National Library of Energy BETA

Sample records for rotor start-up wind

  1. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  2. SMART Wind Turbine Rotor: Data Analysis and Conclusions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Data Analysis and Conclusions Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. SMART Wind Turbine Rotor: Data Analysis and Conclusions (2.47 MB) More Documents & Publications SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Design and Field Test

  3. SMART Wind Turbine Rotor: Design and Field Test

    Broader source: Energy.gov [DOE]

    Design and field test results from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

  4. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Office of Environmental Management (EM)

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work ...

  5. Variable diameter wind turbine rotor blades

    DOE Patents [OSTI]

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  6. Wind turbine rotor hub and teeter joint

    DOE Patents [OSTI]

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  7. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  8. Aerodynamic Wind-Turbine Blade Design for the National Rotor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Design for the National Rotor Testbed - Sandia Energy Energy Search ... Twitter Google + Vimeo Newsletter Signup SlideShare Aerodynamic Wind-Turbine Blade Design ...

  9. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  10. Locally fabricated Savonius rotor wind water pumps. Final report

    SciTech Connect (OSTI)

    Blake, S.

    1982-12-31

    A prototype Savonius rotor and supporting structure were designed and fabricated to power several configurations of water pumps. In addition, several commercially available horizontal axis water pumping windmills were purchased and installed adjacent to the Savonius rotor prototype such that simultaneous real-time data could be compared. The Savonius rotor was found to be materials intensive and difficult to govern at high wind speeds, and the horizontal axis machines were found to be more cost effective. (LEW)

  11. SMART wind turbine rotor. Data analysis and conclusions

    SciTech Connect (OSTI)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  12. SMART wind turbine rotor. Design and field test

    SciTech Connect (OSTI)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  13. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  14. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    SciTech Connect (OSTI)

    Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

  15. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect (OSTI)

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  16. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect (OSTI)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of

  17. National Rotor Testbed Targets Future Wind Plant Research Needs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rotor Testbed Targets Future Wind Plant Research Needs National Rotor Testbed Targets Future Wind Plant Research Needs May 18, 2015 - 4:12pm Addthis Two illustrated graphs. The graph on the top shows a single line repeating in four quadrants, the bottom graph shows all colors The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) initiative has identified the evolution of wakes in turbulent inflow as a key physical process affecting power production and

  18. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  19. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  20. Methods of making wind turbine rotor blades

    DOE Patents [OSTI]

    Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  1. Preform spar cap for a wind turbine rotor blade

    DOE Patents [OSTI]

    Livingston, Jamie T.; Driver, Howard D.; van Breugel, Sjef; Jenkins, Thomas B.; Bakhuis, Jan Willem; Billen, Andrew J.; Riahi, Amir

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  2. rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Zhengzhou High Tech Start up Investment | Open Energy Information

    Open Energy Info (EERE)

    Zhengzhou High Tech Start up Investment Jump to: navigation, search Name: Zhengzhou High-Tech Start-up Investment Place: Zhengzhou, Henan Province, China Product: Chinese...

  4. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)

    SciTech Connect (OSTI)

    Malcolm, D. J.; Hansen, A. C.

    2006-04-01

    This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

  5. Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-10

    A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.

  6. Investigating Aeroelastic Performance of Multi-Mega Watt Wind Turbine Rotors Using CFD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Aeroelastic Performance of Multi-MegaWatt Wind Turbine Rotors Using CFD David A. Corson 1 Altair Engineering, Inc., Clifton Park, NY, 12065 D. Todd Griffith 2 Sandia National Laboratories, Albuquerque, NM, 87185 Tom Ashwill 3 Sandia National Laboratories, Albuquerque, NM, 87185 Farzin Shakib 4 Altair Engineering, Inc., Mountain View, CA, 94043 Recent trends in wind power technology are focusing on increasing power output through an increase in rotor diameter. As the rotor diameter

  7. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ... Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ...

  8. CFD analysis of rotating two-bladed flatback wind turbine rotor.

    SciTech Connect (OSTI)

    van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

  9. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  10. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  11. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  12. Wisconsin Start-up Taps into Wind Supply Chain

    Broader source: Energy.gov [DOE]

    This time last year, Mary Jo Celichowski was at home in Oshkosh, Wis., unemployed and a little antsy after the motor parts company she was working at down-sized. Today, it's a bit different.

  13. Sandia Energy - SMART Rotor Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Rotor Video Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Energy Publications Online Abstracts and Reports SMART Rotor Video SMART Rotor...

  14. Green Business in Indian Country Start-Up Award

    Broader source: Energy.gov [DOE]

    Trees, Water, & People is accepting applications for the Green Business in Indian Country Start-Up Award and offering assistance to one selected applicant in starting their own business in a related field.

  15. St. Gobain Innovation Competition for Start-Ups

    Broader source: Energy.gov [DOE]

    The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

  16. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah Subcontract Report NREL/SR-500-32495 Revised April 2006 WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah NREL Technical Monitor: A. Laxson Prepared under Subcontract No. YAT-0-30213-01 Subcontract

  17. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Barone, Matthew F.; Yoder, Nathanael C.

    2014-01-29

    This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  18. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  19. Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number

    SciTech Connect (OSTI)

    Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.

    2015-04-01

    New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.

  20. PPPL physicists simulate innovative method for starting up tokamaks without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a solenoid | Princeton Plasma Physics Lab physicists simulate innovative method for starting up tokamaks without using a solenoid By Raphael Rosen January 4, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Francesca Poli (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Francesca Poli Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the

  1. PPPL physicists simulate innovative method for starting up tokamaks without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a solenoid | Princeton Plasma Physics Lab physicists simulate innovative method for starting up tokamaks without using a solenoid By Raphael Rosen January 4, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Francesca Poli (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Francesca Poli Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the

  2. Helping Cleantech Start-ups with Employee Compensation - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Helping Cleantech Start-ups with Employee Compensation October 17, 2011 The Colorado Center for Renewable Energy Economic Development (CREED) at U.S. Department of Energy's National Renewable Energy Laboratory (NREL) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The Oct. 20 class, "How do you pay your CEO," will help cleantech entrepreneurs determine how to compensate a team, particularly when the company is short on cash. To help

  3. Long pulse EBW start-up experiments in MAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; et al

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  4. Long pulse EBW start-up experiments in MAST

    SciTech Connect (OSTI)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; Mailloux, J.; Peng, M.; Saveliev, A. N.; Takase, Y.; Tanaka, H.; Taylor, G.

