Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook  

SciTech Connect

The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

Hodges, GB; Michalsky, JJ

2011-02-07T23:59:59.000Z

2

NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband Radiometer v2....

3

ARM - Publications: Science Team Meeting Documents: Rotating Shadowband  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Rotating Shadowband Spectroradiometer (RSS) at SGP: Performance, Data Processing, and Value-Added Products Kiedron, Piotr State University of New York Albany Schlemmer, Jim The first ARM owned RSS was deployed at SGP central site in May 2003. This RSS provides direct-normal, diffuse-horizontal andtotal-horizontal components of irradiance at 1001 pixels in 360nm-1050nm spectral range every minute between dawn and dusk. The instrument operated continuously since the deployment date. At first bi-weekly radiometric calibrations were instituted and upon the discovery of significant responsivity drift this rigorous calibration schedule was continued till present. However the rate of change was steadily decreasing. By September 2004 the drift was less than 1% per month. Within three month from deployment date a slight

4

NREL: MIDC/SMUD Anatolia Rotating Shadowband Radiometer (38.55...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the SMUD Anatolia Irradiance Inc. Rotating Shadowband Radiometer v2....

5

Design, Operation, and Calibration of a Shipboard Fast-Rotating Shadowband Spectral Radiometer  

Science Conference Proceedings (OSTI)

This paper describes the design, calibration, and deployment of a fast-rotating shadowband radiometer (FRSR) that accurately decomposes downward shortwave (solar) irradiance into direct-beam and diffuse components from a moving platform, such as ...

R. Michael Reynolds; Mark A. Miller; Mary J. Bartholomew

2001-02-01T23:59:59.000Z

6

ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances  

DOE Data Explorer (OSTI)

The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

Hodges, Gary

7

Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm  

Science Conference Proceedings (OSTI)

A retrieval algorithm for processing multifilter rotating shadowband radiometer (MFRSR) data from clear and partially cloudy days is described and validated. This method, while complementary to the Langley approach, uses consistency between the ...

Mikhail D. Alexandrov; Andrew A. Lacis; Barbara E. Carlson; Brian Cairns

2002-02-01T23:59:59.000Z

8

Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Aerosols: The Marine Fast-Rotating Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison and Merger for Biological and Interdisciplinary Studies (SIMBIOS). These radiometers operate continuously and automatically during daylight hours. There fundamental measurements made by the FRSRs in the network are the direct-normal irradiance

9

Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint  

DOE Green Energy (OSTI)

The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

Myers, D. R.

2009-03-01T23:59:59.000Z

10

Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius  

Science Conference Proceedings (OSTI)

The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, ...

M. J. Bartholomew; R. M. Reynolds; A. M. Vogelmann; Q. Min; R. Edwards; S. Smith

2011-11-01T23:59:59.000Z

11

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-02-27T23:59:59.000Z

12

Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius  

SciTech Connect

The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skies and for ship-based observations is discussed.

Bartholomew M. J.; Reynolds, R. M.; Vogelmann, A. M.; Min, Q.; Edwards, R.; Smith, S.

2011-11-01T23:59:59.000Z

13

High accuracy diffuse horizontal irradiance measurements without a shadowband  

DOE Green Energy (OSTI)

The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. We compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.

Schlemmer, J.A; Michalsky, J.J.

1995-12-31T23:59:59.000Z

14

Microsoft Word - 2010-03 Instrument Monthly_ARM_10_006.3.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Kiedron demonstrated that the rotating shadowband spectrometer (RSS), built by Yankee Environmental Systems, Inc., is capable of providing valuable measurements of direct,...

15

DOE/SC-ARM-10-006.5 ARM Climate Research Facility Monthly Instrument...  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Kiedron demonstrated that the rotating shadowband spectrometer (RSS), built by Yankee Environmental Systems, Inc., is capable of providing valuable measurements of direct,...

16

Microsoft Word - 2009-10 Instrument Report_DOE_SC_ARM_09-004...  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Kiedron demonstrated that the rotating shadowband spectrometer (RSS), built by Yankee Environmental Systems, Inc., is capable of providing valuable measurements of direct,...

17

DOE/SC-ARM-10-006.2 ARM Climate Research Facility Instrumentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Kiedron demonstrated that the rotating shadowband spectrometer (RSS), built by Yankee Environmental Systems, Inc., is capable of providing valuable measurements of direct,...

18

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

19

Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Maxey, C.; Andreas, A.

20

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

22

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

23

Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)  

DOE Data Explorer (OSTI)

This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Maxey, C.; Andreas, A.

24

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Stoffel, T.; Andreas, A.

25

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

26

Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)  

Science Conference Proceedings (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Maxey, C.; Andreas, A.

2009-02-03T23:59:59.000Z

27

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Green Energy (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

2012-04-01T23:59:59.000Z

28

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-03-16T23:59:59.000Z

29

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Stoffel, T.; Andreas, A.

2010-04-26T23:59:59.000Z

30

Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)  

DOE Green Energy (OSTI)

This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Maxey, C.; Andreas, A.

2007-09-12T23:59:59.000Z

31

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-13T23:59:59.000Z

32

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-14T23:59:59.000Z

33

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2009-07-22T23:59:59.000Z

34

Monolithic spectrometer  

DOE Patents (OSTI)

A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

35

Multidimensional spectrometer  

DOE Patents (OSTI)

A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

Zanni, Martin Thomas (Madison, WI); Damrauer, Niels H. (Boulder, CO)

2010-07-20T23:59:59.000Z

36

Spectrometer gun  

SciTech Connect

A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

Waechter, David A. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); Umbarger, C. John (Los Alamos, NM)

1985-01-01T23:59:59.000Z

37

Spectrometer gun  

DOE Patents (OSTI)

A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

1981-11-03T23:59:59.000Z

38

Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part II: Climatological Applications  

Science Conference Proceedings (OSTI)

Measurements from ground-based sun photometer networks can be used both to provide ground-truth validation of satellite aerosol retrievals and to produce a land-based aerosol climatology that is complementary to satellite retrievals that are ...

Mikhail D. Alexandrov; Andrew A. Lacis; Barbara E. Carlson; Brian Cairns

2002-02-01T23:59:59.000Z

39

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

40

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2012-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

LCLS Injector Straight-Ahead Spectrometer  

Science Conference Proceedings (OSTI)

The spectrometer design was modified to allow the measurement of uncorrelated energy spread for the nominal lattice. One bunch from every 120 each second would be sent to the straight ahead spectrometer while the transverse cavity is on. The implementation of this 'stealing mode' will not be available for the LCLS commissioning and the early stage of operation. However, the spectrometer was redesigned to retain that option. The energy feedback relies independently on the beam position of the beam in the dispersive section of dogleg 1 (DL1). The main modification of the spectrometer design is the Pole face rotation of 7.5 degrees on both entrance and exit faces. The location and range of operation of the 3 quadrupoles remains unchanged relative to those of the earlier design.

Limborg-Deprey , C.

2010-12-10T23:59:59.000Z

42

ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...  

NLE Websites -- All DOE Office Websites (Extended Search)

radiometer. ARM has a long history of using the MFRSR, shadowband radiometer, left panel. A shipboard version, fast-rotating shadowband radiometer, was developed to make...

43

Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrillment Development Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry L. Harrison Atmospheric: Sciences Research Center State University of New York at Albany Albany, NY 12205 I am developing two related instruments for use in the Atmospheric Radiation Measurement (ARM) p,rogram; both use an automated rotating shadowband technique to make spectrally resolved measurements of the direct-normal, total horizontal, and diffuse horizontal irradiances. These parameters of the sky-radiance function are measured using the same detector (for a given wavelength), eliminating the difficulties inherent in comparing these data when measured by independent detectors. The first of these instruments uses independent interterence-filter/photodiode detectors to measure any seven

44

HELIcal Orbit Spectrometer (HELIOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

kinematics The HELIOS Spectrometer concept The Argonne implementation of HELIOS Commissioning experiment Planned upgrades Helios elsewhere B.B.Back, Argonne National Laboratory...

45

Mobile Ice Nucleus Spectrometer  

SciTech Connect

This first year report presents results from a computational fluid dynamics (CFD) study to assess the flow and temperature profiles within the mobile ice nucleus spectrometer.

Kulkarni, Gourihar R.; Kok, G. L.

2012-05-07T23:59:59.000Z

46

SNS backscattering spectrometer, BASIS  

Science Conference Proceedings (OSTI)

We describe the design and current performance of the backscattering silicon spectrometer (BASIS), a time-of-flight backscattering spectrometer built at the spallation neutron source (SNS) of the Oak Ridge National Laboratory (ORNL). BASIS is the first silicon-based backscattering spectrometer installed at a spallation neutron source. In addition to high intensity, it offers a high-energy resolution of about 3.5 {mu}eV and a large and variable energy transfer range. These ensure an excellent overlap with the dynamic ranges accessible at other inelastic spectrometers at the SNS.

Mamontov, Eugene [ORNL; Herwig, Kenneth W [ORNL

2011-01-01T23:59:59.000Z

47

Imaging Fourier transform spectrometer  

DOE Patents (OSTI)

This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

Bennett, C.L.

1993-09-13T23:59:59.000Z

48

Real time Faraday spectrometer  

DOE Patents (OSTI)

This invention is comprised of a charged particle spectrometer that contains a detection system which embodies the benefits of both foil-light emissions and faraday cups, yet it does not interfere with the particle beam. 5 Figs. (GHH)

Smith, T.E. Jr.; Struve, K.W.; Colella, N.J.

1990-12-31T23:59:59.000Z

49

An Instantaneous CCN Spectrometer  

Science Conference Proceedings (OSTI)

A thermal gradient diffusion cloud chamber with a supersaturation field that increases along the path of the flow of sample is used as a cloud condensation nucleus (CCN) spectrometer. The CCN spectrum is derived from the final droplet size ...

James G. Hudson

1989-12-01T23:59:59.000Z

50

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

51

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-09-27T23:59:59.000Z

52

Broad band waveguide spectrometer  

DOE Patents (OSTI)

A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

Goldman, Don S. (Folsom, CA)

1995-01-01T23:59:59.000Z

53

Nuclear rotations  

Science Conference Proceedings (OSTI)

An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics modern physics

G. F. Bertsch; R. V. F. Janssens

1997-01-01T23:59:59.000Z

54

An Improved Raindrop Chemistry Spectrometer  

Science Conference Proceedings (OSTI)

A spectrometer allowing size-fractional chemical analysis of raindrops has been described previously by the authors. Modifications to this raindrop chemistry spectrometer now allow improved performance in windy conditions. Instrument ...

