1700+518  

E-Print Network (OSTI)

It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad H-alpha emission line in the quasar PG 1700+158 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (~4,000 km/s), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.

S. Young; D. J. Axon; A. Robinson; J. H. Hough; J. E. Smith

2008-02-27T23:59:59.000Z

297

Process Governance—Part II Process Governance—Part II  

E-Print Network (OSTI)

Process Governance is important and necessary in all business sectors, because: 1-organizations have to protect their interest in solving whatever old and new problems they encounter; 2- Process Management has many applications (knowledge management, information system design and implementation, etc.); 3- within organizations, different units/areas express different interests in Process Management; 4- Process Management initiatives can be integrated according to the benefits they generate; 5- power over cross processes should be balanced, i.e., in Process Management there should be persons responsible and others co-responsible for certain actions; and 6- Process Management yields results for all involved; this, in the long term, will lead to disputes over responsibilities in its field of action. In order to enable organizations to create and adopt models of Process Governance, some authors on the subject define frameworks that structure the field in which Governance is conceived and operated. The main definitions and frameworks set out in the literature were discussed in Process Governance Part I published in the October BPTrends Update. Drawing on analysis of these existing Process Governance architectures, on vast experience in consulting projects in companies representing a wide diversity of industries, and on research

Rafael Paim; Raquel Flexa

2011-01-01T23:59:59.000Z

298

Ex Parte Communications | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Open Government » Ex Parte Communications Open Government » Ex Parte Communications Ex Parte Communications Ex Parte Communication Guidance Guidance on Ex Parte Communications in Rulemaking Proceedings (October 2009) Ex Parte Communications Received Assistance to Foreign Atomic Energy Activities Nuclear Energy Institute Letter Regarding Proposed Revision of 10 CFR 810 - (March 13, 2012) Exelon Statement Regarding Nuclear Safety and 10 CFR 810 - (May 9, 2012) Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 - (June 11, 2012) Ex Parte Communication with the Department of Energy - (August 1, 2013) Memorandum of Ex Parte Communication with the Department of Energy - (August 21, 2013) Memo for the Initial GAO Meeting on Part 810 - (September 10, 2013) American Nuclear Society (ANS) - October 28, 2013

299

Rotational damping in a multi-$j$ shell particles-rotor model  

E-Print Network (OSTI)

The damping of collective rotational motion is investigated by means of particles-rotor model in which the angular momentum coupling is treated exactly and the valence nucleons are in a multi-$j$ shell mean-field. It is found that the onset energy of rotational damping is around 1.1 MeV above yrast line, and the number of states which form rotational band structure is thus limited. The number of calculated rotational bands around 30 at a given angular momentum agrees qualitatively with experimental data. The onset of rotational damping takes place gradually as a function of excitation energy. It is shown that the pairing correlation between valence nucleons has a significant effect on the appearance of rotational damping.

Lu Guo; Jie Meng; Enguang Zhao; Fumihiko Sakata

2004-07-25T23:59:59.000Z

300

Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith  

DOE Patents (OSTI)

A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.

Milleron, Norman (1854 San Juan, Berkeley, CA 94707)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple  

SciTech Connect

Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-01-11T23:59:59.000Z

302

Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance  

E-Print Network (OSTI)

A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field.

C. H. Raymond Ooi

2003-06-04T23:59:59.000Z

303

Rotating charged hairy black hole in (2+1) dimensions and particle acceleration  

E-Print Network (OSTI)

In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.

Sadeghi, J; Farahani, H

2013-01-01T23:59:59.000Z

304

Rotating charged hairy black hole in (2+1) dimensions and particle acceleration  

E-Print Network (OSTI)

In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.

J. Sadeghi; B. Pourhassan; H. Farahani

2013-10-26T23:59:59.000Z

305

Building Public Trust: Part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Protecting Future Human Subjects 2: Protecting Future Human Subjects Overview The success of the effort to open the historical record will be measured, in part, by whether we avoid repeating the mistakes of the past. ACHRE's review of human radiation experiments raised questions of whether the current system of protection is adequate for all types of human subjects research. The measures described below will strengthen the protection of human subjects and address ACHRE's findings. The measures described below will strengthen the protection of human subjects and address ACHRE's findings. Federal responsibilities for maintaining ethics in human subjects research are dispersed in several agencies and committees in the government. First, each agency is responsible for the ethical admin-istration of its programs, including grants and contracts. Second, the President's Office of Science and Technology Policy has a statutory oversight role, and will continue to monitor and address issues of science and ethics. Third, the Department of Health and Human Services has a convening role among agencies that are bound by the Common Rule the Federal Policy for the Protection of Human Subjects which, along with Food and Drug Administration (FDA) regulations, governs all federally conducted, funded, or regulated research (56 Federal Register 28010, June 18, 1991). Finally, the National Bioethics Advisory Commission (NBAC) an independent body recently established by the President is taking up some of the most pressing ethical issues faced by this country.

306

Paramagnetic spin-up of a field reversed configuration with rotating magnetic field current drive.  

E-Print Network (OSTI)

??A transverse Rotating Magnetic Field (RMF) can drive toroidal current and sustain the poloidal flux of a Field Reversed Configuration (FRC) through the application of… (more)

Peter, Andrew Maxwell

2009-01-01T23:59:59.000Z

307

NREL: MIDC/SMUD Anatolia Rotating Shadowband Radiometer (38.55...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the SMUD Anatolia Irradiance Inc. Rotating Shadowband Radiometer v2....

308

Review of effects of NBI (neutral beam injection) and rotation on plasma transport in tokamaks  

SciTech Connect

The experimental and theoretical indications of effects of unbalanced neutral beam injection and plasma rotation on plasma transport in tokamaks are reviewed. 72 refs. (CBS)

Stacey, W.M. Jr.

1989-06-01T23:59:59.000Z

309

Design, and characterisation of impact based and non-contact piezoelectric harvesters for rotating objects.  

E-Print Network (OSTI)

??This thesis highlights two different methods of extracting electrical energy from rotational forces using impact based and non-contact based piezoelectric harvesters. In this work, the… (more)

Manla, Ghaithaa

2010-01-01T23:59:59.000Z

310

Visualizing Magneto-Rotational Instability and Turbulent Angular Momentum  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbulent Angular Momentum Transport Turbulent Angular Momentum Transport Magneto-Rotational Instability and Turbulent Angular Momentum Transport hydroentropyvisit0400.s.x2005.png In space, gases and other matter often form swirling disks around attracting central objects such as newly formed stars. The presence of magnetic fields can cause the disks to become unstable and develop turbulence, causing the disk material to fall onto the central object. This project will carry out large-scale simulations to test theories on how turbulence can develop in such a scenario. These simulations may provide insights into magnetically caused instabilities being studied on a smaller scale in laboratory experiments. In this image volume rendering has been used to visualize the time evolution of hydrodynamic entropy. The color

311

Radiative Shocks in Rotating Accretion Flows around Black Holes  

E-Print Network (OSTI)

It is well known that the rotating inviscid accretion flows with adequate injection parameters around black holes could form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of cooling and heating of the gas and radiation transport. The numerical results show that the shock location shifts outward compared with that in the adiabatic solutions and that the more rarefied ambient density leads to the more outward shock location. In the 2D-flow, we find an intermediate frequency QPO behavior of the shock location as is observed in the black hole candidate GRS 1915+105.

T. Okuda; V. Teresi; E. Toscano; D. Molteni

2004-03-04T23:59:59.000Z

312

Novel Carbon Films for Next Generation Rotating Equipment Applications  

DOE Green Energy (OSTI)

This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularly attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.

Michael McNallan; Ali Erdemir; Yury Gogotsi

2006-02-20T23:59:59.000Z

313

Bounding the Greybody Factors for Non-rotating Black Holes  

E-Print Network (OSTI)

Semiclassical black holes emit radiation called Hawking radiation. Such radiation, as seen by an asymptotic observer far outside the black hole, differs from original radiation near the horizon of the black hole by a redshift factor and the so-called "greybody factor". In this paper, we concentrate on the greybody factor-various bounds for the greybody factors of non-rotating black holes are obtained, concentrating on charged Reissner-Nordstrom and Reissner-Nordstrom-de Sitter black holes. These bounds can be derived by using a 2x2 transfer matrix formalism. It is found that the charges of black holes act as efficient barriers. Furthermore, adding extra dimensions to spacetime can shield Hawking radiation. Finally, the cosmological constant can increase the emission rate of Hawking radiation.

Tritos Ngampitipan; Petarpa Boonserm

2012-11-17T23:59:59.000Z

314

Altitude Limits for Rotating Vector Model Fitting of Pulsar Polarization  

E-Print Network (OSTI)

Traditional pulsar polarization sweep analysis starts from the point dipole rotating vector model (RVM) approximation. If augmented by a measurement of the sweep phase shift, one obtains an estimate of the emission altitude (Blaskiewicz, Cordes, & Wasserman). However, a more realistic treatment of field line sweepback and finite altitude effects shows that this estimate breaks down at modest altitude ~ 0.1R_{LC}. Such radio emission altitudes turn out to be relevant to the young energetic and millisecond pulsars that dominate the \\gamma-ray population. We quantify the breakdown height as a function of viewing geometry and provide simple fitting formulae that allow observers to correct RVM-based height estimates, preserving reasonable accuracy to R ~ 0.3R_{LC}. We discuss briefly other observables that can check and improve height estimates.

Craig, H A

2012-01-01T23:59:59.000Z

315

Rotating black hole thermodynamics with a particle probe  

Science Conference Proceedings (OSTI)

The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

Gwak, Bogeun; Lee, Bum-Hoon [Department of Physics and Center of Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)

2011-10-15T23:59:59.000Z

316

Orientation Waves in a Director Field With Rotational Inertia  

E-Print Network (OSTI)

We study the propagation of orientation waves in a director field with rotational inertia and potential energy given by the Oseen-Frank energy functional from the continuum theory of nematic liquid crystals. There are two types of waves, which we call splay and twist waves. Weakly nonlinear splay waves are described by the quadratically nonlinear Hunter-Saxton equation. Here, we show that weakly nonlinear twist waves are described by a new cubically nonlinear, completely integrable asymptotic equation. This equation provides a surprising representation of the Hunter-Saxton equation as an advection equation. There is an analogous representation of the Camassa-Holm equation. We use the asymptotic equation to analyze a one-dimensional initial value problem for the director-field equations with twist-wave initial data.

Giuseppe Ali; John K. Hunter

2006-09-07T23:59:59.000Z

317

Controlling the collimation and rotation of hydromagnetic disk winds  

E-Print Network (OSTI)

(Abriged) We present a comprehensive set of axisymmetric, time-dependent simulations of jets from Keplerian disks whose mass loading as a function of disk radius is systematically changed. For a reasonable model for the density structure and injection speed of the underlying accretion disk, mass loading is determined by the radial structure of the disk's magnetic field structure. We vary this structure by using four different magnetic field configurations, ranging from the "potential" configuration (Ouyed&Pudritz 1997), to the increasingly more steeply falling Blandford&Payne (1982) and Pelletier&Pudritz (1992) models, and ending with a quite steeply raked configuration that bears similarities to the Shu X-wind model. We find that the radial distribution of the mass load has a profound effect on both the rotational profile of the underlying jet as well as the degree of collimation of its outflow velocity and magnetic field lines. We show analytically, and confirm by our simulations, that the colli...

Pudritz, R E; Ouyed, R; Pudritz, Ralph E.; Rogers, Conrad; Ouyed, Rachid

2006-01-01T23:59:59.000Z

318

Propagation and Transmission of Alfven Waves in Rotating Magnetars  

E-Print Network (OSTI)

We study the propagation and transmission of Alfven waves in the context of cylindrical geometry. This approximates the polar cap region of aligned pulsar with strong magnetic fields. Non-propagating region appears in the presence of rotation. The displacement current further prevents the low frequency modes from propagating near the stellar surface. The transmission rates to the exterior through the surface are calculated. The rates increase with the frequency and the magnetic field strength. The transmission also depends on the helicity states of the waves, but the difference becomes small in the high frequency regime. We also point out the possibility of the spin-up by outgoing wave emission in the low frequency regime, if a certain condition holds.

Yasufumi Kojima; Taishi Okita

2004-06-25T23:59:59.000Z

319

Quadrupole moments of rotating neutron stars and strange stars  

E-Print Network (OSTI)

We present results for models of neutron stars and strange stars constructed using the Hartle-Thorne slow-rotation method with a wide range of equations of state, focusing on the values obtained for the angular momentum $J$ and the quadrupole moment $Q$, when the gravitational mass $M$ and the rotational frequency $\\Omega$ are specified. Building on previous work, which showed surprising uniformity in the behaviour of the moment of inertia for neutron-star models constructed with widely-different equations of state, we find similar uniformity for the quadrupole moment. These two quantities, together with the mass, are fundamental for determining the vacuum space-time outside neutron stars. We study particularly the dimensionless combination of parameters $QM/J^2$ (using units for which $c=G=1$). This quantity goes to 1 in the case of a Kerr-metric black hole and deviations away from 1 then characterize the difference between neutron-star and black-hole space-times. It is found that $QM/J^2$ for both neutron stars and strange stars decreases with increasing mass, for a given equation of state, reaching a value of around 2 (or even less) for maximum-mass models, meaning that their external space-time is then rather well approximated by the Kerr metric. If $QM/J^2$ is plotter against compactness $R/2M$ (where $R$ is the radius), it is found that the relationship is nearly unique for neutron-star models, independent of the equation of state, while it is significantly different for strange stars. This gives a new way of possibly distinguishing between them.