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  5. Segmented Ultralight Pre-Aligned Rotor for Extreme-Scale Wind Turbines

    SciTech Connect (OSTI)

    Loth, E.; Steele, A.; Ichter, B.; Selig, M.; Moriarty, P.

    2012-01-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale turbines, a downwind rotor concept is proposed which employs fixed blade curvature based on force alignment at rated conditions. For a given peak stress constraint, the reduction in downwind cantilever loads allows reduced shell and spar thickness, and thus a reduced blade mass as compared with a conventional upwind rotor, especially as rotor sizes approach extreme-scales. To quantify this mass reduction, a Finite Element Analysis was conducted for a 10 MW rated rotor based on the NREL offshore 5 MW baseline wind turbine. The results show that this 'pre-alignment' yields a net downstream deflection of 32 deg, a downward hub-pitch angle of 6 deg, a 20% increase in blade length (to maintain the same radius as the conventional blade), and a net mass savings of about 50% through decreased shell and spar thicknesses. The pre-alignment may also allow a more straightforward and efficient segmentation of the blade since shear stresses near joints are substantially reduced. Segmenting, in turn, can dramatically reduce costs associated with fabrication, transport and assembly for extreme-scale off-shore systems. The pre-aligned geometric curvature can also help alleviate tower wake effects on the blades since blade tips (where shadow effects can be most problematic) are shifted downstream where the tower wake is weaker. In addition, the portion of the tower that is upstream of the blade tips can be faired with an externally-rotating aerodynamic shroud. Furthermore, the downwind rotor can allow a floating off-shore tri-pod platform to reduce tower weight and yaw-control requirements. A simple economic analysis of the segmented ultralight pre-aligned rotor (SUPAR) concept suggests that the overall system cost savings can be as much as 25%, indicating that more detailed (numerical and experimental) investigations are warranted.

  6. Full-scale wind turbine rotor aerodynamics research

    SciTech Connect (OSTI)

    Simms, D A; Butterfield, C P

    1994-11-01

    The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

  7. Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  8. Colorado Start-Up Awarded First 'America's Next Top Energy Innovator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - ...

  9. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  10. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-02-01

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  11. On eigenfunction expansion solutions for the start-up of fluid...

    Office of Scientific and Technical Information (OSTI)

    On eigenfunction expansion solutions for the start-up of fluid flow Citation Details In-Document Search Title: On eigenfunction expansion solutions for the start-up of fluid flow ...

  12. Contact and Stress Anisotropies in Start-Up Flow of Colloidal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions Authors: Martys, N.S., Lootens, D., George, W., and H Spatiotemporal correlations in start-up flows of...

  13. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  14. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOE Patents [OSTI]

    Wetzel, Kyle Kristopher

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  15. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    SciTech Connect (OSTI)

    Bankaitis, H

    1982-03-01

    Several concepts of lightning accommodation systems for wind-driven turbine rotor blades were evaluated by submitting them to simulated lightning tests. Test samples representative of epoxy-fiberglass and wood-epoxy composite structural materials were submitted to a series of high-voltage and high-current damage tests. The high-voltage tests were designed to determine the strike points and current paths through the sample and the need for, and the most proper type of, lightning accommodation. The high-current damage tests were designed to determine the capability of the potential lightning accommodation system to sustain the 200-kA lightning current without causing damage to the composite structure. The observations and data obtained in the series of tests of lightning accommodation systems clearly led to the conclusions that composite-structural-material rotor blades require a lightning accommodation system; that the concepts tested prevent internal streamering; and that keeping discharge currents on the blade surface precludes structure penetration. Induced voltage effects or any secondary effects on the integral components of the total system could not be addressed. Further studies should be carried out to encompass effects on the total system design.

  16. Multi-piece wind turbine rotor blades and wind turbines incorporating same

    DOE Patents [OSTI]

    Moroz,; Mieczyslaw, Emilian [San Diego, CA

    2008-06-03

    A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

  17. ARPA-E Announces Start-up Companies, Strategic Partnerships and...

    Broader source: Energy.gov (indexed) [DOE]

    ARPA-E Announces Start-up Companies, Strategic Partnerships and Private Sector Funding at ... strategic partnerships, and secure private sector funding to help move ARPA-E ...

  18. Wake of the MOD-0A1 wind turbine at two rotor diameters downwind on December 3, 1981

    SciTech Connect (OSTI)

    Connell, J.R.; George, R.L.

    1982-11-01

    The wake of the MOD-0A1 wind turbine at Clayton, New Mexico has been measured using a vertical plane array of anemometers in a crosswind plane at a distance of two rotor diameters directly downwind of the turbine. Rotor blade vortices were well mixed into the wake turbulence and were not separately detectable. Wake swirl about the along-wind axis had a value not greater than 0.025 rad/s. Extra turbulence energy existed in the edge of the wake at a frequency of about n=0.025 Hz. The cross-wake plane analyses of wind speeds revealed a nearly circular inner portion and a strongly elliptical portion. The elliptical portion major axis was horizontal. An estimate of the average rate of reenergizing of the wake, using measurements of mean wind energy flow and turbine power, suggests that entrainment with ambient air may have been rapid. Some wake characteristics were compared with the corresponding ones for several simple wake models based upon concepts of mixing of ambient air into a wake or an equivalent coaxial jet. (LEW)

  19. Small Business Vouchers Pave Way for U.S. Start-Ups | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Vouchers Pave Way for U.S. Start-Ups Small Business Vouchers Pave Way for U.S. Start-Ups June 8, 2016 - 3:53pm Addthis American small businesses now have a fighting chance to make a big impact in clean energy. Through EERE's Small Business Vouchers (SBV) pilot, 33 small businesses are gaining access to world-class resources at nine national laboratories to help move their innovative ideas and technologies closer to the marketplace. Skysun LLC, a start-up from Bay Village, Ohio, is

  20. Colorado Start-Up Awarded First 'America's Next Top Energy Innovator'

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - 5:42pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs While visiting the National Renewable Energy Laboratory in Golden, Colorado, today, Vice President Biden announced that the Colorado-based start-up company U.S. e-Chromic LLC has

  1. New shared lab spells opportunity for small biotech start-ups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New shared lab spells opportunity for small biotech start-ups Community Connections: Your ... Latest Issue:July 2016 all issues All Issues submit New shared lab spells opportunity ...