Stuart G. Bradley; Stephen J. Adams; C. David Stow; Stephen J. de Mora

1991-08-01T23:59:59.000Z

55

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

56

MASS SPECTROMETER LEAK  

DOE Patents (OSTI)

An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

Shields, W.R.

1960-10-18T23:59:59.000Z

57

Use of Rotating Pinholes and Reticles for Calibration of Cloud Droplet Instrumentation  

Science Conference Proceedings (OSTI)

Calibration devices for the Forward Scattering Spectrometer Probe (FSSP) and the Optical Array Probe (OAP) were developed. The device used with the FSSP is a rotating pinhole calibrator. It utilizes light diffracted by a pinhole of a diameter to ...

Edward A. Hovenac; E. Dan Hirleman

1991-02-01T23:59:59.000Z

58

Method for calibrating mass spectrometers  

DOE Patents (OSTI)

A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

2002-12-24T23:59:59.000Z

59

Time of flight mass spectrometer  

DOE Patents (OSTI)

A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

Ulbricht, Jr., William H. (Arvada, CO)

1984-01-01T23:59:59.000Z

60

Comparison of Historical Satellite Based Estimates of Solar Radiation Resources with Recent Rotating Shadowland Radiometer Measurements  

Science Conference Proceedings (OSTI)

Satellite-based solar radiation estimates have recently been incorporated into the 1990-2005 update to the 1961-1990 U.S. National Solar Radiation Database (NSRDB). The National Aeronautics and Space Administration (NASA) also supplies satellite-based estimates of solar radiation. The usefulness of such data with respect to solar resources for site selection and designing solar energy conversion systems is often questioned. The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates. We compare the most recent shadowband radiometer MMDT with a complement of thermopile 'first class' solar radiometers at one site. Quantitative analysis shows that in most cases, the long-term average MMDT and measured data are comparable, within 10% of each other for global, and 20% for direct-radiation MMDT.

Myers, D.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Spin Spectrometer at the ALS and APS  

E-Print Network (OSTI)

5 Spin Spectrometer at the ALS and APS-NIM/SRI07 Figure 3 Ancollected on Beamline 7 at the ALS is shown here. The photonSpin Spectrometer at the ALS and APS-NIM/SRI07 Spin

Tobin, James G; Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies

2008-01-01T23:59:59.000Z

62

THE NCNR NEUTRON SPIN ECHO SPECTROMETER  

Science Conference Proceedings (OSTI)

... The NSE spectrometer, developed in partnership with Exxon Research and Engineering and the Forschungszentrum Jülich in Germany [3], is ...

2000-02-29T23:59:59.000Z

63

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

64

TAX: Backscattering Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

The Triple-Axis Spectrometer at HFIR Triple-Axis Spectrometer (HB-3) Triple-Axis Spectrometer (HB-3). HB-3 is a colossal flux thermal neutron three-axis spectrometer designed for...

65

Commissioning of the HELIOS spectrometer.  

Science Conference Proceedings (OSTI)

This paper describes the implementation and commissioning of a device based on a new concept for measurements of nuclear reactions in inverse kinematics. The HELIcal Orbit Spectrometer, HELIOS, was commissioned at Argonne National Laboratory by studying the {sup 28}Si(d,p){sup 29}Si reaction in inverse kinematics. This experiment served as a proof of principle for this previously untested concept, and was used to verify the response and performance characteristics of HELIOS.

Lighthall, J. C.; Back, B. B.; Baker, S. I.; Freeman, S. J.; Lee, H. Y.; Kay, B. P.; Marley, S. T.; Rehm, K. E.; Rohrer, J. E.; Schiffer, J. P.; Shetty, D. V.; Vann, A. W.; Winkelbauer, J. R.; Wuosmaa, A. H.; Physics; Western Michigan Univ.; Univ. of Manchester

2010-01-01T23:59:59.000Z

66

SEAL FOR ROTATING SHAFT  

DOE Patents (OSTI)

A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

Coffman, R.T.

1957-12-10T23:59:59.000Z

67

Portable neutron spectrometer and dosimeter  

DOE Patents (OSTI)

The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

68

Compact reflective imaging spectrometer utilizing immersed gratings  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

Chrisp, Michael P. (Danville, CA)

2006-05-09T23:59:59.000Z

69

Pulsed Ionization Source for Ion Mobility Spectrometers  

Mobility Spectrometers Potential Advantages ... ORNL’s new wave of detection devices based on ion mobility spectrometry offer enhanced sensitivity and

70

Miniaturized Mass Spectrometer - Energy Innovation Portal  

Technology Marketing Summary Sandia's invention relates to a miniaturized mass spectrometer using a silicon chip field emitter array as the source of ...

71

ATLAS Muon Spectrometer | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Muon Spectrometer small wheels Brookhaven National Laboratory led the development of the 32 muon detectors in the inner ring of the ATLAS detector's "small wheels." (A small...

72

A Compact Lightweight Aerosol Spectrometer Probe (CLASP)  

Science Conference Proceedings (OSTI)

The Compact Lightweight Aerosol Spectrometer Probe (CLASP) is an optical particle spectrometer capable of measuring size-resolved particle concentrations in 16 user-defined size bins spanning diameters in the range 0.24 < D < 18.5 ?m at a rate of ...

Martin K. Hill; Barbara J. Brooks; Sarah J. Norris; Michael H. Smith; Ian M. Brooks; Gerrit de Leeuw

2008-11-01T23:59:59.000Z

73

Compact time-of-flight mass spectrometer  

SciTech Connect

This paper describes a time-of-flight mass spectrometer developed for measuring the parameters of a pulsed hydrogen beam. The duration of an electron-beam current pulse in the ionizer of the mass spectrometer can be varied within 2-20 usec, the pulse electron current is 0.6 mA, and the electron energy is 250 eV. The time resolution of the mass spectrometer is determined by the repetition period of the electron-beam current pulses and is 40 usec. The mass spectrometer has 100% transmission in the direction of motion of molecular-beam particles. The dimension of the mass spectrometer is 7 cm in this direction. The mass resolution is sufficient for determination of the composition of the hydrogen beam.

Belov, A.S.; Kubalov, S.A.; Kuzik, V.F.; Yakushev, V.P.

1986-02-01T23:59:59.000Z

74

Rotatable seal assembly. [Patent application; rotating targets  

DOE Patents (OSTI)

An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

Logan, C.M.; Garibaldi, J.L.

1980-11-12T23:59:59.000Z

75

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Time-of-flight mass spectrometer comprising a first drift...

76

The Vibrational Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Vibrational Spectrometer at SNS VISION VISION is best thought of as the neutron analogue of an infrared-Raman spectrometer. It is optimized to characterize molecular vibrations in...

77

HYSPEC: the Hybrid Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Spectrometer at SNS Hybrid Spectrometer Schematic of the HYSPEC instrument Developed by a team from leading U.S. universities and national laboratories and an international...

78

Gas sampling system for a mass spectrometer  

DOE Patents (OSTI)

The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

Taylor, Charles E; Ladner, Edward P

2003-12-30T23:59:59.000Z

79

Development of an Inexpensive Raindrop Size Spectrometer  

Science Conference Proceedings (OSTI)

The deployment of weather radar, notably in mountainous terrain with many microclimates, requires the use of several or even many drop size spectrometers to provide confidence in the quantitative relation between radar reflectivity and rainfall. ...

William Henson; Geoff Austin; Harry Oudenhoven

2004-11-01T23:59:59.000Z

80

Multidetector calibration for mass spectrometers  

SciTech Connect

The International Atomic Energy Agency`s Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of {sup 239}Pu, {sup 187}Re, and {sup 238}U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis.

Bayne, C.K. [Oak Ridge National Lab., TN (United States); Donohue, D.L.; Fiedler, R. [IAEA, Seibersdorf (Austria). Safeguards Analytical Lab.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

1987 calibration of the TFTR neutron spectrometers  

SciTech Connect

The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

1989-12-01T23:59:59.000Z

82

Rotating Aperture System  

DOE Patents (OSTI)

A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

2005-01-18T23:59:59.000Z

83

ARM - Selected Science Team Proposals - FY 1997  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Measurement (ARM) Program" Dr. Joseph Michalsky, Jr., State University of New York: "Spectral and Broadband Rotating Shadowband Shortwave Radiometry and Analysis"...

84

ARM TR-008  

NLE Websites -- All DOE Office Websites (Extended Search)

"Data and Signal Processing of Rotating Shadowband Spectroradiometer (RSS) Data", Proc. SPIE 4815, pp.51-57, 2002 SUBDIRECTORYreports FILE NAME CONTENT ETSpectraComparisonFeb...

85

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Measurement (ARM) Science Team Meeting A retrieval method of photon pathlength distribution using Rotating Shadowband Spectroradiometer (RSS) measurements in the oxygen...

86

Rotatable stem and lock  

DOE Patents (OSTI)

A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

Deveney, J.E.; Sanderson, S.N.

1981-10-27T23:59:59.000Z

87

Rotating Hairy Black Holes  

E-Print Network (OSTI)

We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

B. Kleihaus; J. Kunz

2000-12-20T23:59:59.000Z

88

BT9 Triple-axis spectrometer  

Science Conference Proceedings (OSTI)

... translations, make sure that the motors are powered ... active if the rotating collimator motor is off ... SAFETY NOTE: When using high magnetic fields be ...