Martin Urbanec; John C. Miller; Zdenek Stuchlik

2013-01-24T23:59:59.000Z

320

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Part B - Requirements & Funding Information PART B - Requirements and Funding Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

b. Part B 1 b. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency agreement. Attachment 3.b. Part B 2 PART B - Requirements & Funding Information B.1. Purpose This is an interagency transaction. An interagency transaction is an intra-governmental transaction when the servicing agency uses internal resources to support the requesting agency requirement and is a reimbursable activity that requires an interagency agreement. This Part of the interagency agreement (IA) (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting

322

Ex Parte Memorandum | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Parte Memorandum Parte Memorandum Ex Parte Memorandum On Wednesday, May 5, 2010, representatives from various signatories to the consensus agreement met with representatives from the Department of Energy. Advocates for the consensus agreement urged the Department of Energy to adopt the entire agreement, except provisions relating to building codes which require congressional action. The parties also discussed the need to develop effective enforcement mechanisms in general, and in particular if the Department of Energy decides to adopt regional standards for the residential heating and cooling systems covered by the consensus agreement. Ex Parte Memorandum More Documents & Publications Ex Parte Memorandum Ex Parte Memorandum - Natural Resources Defense Council Docket No. EERE-2011-BT-NOA-0067 and RIN Number 1904-AC52 Ex parte

323

Decay of the Diocotron Rotation and Transport in a New Low-Density Asymmetry-Dominated  

E-Print Network (OSTI)

linearly on the line density (and not the density) over nearly 4 orders of magnitude. INTRODUCTION The l=1]. Usually it has been observed to be a long- lived mode, with 104 -105 rotations as a typical damping time,3]. In this work we describe a new regime of damping and transport for which most of the predictions of "rotational

Gilson, Erik

324

Vibrational-Rotational Energy Distributions in the Reaction O-+ D2 f OD + D-  

E-Print Network (OSTI)

Vibrational-Rotational Energy Distributions in the Reaction O- + D2 f OD + D- Yue Li, Li Liu with a bimodal rotational energy distribution. At the higher collision energy, both V ) 0 and 1 products energy range up to 10 eV. By measuring the kinetic energy distribution of the detached electrons

Farrar, James M.

325

Rotation Angle for the Optimum Tracking of One-Axis Trackers  

DOE Green Energy (OSTI)

An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

Marion, W. F.; Dobos, A. P.

2013-07-01T23:59:59.000Z

326

Unsynchronized Translational and Rotational Diffusion of Nanocargo on a Living Cell Membrane  

SciTech Connect

A robust high-speed and high-precision single nanoparticle translational and rotational tracking method has been developed to directly monitor the interactions between transferrin-modified nanocargos (gold nanorods) and the membrane proteins prior to endocytosis. This approach shows that the translational and rotational diffusions of nanocargos on living cell membranes are unsynchronized in space and in time.

Xiao, Lehui; Wei, Lin; Liu, Chang; He, Yan; Yeung, Edward

2012-03-16T23:59:59.000Z

327

Single-ended counter-rotating radial turbine for space application  

DOE Patents (OSTI)

A single-ended turbine with counter-rotating blades operating with sodium as the working fluid. The single-ended, counter-rotating feature of the turbine results in zero torque application to a space platform. Thus, maneuvering of the platform is not adversely affected by the turbine. 4 figs.

Coomes, E.P.; Wilson, D.G.; Webb, B.J.; McCabe, S.J.

1987-05-13T23:59:59.000Z

328

The Optimal of Pyrolysis Process in the Rotating Cone Reactor and Pyrolysis Product Analysis  

Science Conference Proceedings (OSTI)

With wood shatters as raw material and quartz sand as heat medium, the process of rapid pyrolysis of biology materials with a self-made rotating cone reactor was investigated. The optimal conditions by orthogonal test indicated the pyrolysis of biology ... Keywords: Bio-oil, Fast pyrolysis, Rotating Cone Reactor

Li Junsheng

2010-03-01T23:59:59.000Z

329

Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe  

E-Print Network (OSTI)

Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe gases (GHG) con- tributing to net greenhouse gas balance of agro-ecosystems. Evaluating the impact to the final greenhouse gas balance. One experimental site (involving a maize-wheat-barley-mustard rotation

Paris-Sud XI, Université de

330

A simple model for the quenching of pairing correlations effects in rigidly deformed rotational bands  

E-Print Network (OSTI)

Using Chandrasekhar's S-type coupling between rotational and intrinsic vortical modes one may simply reproduce the HFB dynamical properties of rotating nuclei within Routhian HF calculations free of pairing correlations yet constrained on the relevant so-called Kelvin circulation operator. From the analogy between magnetic and rotating systems, one derives a model for the quenching of pairing correlations with rotation, introducing a critical angular velocity -- analogous to the critical field in supraconductors -- above which pairing vanishes. Taking stock of this usual model, it is then shown that the characteristic behavior of the vortical mode angular velocity as a function of the global rotation angular velocity can be modelised by a simple two parameter formula, both parameters being completely determined from properties of the band-head (zero-spin) HFB solution. From calculation in five nuclei, the validity of this modelised Routhian approach is assessed. It is clearly shown to be very good in cases where the evolution of rotational properties is only governed by the coupling between the global rotation and the pairing-induced intrinsic vortical currents. It therefore provides a sound ground base for evaluating the importance of coupling of rotation with other modes (shape distortions, quasiparticle degrees of freedom).

P. Quentin; H. Laftchiev; D. Samsoen; I. N. Mikhailov

2003-07-25T23:59:59.000Z

331

The Iterative Unitary Matrix Multiply Method and Its Application to Quantum Kicked Rotator  

E-Print Network (OSTI)

We use the iterative unitary matrix multiply method to calculate the long time behavior of the resonant quantum kicked rotator with a large denominator. The delocalization time is exponentially large. The quantum wave delocalizes through degenerate states. At last we construct a nonresonant quantum kicked rotator with delocalization.

Tao Ma

2007-09-14T23:59:59.000Z

332

Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities  

Science Conference Proceedings (OSTI)

The dynamics of the rotating shallow-water (RSW) system include geostrophic f low and inertial oscillation. These classes of motion are ubiquitous in the ocean and atmosphere. They are often surprising to people at first because intuition about rotating f ...

Thomas W. N. Haine; Deepak A. Cherian

2013-05-01T23:59:59.000Z

333

Using partial sensor information to orient parts  

SciTech Connect

Parts orienting, the process of bringing parts in initially unknown orientations to a goal orientation, is an important aspect of automated assembly. The most common industrial orienting systems are vibratory bowl feeders, which use the shape and mass properties of parts to orient them. Bowl feeders rely on a sequence of mechanical operations and typically do not use sensors. In this paper, the authors describe the use of partial information sensors along with a sequence of pushing operations to eliminate uncertainty in the orientation of parts. The authors characterize the shorter execution lengths of sensor-based plans and show that sensor-based plans are more powerful than sensorless plans in that they can bring a larger class of parts to distinct orientations. The authors characterize the relation among part shape, orientability; and recognizability to identify conditions under which a single plan can orient and recognize multiple part shapes. Although part shape determines the results of the actions and the sensed information, the authors establish that differences in part shape do not always lead to differences in part behavior. The authors show that for any convex polygon, there exists an infinite set of nonsimilar convex polygons that behave identically under linear normal pushes. Furthermore, there exists a infinite set of nonsimilar convex polygons whose behavior cannot be distinguished even with diameter sensing after each push. They authors have implemented several planners and demonstrated generated plans in experiments.

Akella, S.; Mason, M.T.

1999-10-01T23:59:59.000Z

334

Center of mass rotation and vortices in an attractive Bose gas  

E-Print Network (OSTI)

The rotational properties of an attractively interacting Bose gas are studied using analytical and numerical methods. We study perturbatively the ground state phase space for weak interactions, and find that in an anharmonic trap the rotational ground states are vortex or center of mass rotational states; the crossover line separating these two phases is calculated. We further show that the Gross-Pitaevskii equation is a valid description of such a gas in the rotating frame and calculate numerically the phase space structure using this equation. It is found that the transition between vortex and center of mass rotation is gradual; furthermore the perturbative approach is valid only in an exceedingly small portion of phase space. We also present an intuitive picture of the physics involved in terms of correlated successive measurements for the center of mass state.

Anssi Collin; Emil Lundh; Kalle-Antti Suominen

2004-03-12T23:59:59.000Z

335

Dynamical evolution of rotating dense stellar systems with embedded black holes  

E-Print Network (OSTI)

Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters, galactic nuclei) with embedded black holes is investigated. The interaction between the black hole and stellar component in differential rotating flattened systems is followed. The interplay between velocity diffusion due to relaxation and black hole star accretion is investigated together with cluster rotation using 2D+1 Fokker-Planck numerical methods. The models can reproduce the Bahcall-Wolf solution $f \\propto E^{1/4}$ ($n \\propto r^{-7/4}$) inside the zone of influence of the black hole. Gravo-gyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to the non-rotating systems. Angular momentum transport and star accretion support the development of central rotation in relaxation time scales. We explore system dissolution due to mass-loss in the presence of an external tidal field (e.g. globular clusters in galaxies).

J. Fiestas; R. Spurzem

2008-10-21T23:59:59.000Z

336

Dynamical evolution of rotating dense stellar systems with embedded black holes  

E-Print Network (OSTI)

Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters, galactic nuclei) with embedded black holes is investigated. The interaction between the black hole and stellar component in differential rotating flattened systems is followed. The interplay between velocity diffusion due to relaxation and black hole star accretion is followed together with cluster rotation using 2D+1 Fokker Planck numerical methods. The models can reproduce the Bahcall-Wolf $f \\propto E^{1/4}$ ($\\rho \\propto r^{-7/4}$) cusp inside the zone of influence of the black hole. Angular momentum transport and star accretion support the development of central rotation in relaxation time scales. Gravogyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to the non-rotating systems. We explore system dissolution due to mass loss due to a galaxy tidal field (e.g. globular clusters).

Fiestas, J

2008-01-01T23:59:59.000Z

337

Unstable rotational states of string models and width of a hadron  

Science Conference Proceedings (OSTI)

Rotational states (planar uniform rotations) of various string hadron models are tested for stability with respect to small disturbances. These models include an open or closed string carrying n massive points (quarks), and their rotational states result in a set of quasilinear Regge trajectories. It is shown that rotations of the linear string baryon model q-q-q and the similar states of the closed string are unstable, because spectra of small disturbances for these states contain complex frequencies, corresponding to exponentially growing modes of disturbances. Rotations of the linear model are unstable for any values of points' masses, but for the closed string we have the threshold effect. This instability is important for describing excited hadrons; in particular, it increases predictions for their width {gamma}. Predicted large values {gamma} for N, {delta} and strange baryons in comparison with experimental data result in unacceptability of the linear string model q-q-q for describing these baryon states.

Sharov, G. S. [Tver State University, 170002, Sadovyj per. 35, Tver (Russian Federation)

2009-06-01T23:59:59.000Z

338

Control of molecular rotation with a chiral train of ultrashort pulses  

E-Print Network (OSTI)

Trains of ultrashort laser pulses separated by the time of rotational revival (typically, tens of picoseconds) have been exploited for creating ensembles of aligned molecules. In this work we introduce a chiral pulse train - a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. The chirality of such a train, expressed through the period and direction of its polarization rotation, is used as a new control parameter for achieving selectivity and directionality of laser-induced rotational excitation. The method employs chiral trains with a large number of pulses separated on the time scale much shorter than the rotational revival (a few hundred femtosecond), enabling the use of conventional pulse shapers.

S. Zhdanovich; A. A. Milner; C. Bloomquist; J. Floß; I. Sh. Averbukh; J. W. Hepburn; V. Milner

2011-08-18T23:59:59.000Z

339

Short communication: Reasoning with part-part relations in a description logic  

Science Conference Proceedings (OSTI)

In this paper, we propose an extension of the SROIQ description logic (DL) in order to support part-part relations among concepts in knowledge representation. The proposed extension introduces a conjunction of a pair of role inclusion axioms (RIAs) and ... Keywords: Description logic, Manufacturing, Ontology, Part-part relation, Tableau algorithm

Nenad Krdavac; Dragan Gaševi?

2011-03-01T23:59:59.000Z

340

Method of forming and assembly of metal parts and ceramic parts  

DOE Patents (OSTI)

A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

Ripley, Edward B. (Knoxville, TN)

2011-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE  

Science Conference Proceedings (OSTI)

We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.

Groh, J. H. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Damineli, A.; Moises, A. P.; Teodoro, M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-090, Sao Paulo, SP (Brazil); Hillier, D. J. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States); Barba, R. [Departamento de fisica, Universidad de La Serena, Benavente 980, La Serena (Chile); Fernandez-Lajus, E.; Gamen, R. C.; Solivella, G., E-mail: jgroh@mpifr-bonn.mpg.d [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, and Instituto de Astrofisica de La Plata (CCT La Plata-CONICET), Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)

2009-11-01T23:59:59.000Z

342

Model Spectra of Rotation Powered Pulsars in the INTEGRAL Range  

E-Print Network (OSTI)

The energy range of IBIS is a promising ground for testing mutual relations of distinct components expected in the spectra of high-energy radiation from rotation powered pulsars. According to some polar-cap models two such components - due to curvature and synchrotron emission - may contribute comparable amounts of power between 15 keV and 10 MeV (Rudak & Dyks 1999). Zhang & Harding (2000) argued recently for the inclusion of a third possible component, due to inverse Compton scattering (ICS) of soft thermal photons on secondary $\\epm$-pairs. Here we present the results of Monte Carlo calculations of all three spectral components within a polar-cap model which allows for interactions of relativistic particles with the soft photons coming from the pulsar surface. For teragauss pulsars with the surface temperature of a few times 10^5 K the ICS component dominates the spectrum in the energy range below 10 MeV, and thus its presence increases the ratio of X-ray to gamma-ray luminosity (in comparison to the models ignoring the ICS on secondary $\\epm$-pairs) to a level observed in the Vela pulsar.

J. Dyks; B. Rudak; T. Bulik

2000-10-16T23:59:59.000Z

343

Quantum theory of rotational isomerism and Hill equation  

SciTech Connect

The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, contains branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.

Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.; Abramishvili, R. [I. Javakhishvili Tbilisi State University, 3, I. Chavchavadze Avenue, 0179 Tbilisi (Georgia); Chotorlishvili, L. [Institut fuer Physik, Martin-Luther Universitat Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Germany)

2012-06-15T23:59:59.000Z

344

Superradiant instabilities of rotating black holes in the time domain  

E-Print Network (OSTI)

Bosonic fields on rotating black hole spacetimes are subject to amplification by superradiance, which induces exponentially-growing instabilities (the `black hole bomb') in two scenarios: if the black hole is enclosed by a mirror, or if the bosonic field has rest mass. Here we present a time-domain study of the scalar field on Kerr spacetime which probes ultra-long timescales up to $t \\lesssim 5 \\times 10^6 M$, to reveal the growth of the instability. We describe an highly-efficient method for evolving the field, based on a spectral decomposition into a coupled set of 1+1D equations, and an absorbing boundary condition inspired by the `perfectly-matched layers' paradigm. First, we examine the mirror case to study how the instability timescale and mode structure depend on mirror radius. Next, we examine the massive-field, whose rich spectrum (revealed through Fourier analysis) generates `beating' effects which disguise the instability. We show that the instability is clearly revealed by tracking the stress-energy of the field in the exterior spacetime. We calculate the growth rate for a range of mass couplings, by applying a frequency-filer to isolate individual modal contributions to the time-domain signal. Our results are in accord with previous frequency-domain studies which put the maximum growth rate at $\\tau^{-1} \\approx 1.72 \\times 10^{-7} (GM/c^3)^{-1}$ for the massive scalar field on Kerr spacetime.