  2. Top Student Team Wins $180,000 Toward Clean Energy Start Up | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Student Team Wins $180,000 Toward Clean Energy Start Up Top Student Team Wins $180,000 Toward Clean Energy Start Up June 15, 2012 - 2:57pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs The winners were: Grand prize: NuMat Technologies from Northwestern University Second place: SolidEnergy Systems from Massachusetts Institute of Technology People's Choice: Navillum Nanotechnologies from University of Utah NuMat Technologies beat

  3. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation 2004 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor 2004_deer_crane.pdf (430.54 KB) More Documents & Publications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Use of a Diesel Fuel Processor for Rapid and Efficient

  4. Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions Authors: Martys, N.S., Lootens, D., George, W., and H Spatiotemporal correlations in start-up flows of attractive colloids are explored by numerical simulations as a function of their volume fraction and shear rate. The suspension is first allowed to flocculate during a time tw, then the stress necessary to induce its flow is computed. We find that, at low volume fractions, the

  5. Iowa Start-up May Be "America's Next Top Energy Innovator" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy May Be "America's Next Top Energy Innovator" Iowa Start-up May Be "America's Next Top Energy Innovator" August 4, 2011 - 1:09pm Addthis Company Licenses Technology from Ames Laboratory to Produce Titanium Powder for Use in Military, Biomedical and Aerospace Components Washington, DC -- U.S. Secretary of Energy Steven Chu today announced that an Iowa based start-up company has been selected to participate in the Department of Energy's "America's

  6. America's Best Student Start-Up Companies Pitch for Your Vote | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Best Student Start-Up Companies Pitch for Your Vote America's Best Student Start-Up Companies Pitch for Your Vote May 24, 2012 - 9:03am Addthis After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national competition for a chance at the cash grand prize. | Energy Department file graphic. After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national

  7. Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RESTART NUCLEAR FACILITIES | Department of Energy 5.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES "The familiar level of this module is divided into three sections. In the first section we will discuss the purpose of DOE O 425.1D and the requirements for 1) determining the level of readiness review (RR), 2) determining the startup authorization authority (SAA), and

  8. First LNG from North field overcomes feed, start-up problems

    SciTech Connect (OSTI)

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  9. JLab Nanotube Research Leads To Newport News Start-Up (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Nanotube Research Leads To Newport News Start-Up (Daily Press) External Link: http://articles.dailypress.com/2012-08-03/news/dp-nws-cp-jefferson-lab-spinoff-2... By jlab_admin on Fri, 2012-08-03

  10. Nonrecovery cokemaking/cogeneration complex at Inland Steel scheduled to start up in mid-1998

    SciTech Connect (OSTI)

    Samways, N.L.

    1997-12-01

    A 1.33 million ton/year cokemaking/cogeneration power complex is under construction at the Indiana Harbor Works. The cokemaking plant consists of four batteries of nonrecovery type coke ovens representing a total of 268 ovens. The cogeneration energy facilities include: 16 heat recovery boilers; a steam turbine generator, and a flue gas desulfurization system. Start-up is scheduled for mid-1998. Both facilities are described.

  11. Construction, Qualification, and Low Rate Production Start-up of a DC Bus

    Broader source: Energy.gov (indexed) [DOE]

    Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt029_ape_sawyer_2011_p.pdf (670.52 KB) More Documents & Publications Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

  12. Helping Cleantech Start-ups with Strategic Messaging - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helping Cleantech Start-ups with Strategic Messaging December 5, 2011 The Colorado Center for Renewable Energy Economic Development (CREED) at U.S. Department of Energy's National Renewable Energy Laboratory (NREL) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The Dec. 8 class, "Strategic Messaging: Finding the Words to Win," will help cleantech entrepreneurs learn how to craft language about their companies that can be used in pitches, press

  13. CREED to Help Cleantech Start-ups with Go-to-Market Strategies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL CREED to Help Cleantech Start-ups with Go-to-Market Strategies August 17, 2011 The Colorado Center for Renewable Energy Economic Development (CREED) at U.S. Department of Energy's National Renewable Energy Laboratory (NREL) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The Aug. 25 class, "Go-to-Market Strategies," will help cleantech entrepreneurs analyze primary and secondary markets and teach them how to build and use a

  14. NREL to Help Four Start-ups Ramp up Solar Energy Innovations - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL to Help Four Start-ups Ramp up Solar Energy Innovations DOE to provide $5.8 million to support early-stage solar technologies through Incubator program at NREL September 1, 2011 Companies with innovative, game-changing ways to lower the cost of solar energy have been awarded $5.8 million to work with the U.S. Department of Energy's National Renewable Energy Laboratory. The SunShot Incubator Program is an expansion of DOE's successful PV Technology Incubator Program, launched

  15. Iowa Start-up Taps Ames Laboratory Technology in Challenge | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Taps Ames Laboratory Technology in Challenge Iowa Start-up Taps Ames Laboratory Technology in Challenge August 10, 2011 - 2:21pm Addthis Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT Using gas atomization

  16. Start-up operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, R.F.

    1991-01-01

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  17. Start-Up Operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, Raymond F.

    1992-03-24

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  18. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    SciTech Connect (OSTI)

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; Marshall, Margaret A.

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9?) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2? uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  19. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOE Patents [OSTI]

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  20. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; Marshall, Margaret A.

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding asmore » well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  1. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect (OSTI)

    Sawada, Terutoshi

    1995-12-01

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  2. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    SciTech Connect (OSTI)

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; Marshall, Margaret A.

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental keff come from uncertainties in the manganese content and impurities in the stainless steel fuel cladding as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  3. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  4. Start-up fuel and power flattening of sodium-cooled candle core

    SciTech Connect (OSTI)

    Takaki, Naoyuki; Sagawa, Yu; Umino, Akitake; Sekimoto, Hiroshi

    2013-07-01

    The hard neutron spectrum and unique power shape of CANDLE enable its distinctive performances such as achieving high burnup more than 30% and exempting necessity of both enrichment and reprocessing. On the other hand, they also cause several challenging problems. One is how the initial fuel can be prepared to start up the first CANDLE reactor because the equilibrium fuel composition that enables stable CANDLE burning is complex both in axial and radial directions. Another prominent problem is high radial power peaking factor that worsens averaged burnup, namely resource utilization factor in once-through mode and shorten the life time of structure materials. The purposes of this study are to solve these two problems. Several ideas for core configurations and startup fuel using single enrichment uranium and iron as a substitute of fission products are studied. As a result, it is found that low enriched uranium is applicable to ignite the core but all concepts examined here exceeded heat limits. Adjustment in enrichment and height of active and burnt zone is opened for future work. Sodium duct assemblies and thorium fuel assemblies loaded in the center region are studied as measures to reduce radial power peaking factor. Replacing 37 fuels by thorium fuel assemblies in the zeroth to third row provides well-balanced performance with flattened radial power distribution. The CANDLE core loaded with natural uranium in the outer and thorium in the center region achieved 35.6% of averaged burnup and 7.0 years of cladding life time owing to mitigated local fast neutron irradiation at the center. Using thorium with natural or depleted uranium in CANDLE reactor is also beneficial to diversifying fission resource and extending available term of fission energy without expansion of needs for enrichment and reprocessing.