89

Wave-driven Rotation in Supersonically Rotating Mirrors  

SciTech Connect

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

90

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

91

A compact multichannel spectrometer for Thomson scattering  

Science Conference Proceedings (OSTI)

The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

2012-10-15T23:59:59.000Z

92

Partial pressure measurements with an active spectrometer  

SciTech Connect

Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

Brooks, N.H.; Jensen, T.H. [General Atomics, San Diego, CA (United States); Colchin, R.J.; Maingi, R.; Wade, M.R. [Oak Ridge National Lab., TN (United States); Finkenthal, D.F. [Palomar Coll. (United States); Naumenko, N. [Inst. for Atomic and Molecular Physics (Japan); Tugarinov, S. [TRINITI (United States)

1998-07-01T23:59:59.000Z

93

Compact hydrogen/helium isotope mass spectrometer  

DOE Patents (OSTI)

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01T23:59:59.000Z

94

Stochastic Faraday Rotation  

E-Print Network (OSTI)

Different ray paths through a turbulent plasma can produce stochastic Faraday rotation leading to depolarization of any linearly polarized component. Simple theory predicts that the average values of the Stokes parameters decay according to $$, $\\propto\\exp(-\\delta_l)$, with $\\delta_l\\propto\\lambda^4$. It is pointed out that a definitive test for such depolarization is provided by the fact that $$ remains constant while $^2+^2$ decreases $\\propto\\exp(-2\\delta_l)$. The averages to which this effect, called polarization covariance, should apply are discussed; it should apply to spatial averages over a polarization map or temporal averages over a data set, but not to beamwidth and bandwidth averages that are intrinsic to the observation process. Observations of depolarization would provide statistical information on fluctuations in the turbulent plasma along the line of sight, specifically, the variance of the rotation measure. Other effects that can also cause depolarization are discussed.

D. B. Melrose; J. -P. Macquart

1998-05-01T23:59:59.000Z

95

Rotatable seal assembly  

DOE Patents (OSTI)

An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

Logan, Clinton M. (Pleasanton, CA); Garibaldi, Jack L. (Livermore, CA)

1982-01-01T23:59:59.000Z

96

Rotating plug bearing and seal  

DOE Patents (OSTI)

A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

Wade, Elman E. (Ruffs Dale, PA)

1977-01-01T23:59:59.000Z

97

COMMISSIONING SPIN ROTATORS IN RHIC.  

Science Conference Proceedings (OSTI)

During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX.

Mackay, W W; Bai, M; Courant, E D; Fischer, W; Huang, H; Luccio, A; Montag, C; Pilat, F; Ptitsyn, V; Roser, T; Satogata, T; Trbojevic, D

2003-05-12T23:59:59.000Z

98

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

2006-02-01T23:59:59.000Z

99

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network (OSTI)

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

100

DISK CHOPPER TIME-OF-FLIGHT SPECTROMETER (DCS)  

Science Conference Proceedings (OSTI)

... The Primary Spectrometer High energy neutrons and gammas ... steradians and arranged in three banks: The middle bank detector scattering ...

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Passive Millimeter-Wave Spectrometer for Remote Chemical Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Millimeter-Wave Spectrometer for Remote Chemical Detection Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection &...

102

A compact rotating dilution refrigerator  

E-Print Network (OSTI)

We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 0.001 rad/s up to angular velocities in excess of 2.5 rad/s. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

Fear, M J; Chorlton, D A; Zmeev, D E; Gillott, S J; Sellers, M C; Richardson, P P; Agrawal, H; Batey, G; Golov, A I

2013-01-01T23:59:59.000Z

103

Compact imaging spectrometer utilizing immersed gratings  

DOE Patents (OSTI)

A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

2007-07-03T23:59:59.000Z

104

Associated Particle Tagging (APT) in Magnetic Spectrometers  

SciTech Connect

Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

2012-10-16T23:59:59.000Z

105

Quench anaylsis of MICE spectrometer superconducting solenoid  

SciTech Connect

MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

2011-09-01T23:59:59.000Z

106

Portable gas chromatograph-mass spectrometer  

DOE Patents (OSTI)

A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

1994-12-31T23:59:59.000Z

107

Time Dispersive Spectrometer Using Digital Switching Means  

DOE Patents (OSTI)

Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

Tarver, III, Edward E. (Livermore, CA); Siems, William F. (Spokane, WA)

2004-09-07T23:59:59.000Z

108

Expert overseer for mass spectrometer system  

DOE Patents (OSTI)

An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

Filby, Evan E. (Idaho Falls, ID); Rankin, Richard A. (Ammon, ID)

1991-01-01T23:59:59.000Z

109

Expert overseer for mass spectrometer system  

DOE Patents (OSTI)

An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

Filby, E.E.; Rankin, R.A.

1989-04-04T23:59:59.000Z

110

Round Robin Study of Rotational Strain Rheometers  

DOE Green Energy (OSTI)

A round robin of testing was performed to compare the performance of rotational dynamic mechanical spectrometers being used within the nuclear weapons complex. Principals from Sandia National Laboratories/New Mexico; Lockheed Martin Y12 Plant at Oak Ridge, Tennessee; Los Alamos National Laboratory, New Mexico (polycarbonate only); and Honeywell Federal Manufacturing and Technologies (FM and T), Kansas City, MO, performed identical testing of hydrogen blown polysiloxane S5370 and bisphenol-A polycarbonate. Over an oscillation frequency sweep from 0.01 Hz to 15.9 Hz at 135 C, each site produced shear storage modulus values with standard deviations of less than 5%. The data from Sandia, Y12, and Kansas City agreed to within 4%, while the Los Alamos data differed by as much as 13%. Storage modulus values for a frequency sweep of the S5370 at 35 C had standard deviations between 6% and 8%, and site-to-site agreement averaged 3%. The shear loss modulus values had standard deviations of 5%, 7%, and 52% for the sites participating, while the results differed by 12% on average.

Clifford, M.J.

2000-02-16T23:59:59.000Z

111

Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

Black, B.E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1993-07-01T23:59:59.000Z

112

Raindrop Velocity Spectrometer for Drop Chemistry Investigations  

Science Conference Proceedings (OSTI)

The design of an instrument that sorts raindrops according to fall speed is described. The apparatus consists of two rotating disks, the upper one allowing rain to fall through a slit into collectors on the lower disk. Drops are collected in a ...

S. G. Bradley

1985-06-01T23:59:59.000Z

113

Compact proton spectrometers for measurements of shock  

Science Conference Proceedings (OSTI)

The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

2012-05-02T23:59:59.000Z

114

Ion mobility spectrometer with virtual aperture grid  

DOE Patents (OSTI)

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

115

Lead Slowing Down Spectrometer Status Report  

Science Conference Proceedings (OSTI)

This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

2012-06-07T23:59:59.000Z

116

Cooling system for rotating machine  

Science Conference Proceedings (OSTI)

An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

Gerstler, William Dwight (Niskayuna, NY); El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Alexander, James Pellegrino (Ballston Lake, NY); Quirion, Owen Scott (Clifton Park, NY); Palafox, Pepe (Schenectady, NY); Shen, Xiaochun (Schenectady, NY); Salasoo, Lembit (Schenectady, NY)

2011-08-09T23:59:59.000Z

117

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber. Available for thumbnail of Feynman Center (505) 665-9090 Email Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent

118

Electro-optic Phase Grating Streak Spectrometer  

SciTech Connect

The electro-optic phase grating streak spectrometer (EOPGSS) generates a time-resolved spectra equivalent to that obtained with a conventional spectrometer/streak camera combination, but without using a streak camera (by far the more expensive and problematic component of the conventional system). The EOPGSS is based on a phase, rather than an amplitude grating. Further, this grating is fabricated of electro-optic material such as, for example, KD*P, by either etching grooves into an E-O slab, or by depositing lines of the E-O material onto an optical flat. An electric field normal to the grating alters the material’s index of refraction and thus affects a shift (in angle) of the output spectrum. Ramping the voltage streaks the spectrum correspondingly. The streak and dispersion directions are the same, so a second (static, conventional) grating disperses the spectrum in the orthogonal direction to prevent different wavelengths from “overwriting” each other. Because the streaking is done by the grating, the streaked output spectrum is recorded with a time-integrating device, such as a CCD. System model, typical design, and performance expectations will be presented.

Goldin, F. J.

2012-08-02T23:59:59.000Z

119

Rotation With Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rotation With Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialINITIALENTRYO...

120

Centrifugal torque in rotating matter  

E-Print Network (OSTI)

Thermal molecular motion in combination with rotation and differences in centrifugal forces causes a torque in matter. The effect is derived for gas but does also exist in liquid and solid matter.

Jonsson, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nanograting-based compact vacuum ultraviolet spectrometer and ...  

Nanograting-based compact vacuum ultraviolet spectrometer and beam pro?ler for in situ characterization of high-order harmonic generation light sources

122

Passive Millimeter-Wave Spectrometer for Remote Chemical Detection...  

NLE Websites -- All DOE Office Websites (Extended Search)

Media format Windows Media Format - Low Bandwidth Passive Millimeter-Wave Spectrometer for Remote Chemical Detection shown in this movie clip. :: Please wait until video loads...

123

The triple axis spectrometer at the new research reactor OPAL ...  

Science Conference Proceedings (OSTI)

... The triple axis spectrometer at the new research reactor OPAL in Australia. ... The TAS will be based on a thermal beam at the reactor face. ...

124

SEQUOIA: the Fine-Resolution Fermi Chopper Spectrometer at SNS...  

NLE Websites -- All DOE Office Websites (Extended Search)

of novel systems and materials that are currently unknown and complements the other main SNS chopper spectrometer, ARCS. In general, SEQUOIA is the instrument of choice for...

125

Gamma-ray spectrometer utilizing xenon at high pressure  

SciTech Connect

A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166{degrees}C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen.

Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R. [Brookhaven National Lab., Upton, NY (United States); Markey, J.K. [Yale Univ., New Haven, CT (United States). School of Medicine

1994-08-01T23:59:59.000Z

126

A New Control System Software for SANS BATAN Spectrometer in Serpong, Indonesia  

Science Conference Proceedings (OSTI)

The original main control system of the 36 meter small-angle neutron scattering (SANS) BATAN Spectrometer (SMARTer) has been replaced with the new ones due to the malfunction of the main computer. For that reason, a new control system software for handling all the control systems was also developed in order to put the spectrometer back in operation. The developed software is able to control the system such as rotation movement of six pinholes system, vertical movement of four neutron guide system with the total length of 16.5 m, two-directional movement of a neutron beam stopper, forward-backward movement of a 2D position sensitive detector (2D-PSD) along 16.7 m, etc. A Visual Basic language program running on Windows operating system was employed to develop the software and it can be operated by other remote computers in the local area network. All device positions and command menu are displayed graphically in the main monitor or window and each device control can be executed by clicking the control button. Those advantages are necessary required for developing a new user-friendly control system software. Finally, the new software has been tested for handling a complete SANS experiment and it works properly.