Sam R. Dolan

2012-12-06T23:59:59.000Z

345

Model for simulating rotational data for wind turbine applications  

DOE Green Energy (OSTI)

This document describes a wind simulation model to be used in relation to wind turbine operations. The model is a computer code written in FORTRAN 77. The model simulates turbulence and mean wind effects as they are experienced at a rotating point on the blade of either a horizontal-axis wind turbine (HAWT) or a vertical-axis wind turbine (VAWT). The model is fast, requiring 15 to 120 seconds of VAX execution time to produce a simulation and related statistics. The model allows the user to set a number of wind parameters so that he may evaluate the uncertainty of model results as well as their typical values. When this capability is combined with short execution time, the user can quickly produce a number of simulations based on reasonable variation of input parameters and can use these simulations to obtain a range of wind turbine responses to the turbulence. This ability is important because some of the wind parameters that cannot be precisely evaluated should be prescribed over a range of values. This document is essentially a user's guide. Its features include theoretical derivations, samples of output, comparisons of measured and modeled results, a listing of the FORTRAN code, a glossary for the code, and the input and output of a sample run.

Powell, D.C.; Connell, J.R.

1986-04-01T23:59:59.000Z

346

Part B - Requirements & Funding Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B - Requirements & Funding Information B - Requirements & Funding Information PART B - Requirements & Funding Information .......................................................................................... 2 PART B - Requirements & Funding Information B.1. Purpose This Part of the IA (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting Agency' sufficient to demonstrate a bona fide need and identifies funds associated with the requirement to allow [insert the name of agency/organization that will provide acquisition services for the Department of Energy], hereinafter 'the Servicing Agency,' to provide acquisition assistance and conduct an interagency acquisition.

347

Memorandum Memorializing Ex Parte Communication - August 12,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum Memorializing Ex Parte Communication - August 12, 2011 On August 9, 2011, the Air-Conditioning, Heating and Refrigeration Institute's (AHRI) Unitary Small Engineering...

348

Ex parte memorandum | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

meeting with Small Business Refiners about DOE's planned survey to revise its "Small Refineries Exemption Study" of January 2009. Ex parte memorandum More Documents & Publications...

349

Verification of theoretically computed spectra for a point rotating in a vertical plane  

DOE Green Energy (OSTI)

A theoretical model is modified and tested that produces the power spectrum of the alongwind component of turbulence as experienced by a point rotating in a vertical plane perpendicular to the mean wind direction. The ability to generate such a power spectrum, independent of measurement, is important in wind turbine design and testing. The radius of the circle of rotation, its height above the ground, and the rate of rotation are typical for those for a MOD-OA wind turbine. Verification of this model is attempted by comparing two sets of variances that correspond to individual harmonic bands of spectra of turbulence in the rotational frame. One set of variances is calculated by integrating the theoretically generated rotational spectra; the other is calculated by integrating rotational spectra from real data analysis. The theoretical spectrum is generated by Fourier transformation of an autocorrelation function taken from von Karman and modified for the rotational frame. The autocorrelation is based on dimensionless parameters, each of which incorporates both atmospheric and wind turbine parameters. The real data time series are formed by sampling around the circle of anemometers of the Vertical Plane Array at the former MOD-OA site at Clayton, New Mexico.

Powell, D.C.; Connell, J.R.; George, R.L.

1985-03-01T23:59:59.000Z

350

Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX  

SciTech Connect

Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.

Fu, Guoyong

2013-07-16T23:59:59.000Z

351

Applications of P/M Structural Parts  

Science Conference Proceedings (OSTI)

Table 16   Automotive applications for P/M parts...Exhaust flanges EGR base plate HEGOS bosses HVAC Air conditioner compressor clutch hub Air conditioner compressor swash plate Interior fittings Lock parts (striking plate/latch) Rearview mirror mounts Pinion gears (door windows) Seat safety belt locks Speedometer gear Airbag hardware Seat...

352

enter part number BNC / RP-BNC  

E-Print Network (OSTI)

enter part number Products 7/16 1.0/2.3 1.6/5.6 AFI AMC BNC / RP-BNC C FAKRA SMB FME HN MCX Mini ------- Product Search ------- Inventory Search Search Results for: 31-10152-RFX Results: 1 - 1 of 1 Part Number. All rights reserved. Copyright | Terms & Conditions | RF E-Mail Client | Contact Us | Amphenol

Berns, Hans-Gerd

353

Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential  

E-Print Network (OSTI)

We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abrikosov vortex lattice to the pinned lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, intensity, and lattice constant of the rotating lattice potential. PACS numbers: 03.75.Lm, 03.75.Kk Quantized vortices are one of the most characteristic manifestations of superfluidity associated with a Bose-Einstein condensate (BEC) in atomic gases. By rotating anisotropic trap potentials, several experimental groups observed formation of triangular Abrikosov lattices of vortices in rotating BECs 1,2,3. Microscopic mechanism of the vortex lattice formation has been extensively studied both analytically and numerically using the Gross-Pitaevskii (GP) equation for the condensate wavefunction 4,5,6,7,8,9,10,11. More recently, the vortex phase diagrams of a BEC in rotating lattice potentials have attracted theoretical attention, since one expects vortex pinning and structural phase transition of vortex lattice structures 12,13,14. Recently, a rotating lattice has been experimentally realized at JILA, makinig use of a laser beam passing through a rotating mask 12. Stimulated by the recent JILA experiment, in this paper, we study vortex lattice structures of a BEC in a rotating triangular lattice potential created by blue-detuned laser beams. We numerically solve the two-dimensional Gross-Pitaevskii (GP) equa-T. Sato, T. Ishiyama and T. Nikuni Fig. 1. Density profile (a) and Structure factor profile (b) of BEC in the lattice potential. The lattice potential geometry is triangular lattice at a/aho = 2.2 and ?/aho = 0.65. tion in a frame rotationg with anguler velocity ?: (i ? ?)¯h ??(r,t)

Toshihiro Sato; Tomohiko Ishiyama; Tetsuro Nikuni

2006-01-01T23:59:59.000Z

354

Rotating black strings in $f(R)$-Maxwell theory  

E-Print Network (OSTI)

In general, the field equations of $f(R)$ theory coupled to a matter field are very complicated and hence it is not easy to find exact analytical solutions. However, if one considers traceless energy-momentum tensor for the matter source as well as constant scalar curvature, one can derive some exact analytical solutions from $f(R)$ theory coupled to a matter field. In this paper, by assuming constant curvature scalar, we construct a class of charged rotating black string solutions in $f(R)$-Maxwell theory. We study the physical properties and obtain the conserved quantities of the solutions. The conserved and thermodynamic quantities computed here depend on function $f'(R_{0})$ and differ completely from those of Einstein theory in AdS spaces. Besides, unlike Einstein gravity, the entropy does not obey the area law. We also investigate the validity of the first law of thermodynamics as well as the stability analysis in the canonical ensemble, and show that the black string solutions are always thermodynamically stable in $f(R)$-Maxwell theory with constant curvature scalar. Finally, we extend the study to the case where the Ricci scalar is not a constant and in particular $R=R(r)$. In this case, by using the Lagrangian multipliers method, we derive an analytical black string solution from $f(R)$ gravity and reconstructed the function $R(r)$. We find that this class of solutions has an additional logaritmic term in the metric function which incorporates the effect of the $f(R)$ theory in the solutions.

S. Salarpour; A. Sheykhi; Y. Bahrampour

2013-04-10T23:59:59.000Z

355

Controlling the collimation and rotation of hydromagnetic disk winds  

E-Print Network (OSTI)

(Abriged) We present a comprehensive set of axisymmetric, time-dependent simulations of jets from Keplerian disks whose mass loading as a function of disk radius is systematically changed. For a reasonable model for the density structure and injection speed of the underlying accretion disk, mass loading is determined by the radial structure of the disk's magnetic field structure. We vary this structure by using four different magnetic field configurations, ranging from the "potential" configuration (Ouyed&Pudritz 1997), to the increasingly more steeply falling Blandford&Payne (1982) and Pelletier&Pudritz (1992) models, and ending with a quite steeply raked configuration that bears similarities to the Shu X-wind model. We find that the radial distribution of the mass load has a profound effect on both the rotational profile of the underlying jet as well as the degree of collimation of its outflow velocity and magnetic field lines. We show analytically, and confirm by our simulations, that the collimation of a jet depends on its radial current distribution, which in turn is prescribed by the mass load. Models with steeply descending mass loads have strong toroidal fields, and these collimate to cylinders (this includes the Ouyed-Pudritz and Blandford-Payne outflows). On the other hand, the more gradually descending mass load profiles (the PP92 and monopolar distributions) have weaker toroidal fields, and these result in wide-angle outflows with parabolic collimation. We also present detailed structural information about jets such as their radial profiles of jet density, toroidal magnetic field, and poloidal jet speed, as well as an analysis of the bulk energetics of our different simulations.

Ralph E. Pudritz; Conrad Rogers; Rachid Ouyed

2005-08-12T23:59:59.000Z

356

UL Ex Parte communications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UL Ex Parte communications UL Ex Parte communications UL Ex Parte communications On December 27, I was contacted by Ms. Ashley Armstrong, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program and asked if I would be willing to meet with her and certain US DOE staff to discuss UL's "different testing and certification offerings as they relate to electric motors". Ex parte comm_1_7_2013.pdf More Documents & Publications EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. Docket No. EERE-2010-BT-STD-0027 Energy Conservation Standards for Commercial and Industrial Electric Motors: Public Meeting and Availability of the Preliminary Technical Support Document 77 Fed. Reg. 43015 (July 23,

357

Property:PartOf | Open Energy Information  

Open Energy Info (EERE)

PartOf PartOf Jump to: navigation, search Property Name PartOf Property Type Page Description Similar to Property:TypeOf, this property identifies pages that represent a larger concept that encompasses the subject page. This is most commonly used in geospatial relationships, to say that a city is PartOf a state. This is a property of type Page. Subproperties This property has the following 2 subproperties: G GRR/Section 4-FD-a - Exploration Permit BLM N User:Nlangle/test3 Pages using the property "PartOf" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Glossary + A Aaronsburg, Pennsylvania + Centre County, Pennsylvania +, Pennsylvania + Abbeville County, South Carolina + South Carolina + Abbeville, Alabama + Henry County, Alabama +, Alabama +, Alabama's 2nd congressional district +

358

Memorandum Memorializing Ex Parte Communication, DOE impending  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum Memorializing Ex Parte Communication, DOE impending Memorandum Memorializing Ex Parte Communication, DOE impending determination of coverage for commercial and industrial fans, blowers, and fume hoods. Memorandum Memorializing Ex Parte Communication, DOE impending determination of coverage for commercial and industrial fans, blowers, and fume hoods. The meeting was requested by AMCA International to introduce the association's leadership, standards, and experience in developing fan standards to DOE; to learn more about the DOE process for developing regulations for fan efficiency standards; and to inform DOE on how commercial and industrial fan markets work. AMCA_Ex_Parte.pdf More Documents & Publications DOE-STD-1168-2013 DOE Meeting Memorandum: Ex Parte Communications Independent Oversight Review, Savannah River Site - August 2011

359

UL Ex Parte communications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UL Ex Parte communications UL Ex Parte communications UL Ex Parte communications On December 27, I was contacted by Ms. Ashley Armstrong, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program and asked if I would be willing to meet with her and certain US DOE staff to discuss UL's "different testing and certification offerings as they relate to electric motors". Ex parte comm_1_7_2013.pdf More Documents & Publications EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. Docket No. EERE-2010-BT-STD-0027 Energy Conservation Standards for Commercial and Industrial Electric Motors: Public Meeting and Availability of the Preliminary Technical Support Document 77 Fed. Reg. 43015 (July 23,

360

Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments: Preprint  

DOE Green Energy (OSTI)

Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understand rotational augmentation of blade aerodynamics.

Schreck, S.; Sant, T.; Micallef, D.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse  

SciTech Connect

The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.

Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

2012-03-31T23:59:59.000Z

362

Dipolar vortices and collisional instability in rotating electron-positron-ion plasmas  

SciTech Connect

Linear dispersion relation of electrostatic waves is derived for rotating electron-positron-ion (e-p-i) plasmas. The role of the rotational plasma frequency on drift wave through Coriolis force in the pulsar magnetosphere is discussed. This wave can couple with acoustic mode. In the nonlinear regime, stationary solution in the form of dipolar vortices is obtained. At the end we have also found the collisional instability in the presence of neutral-ion collisions for this rotating e-p-i plasma. The importance of the study with respect to astrophysical plasmas is also pointed out.

Haque, Q. [Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad, Pakistan and National Centre for Physics, Islamabad (Pakistan)

2011-11-15T23:59:59.000Z

363

Stretching of the toroidal field and generation of magnetosonic waves in differentially rotating plasma  

E-Print Network (OSTI)

We evaluate the generation of magnetosonic waves in differentially rotating magnetized plasma. Differential rotation leads to an increase of the azimuthal field by winding up the poloidal field lines into the toroidal field lines. An amplification of weak seed perturbations is considered in this time-dependent background state. It is shown that seed perturbations can be amplified by several orders of magnitude in a differentially rotating flow. The only necessary condition for this amplification is the presence of a non-vanishing component of the magnetic field in the direction of the angular velocity gradient.

Bonanno, Alfio

2007-01-01T23:59:59.000Z

364

Vortex formation of a Bose-Einstein condensate in a rotating deep optical lattice  

Science Conference Proceedings (OSTI)

We study the dynamics of vortex nucleation and lattice formation in a Bose-Einstein condensate in a rotating square optical lattice by numerical simulations of the Gross-Pitaevskii equation. Different dynamical regimes of vortex nucleation are found, depending on the depth and period of the optical lattice. We make an extensive comparison with the experiments by R. A. Williams et al.[Phys. Rev. Lett. 104, 050404 (2010)], especially focusing on the issues of the critical rotation frequency for the first vortex nucleation and the vortex number as a function of rotation frequency.