  5. Data analysis and conclusions from the SMART Rotor project, a...

    Broader source: Energy.gov (indexed) [DOE]

    SMART Wind Turbine Rotor: Design and Field Test Jonathan C. Berg, Brian R. Resor, Joshua ... SMART Wind Turbine Rotor: Design and Field Test Jonathan C. Berg, Brian R. Resor, Joshua ...

  6. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Broader source: Energy.gov (indexed) [DOE]

    chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ... chapter that focuses on trends in wind turbine nameplate capacity, hub height, rotor ...

  7. DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)

    SciTech Connect (OSTI)

    Battelle

    2000-06-30

    This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

  8. Start-up Plan for Plautonium-238 Production for Radioisotope Power System (Report to Congress- June 2010)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Administration has requested the restart of plutonium?238 (Pu?238) production in fiscal year (FY) 2011. The following joint start?up plan, consistent with the President's request, has been developed collaboratively between the Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA), and defines the roles and contributions of major users of Pu?238 in response to Congressional request.

  9. The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers

    SciTech Connect (OSTI)

    Freund, H. P.; Miner, W. H. Jr.; Giannessi, L.

    2008-12-15

    The problem of radiation start up in free-electron lasers (FELs) is important in the simulation of virtually all FEL configurations including oscillators and amplifiers in both seeded master oscillator power amplifier (MOPA) and self-amplified spontaneous emission (SASE) modes. Both oscillators and SASE FELs start up from spontaneous emission due to shot noise on the electron beam, which arises from the random fluctuations in the phase distribution of the electrons. The injected power in a MOPA is usually large enough to overwhelm the shot noise. However, this noise must be treated correctly in order to model the initial start up of the harmonics. In this paper, we discuss and compare two different shot noise models that are implemented in both one-dimensional wiggler-averaged (PERSEO) and non-wiggler-averaged (MEDUSA1D) simulation codes, and a three-dimensional non-wiggler-averaged (MEDUSA) formulation. These models are compared for examples describing both SASE and MOPA configurations in one dimension, in steady-state, and time-dependent simulations. Remarkable agreement is found between PERSEO and MEDUSA1D for the evolution of the fundamental and harmonics. In addition, three-dimensional correction factors have been included in the MEDUSA1D and PERSEO, which show reasonable agreement with MEDUSA for a sample MOPA in steady-state and time-dependent simulations.

  10. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  11. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  12. PN Rotor GmbH | Open Energy Information

    Open Energy Info (EERE)

    PN Rotor GmbH Jump to: navigation, search Name: PN Rotor GmbH Place: Lower Saxony, Germany Sector: Wind energy Product: Germany-based subsidiary of Prokon Nord Energiesysteme GmbH...

  13. Wind turbine having a direct-drive drivetrain

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  14. Wind turbine/generator set and method of making same

    SciTech Connect (OSTI)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  15. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    SciTech Connect (OSTI)

    Motz, L.; Decision and Information Sciences

    2011-02-21

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  16. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    SciTech Connect (OSTI)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J.

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  17. EC assisted start-up experiments reproduction in FTU and AUG for simulations of the ITER case

    SciTech Connect (OSTI)

    Granucci, G.; Ricci, D.; Farina, D.; Figini, L.; Cavinato, M.; Stober, J.; Tudisco, O.

    2014-02-12

    The breakdown and plasma start-up in ITER are well known issues studied in the last few years in many tokamaks with the aid of calculation based on simplified modeling. The thickness of ITER metallic wall and the voltage limits of the Central Solenoid Power Supply strongly limit the maximum toroidal electric field achievable (0.3 V/m), well below the level used in the present generation of tokamaks. In order to have a safe and robust breakdown, the use of Electron Cyclotron Power to assist plasma formation and current rump up has been foreseen. This has raised attention on plasma formation phase in presence of EC wave, especially in order to predict the required power for a robust breakdown in ITER. Few detailed theory studies have been performed up to nowadays, due to the complexity of the problems. A simplified approach, extended from that proposed in ref[1] has been developed including a impurity multispecies distribution and an EC wave propagation and absorption based on GRAY code. This integrated model (BK0D) has been benchmarked on ohmic and EC assisted experiments on FTU and AUG, finding the key aspects for a good reproduction of data. On the basis of this, the simulation has been devoted to understand the best configuration for ITER case. The dependency of impurity distribution content and neutral gas pressure limits has been considered. As results of the analysis a reasonable amount of power (1 - 2 MW) seems to be enough to extend in a significant way the breakdown and current start up capability of ITER. The work reports the FTU data reproduction and the ITER case simulations.

  18. New Facility Tool at SWiFT Makes Rotor Work More Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Rotor fixation stands, one for each Scaled Wind Farm Technology (SWiFT) facility turbine, ...

  19. Sandia Energy - Structural and Mechanical Adaptive Rotor Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Mechanical Adaptive Rotor Technology (SMART) Final Project Reports Published Home Renewable Energy Energy News Wind Energy News & Events Systems Analysis Structural and...

  20. Evaluation of the Start-Up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Annular Core Loadings)

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2010-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The Japanese government approved construction of the HTTR in the 1989 fiscal year budget; construction began at the Oarai Research and Development Center in March 1991 and was completed May 1996. Fuel loading began July 1, 1998, from the core periphery. The first criticality was attained with an annular core on November 10, 1998 at 14:18, followed by a series of start-up core physics tests until a fully-loaded core was developed on December 16, 1998. Criticality tests were carried out into January 1999. The first full power operation with an average core outlet temperature of 850ºC was completed on December 7, 2001, and operational licensing of the HTTR was approved on March 6, 2002. The HTTR attained high temperature operation at 950 ºC in April 19, 2004. After a series of safety demonstration tests, it will be used as the heat source in a hydrogen production system by 2015. Hot zero-power critical, rise-to-power, irradiation, and safety demonstration testing , have also been performed with the HTTR, representing additional means for computational validation efforts. Power tests were performed in steps from 0 to 30 MW, with various tests performed at each step to confirm

  1. How Does a Wind Turbine Work?

    Broader source: Energy.gov [DOE]

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  2. Brawley 10MW Geothermal Plant Plant Manual for Southern California Edison Company and Union Oil Company of California: Systems Start-up and Operations, Volume II

    SciTech Connect (OSTI)

    1980-11-28

    Each system within the facility is considered from an operation viewpoint. There are five subsegments within this operation's viewpoint. Prerequisite conditions, start-up, normal operating, emergency and shutdown.