Bharoto; Putra, Edy Giri Rachman [Neutron Scattering Laboratory, Center for Technology of Nuclear Industrial Materials, National Nuclear Energy Agency of Indonesia (BATAN) Gedung 40, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

2010-06-22T23:59:59.000Z

127

PTAX: the Polarized Triple-Axis Spectrometer at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Polarized Triple-Axis Spectrometer at HFIR HB-1 photo Polarized Triple-Axis Spectrometer (HB-1). Of the four triple-axis spectrometers installed at HFIR, the HB-1 instrument is...

128

Al(26) Studies with INTEGRAL's Spectrometer SPI  

E-Print Network (OSTI)

Al(26) radioactivity traces recent nucleosynthesis throughout the Galaxy, and is known to be produced in massive stars and novae. The map from its decay gamma-ray line suggests massive stars to dominate, but high-resolution line spectroscopy is expected to supplement imaging of Al(26) source regions and thus to help decide about the Al(26) injection process and interstellar environment, hence about the specific massive-star subgroup and phase which produces interstellar Al(26). The INTEGRAL Spectrometer SPI has observed Galactic Al(26) radioactivity in its 1809 keV gamma-ray line during its first inner-Galaxy survey. Instrumental background lines make analysis difficult; yet, a clear signal from the inner Galaxy agrees with expectations. In particular, SPI has constrained the line width to exclude previously-reported line broadenings corresponding to velocities >500 km/s. The signal-to-background ratio of percent implies that detector response and background modeling need to be fine-tuned to eventually enable line shape deconvolution in order to extract source location information along the line of sight.

R. Diehl; K. Kretschmer; G. Lichti; V. Schönfelder; A. W. Strong; A. von Kienlin; J. Knödlseder; P. Jean; V. Lonjou; G. Weidenspointner; J. -P. Roques; G. Vedrenne; S. Schanne; N. Mowlavi; C. Winkler; C. Wunderer

2004-05-11T23:59:59.000Z

129

The High-Acceptance Dielectron Spectrometer HADES  

E-Print Network (OSTI)

HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system.

The HADES Collaboration; G. Agakishiev; A. Balanda; B. Bannier; R. Bassini; D. Belver; A. V. Belyaev; A. Blanco; M. Boehmer; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; E. Castro; S. Chernenko; T. Christ; M. Destefanis; J. Diaz; F. Dohrmann; A. Dybczak; T. Eberl; W. Enghardt; L. Fabbietti; O. V. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Froehlich; T. Galatyuk; J. A. Garzon; R. Gernhaeuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzalez-Diaz; F. Guber; M. Heilmann; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kaempfer; K. Kanaki; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; F. Krizek; R. Kruecken; W. Kuehn; A. Kugler; A. Kurepin; S. Lang; J. S. Lange; K. Lapidus; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; B. Michalska; J. Michel; D. Mishra; E. Moriniere; J. Mousa; C. Muentz; L. Naumann; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; T. PerezCavalcanti; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; M. Roy-Stephan; A. Rustamov; A. Sadovsky; B. Sailer; P. Salabura; A. Schmah; E. Schwab; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Stroebele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebac; H. Tsertos; V. Wagner; M. Weber; M. Wisniowski; T. Wojcik; J. Wuestenfel; S. Yurevich; Y. V. Zanevsky; P. Zhou; P. Zumbruch

2009-02-19T23:59:59.000Z

130

Holder for rotating glass body  

DOE Patents (OSTI)

A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

Kolleck, Floyd W. (Clarendon Hills, IL)

1978-04-04T23:59:59.000Z

131

Rotating control head applications increasing  

Science Conference Proceedings (OSTI)

Rotating control head technology has become an important tool for lowering drilling costs and increasing well productivity, especially in many hard-rock areas and mature oil and gas fields. Lower drilling costs are achieved primarily by the faster penetration rates, reduced nondrilling time, and reduced mud volume requirements associated with underbalanced drilling. Greater well productivity can sometimes be obtained because of reduced formation damage for mud. Recent advances in rotating head technology have increased the range of well conditions to which this technology can be applied. Even though the use of rotating control heads is growing rapidly, this topic has been largely neglected in most well control training programs. Many engineers are not yet familiar with this important emerging technology and some of the modern concepts and practices used. The paper discusses the high-pressure rotating head and its application to gas or air drilling, flow drilling, geothermal drilling, overbalanced drilling and workover operations. The paper also discusses operating guidelines and rig crew training.

Bourgoyne, A.T. Jr. [Louisiana State Univ., Baton Rouge, LA (United States)

1995-10-09T23:59:59.000Z

132

Hydrogen rotation-vibration oscillator  

DOE Patents (OSTI)

A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

Rhodes, C.K.

1974-01-29T23:59:59.000Z

133

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

134

Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements  

Science Conference Proceedings (OSTI)

We evaluate a new transmission grating spectrometer for standoff laser-induced breakdown spectroscopy (LIBS) measurements. LIBS spectra collected from standoff distances are often weak, with smaller peaks blending into the background and noise. Scattered light inside the spectrometer can also contribute to poor signal-to-background and signal-to-noise ratios for smaller emission peaks. Further, collecting standoff spectra can be difficult because most spectrometers are designed for laboratory environments and not for measurements in the field. To address these issues, a custom-designed small, lightweight transmission grating spectrometer with no moving parts was built that is well suited for standoff LIBS field measurements. The performance of the spectrometer was quantified through 10 m standoff LIBS measurements collected from aluminum alloy samples and measurements from spectra of a Hg-Ar lamp. The measurements were compared to those collected using a Czerny-Turner reflective grating spectrometer that covered a similar spectral range and used the same ICCD camera. Measurements using the transmission grating spectrometer had a 363% improved signal-to-noise ratio when measured using the 669 nm aluminum emission peak.

Weisberg, Arel; Craparo, Joseph; De Saro, Robert; Pawluczyk, Romuald

2010-05-01T23:59:59.000Z

135

A co-axially configured submillimeter spectrometer and investigations of hydrogen bound molecular complexes  

E-Print Network (OSTI)

The development of a co-axially configured submillimeter spectrometer is reported. The spectrometer has been constructed to observe molecular complexes that exhibit non-covalent interactions with energies much less than that of a traditional covalent bond. The structure of molecular complexes such as those formed between a rare gas and a hydrogen halide, Rg:HX where Rg is a rare gas (Rg=Ne, Ar and Kr) and HX (X=F, Cl, Br and I) can be determined directly and accurately. The center of mass interaction distance, RCM, as well as the angle of the hydrogen halide is determined, along with direct evaluation of the intermolecular vibrations as well as accurate isomerization energies between the hydrogen bound and van der Waals forms. The accuracy of the frequency determination of rovibrational transitions using the submillimeter spectrometer is also evaluated by direct comparison with the state-of-theart pulsed nozzle Fourier transform microwave spectrometer, and this accuracy is estimated to be less than 1 kHz at 300 GHz. The tunneling or geared bending vibration of a dimer of hydrogen bromide or hydrogen iodide has been investigated. The selection rules, nuclear statistics and intensity alternation for transitions observed in these dimmers, which is a consequence of interchanging two identical nuclei in the low frequency geared bending vibration of the molecular complex, are reported. Furthermore, the rotation and quadrupole coupling constants are used to determine a vibrationally averaged structure of the complex. The energy of the low frequency bending vibration can then be compared with ab initio based potential energy surfaces. A study of the multiple isomeric forms of the molecular complex OC:HI is also presented. Multiple isotopic substitutions are used to determine the relevant ground state structures and data reported evidence for an anomalous isotope effect supporting a ground state isotopic isomerization effect. All spectroscopic data that has been reported here has been additionally used to subsequently model and generate vibrationally complete morphed potential energy surfaces that are capable or reproducing the experimentally observed data. The utility of this procedure is evaluated on a predicative basis and comparisons made with newly observed data.

McElmurry, Blake Anthony

2008-12-01T23:59:59.000Z

136

The FIRE infrared spectrometer at Magellan: construction and commissioning  

E-Print Network (OSTI)

We describe the construction and commissioning of FIRE, a new 0.8-2.5?m echelle spectrometer for the Magellan/ Baade 6.5 meter telescope. FIRE delivers continuous spectra over its full bandpass with nominal spectral ...

Simcoe, Robert A.

137

BASIS: Backscattering Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Backscattering Spectrometer Backscattering Spectrometer View inside the BAIS tank View inside the BASIS tank. BASIS is a near-backscattering, crystal-analyzer spectrometer that provides very fine energy resolution, as low as 3.0 to 3.5 µeV at the elastic peak (depending on sample size). This requires a long initial guide section of 84 m from moderator to sample in order to achieve the timing resolution necessary for obtaining the desired energy resolution. BASIS provides an excellent dynamic range near the elastic peak of about plus and minus 100 µeV in the standard high-intensity operation regime, which, if needed, could be extended to plus and minus 200 µeV and beyond. The spectrometer is optimized for quasielastic scattering but provides about 0.1% resolution in energy transfers up to ~40 meV; the inelastic excitations need to be

138

An acousto-optical correlation spectrometer for radio astronomy.  