Kato, Akira; Nakano, Yuki; Kasamatsu, Kenichi; Matsui, Tetsuo [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)

2011-11-15T23:59:59.000Z

365

A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain  

Science Conference Proceedings (OSTI)

In recent years, solid-shell elements with the absence of the rotational degrees of freedom have considerable attentions in analyzing thin structures. In this paper, the non-linear formulation of a co-rotational 8-node degenerated thin-walled element ... Keywords: 8-Node solid element, Assumed natural strains, Co-rotational method, Enhanced assumed strains, Geometrical nonlinearity

Pramin Norachan; Songsak Suthasupradit; Ki-Du Kim

2012-03-01T23:59:59.000Z

366

Tidal indicators in the spacetime of a rotating deformed mass  

E-Print Network (OSTI)

Tidal indicators are commonly associated with the electric and magnetic parts of the Riemann tensor (and its covariant derivatives) with respect to a given family of observers in a given spacetime. Recently, observer-dependent tidal effects have been extensively investigated with respect to a variety of special observers in the equatorial plane of the Kerr spacetime. This analysis is extended here by considering a more general background solution to include the case of matter which is also endowed with an arbitrary mass quadrupole moment. Relation with curvature invariants and Bel-Robinson tensor, i.e., observer-dependent super-energy density and super-Poynting vector, are investigated too.

Donato Bini; Kuantay Boshkayev; Andrea Geralico

2013-06-20T23:59:59.000Z

367

Ex Parte Meeting with DOE and Navigant Consulting on Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex parte guidance for...

368

Low torque hydrodynamic lip geometry for bi-directional rotation seals  

DOE Patents (OSTI)

A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

2011-11-15T23:59:59.000Z

369

Low torque hydrodynamic lip geometry for bi-directional rotation seals  

DOE Patents (OSTI)

A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX)

2009-07-21T23:59:59.000Z

370

Mass transport in the Stokes edge wave for constant arbitrary bottom slope in a rotating ocean  

Science Conference Proceedings (OSTI)

The Lagrangian mass transport in the Stokes surface edge wave is obtained from the vertically integrated equations of momentum and mass in a viscous rotating ocean, correct to second order in wave steepness. The analysis is valid for bottom slope ...

Peygham Ghaffari; Jan Erik H. Weber

371

Budgets of Divergent and Rotational Kinetic Energy during Two Periods of Intense Convection  

Science Conference Proceedings (OSTI)

Budgets of divergent and rotational components of kinetic energy (KD and KR) are investigated for two periods of intense convection. Derivations of the budget equations are presented for limited volumes in terms of VD and VR. The two periods ...

Dennis E. Buechler; Henry E. Fuelberg

1986-01-01T23:59:59.000Z

372

Apparatus and method for forming a workpiece surface into a non-rotationally symmetric shape  

DOE Patents (OSTI)

A turning machine includes a controller for generating both aspherical and non-symmetrical shape components defining the predetermined shape, and a controller for controlling a spindle and a positionable cutting blade to thereby form a predetermined non-rotationally symmetric shape in a workpiece surface. The apparatus includes a rotatable spindle for rotatably mounting the workpiece about an axis, a spindle encoder for sensing an angular position of the rotating workpiece, the cutting blade, and radial and transverse positioners for relatively positioning the cutting blade and workpiece along respective radial and transverse directions. The controller cooperates with a fast transverse positioner for positioning the cutting blade in predetermined varying transverse positions during a revolution of the workpiece.

Dow, Thomas A. (Raleigh, NC); Garrard, Kenneth P. (Raleigh, NC); Moorefield, II, George M. (Raleigh, NC); Taylor, Lauren W. (Cary, NC)

1995-11-21T23:59:59.000Z

373

Design and Construction of an Affordable Rotating Table for Classroom Demonstrations of Geophysical Fluid Dynamics Principles  

Science Conference Proceedings (OSTI)

Rotating tables have been in use for many years because of their ability to demonstrate fluid dynamical phenomena, shedding insight on the sometimes complicated or esoteric mathematics used to describe such processes. A small team of students at ...

Brian D. McNoldy; Anning Cheng; Zachary A. Eitzen; Richard W. Moore; John Persing; Kevin Schaefer; Wayne H. Schubert

2003-12-01T23:59:59.000Z

374

Analysis of Rotating Multicylinder Data in Measuring Cloud-Droplet Size and Liquid Water Content  

Science Conference Proceedings (OSTI)

An objective method is presented for the analysis of rotating multicylinder data in measuring the liquid water content and median volume droplet diameter of icing clouds. The method is based on time-dependent numerical modeling of cylinder icing ...

Lasse Makkonen

1992-06-01T23:59:59.000Z

375

Earth Rotation as a Proxy for Interannual Variability in Atmospheric Circulation, 1860-Present  

Science Conference Proceedings (OSTI)

Modern atmospheric and geodetic datasets have demonstrated that changes in the axial component of the atmosphere's angular momentum and in the rotation rate of the solid earth are closely coupled on time scales of up to several years. We ...

David A. Salstein; Richard D. Rosen

1986-12-01T23:59:59.000Z

376

Transitions from Hadley to Rossby Flows in Internally Forced Rotating Spherical Systems  

Science Conference Proceedings (OSTI)

The possibility of global-scale transitions between atmospheric Hadley and Rossby regimes is investigated with a highly idealized, nonlinear, vertically continuous, rotating, spherical system. Low-order spectral versions of the model are used ...

R. Wayne Higgins; Hampton N. Shirer

1990-05-01T23:59:59.000Z

377

Roles of Divergent and Rotational Winds in the Kinetic Energy Balance Intense Convective Activity  

Science Conference Proceedings (OSTI)

Contibutions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA’s fourth Atmospheric Variability Experiment (AVE 4). Two intense ...

Henry E. Fuelberg; Peter A. Browning

1983-11-01T23:59:59.000Z

378

Nongeostrophic Baroclinic Instability in a Two-Fluid Layer Rotating System  

Science Conference Proceedings (OSTI)

The interfacial stability of two differentially rotating fluid layers in a tall, right circular cylinder is investigated analytically and experimentally. The differential speeds are such that the Ekman and Rossby numbers of the flow are small. A ...

J. Bradford; A. S. Berman; T. S. Lundgren

1981-07-01T23:59:59.000Z

379

Kinematic Properties of Wave Amplitude Vacillation in a Thermally Driven Rotating Fluid  

Science Conference Proceedings (OSTI)

Empirical evidence is presented to the effect that amplitude vacillation in a thermally driven rotating annulus of fluid is due primarily to the interference of two modes with the same azimuthal wavenumber and different vertical structures and ...

George Buzyna; Richard L. Pfeffer; Robin Kung

1989-09-01T23:59:59.000Z

380

Design, Operation, and Calibration of a Shipboard Fast-Rotating Shadowband Spectral Radiometer  

Science Conference Proceedings (OSTI)

This paper describes the design, calibration, and deployment of a fast-rotating shadowband radiometer (FRSR) that accurately decomposes downward shortwave (solar) irradiance into direct-beam and diffuse components from a moving platform, such as ...

R. Michael Reynolds; Mark A. Miller; Mary J. Bartholomew

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network (OSTI)

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

382

Effects of Radar Proximity on Single-Doppler Velocity Signatures of Axisymmetric Rotation and Divergence  

Science Conference Proceedings (OSTI)

Geometrical and mathematical relationships are developed to explain the variation with radar range of idealized single-Doppler velocity patterns of axisymmetric rotation and divergence regions. The velocity patterns become distorted as they ...

Vincent T. Wood; Rodger A. Brown

1992-12-01T23:59:59.000Z

383

Effect of fertilization on yield of soybean in rotation and continuous cropping in Northeast China  

E-Print Network (OSTI)

i) an annual rotation of corn- soybean, (ii) continuousfor 5 years, both followed by corn. The plots to which the2006-2008). 2 years soybean-corn 5 years soybean-corn N

Li, Xiaohui; Han, Xiaozeng; Yan, Jun

2009-01-01T23:59:59.000Z

384

Quasi-Steady Symmetric Regimes of a Rotating Annulus Differentially Heated on the Horizontal Boundaries  

Science Conference Proceedings (OSTI)

The symmetric flows in a rotating annulus with its horizontal boundaries maintained at temperatures as linear functions of radial distance r and with its vertical boundaries thermally insulated are studied analytically and numerically for ...

Charles Quon

1980-11-01T23:59:59.000Z

385

Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling  

Science Conference Proceedings (OSTI)

Cloud signals from a vertically pointing, range-corrected ruby lidar and a rotating beam ceilometer showed excellent agreement in the height at which peak signal occurred. However, pilot reports of ceiling were at significantly lower altitude ...

W. L. Eberhard

1986-09-01T23:59:59.000Z

386

Spatio-temporal theory of lasing action in optically-pumped rotationally excited molecular gases  

E-Print Network (OSTI)

We investigate laser emission from optically-pumped rotationally excited molecular gases confined in a metallic cavity. To this end, we have developed a theoretical framework able to accurately describe, both in the spatial ...

Chua, Song-Liang

387

Rotating Shake Test and Modal Analysis of a Model Helicopter Rotor Blade  

Science Conference Proceedings (OSTI)

Rotating blade frequencies for a model generic helicopter rotor blade mounted on an articulated hub were experimentally determined. Testing was conducted using the Aeroelastic Rotor Experimental System (ARES) testbed in the Helicopter Hover Facility ...

Wilkie W. Keats; Mirick Paul H.; Langston Chester W.

1997-06-01T23:59:59.000Z

388

A Spectral Model for Process Studies of Rotating, Density-Stratified Flows  

Science Conference Proceedings (OSTI)

A numerical model designed for three-dimensional process studies of rotating, stratified flows is described. The model is freely available, parallel, and portable across a range of computer architectures. The underlying numerics are high quality, ...

K. B. Winters; J. A. MacKinnon; Bren Mills

2004-01-01T23:59:59.000Z

389

Plasma rotation measurements using spectral lines from charge-transfer reactions  

DOE Green Energy (OSTI)

The central toroidal rotation velocities of tokamak plasmas have been measured from the Doppler shifts of spectral lines that are excited by charge transfer of the neutral hydrogen heating beams with fully ionized oxygen.

Isler, R.C.; Murray, L.E.

1983-02-15T23:59:59.000Z

390

A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid  

Science Conference Proceedings (OSTI)

A density-driven current was generated in the laboratory by releasing dense fluid over a sloping bottom in a rotating freshwater system. The behavior of the dense fluid descending the slope has been investigated by systematically varying four ...

C. Cenedese; J. A. Whitehead; T. A. Ascarelli; M. Ohiwa

2004-01-01T23:59:59.000Z

391

A two-phase spherical electric machine for generating rotating uniform magnetic fields  

E-Print Network (OSTI)

This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

Lawler, Clinton T. (Clinton Thomas)

2007-01-01T23:59:59.000Z

392

Three-Dimensional Residual Tidal Circulation in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional residual circulation driven by tides in an elongated basin of arbitrary depth is described with a small amplitude, constant density model on the f plane. The inclusion of rotation fundamentally alters the residual flow. With ...

Clinton D. Winant

2008-06-01T23:59:59.000Z

393

Use of Rotating Pinholes and Reticles for Calibration of Cloud Droplet Instrumentation  

Science Conference Proceedings (OSTI)

Calibration devices for the Forward Scattering Spectrometer Probe (FSSP) and the Optical Array Probe (OAP) were developed. The device used with the FSSP is a rotating pinhole calibrator. It utilizes light diffracted by a pinhole of a diameter to ...

Edward A. Hovenac; E. Dan Hirleman

1991-02-01T23:59:59.000Z

394

Equatorial Jets in Decaying Shallow-Water Turbulence on a Rotating Sphere  

Science Conference Proceedings (OSTI)

Ensemble experiments of decaying shallow-water turbulence on a rotating sphere are performed to confirm the robustness of the emergence of an equatorial jet. While previous studies have reported that the equatorial jets emerging in shallow-water ...

Yuji Kitamura; Keiichi Ishioka

2007-09-01T23:59:59.000Z

395

E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter  

Science Conference Proceedings (OSTI)

Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

NONE

1999-04-01T23:59:59.000Z

396

Rapid emission angle selection for rotating-shield brachytherapy  

SciTech Connect

Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft Axxent{sup TM} electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90 Degree-Sign , 180 Degree-Sign , and 270 Degree-Sign . The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D{sub 90} to 85-100 Gy{sub 10}, the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5-25 and 10-30 min/fx, respectively, for two the cases, the D{sub 90} contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D{sub 90} and the delivery time within acceptable limits. Conclusions: The REAS method enables efficient RSBT treatment planning and delivery and provides treatment plans with comparable quality to those generated by exhaustive replanning with dose-volume optimization.

Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang Wenjun [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Wu Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

2013-05-15T23:59:59.000Z

397

Thermal Effects of Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

The rotating reference system, two-point correlation functions, and energy density are used as the basis for investigating thermal effects observed by a detector rotating through random classical zero-point radiation. The RS consists of Frenet -Serret orthogonal tetrads where the rotating detector is at rest and has a constant acceleration vector. The CFs and the energy density at the rotating reference system should be periodic with rotation period because CF and energy density measurements is one of the tools the detector can use to justify the periodicity of its motion. The CFs have been calculated for both electromagnetic and massless scalar fields in two cases, with and without taking this periodicity into consideration. It turned out that only periodic CFs have some thermal features and particularly the Planck's factor with the temperature T= h w /k . Regarding to the energy density of both electromagnetic and massless scalar field it is shown that the detector rotating in the zero-point radiation observes not only this original zero-point radiation but, above that, also the radiation which would have been observed by an inertial detector in the thermal bath with the Plank's spectrum at the temperature T. This effect is masked by factor 2/3(4 gamma^2-1) for the electromagnetic field and 2/9 (4 gamma ^2-1) for the massless scalar field, where the Lorentz factor gamma=(1 - v^2 / c^2)^(1/2). Appearance of these masking factors is connected with the fact that rotation is defined by two parameters, angular velocity w and the radius of rotation, in contrast with a uniformly accelerated linear motion which is defined by only one parameter, acceleration a. Our calculations involve classical point of view only and to the best of our knowledge these results have not been reported in quantum theory yet.