  3. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy Wind Energy Tara Camacho-Lopez 2016-08-30T20:56:10+00:00 Increasing the viability of wind energy technology by applying research to improve wind turbine performance and reliability http://windworkshops.sandia.gov/ Rotor Innovation Advancing rotor technology such that they capture more energy, more reliably, with relatively lower system loads-all at a lower end cost. SWiFT Facility & Testing Improving the performance and reducing the

  4. The Navajo scrubber project -- Start up and performance testing of the largest FGD system in the USA

    SciTech Connect (OSTI)

    Lusko, J.; Massion, R.; Sekhar, N.

    1998-07-01

    The Navajo Scrubber Project located in Page, Arizona is the largest Flue Gas Desulfurization (FGD) system in the USA. Limestone based FGD system producing disposable grade gypsum is being installed on Units 1,2 and 3 (3 x 750 MWe) at the Navajo Generating Station (NGS) to comply with an EPA ruling mandating SO{sub 2} emission reduction to improve visibility in the Grand Canyon National Park. Compliance will be phased-in by unit in 1997, 1998 and 1999. The NGS burns low-sulfur coal with a sulfur content of approximately 0.5%. The FGD system is designed to treat a total flue gas flow of 11.25 million acfm, at an SO{sub 2} removal efficiency of 92% for an emission of 0.1 lb. per million BTU. Unique features of the FGD system include, a totally closed loop water balance system, 775 ft. chimney with C-276 alloy clad designed to handle both wet and hot dry gas, solid C-276 alloy absorber vessels and the use of existing ID fans, with suitable modification, to overcome the additional pressure drop of the FGD system. The start-up sequence/operation and performance tests of Unit 3 of this unique FGD system is described in this paper. Performance tests include, removal efficiency determination at 0.6 and 0.8% sulfur coal at normal and 60,000 PPM chloride in the slurry, particulate carry over determination under normal as well as upset ESP conditions, and determination of mist eliminator carry-over using Video Droplet Analyzer.

  5. DOE and Sandia National Laboratories Develop National Rotor Testbed...

    Energy Savers [EERE]

    a modern, research-quality wind turbine rotor for use at the new Scaled Wind Farm ... and to conduct complex flow and turbine-to-turbine interaction research that will ...

  6. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  7. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  8. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  9. HGP-A Wellhead Generator, Proof-Of-Feasibility Project 3 MW Wellhead Generator, Start-Up Training and Operating Manual

    SciTech Connect (OSTI)

    1981-01-01

    The start-up manual is an information aid to initially familiarize plant operators with the plant operation and later be used as a reference manual while operating the plant. This start-up manual is supplemented by the Plant Data Manual which contains a detailed description of the philosophy of operation and equipment characteristics. The sequencing herein presents the necessary operating procedures which must be followed in order that a smooth start-up is obtained. The sequence includes, first conditioning the well and stabilizing the steam/water separations, and then bringing the operating machinery on line. The Piping and Instrumentation Diagrams and Electrical Drawings are included under Section 12.0 and are frequently referred to in the text. Information for ''trouble-shooting'' is provided in the maintenance and operations manuals on all the equipment.

  10. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  11. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    SciTech Connect (OSTI)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  12. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia Labs., Albuquerque, N.Mex. (USA) Country of Publication: United States Language: English Subject: 17 WIND ENERGY; DARRIEUS ROTORS; PERFORMANCE TESTING; AIR; ...

  13. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu; Teichmann, Ralph; Avagliano, Aaron; Kammer, Leonardo Cesar; Pierce, Kirk Gee; Pesetsky, David Samuel; Gauchel, Peter

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  14. DOE and Sandia National Laboratories Develop National Rotor Testbed |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Sandia National Laboratories Develop National Rotor Testbed DOE and Sandia National Laboratories Develop National Rotor Testbed August 1, 2013 - 3:05pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) are designing a modern, research-quality wind turbine rotor for use at the new Scaled Wind Farm Technology (SWiFT) site at Texas Tech

  15. Stator for a rotating electrical machine having multiple control windings

    DOE Patents [OSTI]

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  16. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  17. Xinjiang Huitong Wind Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Xinjiang Autonomous Region, China Sector: Wind energy Product: A Chinese wind turbine component supplier, products inculde rotors, spindles and towers....

  18. Methods and apparatus for cooling wind turbine generators

    DOE Patents [OSTI]

    Salamah, Samir A.; Gadre, Aniruddha Dattatraya; Garg, Jivtesh; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  19. How Do Wind Turbines Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics » How Do Wind Turbines Work? How Do Wind Turbines Work? Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click on the image to see an animation of wind at work. Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main

  20. Rotor Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  1. Southeastern Environmental Resources Alliance [Status report on completion milestones incorporated in the Cooperative Agreement, and draft start-up plan March 24, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Southeastern Environmental Resources Alliance (SERA) is a joint effort between the US Department of Energy, the states of Georgia and South Carolina, and Westinghouse Savannah River Company (WSRC). The original proposal for SERA, submitted under the Technology Reinvestment Project (TRP), is based on improving the competitiveness of manufacturers within Georgia and South Carolina by addressing the costs associated with environmental and waste management issues. By using the many technologies available through the national laboratories, universities, the Savannah River Site, and the commercial sector, SERA will improve the competitive position of companies that would otherwise have no access to those technologies. This Start-Up Plan details the steps SERA will take to begin effective operations by June 1, 1995, and will focus on the short-term needs of the program. This plan will serve as a supplement to the original SERA proposal, and will address the major milestones included in the Department of Energy`s Cooperative Agreement. Also documented are the planning processes that SERA will use to ensure the long-term viability of the program. The planning process will include additional work elements that are referenced by the original proposal, but, for the purposes of program start-up, are not immediately addressed. The major milestones and schedules are provided for each goal.

  2. Assessment of full power turbine trip start-up test for C. Trillo 1 with RELAP5/MOD2. International Agreement Report

    SciTech Connect (OSTI)

    Lozano, M.F.; Moreno, P.; de la Cal, C.; Larrea, E.; Lopez, A.; Santamaria, J.G.; Lopez, E.; Novo, M.