E-Print Network (OSTI)

??The objective of this thesis research is to develop and construct a wide-band, high resolution, two-channel prototype acousto-optic correlation spectrometer (AOCS) to analyze signals received… (more)

Cheung, Kwok-wai

1987-01-01T23:59:59.000Z

139

Study of electromagnetic processes with the dielectron spectrometer HADES  

Science Conference Proceedings (OSTI)

Dielectron production in pp and dp reactions at 1.25 A.GeV has been studied with the High Acceptance DiElectron Spectrometer (HADES) at GSI. Results obtained in inclusive and exclusive channels are shown

B. Ramstein; The HADES collaboration

2010-01-01T23:59:59.000Z

140

On computing givens rotations reliably and efficiently  

Science Conference Proceedings (OSTI)

We consider the efficient and accurate computation of Givens rotations. When f and g are positive real numbers, this simply amounts to computing the values of c = f/?f2 + g2, s ... Keywords: BLAS, Givens rotation, linear algebra

David Bindel; James Demmel; William Kahan; Osni Marques

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rotation generation and transport in tokamak plasmas  

E-Print Network (OSTI)

Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

Podpaly, Yuri Anatoly

2012-01-01T23:59:59.000Z

142

Accelerating and rotating black holes  

E-Print Network (OSTI)

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

143

Nonequilibrium stationary state for a damped rotator  

E-Print Network (OSTI)

Perturbative construction of the nonequilibrium steady state of a rotator under a stochastic forcing while subject to torque and friction

Giovanni Gallavotti; Alessandra Iacobucci; Stefano Olla

2013-10-20T23:59:59.000Z

144

Gravity controlled anti-reverse rotation device  

DOE Patents (OSTI)

A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

1983-01-01T23:59:59.000Z

145

Planetary waves in rotating ionosphere  

Science Conference Proceedings (OSTI)

The problem of propagation of ultralong planetary waves in the Earth's upper atmosphere is considered. A new exact solution to the MHD equations for the ionosphere is obtained in spherical coordinates with allowance for the geomagnetic field and Earth's rotation. A general dispersion relation is derived for planetary waves in the ionospheric E and F regions, and the characteristic features of their propagation in a weakly ionized ionospheric plasma are discussed.

Khantadze, A. G.; Jandieri, V. G. [Tbilisi State University (Georgia); Jandieri, G. V. [Georgian Technical University (Georgia)

2008-06-15T23:59:59.000Z

146

Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope  

E-Print Network (OSTI)

Radio polarimetry at decimetre wavelengths is the principal source of information on the Galactic magnetic field. The diffuse polarized emission is strongly influenced by Faraday rotation in the magneto-ionic medium and rotation measure is the prime quantity of interest, implying that all Stokes parameters must be measured over wide frequency bands with many frequency channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a polarization transducer to deliver both hands of circular polarization, and a receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between 40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially available components, produces all Stokes parameters in 2048 frequency channels over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier Transform is applied to each data stream. Stokes parameters are then generated in each frequency channel. This instrument is in use at DRAO for a Northern sky polarization survey. Observatio...

Wolleben, M; Hovey, G J; Messing, R; Davison, O S; House, N L; Somaratne, K H M S; Tashev, I

2010-01-01T23:59:59.000Z

147

Hydrogen-Isotope Mass-Spectrometer Evaluation Program. Bimonthly progress report, July/September 1982  

SciTech Connect

The joint SRL-SRP Hydrogen Isotope Mass Spectrometer Evaluation Program was undertaken to: (1) evaluate a prototype hydrogen isotope mass spectrometer that was developed for the Mass Spectrometer Technical Group by VG-Isotopes, Ltd., and (2) obtain sufficient data to permit SRP personnel to specify the mass spectrometes that will be purchased under Schedule 44 Budget Project 81-SR-010 to replace obsolete mass spectrometers in Buildings 232-H and 224-H.

Chastagner, P.; Daves, H.L.; Hess, W.B.

1982-01-01T23:59:59.000Z

148

SIGNATURE OF DIFFERENTIAL ROTATION IN SUN-AS-A-STAR Ca II K MEASUREMENTS  

Science Conference Proceedings (OSTI)

The characterization of solar surface differential rotation (SDR) from disk-integrated chromospheric measurements has important implications for the study of differential rotation and dynamo processes in other stars. Some chromospheric lines, such as Ca II K, are very sensitive to the presence of activity on the disk and are an ideal choice for investigating SDR in Sun-as-a-star observations. Past studies indicate that when the activity is low, the determination of Sun's differential rotation from integrated-sunlight measurements becomes uncertain. However, our study shows that using the proper technique, SDR can be detected from these type of measurements even during periods of extended solar minima. This paper describes results from the analysis of the temporal variations of Ca II K line profiles observed by the Integrated Sunlight Spectrometer during the declining phase of Cycle 23 and the rising phase of Cycle 24, and discusses the signature of SDR in the power spectra computed from time series of parameters derived from these profiles. The methodology described is quite general, and could be applied to photometric time series of other main-sequence stars for detecting differential rotation.

Bertello, L.; Pietarila, A. [National Solar Observatory, Tucson, AZ 85719 (United States); Pevtsov, A. A., E-mail: bertello@nso.edu, E-mail: apietarila@nso.edu, E-mail: pevtsov@noao.edu [National Solar Observatory, Sunspot, NM 88349 (United States)

2012-12-10T23:59:59.000Z

149

Trirotron: triode rotating beam radio frequency amplifier  

DOE Patents (OSTI)

High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

Lebacqz, Jean V. (Stanford, CA)

1980-01-01T23:59:59.000Z

150

Application of PILATUS II Detector Modules for High Resolution X-Ray Imaging Crystal Spectrometers on the Alcator C-Mod Tokamak  

Science Conference Proceedings (OSTI)

A new type of X-ray imaging crystal spectrometer for Doppler measurements of the radial profiles of the ion temperature and plasma rotation velocity in tokamak plasmas is presently being developed in a collaboration between various laboratories. The spectrometer will consist of a spherically bent crystal and a two-dimensional position sensitive detector; and it will record temporally and spatially resolved X-ray line spectra from highly-charged ions. The detector must satisfy challenging requirements with respect to count rate and spatial resolution. The paper presents the results from a recent test of a PILATUS II detector module on Alcator C-Mod, which demonstrate that the PILATUS II detector modules will satisfy these requirements.

M.L. Bitter, Ch. Borennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Chushman, S.G. Lee, J.E. Rice, and S. Scott.

2007-07-23T23:59:59.000Z

151

Short rotation Wood Crops Program  

DOE Green Energy (OSTI)

This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

Wright, L.L.; Ehrenshaft, A.R.

1990-08-01T23:59:59.000Z

152

ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Description Goals of assist were to intercompare radiance spectra and profile retrievals from a new AERI-like instrument, called "ASSIST" with the SGP site AERI(s) and calculations from Radiosondes measurements. * To bring the ASSIST instrument to the SGP ACRF and perform simultaneous measurements of the sky radiation with those from the AERI. * On relatively cloud-free days, release a special radiosonde at the

153

Electron source for a mini ion trap mass spectrometer  

DOE Patents (OSTI)

An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

Dietrich, D.D.; Keville, R.F.

1995-12-19T23:59:59.000Z

154

Ultracold-neutron infrastructure for the gravitational spectrometer GRANIT  

E-Print Network (OSTI)

The gravitational spectrometer GRANIT will be set up at the Institut Laue Langevin. It will profit from the high ultracold neutron density produced by a dedicated source. A monochromator made of crystals from graphite intercalated with potassium will provide a neutron beam with 0.89 nm incident on the source. The source employs superthermal conversion of cold neutrons in superfluid helium, in a vessel made from BeO ceramics with Be windows. A special extraction technique has been tested which feeds the spectrometer only with neutrons with a vertical velocity component v < 20 cm/s, thus keeping the density in the source high. This new source is expected to provide a density of up to 800 1/cm3 for the spectrometer.

P. Schmidt-Wellenburg; K. H. Andersen; P. Courtois; M. Kreuz; S. Mironov; V. V. Nesvizhevsky; G. Pignol; K. V. Protasov; T. Soldner; F. Vezzu; O. Zimmer

2008-11-11T23:59:59.000Z

155

Photo-Spectrometer Realized In A Standard Cmos Ic Process  

DOE Patents (OSTI)

A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

Simpson, Michael L. (Knoxville, TN); Ericson, M. Nance (Knoxville, TN); Dress, William B. (Knoxville, TN); Jellison, Gerald E. (Oak Ridge, TN); Sitter, Jr., David N. (Tucson, AZ); Wintenberg, Alan L. (Knoxville, TN)

1999-10-12T23:59:59.000Z

156

CORELLI: the Elastic Diffuse Scattering Spectrometer at SNS | ORNL Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

The Elastic Diffuse Scattering Spectrometer The Elastic Diffuse Scattering Spectrometer CORELLI The CORELLI instrument. CORELLI is a statistical chopper spectrometer with energy discrimination. It's designed and optimized to probe complex disorder in crystalline materials through diffuse scattering of single-crystal samples. The momentum transfer ranges from 0.5 to 12 Ã…-1, and the energy of incident neutrons ranges from 10 to 200 meV. This instrument combines the high efficiency of white-beam Laue diffraction with energy discrimination by modulating the beam with a statistical chopper. A cross-correlation method is used to reconstruct the elastic signal from the modulated data. Accurate modeling of the short-range order associated with the diffuse scattering requires measurements over large volumes of three-dimensional reciprocal space, with sufficient momentum

157

Bragg x-ray survey spectrometer for ITER  

Science Conference Proceedings (OSTI)

Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

Varshney, S. K.; Jakhar, S. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Barnsley, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); O'Mullane, M. G. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-10-15T23:59:59.000Z

158

In-line rotating capacitive torque sensor  

DOE Patents (OSTI)

Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

Kronberg, J.W.

1991-09-10T23:59:59.000Z

159

Contained Modes In Mirrors With Sheared Rotation  

SciTech Connect

In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

Abraham J. Fetterman and Nathaniel J. Fisch

2010-10-08T23:59:59.000Z

160

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impurity ions in a rotating tokamak  

SciTech Connect

It is pointed out that the impurity ions in rotating toroidal plasmas tend to behave like trapped particles. That may explain the observed fact.

Yoshikawa, S.

1980-10-01T23:59:59.000Z

162

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

the large-scale pattern. Research reported by Su et al. shows how to address such esoteric questions, while specifically suggesting that hidden rotational symmetries may play...

163

SPARSE FARADAY ROTATION MEASURE SYNTHESIS  

Science Conference Proceedings (OSTI)

Faraday rotation measure synthesis is a method for analyzing multichannel polarized radio emissions, and it has emerged as an important tool in the study of Galactic and extragalactic magnetic fields. The method requires the recovery of the Faraday dispersion function from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we discuss a recovery method that assumes a sparse approximation of the Faraday dispersion function in an overcomplete dictionary of functions. We discuss the general case when both thin and thick components are included in the model, and we present the implementation of a greedy deconvolution algorithm. We illustrate the method with several numerical simulations that emphasize the effect of the covered range and sampling resolution in the Faraday depth space, and the effect of noise on the observed data.