Yefim S. Levin

2007-04-27T23:59:59.000Z

398

The Secular Bar-Mode Instability in Rapidly Rotating Stars Revisited  

E-Print Network (OSTI)

Uniformly rotating, homogeneous, incompressible Maclaurin spheroids that spin sufficiently rapidly are secularly unstable to nonaxisymmetric, bar-mode perturbations when viscosity is present. The intuitive explanation is that energy dissipation by viscosity can drive an unstable spheroid to a stable, triaxial configuration of lower energy - a Jacobi ellipsoid. But what about rapidly rotating compressible stars? Unlike incompressible stars, which contain no internal energy and therefore immediately liberate all the energy dissipated by viscosity, compressible stars have internal energy and can retain the dissipated energy as internal heat. Now compressible stars that rotate sufficiently rapidly and also manage to liberate this dissipated energy very quickly are known to be unstable to bar-mode perturbations, like their incompressible counterparts. But what is the situation for rapidly rotating compressible stars that have very long cooling timescales, so that all the energy dissipated by viscosity is retained as heat, whereby the total energy of the star remains constant on a secular (viscous) evolution timescale? Are such stars also unstable to the nonlinear growth of bar modes, or is the viscous heating sufficient to cause them to expand, drive down the ratio of rotational kinetic to gravitational potential energy T/|W| ~ 1/R, where R is the equatorial radius, and turn off the instability before it gets underway? If the instability still arises in such stars, at what rotation rate do they become unstable, and to what final state do they evolve? We provide answers to these questions in the context of the compressible ellipsoid model for rotating stars. The results should serve as useful guides for numerical simulations in 3+1 dimensions for rotating stars containing viscosity.

Stuart L. Shapiro

2004-09-17T23:59:59.000Z

399

Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas  

Science Conference Proceedings (OSTI)

Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

Liu Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qin Hong [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

2012-10-15T23:59:59.000Z

400

Apparatus and method for generating a magnetic field by rotation of a charge holding object  

DOE Patents (OSTI)

A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

Gerald, II, Rex E. (Brookfield, IL); Vukovic, Lela (Westchester, IL); Rathke, Jerome W. (Homer Glenn, IL)

2009-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Metal Silicides: An Integral Part of Microelectronics  

Science Conference Proceedings (OSTI)

Metal silicide thin films are integral parts of all microelectronics devices. .... with activation energy around 1–1.5 eV for refractory metal/silicon systems and 0.5 eV

402

Oilseeds of the future: Part 2  

Science Conference Proceedings (OSTI)

inform's examination of some of the trait-modified oilseeds currently in research and development pipelines around the world continues with this month's look at work in cottonseed, flax, and oil palm. Oilseeds of the future: Part 2 Oil

403

Geometric Mechanics -Part I January 13, 2009  

E-Print Network (OSTI)

Geometric Mechanics - Part I Bob Rink January 13, 2009 Contents 1 Mechanical systems 4 1.1 Two Lagrangian mechanics 9 2.1 New position variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Natural mechanical systems

Hanssmann, Heinz

404

Geometric Mechanics -Part I January 23, 2009  

E-Print Network (OSTI)

Geometric Mechanics - Part I Bob Rink January 23, 2009 Contents 1 Mechanical systems 4 1.1 Two Lagrangian mechanics 9 2.1 New position variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Natural mechanical systems

Rink, Bob

405

Car Parts Self-Assembled From  

E-Print Network (OSTI)

Car Parts Self-Assembled From DNA Next: Navigation Helmet Cr SoundTech, Clay Dillow, clean energy, desali desalinization, electricity production, micro cells, wastewater Not bad for a microbe Microbial fuel cell desalinates water while generating electricity: This microbial

406

Freeway Analysis Manual: Parts 1 and 2  

E-Print Network (OSTI)

BERKELEY Freeway Analysis Manual: Parts 1 and 2 Dolf May,AND 2 OF FREEWAY ANALYSIS MANUAL Prepared by Dolf May LannonThis Freeway Analysis Manual is intended for those who are

May, Dolf; Leiman, Lannon

2005-01-01T23:59:59.000Z

407

Equatorial Velocity Profiles. Part I: Meridional Component  

Science Conference Proceedings (OSTI)

A time series or vertical profiles of horizontal velocity was collected in the western equatorial Indian Ocean during late spring of 1976. The meridional velocity component is examined here, the zonal component in Part II of this paper. The ...

Kathleen O'Neill

1984-12-01T23:59:59.000Z

408

New Hailstone Physics. Part II: Results  

Science Conference Proceedings (OSTI)

In Part I the six variables for heat and mass transfer, HMT, of spherical hailstones are reduced to four without any approximations or loss of accuracy. This reduction of parameter dimensions is complemented by the volume reduction of the ...

Roland List

409

Coordinated part delivery using distributed planning  

E-Print Network (OSTI)

In this thesis, we develop a distributed mobile robot platform to deliver parts around a model construction site. The platform's robots, specialized into delivery robots and assembly robots, use a distributed coverage ...

Bolger, Adrienne (Adrienne M.)

2010-01-01T23:59:59.000Z

410

Rotationally-induced asymmetry in the double-peak lightcurves of the bright EGRET pulsars?  

E-Print Network (OSTI)

Pulsed emission from the bright EGRET pulsars - Vela, Crab, and Geminga - extends up to 10 GeV. The generic gamma lightcurve features two peaks separated by 0.4 to 0.5 in phase. According to Thompson (2001) the lightcurve becomes asymmetrical above 5 GeV in such a way that the trailing peak dominates over the leading peak. We attempt to interpret this asymmetry within a single-polar-cap scenario. We investigate the role of rotational effects on the magnetic one-photon absorption rate in inducing such asymmetry. Our Monte Carlo simulations of pulsar gamma-ray beams reveal that in the case of oblique rotators with rotation periods of a few millisecond the rotational effects lead to the asymmetry of the requested magnitude. However, the rotators relevant for the bright EGRET pulsars must not have their inclination angles too large in order to keep the two peaks at a separation of 0.4 in phase. With such a condition imposed on the model rotators the resulting effects are rather minute and can hardly be reconciled with the magnitude of the observed asymmetry.

J. Dyks; B. Rudak

2001-06-05T23:59:59.000Z

411

The lithium-rotation correlation for WTTS in Taurus-Auriga  

E-Print Network (OSTI)

Surface lithium abundance and rotation velocity can serve as powerful and mutually complementary diagnostics of interior structure of stars. So far, the processes responsible for the lithium depletion during pre-main sequence evolution are still poorly understood. We investigate whether a correlation exists between equivalent widths of Li (EW(Li)) and rotation period (P$_{rot}$) for Weak-line T Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li) and the fast burning of Li begins at the phase when star's P$_{rot}$ evolves towards 3 days among 0.9M$_\\odot$ to 1.4M$_\\odot$ WTTSs in Taurus-Auriga. Our results support the conclusion by Piau & Turch-Chi\\'eze about a model for lithium depletion with age of the star and by Bouvier et al. in relation to rotation evolution. The turn over of the curve for the correlation between EW(Li) and P$_{rot}$ is at the phase of Zero-Age Main Sequence (ZAMS). The EW(Li) decreases with decreasing P$_{rot}$ before the star reaches the ZAMS, while it decreases with increasing P$_{rot}$ (decreasing rotation velocity) for young low-mass main sequence stars. This result could be explained as an age effect of Li depletion and the rapid rotation does not inhibit Li destruction among low mass PMS stars.

L. F. Xing; J. R. Shi; J. Y. Wei

2006-10-30T23:59:59.000Z

412

Fixture for mounting small parts for processing  

DOE Patents (OSTI)

This invention is comprised of a fixture for mounting small parts, such as fusion target spheres or microelectronic components. A glass stalk is drawn and truncated near its tip. The truncated end of the glass stalk is dipped into silicone rubber forming an extending streamer. After the rubber cures for approximately 24 hours, a small part is touched to the streamer, and will be held securely throughout processing. 5 figs.

Foreman, L.R.; Gomez, V.M.; Thomas, M.H.

1988-09-29T23:59:59.000Z

413

Benchmarking boiler tube failures - Part 2  

Science Conference Proceedings (OSTI)

Part 1 of this article characterised the EUCG (formerly the Electric Utility Cost Group) Fossil Productivity Committee's study of 14 utilities with 219 baseload coal-fired steam plants (about 20% of the total number of coal plants in the USA) and their experience fighting tube leaks. Part 2 characterizes the sample of plants studied and summarises the data at the fleet level. The next study is scheduled for summer 2006. 3 figs., 2 tabs.

James Patrick; Robert Oldani; Daryl Von Behren [Ameren (United States)

2005-12-01T23:59:59.000Z

414

Regeneration of Lost Parts in Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Regeneration of Lost Parts in Animals Regeneration of Lost Parts in Animals Nature Bulletin No. 751 April 11, 1964 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist REGENERATION OF LOST PARTS IN ANIMALS For ages, mankind has been fascinated with the idea that lost parts of animals can be regrown. According to Greek legend, one of the twelve "labors" of Hercules was the destruction of the Hydra, a gigantic monster with nine serpents' heads. Finding that as soon as one head was cut off two new ones grew in its place, at last he burned out their roots with firebrands. All animals have the power of regeneration to a greater or lesser degree. In man and higher animals it is quite limited. We see it most often in the healing of wounds and the mending of bones. A lost fingernail can be replaced but not a lost finger. Lower animals have a much greater ability to replace parts. For instance, the little half-inch flatworm, Planaria, that lives under rocks in clean creeks can be cut into as many as 32 pieces and each fragment is able to rebuild a miniature flatworm complete with head, tail, eyes, mouth and internal organs.

415

Prediction of Part Distortion in Die Casting  

SciTech Connect

The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

R. Allen Miller

2005-03-30T23:59:59.000Z

416

OBSERVABLE SIGNATURES OF PLANET ACCRETION IN RED GIANT STARS. I. RAPID ROTATION AND LIGHT ELEMENT REPLENISHMENT  

Science Conference Proceedings (OSTI)

The orbital angular momentum of a close-orbiting giant planet can be sufficiently large that, if transferred to the envelope of the host star during the red giant branch (RGB) evolution, it can spin-up the star's rotation to unusually large speeds. This spin-up mechanism is one possible explanation for the rapid rotators detected among the population of generally slow-rotating red giant stars. These rapid rotators thus comprise a unique stellar sample suitable for searching for signatures of planet accretion in the form of unusual stellar abundances due to the dissemination of the accreted planet in the stellar envelope. In this study, we look for signatures of replenishment in the Li abundances and (to a lesser extent) {sup 12}C/{sup 13}C, which are both normally lowered during RGB evolution. Accurate abundances were measured from high signal-to-noise echelle spectra for samples of both slow and rapid rotator red giant stars. We find that the rapid rotators are on average enriched in lithium compared to the slow rotators, but both groups of stars have identical distributions of {sup 12}C/{sup 13}C within our measurement precision. Both of these abundance results are consistent with the accretion of planets of only a few Jupiter masses. We also explore alternative scenarios for understanding the most Li-rich stars in our sample-particularly Li regeneration during various stages of stellar evolution. Finally, we find that our stellar samples show non-standard abundances even at early RGB stages, suggesting that initial protostellar Li abundances and {sup 12}C/{sup 13}C may be more variable than originally thought.

Carlberg, Joleen K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Cunha, Katia; Smith, Verne V. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Majewski, Steven R., E-mail: jcarlberg@dtm.ciw.edu, E-mail: srm4n@virginia.edu, E-mail: vsmith@noao.edu, E-mail: cunha@noao.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

2012-10-01T23:59:59.000Z

417

Periodicity, Thermal Effects, and Vacuum Force: Rotation in Random Classical Zero-Point Radiation  

E-Print Network (OSTI)

We show that, for a detector rotating in a random classical zero-point electromagnetic or massless scalar field at zero temperature, thermal effects exist. The rotating reference system is constructed as an infinite set of Frenet-Seret tetrads so that the detector is at rest in a tetrad at each proper time. Frequency spectrum of correlation functions contains the Planck thermal factor with temperature $T_{rot} = \\frac{\\hbar \\Omega}{2 \\pi k_B} $. The energy density the rotating detector observes is proportional to the sum of energy densities of Planck's spectrum at the temperature $T_{rot}$ and zero-point radiation. The proportionality factor is $2/3 (4 \\gamma^2 -1)$ for an EMF and $2/9 (4 \\gamma^2 -1)$ for a MSF, where $\\gamma = (1 - (\\frac{\\Omega r}{c})^2)^{-1/2}$, and r is a rotation radius. The origin of these thermal effects is the periodicity of the correlation functions and their discrete spectrum, both following rotation with angular velocity $\\Omega$. The thermal energy can also be interpreted as a source of a vacuum force (VF) applied to the rotating detector from the vacuum field. The VF depends on the size of neither the charge nor the mass, like the force in the Casimir model for a charged particle, but, contrary to the last one, VF is attractive and directed to the center of the circular orbit. VF infinitely grows in magnitude with orbit radius. The orbits with a radius greater than $c/ \\Omega$ do not exist because the returning VF becomes infinite. On the uttermost orbit with the radius $c / \\Omega$, a linear velocity of the rotating particle would have become c. The VF becomes very small and proportional to radius when r is very small. Such VF dependence on radius, at large and small radii, can be associated respectively with so called confinement and asymptotic freedom, known in quantum chromodynamics, and provide a new explanation for them.