    1993-07-01

    C. Trillo I has developed a model of the plant with RELAP5/MOD2/36.04. This model will be validated against a selected set of start-up tests. One of the transients selected to that aim is the turbine trip, which presents very specific characteristics that make it significantly different from the same transient in other PWRs of different design, the main difference being that the reactor is not tripped: a reduction in primary power is carried out instead. Pre-test calculations were done of the Turbine Trip Test and compared against the actual test. Minor problems in the first model, specially in the Control and Limitation Systems, were identified and post-test calculations had been carried out. The results show a good agreement with data for all the compared variables.

  3. Dynamic model of Italy`s Progetto Energia cogeneration plants aims to better predict plant performance, cut start-up costs

    SciTech Connect (OSTI)

    1996-12-31

    Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.

  4. Wind turbine having a direct-drive drivetrain

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  5. DOE Report Evaluates Potential for Wind Power in All 50 States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind potential to 1.8 million square miles. Technological advancements, such as taller wind turbine towers of 110 and 140 meters and larger rotors-currently under...

  6. Your wind driven generator

    SciTech Connect (OSTI)

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  7. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Rotor Aerodynamic Design HomeStationary ...

  8. COMMISSIONING AND START-UP TESTS OF ALPHA-CONTAMINATED SOLID WASTE SORTING, CEMENTING, AND INTERIM STORAGE FACILITIES AT BELGOPROCESS (BELGIUM)

    SciTech Connect (OSTI)

    GLIBERT, R.C.; NUYT, G.; LAMOTTE, G.; RENARD, CL.; DE GOEYSE, A.; GOETSCHALCKX, R.; GHYS, B.

    2003-02-27

    The alpha-contaminated solid waste generated in Belgium results from past activities in the fuel cycle (R & D +Reprocessing and MOX fabrication pilot plants) and present operation of BELGONUCLEAIRE's MOX fuel fabrication plant. After the main steps in the management of alpha-contaminated solid waste were established, BELGONUCLEAIRE, with the backing of BELGOPROCESS and ONDRAF/NIRAS, started the design and construction of the T & C and interim-storage facilities for this alpha waste. The accumulated solid alpha radwaste containing a mixture of combustible and non-combustible material will be sorted. After sorting, both the accumulated and recently-generated non-combustible alpha waste will be embedded in a cement matrix. The erection of the sorting and cementing units which include glove-boxes and the interim storage building for conditioned packages was completed at BELGOPROCESS, at the beginning of year 2002. Start-up operations for both facilities have been performed. Operating tests of the sorting and cementing units were completed in July 2002 and inactive operation campaigns were started in August 2002. The results of the tests and inactive campaigns are given. Overall testing of the storage building supervised by the Safety Authorities was successfully performed at the end of 202 after completion of the operating tests on the equipment. The present paper summarizes the main information collected during the tests and campaigns, some of which has led to modifications of the equipment originally installed.

  9. Methods and apparatus for rotor blade ice detection

    DOE Patents [OSTI]

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  10. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  11. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  12. Unconventional Rotor Power Response to Yaw Error Variations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schreck, S. J.; Schepers, J. G.

    2014-12-16

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  13. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * Electrical controls * Blade pitch controls Rotor Hub Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller turbines are needed to capture optimal wind resources Wind power is competitive with wholesale prices Source: Wiser and Bolinger, 2009 Note: Wholesale price range reflects flat block of power across 23 pricing

  14. Department of Energy Awards $43 Million to Spur Offshore Wind...

    Energy Savers [EERE]

    The 41 projects across 20 states will advance wind turbine design tools and hardware, ... such as floating support structures and turbine rotor and control subsystems that may ...

  15. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  16. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

  17. How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Wind Turbine Works How a Wind Turbine Works June 20, 2014 - 9:09am Addthis How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor

  18. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  19. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    SciTech Connect (OSTI)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Highlights: Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.56.2. Energy yield was lower by 33% for two-phase system compared to the single-phase system. Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.56.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during

  20. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  1. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuing to increase in size, the average offshore wind turbine installed in 2014 had a 377-foot-diameter rotor on a 279-foot-tall tower. The average capacity of offshore wind ...

  2. Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors

    SciTech Connect (OSTI)

    Sale, D.; Jonkman, J.; Musial, W.

    2009-08-01

    This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

  3. Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

    SciTech Connect (OSTI)

    Paquette, J. A.

    2012-03-01

    Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

  4. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  5. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  6. Feasibility of utilizing wind energy in Thailand

    SciTech Connect (OSTI)

    Jamkrajang, M.

    1984-01-01

    The purpose of this study was to ascertain the feasibility of utilizing wind energy to meet part of the energy demands related to pumping water and to generating electricity for the rural households in Thailand. The data for this study were divided into three different areas: (1) wind speed data, (2) the wind machine performance data, and (3) the rural energy demand data. The wind machine were divided into two categories of water-pumping windmills and electricity-generating wind machines. Three types of water pumping windmills and one type of electricity-generating wind machine were matched with the wind condition in Thailand. They were the multi-blade rotor, the sailwing rotor model (WE 002), the slow-speed sailwing rotor, and the Aerowatt model (1100 FP5G) respectively. It was concluded that, in Thailand: (1) the multiblade rotor and the sail-wing rotor (WE 002) windmill is suitable for pumping water for domestic use at 43 specified locations; (2) the slow-speed sailwing rotor windmill is suitable for pumping water for small irrigation at 32 specified locations; and (3) the Aerowatt model (1100 GP5G) is suitable for generating electricity for household use at 29 specified locations.

  7. Analysis of a teetered, variable-speed rotor: final report

    SciTech Connect (OSTI)

    Weber, T.L.; Wilson, R.E.; Walker, S.N. . Dept. of Mechanical Engineering)

    1991-06-01

    A computer model of a horizontal axis wind turbine (HOOT) with four structural degrees of freedom has been derived and verified. The four degrees of freedom include flapwise motion of the blades, teeter motion, and variable rotor speed. Options for the variable rotor speed include synchronous, induction, and constant-tip speed generator models with either start, stop, or normal operations. Verification is made by comparison with analytical solutions and mean and cyclic ESI-80 data. The Veers full-field turbulence model is used as a wind input for a synchronous and induction generator test case during normal operation. As a result of the comparison, it is concluded that the computer model can be used to predict accurately mean and cyclic loads with a turbulent wind input. 47 refs., 19 figs.