Andrecut, M.; Stil, J. M.; Taylor, A. R. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

2012-02-15T23:59:59.000Z

164

Optical system for high resolution spectrometer/monochromator  

DOE Patents (OSTI)

An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.

Hettrick, Michael C. (Berkeley, CA); Underwood, James H. (Walnut Creek, CA)

1988-01-01T23:59:59.000Z

165

Acousto-optical correlation spectrometer for radio astronomy  

Science Conference Proceedings (OSTI)

The objective of this thesis is to develop and construct a wide-band, high-resolution, two-channel prototype acousto-optic correlation spectrometer (AOCS) to analyze signals received by the three-element millimeter-wave interferometer at Caltech's Owens Valley Radio Observatory (OVRO), which may be used to study the distribution of carbon monoxide and other molecules in galaxies. The proposed correlation spectrometer has the main advantage of large time-bandwidth products and hence of low cost per frequency channel. Thus, it is suitable for many scientific objectives that require both large bandwidth and high resolution, such as mapping the distribution and temperature of the interstellar gases of galactic sources and extragalactic sources or studying the atmospheric conditions of planets in the solar system. Phase switching has been used to reduce the zero level variation of this instrument, and is found to be more effective than other schemes used by the single dish acousto-optical spectrometers. Both the frequency resolution and the frequency coverage of this instrument can be changed easily, and give it a flexibility not attainable by the filter-bank spectrometers.

Cheung, K.

1987-01-01T23:59:59.000Z

166

Integration and commissioning of the ATLAS Muon spectrometer  

E-Print Network (OSTI)

The ATLAS experiment at the Large Hadron Collider (LHC) at CERN is currently waiting to record the first collision data in spring 2009. Its muon spectrometer is designed to achieve a momentum resolution of 10% pT(mu) = 1 TeV/c. The spectrometer consists of a system of three superconducting air-core toroid magnets and is instrumented with three layers of Monitored Drift Tube chambers (Cathode Strip Chambers in the extreme forward region) as precision detectors. Resistive Plate Chambers in the barrel and Thin Gap Chambers in the endcap regions provide a fast trigger system. The spectrometer passed important milestones in the last year. The most notable milestone was the installation of the inner layer of endcap muon chambers, which constituted the last big piece of the ATLAS detector to be lowered in the ATLAS cavern. In addition, during the last two years most of the muon detectors were commissioned with cosmic rays while being assembled in the underground experimental cavern. We will report on our experience with the precision and trigger chambers, the optical spectrometer alignment system, the level-1 trigger, and the ATLAS data acquisition system. Results of the global performance of the muon system from data with magnetic field will also be presented.

Alberto Belloni; for the ATLAS collaboration

2008-10-16T23:59:59.000Z

167

harrison-98.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Rotating Shadowband Spectroradiometer Analysis of Rotating Shadowband Spectroradiometer (RSS) Data L. C. Harrison, J. J. Michalsky, Q. Min, and M. Beauharnois Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The rotating shadowband spectroradiometer (RSS, shown in Figure 1) is our most recently developed instrument. It can be thought of as a 512-channel multifilter rotating shadow- band radiometer (MFRSR) spanning the wavelength range 360 nm to 1050 nm. (a) This portion of the shortwave spectrum represents about 75% of the sun's total energy. The RSS implements the same automated shadowbanding Camera Lens Collimating Lens Shadow Band Diffuser Slit Motor Latitude Adjustment Prisms CCD Figure 1. Cross-section of the RSS. (For a color version of this figure, please see http://www.arm.gov/

168

ARM - Instrument - mfrsr  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsmfrsr govInstrumentsmfrsr Documentation MFRSR : Handbook MFRSR : Instrument Mentor Monthly Summary (IMMS) reports MFRSR : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Multifilter Rotating Shadowband Radiometer (MFRSR) Instrument Categories Aerosols, Radiometric Picture of the Multi-Filter Rotating Shadowband Radiometer (MFRSR) Picture of the Multi-Filter Rotating Shadowband Radiometer (MFRSR) General Overview The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a

169

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2006 [Facility News] June 15, 2006 [Facility News] Data From Rotating Shadowband Spectroradiometer Now Available in Data Archive Bookmark and Share The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. After refinements based on a series of successful field trials, the latest Rotating Shadowband Spectroradiometer (RSS) joins the collection of permanent ARM instruments at the ARM Southern Great Plains (SGP) site. The current RSS-known as the RSS105-is deployed at the SGP Central Facility and is the first commercially built RSS manufactured by Yankee Environmental Systems, Inc. Since its deployment in May 2003, the RSS has

170

Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements  

Science Conference Proceedings (OSTI)

Statistical scale-by-scale analysis, for the first time, has been applied to the aerosol optical thickness (AOT) retrieved from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) network. The MFRSR data were collected in September 2000 from ...

Mikhail D. Alexandrov; Alexander Marshak; Brian Cairns; Andrew A. Lacis; Barbara E. Carlson

2004-05-01T23:59:59.000Z

171

An Automated Method of MFRSR Calibration for Aerosol Optical Depth Analysis with Application to an Asian Dust Outbreak over the United States  

Science Conference Proceedings (OSTI)

Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global ...

John A. Augustine; Christopher R. Cornwall; Gary B. Hodges; Charles N. Long; Carlos I. Medina; John J. DeLuisi

2003-02-01T23:59:59.000Z

172

Torques in atmospheres of rotating planets  

E-Print Network (OSTI)

Molecular motion in combination with planetary rotation and gravity causes a torque in gas when seen from a coordinate system fixed in the planet. The torque is caused by the difference in centrifugal forces when gas molecules are moving along or opposite to the planets rotation.

Jonsson, David

2010-01-01T23:59:59.000Z

173

Novel approach for rotation invariant texture recognition  

Science Conference Proceedings (OSTI)

In machine vision, rotation invariant feature extraction is one of the most challenging texture analysis tasks, because pattern orientation itself contributes substantially to extracted features. As a consequence, the prime objective of such techniques ... Keywords: Hu moments, moment invariants, moment masks, probabilistic neural network, rotation invariance, texture segmentation

Naeem Qaiser; Mutawarra Hussain; Nadeem Qaiser; Muhammad Iqbal

2007-07-01T23:59:59.000Z

174

Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE  

Science Conference Proceedings (OSTI)

The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSG are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated for the MSPEC in place of the VSG.

Mukherjee, S K; Emig, J A; Griffith, L V; Heeter, R F; House, F A; James, D L; Schneider, M B; Sorce, C M

2010-01-25T23:59:59.000Z

175

Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe)  

Science Conference Proceedings (OSTI)

The basics of single particle measurements are discussed and illustrated with measurements of the droplet size distribution with an optical spectrometer, the Forward Scattering Spectrometer Probe (FSSP), and its improved version, the Fast-FSSP. ...

Jean-Louis Brenguier; Thierry Bourrianne; Afraniode Araujo Coelho; Jacques Isbert; Robert Peytavi; Dominique Trevarin; Perry Weschler

1998-10-01T23:59:59.000Z

176

A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer  

Science Conference Proceedings (OSTI)

A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in ...

Rosario Q. Iannone; Daniele Romanini; Samir Kassi; Harro A. J. Meijer; Erik R. Th Kerstel

2009-07-01T23:59:59.000Z

177

Testimonials: Presidents Management Council Interagency Rotational Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testimonials: Presidents Management Council Interagency Rotational Testimonials: Presidents Management Council Interagency Rotational Program Testimonials: Presidents Management Council Interagency Rotational Program Diane Turchetta - Department of Transportation My rotation in EERE's Clean Cities Program has helped me to better understand how the program works and the great strides it is making, though it's coalitions, to reduce petroleum use across the country. The rotation has also provided me with an opportunity to learn more about the other efforts and initiatives underway in the Vehicle Technology Program including wireless charging for electric vehicles, research on materials technologies, and technology improvements for both light-duty and heavy-duty vehicles. I plan to use the information and knowledge I have

178

In-line rotating capacitive torque sensor  

DOE Patents (OSTI)

A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotting portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 8 figs.

Kronberg, J.W.

1990-01-08T23:59:59.000Z

179

Design of the superconducting 45 degree dipole for the CEBAF high resolution spectrometers  

Science Conference Proceedings (OSTI)

The 460-ton dipole for the Hall A 4-GeV/c High Resolution Spectrometer has a bend angle of 45{sup o}, with an 8.4-m radius of curvature and an effective length of 6.6 m. It has a useful width of 100 cm and a 25-cm gap at the central radius of curvature. The dipole provides focusing in the dispersive plane by means of rotated (by 30 degrees) entrance and exit pole faces as well as a field index of -1.25. The end contour geometries have been designed to eliminate higher-order aberrations. The maximum central field is 1.6 T at 4 GeV/c. A field quality of 2 x 10{sup -4} (maximum deviation from the design value) is required over an excitation range from 0.16 T to 1.6 T. The 1.8-kA conductor is a 36-wire flattened cable. It has been designed to have limited cryostability at 4.5 K and 1.3 atm. Each coil is wound as one double pancake against the outer wall of the helium vessel in order to react the in-plane (hoop) loads. The bath-cooled, planar coil features negative curvature on its inner radius and at the exit. The coil produces 400 KAT at full excitation. The stored energy of this magnet is 3.5 MJ.

Alan Gavalya; John Alcorn; Walter Tuzel

1990-09-24T23:59:59.000Z

180

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Continuous sampling ion mobility spectrometers and methods therefor  

SciTech Connect

An ion mobility spectrometer may include a flow channel having an inlet end and an outlet end. A deflection electrode is positioned within the flow channel so that a non-linear electric field is created between at least a portion of the flow channel and at least a portion of the deflection electrode when an electrostatic potential is placed across the deflection electrode and the flow channel. The ion mobility spectrometer also includes means for producing ions at a position upstream from the leading edge of the deflection electrode, so that ions produced thereby are deflected by the deflection electrode into the non-linear electric field. A detector positioned within the flow channel for detects ions from the non-linear electric field.

Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); Appelhans, Anthony D. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID); Olson, John E. (Rigby, ID)

2009-04-14T23:59:59.000Z

182

Ion mobility spectrometers and methods for ion mobility spectrometry  

SciTech Connect

An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); Appelhans, Anthony D. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID); Olson, John E. (Rigby, ID)

2009-04-14T23:59:59.000Z

183

Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers  

SciTech Connect

The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

1999-04-05T23:59:59.000Z

184

Compact mass spectrometer for plasma discharge ion analysis  

DOE Patents (OSTI)

A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

Tuszewski, M.G.