Yefim Semenovitch Levin

2010-03-23T23:59:59.000Z

418

Re: Ex parte communication | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Re: Ex parte communication Re: Ex parte communication Re: Ex parte communication On April 20, 2010, Scott Bates, Corporate Vice President and General Counsel, and Karen Meyers, Director of Government Affairs, both of the Rheem Manufacturing Company ("Rheem"), accompanied by their counsel, Bill Anaya of Alston & Bird, LLP, met with Department of Energy ("DOE") officials Scott Harris, General Counsel, Maureen McLaughlin, Special Assistant to the General Counsel, and Stephanie Weiner, Special Assistant, Office of the General Counsel. At the meeting, Rheem applauded the leadership being provided by the Office of the General Counsel across a broad portfolio of policies and initiatives. Participants discussed Rheem's engagement as a company that brings a broad range of products, including air conditioners, furnaces,

419

Re: Ex parte communication | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Ex parte communication Ex parte communication Re: Ex parte communication On April 20, 2010, Scott Bates, Corporate Vice President and General Counsel, and Karen Meyers, Director of Government Affairs, both of the Rheem Manufacturing Company ("Rheem"), accompanied by their counsel, Bill Anaya of Alston & Bird, LLP, met with Department of Energy ("DOE") officials Scott Harris, General Counsel, Maureen McLaughlin, Special Assistant to the General Counsel, and Stephanie Weiner, Special Assistant, Office of the General Counsel. At the meeting, Rheem applauded the leadership being provided by the Office of the General Counsel across a broad portfolio of policies and initiatives. Participants discussed Rheem's engagement as a company that brings a broad range of products, including air conditioners, furnaces,

420

10 CFR Part 830, Nuclear Safety Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 Federal Register / Vol. 66, No. 7 / Wednesday, January 10, 2001 / Rules and Regulations issued August 5, 1998, are adopted as a final rule with the following change: PART 1446-PEANUTS 1. The authority citation for part 7 CFR part 1446 continues to read as follows: Authority: 7 U.S.C. 7271; 15 U.S.C. 714b and 714c. 2. Paragraph (c) of § 1446.102 is amended by adding a new sentence to the end of the paragraph to read as follows: § 1446.102 Administration. * * * * * (c) Supervisory authority. * * * Further, the Director of TPD, FSA, may authorize the wavier or modification of deadlines and other requirements, except statutory deadlines or requirements, in cases where lateness or the failure to meet such other requirements does not adversely affect operation of the program. 3. Paragraph (3) of the definition of

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Guidelines for Managing Reactor Vessel Material Uncertainties: Part 1: General Approach Part 2: Implementation Guide  

Science Conference Proceedings (OSTI)

Uncertainties about reactor vessel material toughness properties can be a concern for utilities when characterizing vessel integrity. In addition, recent emphasis on variability in material chemistry and initial toughness properties has added to regulatory concerns. This two-part guidelines document provides a general approach (Part 1) for dealing with weld metal property variability and material uncertainties and demonstrates examples of different approaches (Part 2) for dealing with these uncertainties...

1997-04-30T23:59:59.000Z

422

EXPLORING THE EFFECTS OF STELLAR ROTATION AND WIND CLEARING: DEBRIS DISKS AROUND F STARS  

Science Conference Proceedings (OSTI)

We have conducted a study of debris disks around F stars in order to explore correlations between rotation, stellar winds, and circumstellar disks. We obtained new 24 {mu}m photometry from the Multiband Imaging Photometer for Spitzer (MIPS) camera for a sample of 188 relatively nearby F dwarfs with various rotation rates and optical colors, and combined it with archival MIPS data for 66 more F stars, as well as Wide-field Infrared Survey Explorer data for the entire sample, plus 9 more F stars. Based on the objects' K{sub s} - [24] and [3.4] - [22] colors, we identify 22 stars in our sample as having 22 and/or 24 {mu}m excesses above our detection limit, 13 of which are new discoveries. Our overall disk detection rate is 22/263, or 8%, consistent with previous determinations of disk fractions in the solar neighborhood. While fast-rotating stars are expected to have strong winds capable of efficiently removing dust, we find no correlation between rotational velocity and infrared excess. Similarly, we find no significant difference in excess detection rate between late-type F stars, which have convective surfaces, and early-type F stars, which have fully radiative envelopes. However, the essentially unknown range of ages in this sample may be washing out any effects relating rotation, winds, and disks.

Mizusawa, Trisha F. [Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States); Rebull, Luisa M.; Stauffer, John R. [Spitzer Science Center (SSC), 1200 E. California Blvd., California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, Geoffrey [Jet Propulsion Laboratory, 4800 Oak Grove Blvd, Pasadena, CA 91109 (United States); Meyer, Michael [ETH, Zurich (Switzerland); Song, Inseok, E-mail: trisha.mizusawa@gmail.com [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

2012-11-01T23:59:59.000Z

423

Stellar Models with Microscopic Diffusion and Rotational Mixing II: Application to Open Clusters  

E-Print Network (OSTI)

Stellar models with masses ranging from 0.5 to $1.3~M_\\odot$ were constructed in order to compare to young cluster observations of Li and of rotation velocities. The amount of Li depletion in cool stars is sensitive to the amount of overshoot at the base of the surface convection zone, and the exact metallicity of the models. Even when this uncertainty is taken into account, the Li observations are a severe constraint for the models and rule out standard models, and pure diffusion models. Stellar models which include diffusion and rotational mixing in the radiative regions of stars are able to simultaneously match the Li abundances observed in the Pleiades, UMaG, Hyades, Praesepe, NGC 752 and M67. They also match the observed rotation periods in the Hyades. However, these models are unable to simultaneously explain the presence of the rapidly rotating late G and K stars in the Pleiades and the absence of rapidly rotating late F and early G stars.

Brian Chaboyer; P. Demarque; M. H. Pinsonneault

1994-08-17T23:59:59.000Z

424

Toroidal plasma rotation in the PLT tokamak with neutral-beam injection  

DOE Green Energy (OSTI)

Toroidal plasma rotation in the Princeton Large Torus, PLT, has been measured for various plasma and neutral beam injection conditions. Measurements of the plasma rotational velocities were made from Doppler shifts of appropriate spectral lines and include data from both hydrogen and deuterium beams and co- and counter-injection at several electron densities. Without injection, a small but consistent toroidal rotation exists in a direction opposite to the plasma current (counter-direction) in the plasma center but parallel to the current (co-direction) in the plasma periphery. Using these measured velocities and the plasma density and temperature gradients, radial electron fields can be determined from theory, giving E/sub r / approx. = 40 V/cm near the plasma center and E/sub r/ approx. = 10 V/cm near the plasma edge. Insertion of a local, 2.5 percent magnetic well produced no observable effect on the beam driven rotation. Modeling of the time evolution and radial distribution of the rotation allows one to deduce an effective viscosity of the order of (1 to 5) x 10/sup 4/ cm/sup 2//sec.

Suckewer, S.; Eubank, H.P.; Goldston, R.J.; McEnerney, J.; Sauthoff, N.R.; Towner, H.H.

1981-04-01T23:59:59.000Z

425

Search for the Skyrme-Hartree-Fock Solutions for Chiral Rotation in N=75 Isotones  

E-Print Network (OSTI)

A search for the self-consistent solutions for the chiral rotational bands in the N=75 isotones, 130Cs, 132La, 134Pr and 136Pm is performed within the Skyrme-Hartree-Fock cranking approach using SKM* and SLy4 parametrizations. The dependence of the solutions on the time-odd contributions in the energy functional is studied. From among the considered four isotones, self-consistent chiral solutions are obtained only in 132La. The microscopic calculations are compared with the 132La experimental data and with results of a classical model that contains all the mechanisms underlying the chirality of the collective rotational motion. Strong similarities between the HF and classical model results are found. The suggestion formulated earlier by the authors that the chiral rotation cannot exist below a certain critical frequency is further illustrated and discussed, together with the microscopic origin of a transition from the planar to chiral rotation in nuclei. We also formulate the separability rule by which the Tilted-Axis-Cranking solutions can be inferred from three independent Principal-Axis-Cranking solutions corresponding to three different axes of rotation.

P. Olbratowski; J. Dobaczewski; J. Dudek

2005-10-29T23:59:59.000Z

426

Overtone Mobility Spectrometry: Part 1. Experimental Observations  

E-Print Network (OSTI)

introduce a new approach for isolating ions having specific mobilities (or collision cross sections). IonsARTICLES Overtone Mobility Spectrometry: Part 1. Experimental Observations Ruwan T. Kurulugama, Indiana University, Bloomington, Indiana, USA A new method that allows a linear drift tube to be operated

Clemmer, David E.

427

Active Transport 1 MEMBRANE FUNCTION, Part 3  

E-Print Network (OSTI)

Active Transport 1 MEMBRANE FUNCTION, Part 3 Active Transport1 Active Transport: If the cell must expenditure is required when a substance is moved up (against) a concentration gradient or when concrete. A good example is the Na+ / K+ pump (also known as the Na+ / K+ ATPase). It translocates both Na

Prestwich, Ken

428

Oilseeds of the future part 3  

Science Conference Proceedings (OSTI)

The final collection of questionnaire responses in a series of three articles highlighting trait-modified oilseeds in the global R&D pipeline concludes with a look at work in safflower, soy, and sunflower. Catherine Watkins Oilseeds of the future part 3

429

Heart Physiology Lab Part 1: Pulse Rate  

E-Print Network (OSTI)

Heart Physiology Lab Part 1: Pulse Rate Measure your pulse in each of the following conditions (in in the class. You may use Table 1 in the Heart Physiology Worksheet for this, if you wish. Once you have all of the class averages for each measurement. You may use Graph 1 in the Heart Physiology Worksheet for this

Loughry, Jim

430

Feature: Review of the Year, Part II  

Science Conference Proceedings (OSTI)

In Part 1 of this Review, we got as far as the middle of the year. The economic climate was driving a lot of discussion and technology usage seemed to take second place to what was economically viable. The major event of this year took place in September, ...

Chloë Palmer

2002-01-01T23:59:59.000Z

431

Benchmark studies of the Bending Corrected Rotating Linear Model (BCRLM) reactive scattering code: Implications for accurate quantum calculations  

SciTech Connect

The Bending Corrected Rotating Linear Model (BCRLM), developed by Hayes and Walker, is a simple approximation to the true multidimensional scattering problem for reaction of the type: A + BC {yields} AB + C. While the BCRLM method is simpler than methods designed to obtain accurate three dimensional quantum scattering results, this turns out to be a major advantage in terms of our benchmarking studies. The computer code used to obtain BCRLM scattering results is written for the most part in standard FORTRAN and has been reported to several scalar, vector, and parallel architecture computers including the IBM 3090-600J, the Cray XMP and YMP, the Ardent Titan, IBM RISC System/6000, Convex C-1 and the MIPS 2000. Benchmark results will be reported for each of these machines with an emphasis on comparing the scalar, vector, and parallel performance for the standard code with minimum modifications. Detailed analysis of the mapping of the BCRLM approach onto both shared and distributed memory parallel architecture machines indicates the importance of introducing several key changes in the basic strategy and algorithums used to calculate scattering results. This analysis of the BCRLM approach provides some insights into optimal strategies for mapping three dimensional quantum scattering methods, such as the Parker-Pack method, onto shared or distributed memory parallel computers.

Hayes, E.F.; Darakjian, Z. (Rice Univ., Houston, TX (USA). Dept. of Chemistry); Walker, R.B. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

432

Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability.  

SciTech Connect

Abstract Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy’s Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was harvested and the remaining slash and stumps were pulverized and incorporated 30 cm into the soil. One year after harvest soil carbon levels were consistent with preharvest levels but dropped in the third year below pre-harvest levels. Tillage increased soil carbon contents, after three years, as compared with adjacent plots that were not part of the study but where harvested, but not tilled, at the same time. When the soil response to the individual treatments for each genotype was examined, one cottonwood clone (ST66), when irrigated and fertilized, had higher total soil carbon and mineral associated carbon in the upper 30 cm compared with the other tree genotypes. This suggests that root development in ST66 may have been stimulated by the irrigation plus fertilization treatment.

Sanchez, Felipe, G.; Coleman, Mark; Garten, Charles, T., Jr.; Luxmoore, Robert, J.; Stanturf, John, A.; Wullschleger, Stan, D.

2007-07-01T23:59:59.000Z

433

Soil carbon after three years under short rotation woody crops grown under varying nutrient and water availability  

SciTech Connect

Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was harvested and the remaining slash and stumps were pulverized and incorporated 30 cm into the soil. One year after harvest soil carbon levels were consistent with pre-harvest levels but dropped in the third year below pre-harvest levels. Tillage increased soil carbon contents, after three years, as compared with adjacent plots that were not part of the study but where harvested, but not tilled, at the same time. When the soil response to the individual treatments for each genotype was examined, one cottonwood clone (ST66), when irrigated and fertilized, had higher total soil carbon and mineral associated carbon in the upper 30 cm compared with the other tree genotypes. This suggests that root development in ST66 may have been stimulated by the irrigation plus fertilization treatment.

Sanchez, Felipe G. [USDA Forest Service; Coleman, Mark [USDA Forest Service; Garten Jr, Charles T [ORNL; Luxmoore, Robert J [ORNL; Stanturf, J. A. [USDA Forest Service; Trettin, Carl [USDA Forest Service; Wullschleger, Stan D [ORNL

2007-01-01T23:59:59.000Z

434

Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Aerosols: The Marine Fast-Rotating Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison and Merger for Biological and Interdisciplinary Studies (SIMBIOS). These radiometers operate continuously and automatically during daylight hours. There fundamental measurements made by the FRSRs in the network are the direct-normal irradiance

435

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

436

Heat Transfer from Rotating Blade Platforms with and without Film Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer from Rotating Blade Transfer from Rotating Blade Platforms with and without Film Cooling J.C. Han and M.T. Schobeiri SCIES Project 03-01-SR113 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Texas A&M University Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded 07/01/2003 (36 Month Duration) $461,024 Total Contract Value ($361,024 DOE) Turbine Heat Transfer Laboratory Texas A&M University SR 113 - 10-2005 - JCHan Gas Turbine Needs Need Detailed Heat Transfer Data on Rotating Blade Platforms Improve Current Rotor Blade Cooling Schemes Provide Options for New Rotor Blade Cooling Designs Need Accurate and Efficient CFD Codes to Improve Flow and Heat Transfer Predictions and Guide Rotor Blade Cooling Designs Improved Turbine Power Efficiency by Increasing Turbine

437

Electrostatic drift shocks and drift wave instability in inhomogeneous rotating electron-positron-ion plasmas  

SciTech Connect

The electrostatic drift wave shocks are studied in inhomogeneous rotating e-p-i plasma of the pulsar atmosphere. In this regard, the dissipation due to ion-neutral collisions is considered, which facilitate the formation of shock structures. It is noticed that these structures can move with the velocity of the drift wave which is not possible without considering the rotational effects. Several limiting cases are also discussed. In addition, the drift wave instability is obtained when electrons and positrons could not cancel out the space charge effects along the magnetic field lines in the presence of electron-ion and positron-ion collisions. Further, it is found that this instability is sensitive to rotational frequency of the object. The importance of the results with relevance to astrophysical plasmas is also pointed out.