  8. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect (OSTI)

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  9. Wind energy: An engineering survey

    SciTech Connect (OSTI)

    Nahas, M.N.; Mohamad, A.S.; Akyurt, M.; El-Kalay, A.K.

    1987-01-01

    This paper presents an extensive survey of literature about wind energy and wind machines, their design and their applications. The paper intends to provide those who plan for energy policy with thorough information about this renewable type of energy and the available machines that convert wind energy into useful mechanical or electrical work. The machines which are available at present range from the simple Savonius rotor to the powerful multi-blade windmills. The advantages and shortcomings of all types are discussed here.

  10. Polygonal shaft hole rotor

    DOE Patents [OSTI]

    Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee

    2001-01-23

    A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

  11. Homopolar motor with dual rotors

    DOE Patents [OSTI]

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  12. Homopolar motor with dual rotors

    DOE Patents [OSTI]

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  13. Rotor Blade Sensors and Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyWater Nexus EnergyWater History Water Monitoring & Treatment Technology Decision ... rotor thrust loading-and detect any vibration that may be out of the ordinary; ...

  14. Electrically heated DPF start-up strategy

    SciTech Connect (OSTI)

    Gonze, Eugene V; Ament, Frank

    2012-04-10

    An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.

  15. The Physics of Tokamak Start-Up

    Office of Scientific and Technical Information (OSTI)

    ... field direction. 15 An exponential growth in n e 4 occurs n e n e (0) e x ... Energy loss of the electrons in the ionization process limits T e to below 10 eV until ...

  16. Permanent magnet machine with windings having strand transposition

    DOE Patents [OSTI]

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  17. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  18. Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Project | Department of Energy Offers $117 Million Conditional Commitment for Hawaii Wind Power Project Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind Power Project March 5, 2010 - 12:00am Addthis Washington DC --- U.S. Secretary of Energy Steven Chu today announced that the Department of Energy has offered a conditional commitment on a $117 million loan guarantee to finance the construction and start-up of an innovative 30 megawatt (MW) wind energy project in

  19. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect (OSTI)

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  20. Method and apparatus for wind turbine air gap control

    DOE Patents [OSTI]

    Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

    2007-02-20

    Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

  1. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Broader source: Energy.gov (indexed) [DOE]

    A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a ... Academy and Cianbro to launch a deepwater offshore floating wind turbine near Bangor. ...

  2. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  3. Rotor component displacement measurement system

    DOE Patents [OSTI]

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  4. Animation: How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Energy Basics » Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100

  5. Animation: How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more above

  6. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOE Patents [OSTI]

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  7. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  8. Horizontal-Axis Wind Turbine Wake Sensitivity to Different Blade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U inflow angle at blade section relative to plane of rotation + , degrees angular velocity of rotor, rads SW iF T Scaled Wind Farm Technology x time average of...

  9. Wind farm array wake losses

    SciTech Connect (OSTI)

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  10. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  11. Rotor Design Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  12. Rotor assembly and assay method

    DOE Patents [OSTI]

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  13. Rotor assembly and assay method

    DOE Patents [OSTI]

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  14. Ener G Rotors | Open Energy Information

    Open Energy Info (EERE)

    Rotors Jump to: navigation, search Name: Ener-G-Rotors Place: Schenectady, California Zip: 12305 Product: California-based company converts hot water or steam as an input to...

  15. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  16. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  17. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  18. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  19. Filter type rotor for multistation photometer

    DOE Patents [OSTI]

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  20. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  1. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  2. Wind Turbine Blade Testing System Using Base Excitation - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search Wind Turbine Blade Testing System Using Base Excitation Base Excitation Test System (B.E.T.S.) National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Recently, there has been a rapidly growing demand for renewable energy, including wind energy. To meet this demand, wind turbine designers are working to provide blade designs that allow a turbine connected to the wind turbine blades or to the rotor to

  3. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOE Patents [OSTI]

    Bagepalli, Bharat; Barnes, Gary R.; Gadre, Aniruddha D.; Jansen, Patrick L.; Bouchard, Jr., Charles G.; Jarczynski, Emil D.; Garg, Jivtesh

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  4. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    SciTech Connect (OSTI)

    Vick, B.D.; Clark, R.N.

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  5. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Broader source: Energy.gov (indexed) [DOE]

    Future Trends | Department of Energy Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes

  7. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  8. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  9. Brushless exciters using a high temperature superconducting field winding

    DOE Patents [OSTI]

    Garces, Luis Jose; Delmerico, Robert William; Jansen, Patrick Lee; Parslow, John Harold; Sanderson, Harold Copeland; Sinha, Gautam

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  10. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  11. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  12. Rotor blades for turbine engines

    DOE Patents [OSTI]

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  13. Lightning protection system for a wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P.; Petter, Jeffrey K.

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  14. Rotary engine with inserts in rotor faces

    SciTech Connect (OSTI)

    Jones, C.

    1992-06-23

    This patent describes a rotor for a rotary combustion engine. It comprises a plurality of circumferentially spaced apex portions, a plurality of working surfaces extending between adjacent apex portions, each working surface having a recess formed therein, and an insulating plate for each recess, characterized by: a slot formed in the rotor adjacent one end of each recess, the rotor having a lip which radially separates each slot from the working surface; and one end of each plate being rigidly fixed to the rotor and a second end of each plate being slidably received in a corresponding one of the slots.

  15. Method for manufacturing a rotor having superconducting coils

    DOE Patents [OSTI]

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  16. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  17. Top 10 Things You Didn't Know About Wind Power | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Wind turbines are soaring to record sizes. The average rotor diameter of turbines installed in 2014 grew to 99.4 meters, up 108 percent since 1998-1999. | National Renewable Energy...

  18. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    SciTech Connect (OSTI)

    McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.; Young, R.W. Sr.; Campbell, V.W.; Hickey, M.H.; Ott, G.W.; Bailey, J.M.

    1993-08-01

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.

  19. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  20. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  2. Radial-radial single rotor turbine

    DOE Patents [OSTI]

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  3. Multiple piece turbine rotor blade

    SciTech Connect (OSTI)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  4. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Substantially parallel flux uncluttered rotor machines

    DOE Patents [OSTI]

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  6. Top 10 Things You Didn't Know About Wind Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Top 10 Things You Didn't Know About Wind Power August 10, 2015 - 8:20am Addthis Wind turbines are soaring to record sizes. The average rotor diameter of turbines installed in 2014 grew to 99.4 meters, up 108 percent since 1998-1999. | National Renewable Energy Laboratory photo. Wind turbines are soaring to record sizes. The average rotor diameter of turbines installed in 2014 grew to 99.4 meters, up 108 percent since 1998-1999. | National Renewable Energy Laboratory photo. Liz Hartman

  7. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  8. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    expanded in an infinite sum involving products of Legendre polynomials and azimuthal Fourier components. The aerodynamic blade loads are similarly expanded in a spectral basis,...