1997-07-22T23:59:59.000Z

185

Compact mass spectrometer for plasma discharge ion analysis  

DOE Patents (OSTI)

A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

Tuszewski, Michel G. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

186

Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays  

E-Print Network (OSTI)

The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

The ATLAS Collaboration

2010-06-22T23:59:59.000Z

187

Performance of a short 'magnetic bottle' electron spectrometer  

Science Conference Proceedings (OSTI)

In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.

Mucke, M.; Lischke, T.; Arion, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Foerstel, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bradshaw, A. M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Hergenhahn, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

2012-06-15T23:59:59.000Z

188

Tracking Rotational Diffusion of Colloidal Clusters  

E-Print Network (OSTI)

We describe a novel method of tracking the rotational motion of clusters of colloidal particles. Our method utilizes rigid body transfor- mations to determine the rotations of a cluster and extends conventional proven particle tracking techniques in a simple way, thus facilitating the study of rotational dynamics in systems containing or composed of colloidal clusters. We test our method by measuring dynamical properties of simulated Brownian clusters under conditions relevant to microscopy experiments. We then use the technique to track and describe the motions of a real colloidal cluster imaged with confocal microscopy.

Gary L. Hunter; Kazem V. Edmond; Mark T. Elsesser; Eric R. Weeks

2011-07-13T23:59:59.000Z

189

Rotation invarient simultaneous clustering and dictionary learning  

E-Print Network (OSTI)

In this paper, we present an approach that simultaneously clusters database members and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain, while clustering in the image domain. The main feature of the proposed approach is that it provides rotation invariant clustering which is useful in Content Based Image Retrieval (CBIR). We demonstrate through experimental results that the proposed rotation invariant clustering provides better retrieval performance than the standard Gabor-based method that has similar objectives. Index Terms — Radon transform, rotation invariance, clustering, dictionary learning, CBIR.

Yi-chen Chen; Challa S. Sastry; Vishal M. Patel; P. Jonathon Phillips

2012-01-01T23:59:59.000Z

190

Alpha Channeling in a Rotating Plasma  

E-Print Network (OSTI)

The wave-particle alpha-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with alpha particles in a mirror machine with ExB rotation to diffuse the alpha particles along constrained paths in phase space. Of major interest is that the alpha-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.

Fetterman, Abraham J

2008-01-01T23:59:59.000Z

191

Time-of-flight direct recoil ion scattering spectrometer  

DOE Patents (OSTI)

A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Lamich, George J. (Orland Park, IL)

1994-01-01T23:59:59.000Z

192

Polarization Measurements in Photoproduction with CEBAF Large Acceptance Spectrometer  

Science Conference Proceedings (OSTI)

A significant part of the experimental program in Hall-B of the Jefferson Lab is dedicated to the studies of the structure of baryons. CEBAF Large Acceptance Spectrometer (CLAS), availability of circularly and linearly polarized photon beams and recent addition of polarized targets provides remarkable opportunity for single, double and in some cases triple polarization measurements in photoproduction. An overview of the experiments will be presented.

E. Pasyuk

2010-05-01T23:59:59.000Z

193

Characterization of a New Lead Slowing Down Spectrometer  

Science Conference Proceedings (OSTI)

There is considerable interest in developing direct measurement methods to determine the plutonium content of spent nuclear fuel within a fuel assembly. One technique that may prove successful is lead slowing-down spectroscopy. Lead Slowing Down Spectroscopy (LSDS) has been used for decades to make cross-section measurements on relatively small isotopic samples of well know masses. For spent fuel assembly measurements, LSDS will be applied in reverse; unknown masses will be determined using well-know cross-sections. In the LSDS, a pulse of neutrons (on the order of 10-100 MeV) is injected into a large lead stack (~ 1m3). The neutrons quickly down-scatter but exhibit little spread in energy about the average, continually-decreasing neutron energy making for a strong correlation between the elapsed time from the initial pulse and the average energy of the neutron. By measuring this elapsed time, it is possible to measure interactions of the neutrons with the fuel in the 0.1 to 1,000 eV range. Many of the actinides have strong resonances in this region, making it possible, through careful measurements and analysis, to extract isotopic masses from LSDS measurements. Pacific Northwest National Laboratory is actively conducting research on both LSDS measurement and data analysis techniques. This paper will present results of the effort to construct and characterize a new lead slowing down spectrometer. The spectrometer was designed to begin testing both experimental measurement and data analysis techniques for determining the plutonium content of spent fuel. To characterize the spectrometer, a series of (n,?) experiments were conducted to measure the correlation between the time after the neutrons enter the lead and the energy of the interaction. Results from these measurements as well as plans for future development of the spectrometer will be discussed.

Casella, Andrew M.; Warren, Glen A.; Cantaloub, Michael G.; Mace, Emily K.; McDonald, Benjamin S.; Overman, Cory T.; Pratt, Sharon L.; Smith, Leon E.; Stave, Sean C.; Wittman, Richard S.

2011-10-01T23:59:59.000Z

194

Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

Lerner, Scott A. (Livermore, CA); Bennett, Charles L. (Livermore, CA); Bixler, Jay V. (Oakland, CA); Kuzmenko, Paul J. (Livermore, CA); Lewis, Isabella T. (San Jose, CA)

2005-07-26T23:59:59.000Z

195

Design of a Moderated Multidetector Neutron Spectrometer for Optimal Specificity  

Science Conference Proceedings (OSTI)

Neutron spectrometry can play an important role in the detection and identification of neutron-emitting sources in various security applications. In the present work, a portable filtered array neutron spectrometer, consisting of twelve 6LiF-based thermal neutron detectors embedded within a single heterogeneous volume was designed and its expected performance compared to that of a commercially available 12-sphere Bonner spheres spectrometer. Each detector within the volume was designed to optimally respond to a unique portion of the neutron spectrum by varying the type and thickness of materials used to filter the spectrum as well as the thickness of the moderator in front of the detector. The available design space was permuted and performance metrics developed to identify the optimal geometries. The top performing detector geometries were then combinatorially explored to identify the best array of geometries that yielded the most information about a neutron spectrum. The best performing filtered array was found to provide as much spectral information as, or more than, the commercially available 12-sphere Bonner spheres spectrometer to which it was compared.

Harrison, Mark J [ORNL; Cherel, Quentin [University of Florida, Gainesville; Monterial, Mateusz [ORNL

2011-01-01T23:59:59.000Z

196

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

197

ARM - Instrument - rss  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsrss govInstrumentsrss Documentation RSS : Handbook RSS : Instrument Mentor Monthly Summary (IMMS) reports RSS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Rotating Shadowband Spectroradiometer (RSS) Instrument Categories Radiometric General Overview The Rotating Shadowband Spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to

198

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

199

Baroclinic Instability of a Rotating Hadley Cell  

Science Conference Proceedings (OSTI)

The stability of a thin fluid layer between two rotating plates which are subjected to a horizontal temperature gradient is studied. First, the solution for the stationary basic state is obtained in a closed form. This solution identifies Ekman ...

Basil N. Antar; William W. Fowlis

1981-10-01T23:59:59.000Z

200

On the Use of Rotating Hydraulic Models  

Science Conference Proceedings (OSTI)

Two problems regarding the use of rotating hydraulic channel flow models are addressed. The first concerns the difficulties encountered when trying to identify the “potential” depth for a flow of uniform (but nonzero) potential vorticity in a ...

K. M. Borenäs; L. J. Pratt

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

202

ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES  

SciTech Connect

In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

Groot, Paul J., E-mail: pgroot@astro.ru.nl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

2012-01-20T23:59:59.000Z

203

Turbulent Channel Flows on a Rotating Earth  

Science Conference Proceedings (OSTI)

This paper deals with flow in a rectilinear channel on a rotating earth. The flow is directed perpendicular to the background planetary vorticity; both an analytical theory and numerical simulations are employed. The analytical approach assumes ...

Robert A. Handler; Richard P. Mied; Gloria J. Lindemann; Thomas E. Evans

2009-04-01T23:59:59.000Z

204

A Numerical Study of a Rotating Downburst  

Science Conference Proceedings (OSTI)

Previous studies have revealed that convective storms often contain intense small-scale downdrafts, termed “downbursts,” that are a significant hazard to aviation. These downbursts sometimes possess strong rotation about their vertical axis in ...

David B. Parsons; Morris L. Weisman

1993-08-01T23:59:59.000Z

205

Flow Properties in Rotating, Stratified Hydraulics  

Science Conference Proceedings (OSTI)

This paper discusses three distinct features of rotating, stratified hydraulics, using a reduced-gravity configuration. First, a new upstream condition is derived corresponding to a wide, almost motionless basin, and this is applied to flow ...

Peter D. Killworth

1992-09-01T23:59:59.000Z

206

Spin Rotation of Formalism for Spin Tracking  

SciTech Connect

The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

Luccio,A.

2008-02-01T23:59:59.000Z

207

MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW  

SciTech Connect

Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

Law Jr., C.G.; Pierini, P.; Newman, J.

1980-07-01T23:59:59.000Z

208

FTIR spectrometer with solid-state drive system  

DOE Patents (OSTI)

An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

Rajic, Slobodan (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Egert, Charles M. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

209

A 4. pi. tracking TPC magnetic spectrometer for RHIC  

Science Conference Proceedings (OSTI)

The primary physics objective of the 4{pi} TPC magnetic spectrometer proposal is to search for the Quark-Gluon Plasma. In previous workshops we have discussed what the possible hadronic signatures of such a state of matter would be. Succinctly, the QGP is a direct prediction of non-perturbative QCD. Therefore the question of the existence of this new state of matter bears directly on the validity of non-perturbative QCD. However, since non-perturbative QCD has never been established, it is apparent that what may await us is a host of new phenomena that will go beyond the standard model.