Haque, Q. [Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad (Pakistan) and National Centre for Physics, Islamabad (Pakistan)

2012-09-15T23:59:59.000Z

438

Universal behavior of rotating neutron stars in GR: even simpler than their Newtonian counterparts  

E-Print Network (OSTI)

Recently it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia $I$, their quadrupole moment $Q$, and their tidal deformation Love number $\\lambda$ (the I-Love-Q relations), independently of the equation of state of the compact object. This universal behavior has been shown to break down in rapidly rotating neutron stars. In the present work a similar, more general, universality is shown to hold true for all rotating neutron stars within General Relativity; the first four multipole moments of the neutron star have interconnections that are independent of which nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars, could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

George Pappas; Theocharis A. Apostolatos

2013-11-21T23:59:59.000Z

439

Self locking drive system for rotating plug of a nuclear reactor  

DOE Patents (OSTI)

This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

Brubaker, James E. (Pittsburgh, PA)

1979-01-01T23:59:59.000Z

440

Polarization-rotation resonances with subnatural widths using a control laser  

E-Print Network (OSTI)

We demonstrate extremely narrow resonances for polarization rotation in an atomic vapor. The resonances are created using a strong control laser on the same transition, which polarizes the atoms due to optical pumping among the magnetic sublevels. As the power in the control laser is increased, successively higher-order nested polarization rotation resonances are created, with progressively narrower linewidths. We study these resonances in the $D_2$ line of Rb in a room-temperature vapor cell, and demonstrate a width of $0.14 \\, \\Gamma$ for the third-order rotation. The explanation based on a simplified $\\Lambda$V-type level structure is borne out by a density-matrix analysis of the system. The dispersive lineshape and subnatural width of the resonance lends itself naturally to applications such as laser locking to atomic transitions and precision measurements.

Chanu, Sapam Ranjita; Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rotationally sampled wind characteristics for several rotor sizes using laser anemometer measurements  

DOE Green Energy (OSTI)

The concept of measuring the wind velocity rotationally around crosswind circles using a circle-scanning Doppler laser anemometer is investigated to determine the technique's suitability as an effective, simple, economical, and nonintrusive method for estimation turbulence at a wind turbine rotor. Estimates of wind features obtained using the lidar technique are compared to actual wind measurements obtained using a vertical plane array of anemometers, and to other estimates generated using a single-tower technique. Although the lack of a common data set precludes a firm conclusion regarding the lidar method's accuracy, it appears that the rotationally scanning lidar has the potential of becoming an excellent tool for measuring turbulent wind around the disk of rotation of a turbine blade. 11 refs., 21 figs., 2 tabs.

Connell, J.R.; Morris, V.R.

1989-02-01T23:59:59.000Z

442

Assessing the Value of an Optional Radiation Oncology Clinical Rotation During the Core Clerkships in Medical School  

Science Conference Proceedings (OSTI)

Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students' knowledge of radiation oncology were administered anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students' prerotation test scores had an average of 64% (95% confidence interval [CI], 61-66%). The postrotation test scores improved to an average of 82% (95% CI, 80-83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1-9; 95% CI, 7.3-9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5-9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6-9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.

Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.; Wuthrick, Evan; Ahn, Peter H.; Werner-Wasik, Maria; Shi, Wenyin; Dicker, Adam P.; Anne, P. Rani; Bar-Ad, Voichita [Department of Radiation Oncology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Showalter, Timothy N., E-mail: timothy.showalter@jeffersonhospital.org [Department of Radiation Oncology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

2012-07-15T23:59:59.000Z

443

THE ROLE OF PLANET ACCRETION IN CREATING THE NEXT GENERATION OF RED GIANT RAPID ROTATORS  

Science Conference Proceedings (OSTI)

Rapid rotation in field red giant stars is a relatively rare but well-studied phenomenon; here we investigate the potential role of planet accretion in spinning up these stars. Using Zahn's theory of tidal friction and stellar evolution models, we compute the decay of a planet's orbit into its evolving host star and the resulting transfer of angular momentum into the stellar convective envelope. This experiment assesses the frequency of planet ingestion and rapid rotation on the red giant branch (RGB) for a sample of 99 known exoplanet host stars. We find that the known exoplanets are indeed capable of creating rapid rotators; however, the expected fraction due to planet ingestion is only {approx} 10% of the total seen in surveys of present-day red giants. Of the planets ingested, we find that those with smaller initial semimajor axes are more likely to create rapid rotators because these planets are accreted when the stellar moment of inertia is smallest. We also find that many planets may be ingested prior to the RGB phase, contrary to the expectation that accretion would generally occur when the stellar radii expand significantly as giants. Finally, our models suggest that the rapid rotation signal from ingested planets is most likely to be seen on the lower RGB, which is also where alternative mechanisms for spin-up, e.g., angular momentum dredged up from the stellar core, do not operate. Thus, rapid rotators on the lower RGB are the best candidates to search for definitive evidence of systems that have experienced planet accretion.

Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)], E-mail: jkm9n@virginia.edu, E-mail: srm4n@virginia.edu, E-mail: pla7y@virginia.edu

2009-07-20T23:59:59.000Z

444

Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas  

SciTech Connect

In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , D? emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking the radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality #23;#3; ?i < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.

B A Grierson, et al

2013-05-10T23:59:59.000Z

445

EEOC FORM715-01 PART A - D  

National Nuclear Security Administration (NNSA)

US Department of Energy National Nuclear Security Administration Management Directive 715 Fiscal Year 2008 National Nuclear Security Administration FY 2008 MD-715 EEO Program Status Report Table of Contents Page Parts A-C: Agency Identifying Information.............................................................1 Part D: Subordinate Components.........................................................................2 Part E: Executive Summary................................................................................4 Part F: Certification.....................................................................................10 Part G: Facility Self-Assessment.................................................................................11

446

Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor  

E-Print Network (OSTI)

We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

Thierry Mora; Howard Yu; Ned S. Wingreen

2009-10-05T23:59:59.000Z

447

Large improved Wick rotation prescription in stochastic quantization of dissipative systems  

E-Print Network (OSTI)

We apply Stochastic Quantization Method to dissipative systems at finite temperature. Especially, the relation of SQM to the Caldeira-Leggett model is clarified ensuring that the naive Wick rotation is improved in this context. We show that the Langevin system obtained by the \\lq\\lq Improved Wick Rotation " prescription is equivalent to an ideal friction case ( low temperature limit) in the C-L model. We derive, based on our approach, a general formula on the fluctuation-dissipation theorem for higher derivative frictions.

Nakazawa, N; Naohito Nakazawa; Eisaku Sakane

1994-01-01T23:59:59.000Z

448

Large Improved Wick Rotation Prescription in Stochastic Quantization of Dissipative Systems  

E-Print Network (OSTI)

We apply Stochastic Quantization Method to dissipative systems at finite temperature. Especially, the relation of SQM to the Caldeira-Leggett model is clarified ensuring that the naive Wick rotation is improved in this context. We show that the Langevin system obtained by the \\lq\\lq Improved Wick Rotation " prescription is equivalent to an ideal friction case ( low temperature limit) in the C-L model. We derive, based on our approach, a general formula on the fluctuation-dissipation theorem for higher derivative frictions.

Naohito Nakazawa; Eisaku Sakane

1994-03-17T23:59:59.000Z

449

Quantum dots in high magnetic fields: Rotating-Wigner-molecule versus composite-fermion approach  

E-Print Network (OSTI)

Exact diagonalization results are reported for the lowest rotational band of N=6 electrons in strong magnetic fields in the range of high angular momenta 70 = nu >= 1/9). A detailed comparison of energetic, spectral, and transport properties (specifically, magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies, and exponents of current-voltage power law) shows that the recently discovered rotating-electron-molecule wave functions [Phys. Rev. B 66, 115315 (2002)] provide a superior description compared to the composite-fermion/Jastrow-Laughlin ones.

Constantine Yannouleas; Uzi Landman

2003-02-25T23:59:59.000Z

450

Gamma-Ray Bursts and Afterglows from Rotating Strange Stars and Neutron Stars  

E-Print Network (OSTI)

We here discuss a new model of $\\gamma$-ray bursts (GRBs) based on differentially rotating strange stars. Strange stars in this model and differentially rotating neutron stars in the Klu\\'zniak-Ruderman model can produce extremely relativistic, variable fireballs required by GRBs and then become millisecond pulsars. The effect of such pulsars on expansion of the postburst fireballs through magnetic dipole radiation is studied. We show that these two models can explain naturally not only various features of GRBs but also light curves of afterglows.

Z. G. Dai; T. Lu

1998-10-21T23:59:59.000Z

451

Global aspects of accelerating and rotating black hole space-times  

E-Print Network (OSTI)

The complete family of exact solutions representing accelerating and rotating black holes with possible electromagnetic charges and a NUT parameter is known in terms of a modified Plebanski-Demianski metric. This demonstrates the singularity and horizon structure of the sources but not that the complete space-time describes two causally separated black holes. To demonstrate this property, the metric is first cast in the Weyl-Lewis-Papapetrou form. After extending this up to the acceleration horizon, it is then transformed to the boost-rotation-symmetric form in which the global properties of the solution are manifest. The physical interpretation of these solutions is thus clarified.

J. B. Griffiths; J. Podolsky

2005-11-22T23:59:59.000Z

452

Faraday rotation and sensitivity of (100) bismuth-substituted ferrite garnet films  

E-Print Network (OSTI)

We have investigated the Faraday rotation of in-plane magnetized bismuth-substituted ferrite garnet films grown by liquid phase epitaxy on (100) oriented gadolinium gallium garnet substrates. The Faraday spectra were measured for photon energies between 1.7- 2.6 eV. To interprete the spectra, we use a model based on two electric dipole transitions, one tetrahedral and one octahedral. Furthermore, the Faraday rotation sensitivity was measured at 2.3 eV, and found to be in good agreement with the theoretical predicitions. In particular, we find that the sensitivity increases linearly with the bismuth content and nonlinearly with the gallium content. 1 I.

L. E. Helseth; A. G. Solovyev; R. W. Hansen

2002-01-01T23:59:59.000Z

453

Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks  

SciTech Connect

A theory for localized low-frequency ideal magnetohydrodynamical (MHD) modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal equilibrium plasma flows. The general set of equations describing the coupling of shear Alfven and slow (sound) modes and defining the continuous spectrum of rotating plasmas in axisymmetric toroidal systems is derived. The equations are applied to study the continuous spectra in large aspect ratio tokamaks. The unstable continuous modes in the case of predominantly poloidal plasma rotation with the angular velocity exceeding the sound frequency are found. Their stabilization by the shear Alfven coupling effect is studied.

Lakhin, V. P. [NRC ''Kurchatov Institute'', 1 Kurchatov Sqr., Moscow 123182 (Russian Federation); Ilgisonis, V. I. [NRC ''Kurchatov Institute'', 1 Kurchatov Sqr., Moscow 123182 (Russian Federation); People's Friendship University of Russia, 3 Ordzhonikidze Str., Moscow 117198 (Russian Federation)

2011-09-15T23:59:59.000Z

454

[Place at top of Part I]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inserting in the FOA template are in blue. inserting in the FOA template are in blue. [Place at top of Part I - FUNDING OPPORTUNITY DESCRIPTION] Projects under this FOA will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). The Recovery Act's purposes are to stimulate the economy and to create and retain jobs. The Act gives preference to activities that can be started and completed expeditiously, including a goal of using at least 50 percent of the funds made available by it for activities that can be initiated not later than June 17, 2009. Accordingly, special consideration will be given to projects that promote and enhance the objectives of the Act, especially job creation, preservation and

455

Part 4: Special Circumstances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Special Circumstances 4: Special Circumstances Part 4: Special Circumstances Question: What is the relationship between removal actions and compliance with NEPA? Answer: The Secretarial Policy Statement on the National Environmental Policy Act (June 1994) specifies that "DOE CERCLA documents will incorporate NEPA values, such as analysis of cumulative, off-site, ecological, and socioeconomic impacts, to the extent practicable." The Statement maintains that "DOE may choose, after consultation with stakeholders and as a matter of policy, to integrate the NEPA and CERCLA processes for specific proposed actions." NEPA requirements and DOE regulations for compliance with NEPA (10 CFR Part 1021), must be satisfied, as applicable, consistent with the Secretarial Policy Statement. In most

456

DOE Meeting Memorandum: Ex Parte Communications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Memorandum: Ex Parte Communications Meeting Memorandum: Ex Parte Communications Date: June 4, 2013 DOE Attendees: Ashley Armstrong, Lucy DeButts, and John Cymbalsky, EERE Building Technologies Program; Eric Haas, General Counsel Outside attendees: Patrick Keal, Big Ass Fans; Janie Wise, Vern Simmons, & Terry Paul, Cassidy & Associates Meeting Contact: Janie Wise - jwise@cassidy.com / 202-585-2553 Subject: Pending rulemakings on (1) Commercial and industrial fans and (2) Residential fans and lighting kits. Summary: Big Ass Fans is headquartered in Lexington, Kentucky, and designs and manufactures a variety of fan models for commercial, industrial and residential use. BAF met with DOE to discuss the ongoing rulemaking process for the commercial and industrial fans and blowers energy conservation

457

NVO-1229-105 Part I  

Office of Legacy Management (LM)

9-105 Part I 9-105 Part I jyl).($z- 1 EVALUATION OF THE PROJECT SHOAL SITE FALLON, NEVADA FOR DISPOSITION, INCLUDING IDENTIFICATION OF RESTRICTIONS -- D -----. April 1970 Contract AT(29.2j.1229 ". S. ATOMIC ENERGY COMMISSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA HYDROGEOLOGY #? ISOTOPES PALO ALTO LABORATORIES 4062 Fabian Street Palo Alto, California 94303 LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the commission, nor any person acting on behalf of the Commission: A: Makes any warranty or representation, ex- pressed or implied, with respect to the accuracy, completeness, oi- usefulness of the information con- tained in this report, or that the use of any infor- mation, apparatus, method, OI process disclosed in

458

Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes  

E-Print Network (OSTI)

Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration $\\eta$ between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of $\\eta\\simeq 10^{-13}$ or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.

G. L. Comandi; M. L. Chiofalo; R. Toncelli; D. Bramanti; E. Polacco; A. M. Nobili

2006-01-18T23:59:59.000Z

459

Wakefield Computations for the Injector (Part I)  

Science Conference Proceedings (OSTI)

In this document, we report on basic wakefield computations used to establish the impedance budget for the LCLS injector. Systematic comparisons between analytic formulae and results from ABCI are done. Finally, a comparison between 2D and 3D wakefield calculations are given for a cross. The three parts of the document are presented as follows: (1) ABCI computations for a few structures (Flange, Bellows...); (2) Comparison analytic with ABCI runs; and (3) Comparison Cross and Cavity using MAFIA.