  9. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Broader source: Energy.gov [DOE]

    This report documents the data post-processing and analysis performed to date on the field test data.

  10. Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Search Publications EC Publications Factsheets Press Releases Energy Research Highlights ... and Barbuda Argentina Armenia Australia Austria Azerbaijan Bahamas Bahrain Bangladesh ...

  11. SMART Wind Turbine Rotor: Data Analysis and Conclusions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... J. Solar Energy Engineering - Transactions of the ASME, 125(4):448-456, 2003. 31. H. Glauert. Airplane propellers. In W. F. Durand, editor, Aerodynamic Theory. Julius Springer, ...

  12. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  13. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  14. Unified continuum damage model for matrix cracking in composite rotor blades

    SciTech Connect (OSTI)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  15. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  16. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G.

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  17. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  18. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  19. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  20. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  1. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C.; Brandemuehl, M.J.; Bergey, M.L.S.

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  2. Prediction of stochastic blade loads for three-bladed, rigid-hub rotors

    SciTech Connect (OSTI)

    Wright, A.D.; Weber, T.L.; Thresher, R.W.; Butterfield, C.P.

    1989-11-01

    Accurately predicting wind turbine blade loads and response is important for the design of future wind turbines. The need to include turbulent wind inputs in structural dynamics models is widely recognized. In this paper, the Force and Loads Analysis Program (FLAP) code will be used to predict turbulence-induced bending moments for the SERI Combined Experiment rotor blade and the Howden 330-kW blade. FLAP code predictions will be compared to the power spectra of measured blade-bending moments. Two methods will be used to generate turbulent wind inputs to FLAP: a theoretical simulation: the Pacific Northwest Laboratories (PNL) simulation theory; and measured wind-speed data taken from an array of anemometers upwind of the turbine. Turbulent wind-speed time series are input to FLAP for both methods outlined above. Power spectra of predicted flap-bending moments are compared to measured results for different wind conditions. Conclusions are also drawn as to the ability of the turbulence simulation models to provide accurate wind input to FLAP and to FLAP's ability to accurately simulate blade response to turbulence. Finally, suggestions are made as to needed improvements in the theoretical model. 11 refs., 8 figs.

  3. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  4. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laboratory mission technologies and ... By admin| ... participating in the Wind Turbine Radar Interference ... Association AWEA WindPower 2015 event in Orlando, Florida. ...

  5. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  6. Coalescing Wind Turbine Wakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  7. Coalescing Wind Turbine Wakes

    SciTech Connect (OSTI)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  8. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  9. Cost of Wind Energy in the United States: Trends from 2007 to 2012 (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2015-01-01

    This presentation provides an overview of recent technology trends observed in the United States including project size, turbine size, rotor diameter, hub height, annual average wind speed, and annual energy production. It also highlights area where system analysis is required to fully understand how these technology trends relate to the cost of wind energy.

  10. Rotor Blade Sensors and Instrumentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blade Sensors and Instrumentation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  11. Pinon Pine power project nears start-up

    SciTech Connect (OSTI)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing of the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.

  12. Start-up guidelines for the independent remanufacturer

    SciTech Connect (OSTI)

    Lund, R.T.; Skeels, F.D.

    1983-03-01

    Remanufacturing is an industrial process in which worn-out products called cores are restored to like-new condition. In a typical remanufacturing process, identical cores are grouped into production batches, completely disassembled, and thoroughly cleaned. Component parts are replaced or refurbished as necessary to bring their performance at least back to the level of the product when new. The product is assembled, finished, tested, packaged, and distributed in the same manner as new products. Even the warranty on a remanufactured product is usually similar or identical to the OEM new product warranty. Marketing, technology, economics, legal considerations, and organizational aspects of remanufacturing are discussed.

  13. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  14. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Adm Chg 1, dated 4-2-13, supersedes DOE O 425.1D.

  15. PPPL physicists simulate innovative method for starting up tokamaks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For more information, please visit science.energy.gov. Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View High ...

  16. PPPL physicists simulate innovative method for starting up tokamaks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    According to lead author Francesca Poli, the new computer simulations show that the current can best be sustained by injecting high-harmonic radio-frequency waves (HHFWs) and ...

  17. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Construction, Qualification, and Low Rate Production ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  18. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Construction, Qualification, and Low Rate ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  19. Start-up Plan for Plautonium-238 Production for Radioisotope...

    Broader source: Energy.gov (indexed) [DOE]

    developed collaboratively between the Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA), and defines the roles and contributions of major...

  20. Berkeley Lab Technology Spawns Successful Start-up Companies...

    Office of Environmental Management (EM)

    a building's energy consumption by 25 percent by saving on heating and cooling costs. ... Alphabet plans to use the new thermoelectric material, created through nanotechnology, for ...

  1. Satellite subsea development starts up in North Sea

    SciTech Connect (OSTI)

    1996-09-23

    New subsea technology, horizontal drilling, and the existing North Sea infrastructure allowed BP Exploration Operating Co. ltd. to develop the Newsham field, a small 1967 gas discovery. Estimated originally in place recoverable reserves are 1.36 billion cu m (48 bcf). The development is in 30 m of water (98 ft) and the subsea well is tied-back to the West Sole pipeline system. The development included: converting a mudline suspension system to a subsea wellhead; deploying a horizontal subsea tree; producing gas from a subsea wellhead; deploying the subsea tree from a jack up drilling rig; installing an over-trawlable wellhead protection structure. The paper discusses field development, design, drilling, wellhead conversion, and subsea completion.

  2. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  3. St. Gobain Innovation Competition for Start-Ups | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for demanding industrial applications (abrasives, ceramics, crystals, glass and plastics). Your Technology Could Be Next Heliotrope Technologies, a U.S. Department of...

  4. The Influence of Rotor Blade Design on Wake Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Rotor Blade Design on Wake Development - Sandia Energy Energy Search Icon ... Twitter Google + Vimeo GovDelivery SlideShare The Influence of Rotor Blade Design on Wake ...

  5. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  6. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOE Patents [OSTI]

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  7. Advanced wind turbine with lift cancelling aileron for shutdown

    DOE Patents [OSTI]

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  8. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  9. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  10. Flywheel system using wire-wound rotor

    DOE Patents [OSTI]

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.