Limborg-Deprey, C.

2010-12-13T23:59:59.000Z

460

PCR - Ligation Assembly Standard for BioBrick Parts  

E-Print Network (OSTI)

This Request for Comments (RFC) describes a novel method for the assembly of standard BioBrick parts. This assembly method for BioBrick parts is an improvement upon the conventional methods of BioBrick part assembly. This ...

He, Tony PeiYuan

2011-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ex parte memo - Booz Allen Hamilton; March 4, 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Booz Allen Hamilton; March 4, 2011 More Documents & Publications ex parte memo - McKinsey & Company; February 16, 2011 ex parte memo - McKinsey & Company; February 16,...

462

Making of Alloy 706 Ingot for Gas Turbine Parts  

Science Conference Proceedings (OSTI)

MAKING OF ALLOY 706 INGOT FOR GAS TURBINE PARTS ... In general, Alloy 706 ingots for gas turbine parts are made by the VIM-ESR-VAR triple melt ...

463

Additive Manufacturing of Gamma Titanium Aluminide Parts by ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built ...

464

Reactor Loose Part Damage Assessments on Steam Generator Tube Sheets.  

E-Print Network (OSTI)

??PROCTOR, WILLIAM CYRUS. Reactor Loose Part Damage Assessments on Steam Generator Tube Sheets. (Under the direction of Joseph Michael Doster). Damage from loose parts inside… (more)

Proctor, William Cyrus

2010-01-01T23:59:59.000Z

465

Code of Federal Regulations PART 835-OCCUPATIONAL RADIATION PROTECTION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subpart A - General Provisions Code of Federal Regulations PART 835-OCCUPATIONAL RADIATION PROTECTION Subpart A - General Provisions The rules in this part establish radiation...

466

HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for...

467

Ex Parte Meeting with DOE and Navigant Consulting on Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies You are here Home Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger...

468

AGA-12, Part 2 Performance Test Results | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGA-12, Part 2 Performance Test Results AGA-12, Part 2 Performance Test Results The Pacific Northwest National Laboratory (PNNL) was tasked to evaluate the performance of devices...

469

Spatial relations of landscape : a poetics. Part 1.  

E-Print Network (OSTI)

??This thesis is composed of two parts. Part one is a volume of essays, commentaries, and manifesto pieces that investigate the relationship between literary tropes… (more)

Kinsella, John

2005-01-01T23:59:59.000Z

470

A comparison of high-order time integrators for thermal convection in rotating spherical shells  

Science Conference Proceedings (OSTI)

A numerical study of several time integration methods for solving the three-dimensional Boussinesq thermal convection equations in rotating spherical shells is presented. Implicit and semi-implicit time integration techniques based on backward differentiation ... Keywords: Backward differentiation-extrapolation formulae, Krylov methods, Spectral methods, Spherical shells, Thermal convection, Time integration methods

F. Garcia; M. Net; B. García-Archilla; J. Sánchez

2010-10-01T23:59:59.000Z

471

Some Observations of Rotating Updrafts in a Low-Buoyancy, Highly Sheared Environment  

Science Conference Proceedings (OSTI)

The authors document some of the unusual rotating updrafts (one of which produced a tornado) that developed over central Oklahoma on 28 October 1998 in an environment of strong (1.8 × 10?2 s?1) low-level (0–3 km) mean shear. The maximum ...

Paul M. Markowski; Jerry M. Straka

2000-02-01T23:59:59.000Z

472

Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response  

SciTech Connect

This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

George, R.L.; Connell, J.R.

1984-09-01T23:59:59.000Z

473

Convection with Rotation in a Neutral Ocean: A Study of Open-Ocean Deep Convection  

Science Conference Proceedings (OSTI)

The intensity and scale of the geostrophically adjusted end state of the convective overturning of a homogeneous rotating ocean of depth H at a latitude where the Coriolis parameter is f, induced by surface buoyancy loss of magnitude B0, are ...

Helen Jones; John Marshall

1993-06-01T23:59:59.000Z

474

Rotated Global Modes of Non-ENSO Sea Surface Temperature Variability  

Science Conference Proceedings (OSTI)

A varimax rotation was applied to the EOF modes of global SST derived by Enfield and Mestas-Nuñez. The SST anomaly record is more than a century long, with a global complex EOF representation of ENSO and a linear trend removed at every grid ...

Alberto M. Mestas-Nuñez; David B. Enfield

1999-09-01T23:59:59.000Z

475

Energy extraction and particle acceleration around a rotating black hole in Horava-Lifshitz gravity  

E-Print Network (OSTI)

Energy extraction and particle acceleration around a rotating black hole in Horava-Lifshitz gravity-Lifshitz gravity is studied. The strong dependence of the extracted energy from the special range of parameters that the fundamental parameter of the Horava-Lifshitz gravity can impose a limitation on the energy of the accelerating

476

Flavor oscillations of low energy neutrinos in the rotating neutron star  

E-Print Network (OSTI)

We study flavor oscillations of low energy neutrinos propagating in dense matter of a rotating neutron star. On the basis of the exact solutions of the wave equations for neutrinos mass eigenstates we derive the transition probability for neutrinos having big initial angular momentum. It is found that flavor oscillations of neutrinos with energies of several electron-Volts can be resonancely enhanced.

Maxim Dvornikov

2010-01-15T23:59:59.000Z

477

FARADAY ROTATION DISTRIBUTIONS FROM STELLAR MAGNETISM IN WIND-BLOWN BUBBLES  

SciTech Connect

Faraday rotation is a valuable tool for detecting magnetic fields. Here, the technique is considered in relation to wind-blown bubbles. In the context of spherical winds with azimuthal or split monopole stellar magnetic field geometries, we derive maps of the distribution of position angle (P.A.) rotation of linearly polarized radiation across projected bubbles. We show that the morphology of maps for split monopole fields are distinct from those produced by the toroidal field topology; however, the toroidal case is the one most likely to be detectable because of its slower decline in field strength with distance from the star. We also consider the important case of a bubble with a spherical sub-volume that is field-free to approximate crudely a 'swept-up' wind interaction between a fast wind (or possibly a supernova ejecta shell) overtaking a slower magnetized wind from a prior state of stellar evolution. With an azimuthal field, the resultant P.A. map displays two arc-like features of opposite rotation measure, similar to observations of the supernova remnant G296.5+10.0. We illustrate how P.A. maps can be used to disentangle Faraday rotation contributions made by the interstellar medium versus the bubble. Although our models involve simplifying assumptions, their consideration leads to a number of general robust conclusions for use in the analysis of radio mapping data sets.

Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)] [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Pingel, N. M., E-mail: ignace@etsu.edu, E-mail: nmpingle@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53711 (United States)

2013-03-01T23:59:59.000Z

478

SLOWLY ROTATING GAS-RICH GALAXIES IN MODIFIED NEWTONIAN DYNAMICS (MOND)  

SciTech Connect

We have carried out a search for gas-rich dwarf galaxies that have lower rotation velocities in their outskirts than MOdified Newtonian Dynamics (MOND) predicts, so that the amplitude of their rotation curves cannot be fitted by arbitrarily increasing the mass-to-light ratio of the stellar component or by assuming additional undetected matter. With presently available data, the gas-rich galaxies UGC 4173, Holmberg II, ESO 245-G05, NGC 4861, and ESO 364-G029 deviate most from MOND predictions and, thereby, provide a sample of promising targets in testing the MOND framework. In the case of Holmberg II and NGC 4861, we find that their rotation curves are probably inconsistent with MOND, unless their inclinations and distances differ significantly from the nominal ones. The galaxy ESO 364-G029 is a promising target because its baryonic mass and rotation curve are similar to Holmberg II but presents a higher inclination. Deeper photometric and H I observations of ESO 364-G029, together with further decreasing systematic uncertainties, may provide a strong test to MOND.

Sanchez-Salcedo, F. J.; Martinez-Garcia, E. E. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico City (Mexico); Hidalgo-Gamez, A. M., E-mail: jsanchez@astro.unam.mx [Departamento de Fisica, Escuela Superior de Fisica y Matematicas, IPN, U.P. Adolfo Lopez Mateos, C.P. 07738, Mexico City (Mexico)

2013-03-15T23:59:59.000Z

479

Application of ring lasers to determine the directions to the poles of Earth's rotation  

Science Conference Proceedings (OSTI)

Application of a ring laser to determine the directions to the poles of Earth's rotation is considered. The maximum accuracy of determining the directions is calculated, physical and technical mechanisms that limit the accuracy are analysed, and the instrumental errors are estimated by the example of ring He - Ne lasers with Zeeman biasing. (laser applications and other topics in quantum electronics)

Golyaev, Yu D; Kolbas, Yu Yu [Open Joint-Stock Company 'M.F. Stel'makh Polyus Research and Development Institute', Moscow (Russian Federation)

2012-10-31T23:59:59.000Z

480

Determining the orientation of marine CSEM receivers using orthogonal Procrustes rotation analysis  

E-Print Network (OSTI)

Determining the orientation of marine CSEM receivers using orthogonal Procrustes rotation analysis surveys can have unknown orientations because of the unavailability of compass and tilt recordings. In such situ- ations, only the orientation-independent parameters derived from the measured CSEM field vector

Key, Kerry

Note: This page contains sample records for the topic "rotor-the rotating part" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers  

Science Conference Proceedings (OSTI)

In this paper, we propose new Euler flux functions for use in a finite-volume Euler/Navier-Stokes code, which are very simple, carbuncle-free, yet have an excellent boundary-layer-resolving capability, by combining two different Riemann solvers into ... Keywords: Carbuncle, Hybrid schemes, Rotated Riemann solvers, Shock instability, Upwind schemes

Hiroaki Nishikawa; Keiichi Kitamura

2008-02-01T23:59:59.000Z

482

Upper limits on X-ray emission from two rotating radio transients  

E-Print Network (OSTI)

X-ray emission from the enigmatic rotating radio transients (RRATs) offers a vital clue to understanding these objects and how they relate to the greater neutron star population. An X-ray counterpart to RRAT J1819?1458 is ...

Kaplan, D. L.

483

Experimental Modal Analysis on a Rotating Fan Using Tracking-CSLDV  

Science Conference Proceedings (OSTI)

Continuous Scan Laser Doppler Vibrometry (CSLDV) modifies the traditional mode of operation of a vibrometer by sweeping the laser measurement point continuously over the structure while measuring, enabling one to measure spatially detailed mode shapes quickly and minimizing the inconsistencies that can arise if the structure or test conditions change with time. When a periodic scan path is employed, one can decompose the measurement into the response that would have been measured at each point traversed by the laser and obtain the structure's mode shapes and natural frequencies using conventional modal analysis software. In this paper, continuous-scan vibrometry is performed on a rotating fan, using computer controlled mirrors to track the rotating fan blades while simultaneously sweeping the measurement point over the blades. This has the potential to circumvent the difficulty of attaching contact sensors such as strain gauges, which might modify the structure and invalidate the results. In this work, impact excitation was used to excite a 3-blade fan rotating at various speeds, and the blades were scanned with a cloverleaf pattern that captured the bending of all three blades simultaneously. Some specialized signal processing is helpful in minimizing the effect of rotation frequency harmonics in the measurements, and specific scan strategies are needed to avoid those frequencies, both of these issues are discussed in the paper. While noise in the laser vibrometer does pose some difficulty, the results show that several modes could be extracted and that the tracking-CSLDV results agree with measurements obtained from the parked fan.

Gasparoni, Andrea; Castellini, Paolo; Tomasini, Enrico P. [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Allen, Matthew S.; Yang Shifei; Sracic, Michael W. [Department of Engineering Physics, University of Wisconsin-Madison, 535 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

2010-05-28T23:59:59.000Z

484

Energy Loss of a Heavy Particle near 3D Charged Rotating Hairy Black Hole  

E-Print Network (OSTI)

In this paper we consider charged rotating black hole in 3 dimensions with an scalar charge and discuss about energy loss of heavy particle moving near the black hole horizon. We also study quasi-normal modes and find dispersion relations. We find that the effect of scalar charge and electric charge is increasing energy loss.

Jalil Naji

2014-01-17T23:59:59.000Z

485

Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery  

Science Conference Proceedings (OSTI)

Recent researches in fault classification have shown the importance of accurately selecting the features that have to be used as inputs to the diagnostic model. In this work, a multi-objective genetic algorithm (MOGA) is considered for the feature selection ... Keywords: Ensemble, Fault diagnosis, Feature selection, Multi-objective genetic algorithms, Rotating machinery

E. Zio; P. Baraldi; G. Gola

2008-09-01T23:59:59.000Z

486

Nonlinear Development of the Secular Bar-mode Instability in Rotating Neutron Stars  

E-Print Network (OSTI)

We have modelled the nonlinear development of the secular bar-mode instability that is driven by gravitational radiation-reaction (GRR) forces in rotating neutron stars. In the absence of any competing viscous effects, an initially uniformly rotating, axisymmetric $n=1/2$ polytropic star with a ratio of rotational to gravitational potential energy $T/|W| = 0.181$ is driven by GRR forces to a bar-like structure, as predicted by linear theory. The pattern frequency of the bar slows to nearly zero, that is, the bar becomes almost stationary as viewed from an inertial frame of reference as GRR removes energy and angular momentum from the star. In this ``Dedekind-like'' state, rotational energy is stored as motion of the fluid in highly noncircular orbits inside the bar. However, in less than 10 dynamical times after its formation, the bar loses its initially coherent structure as the ordered flow inside the bar is disrupted by what appears to be a purely hydrodynamical, short-wavelength, ``shearing'' type instability. The gravitational waveforms generated by such an event are determined, and an estimate of the detectability of these waves is presented.

Shangli Ou; Joel E. Tohline; Lee Lindblom

2004-06-01T23:59:59.000Z

487

Charged fermion tunnelling from electrically and magnetically charged rotating black hole in de Sitter space  

E-Print Network (OSTI)

Thermal radiation of electrically charged fermions from rotating black hole with electric and magnetic charges in de Sitter space is considered. The tunnelling probabilities for outgoing and incoming particles are obtained and the Hawking temperature is calculated. The relation for the classical action for the particles in the black hole's background is also found.

M. M. Stetsko

2013-06-10T23:59:59.000Z

488