Danby, G.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Van Dijk, J.H. (Brookhaven National Lab., Upton, NY (USA)); Lindenbaum, S.J. (Brookhaven National Lab., Upton, NY (USA) City Coll., New York, NY (USA)); Chan, C.S.; Kramer, M.A.; Zhao, K. (City Coll., New York, NY (USA)); Biswas, N.; Kenney, P.; Piekarz, J. (Notre Dame Univ

1990-01-01T23:59:59.000Z

210

Bent solenoids for spectrometers and emittance exchange sections.  

Science Conference Proceedings (OSTI)

Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors.

Norem, J.

1999-03-26T23:59:59.000Z

211

Calibrating the DARHT Electron Spectrometer with Negative Ions  

DOE Green Energy (OSTI)

Negative ions of hydrogen and oxygen have been used to calibrate the DARHT electron spectrometer over the momentum range of 2 to 20 MeV/c. The calibration was performed on September 1, 3, and 8, 2004, and it is good to 0.5% absolute, provided that instrument alignment is carefully controlled. The momentum in MeV/c as a function of magnetic field (B in Gauss) and position in the detector plane (X in mm) is: P = (B-6.28)/(108.404-0.1935*X)

R. Trainham (STL), A. P. Tipton (LAO), and R. R. Bartech (LANL)

2005-11-01T23:59:59.000Z

212

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.

Volker Crede

2011-12-01T23:59:59.000Z

213

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

214

Test of an LED Monitoring System for the PHOS Spectrometer  

E-Print Network (OSTI)

Preprint submitted to Elsevier Print on 26th January 2000A prototype monitoring system for the Photon Spectrometer (PHOS) of the ALICE experiment at LHC is described in detail. The prototype consists of Control and Master modules. The first one is 8x8 matrix of Light Emitting Diodes coupled with stable generators of current pulses. The system provides an individual control for each of the 64 channels of PHOS prototype based on lead-tungstate crystals. A long term stability of order of 10-3 has been achieved in integral beam tests of the monitoring system and PHOS prototypes.

Blick, A M; Erin, S V; Kharlov, Yu V; Lobanov, M O; Mikhailov, Yu V; Minaev, N G; Petrov, V A; Sadovsky, S A; Samoylenko, V D; Suzdalev, V I; Senko, V A; Tikhonov, V V

1999-01-01T23:59:59.000Z

215

Position, rotation, and intensity invariant recognizing method  

DOE Patents (OSTI)

A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

Ochoa, E.; Schils, G.F.; Sweeney, D.W.

1987-09-15T23:59:59.000Z

216

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons having their angular momentum aligned with the rotational axis. Discrete phonon energy and parity conservation generate oscillations of the energy difference between the lowest rotational bands with positive and negative parity. Anharmonicities tend to synchronize the the rotation of the condensate and the quadrupole shape of the nucleus forming a rotating heart shape.

S. Frauendorf

2007-09-03T23:59:59.000Z

217

Hidden Rotational Symmetries in Magnetic Domain Patterns  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Rotational Symmetries in Magnetic Domain Patterns Print Hidden Rotational Symmetries in Magnetic Domain Patterns Print Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and intuitively we do not expect to observe any symmetry in such systems. Scientists at the ALS, the University of Oregon, and the University of California, San Diego, have recently used coherent soft x-ray scattering with angular Fourier analysis to discover that the disordered domain patterns do, in fact, exhibit rotational symmetries, which can be as small as two-fold or as large as 30-fold. Their study of magnetic symmetries gives scientists a toolbox for discovering hidden symmetries in diverse material systems.

218

Position, rotation, and intensity invariant recognizing method  

SciTech Connect

A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

1989-01-01T23:59:59.000Z

219

Rotating preventers; Technology for better well control  

Science Conference Proceedings (OSTI)

This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs.

Tangedahl, M.J.; Stone, C.R. (Signa Engineering Corp. (United States))

1992-10-01T23:59:59.000Z

220

Optical apparatus for forming correlation spectrometers and optical processors  

DOE Patents (OSTI)

Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

1999-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rotating Black Holes with Monopole Hair  

E-Print Network (OSTI)

We study rotating black holes in Einstein-Yang-Mills-Higgs theory. These black holes emerge from static black holes with monopole hair when a finite horizon angular velocity is imposed. At critical values of the horizon angular velocity and the horizon radius, they bifurcate with embedded Kerr-Newman black holes. The non-Abelian black holes possess an electric dipole moment, but no electric charge is induced by the rotation. We deduce that gravitating regular monopoles possess a gyroelectric ratio g_el=2.

B. Kleihaus; J. Kunz; F. Navarro-Lerida

2004-06-23T23:59:59.000Z

222

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Blinne, Alexander

2013-01-01T23:59:59.000Z

223

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Alexander Blinne; Holger Gies

2013-11-07T23:59:59.000Z

224

Comparison between Standard and Modified Forward Scattering Spectrometer Probes during the Small Cumulus Microphysics Study  

Science Conference Proceedings (OSTI)

Microphysical measurements performed during the Small Cumulus Microphysics Study (SCMS) experiment are analyzed in order to examine the instrumental limitations of forward scattering spectrometer probes (FSSPs). Complementary information ...

Frédéric Burnet; Jean-Louis Brenguier

2002-10-01T23:59:59.000Z

225

A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS  

Science Conference Proceedings (OSTI)

We describe the design and current performance of the backscattering silicon spectrometer (BASIS), a time-of-flight backscattering spectrometer built at the spallation neutron source (SNS) of the Oak Ridge National Laboratory (ORNL). BASIS is the first silicon-based backscattering spectrometer installed at a spallation neutron source. In addition to high intensity, it offers a high-energy resolution of about 3.5 {mu}eV and a large and variable energy transfer range. These ensure an excellent overlap with the dynamic ranges accessible at other inelastic spectrometers at the SNS.

Mamontov, E.; Herwig, K. W. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2011-08-15T23:59:59.000Z

226

Rapidly Rotating Suns and Active Nests of Convection  

E-Print Network (OSTI)

In the solar convection zone, rotation couples with intensely turbulent convection to drive a strong differential rotation and achieve complex magnetic dynamo action. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the global-scale patterns of convection in such stars and the flows of differential rotation and meridional circulation which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of localized convection emerges. Convection near the equator in these systems is dominated by one or two nests in longitude of locally enhanced convection, with quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation Delta Omega grows with more rapid rotation while the relative shear Delta Omega/Omega_0 decreases. In contrast, at more rapid rotation the meridional circulations decrease in energy and peak velocities and break into multiple cells of circulation in both radius and latitude.

Benjamin P. Brown; Matthew K. Browning; Allan Sacha Brun; Mark S. Miesch; Juri Toomre

2008-08-12T23:59:59.000Z

227

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

228

austin-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrieval of Liquid Water Path and Effective Drop Size Retrieval of Liquid Water Path and Effective Drop Size Using Radar Data and Shortwave Optical Depth R. T. Austin and G. L. Stephens Department of Atmospheric Science Colorado State University Fort Collins, Colorado Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York Introduction We present a new retrieval of liquid water path (LWP), effective drop size, and liquid water content (LWC) of water clouds, based on data from the Millimeter-Wave Cloud Radar (MMCR) and shortwave optical depths retrieved from the Multifilter Rotating Shadowband Radiometer (MFRSR) (Min and Harrison 1996). This algorithm is being developed in anticipation of the 94-GHz radar and Profiling Oxygen A-band Spectrometer/Visible Imager (PABSI) data to be available from the CloudSat platform

229

THE ROTATIONAL SPECTRUM OF HCl{sup +}  

SciTech Connect

The rotational spectrum of the radical ion HCl{sup +} has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state {sup 2}{Pi}{sub 3/2} ladder and two in the {sup 2}{Pi}{sub 1/2} ladder (643 cm{sup -1} above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and {Lambda}-doubling, and the detection of lines of H{sup 37}Cl{sup +} at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the {sup 2}{Pi}{sub 1/2} ladder of HCl{sup +} for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq{sub 2}. The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the {sup 2}{Pi}{sub 3/2} J = 5/2 - 3/2 transition observed in space to within 0.2 km s{sup -1}, and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s{sup -1}.

Gupta, H.; Drouin, B. J.; Pearson, J. C., E-mail: Harshal.Gupta@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

2012-06-01T23:59:59.000Z

230

Internal Rotation, Mixing and Lithium Abundances  

E-Print Network (OSTI)

Lithium is an excellent tracer of mixing in stars as it is destroyed (by nuclear reactions) at a temperature around $\\sim 2.5\\times 10^6$ K. The lithium destruction zone is typically located in the radiative region of a star. If the radiative regions are stable, the observed surface value of lithium should remain constant with time. However, comparison of the meteoritic and photospheric Li abundances in the Sun indicate that the surface abundance of Li in the Sun has been depleted by more than two orders of magnitude. This is not predicted by solar models and is a long standing problem. Observations of Li in open clusters indicate that Li depletion is occurring on the main sequence. Furthermore, there is now compelling observational evidence that a spread of lithium abundances is present in nearly identical stars. This suggests that some transport process is occurring in stellar radiative regions. Helioseismic inversions support this conclusion, for they suggest that standard solar models need to be modified below the base of the convection zone. There are a number of possible theoretical explanations for this transport process. The relation between Li abundances, rotation rates and the presence of a tidally locked companion along with the observed internal rotation in the Sun indicate that the mixing is most likely induced by rotation. The current status of non-standard (particularly rotational) stellar models which attempt to account for the lithium observations are reviewed.

Brian Chaboyer

1998-03-10T23:59:59.000Z

231

Rotatable superconducting cyclotron adapted for medical use  

DOE Patents (OSTI)

A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

1985-01-01T23:59:59.000Z

232

Hydromagnetic Instability in Differentially Rotating Flows  

E-Print Network (OSTI)

We study the stability of a compressible differentially rotating flows in the presence of the magnetic field, and we show that the compressibility profoundly alters the previous results for a magnetized incompressible flow. The necessary condition of newly found instability can be easily satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A

2006-01-01T23:59:59.000Z

233

Convective heat transfer in rotating, circular channels  

E-Print Network (OSTI)

Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

Hogan, Brenna Elizabeth

2012-01-01T23:59:59.000Z

234

Asymmetric error field interaction with rotating conducting walls  

Science Conference Proceedings (OSTI)

The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-07-15T23:59:59.000Z

235

Aerosol beam-focus laser-induced plasma spectrometer device  

SciTech Connect

An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

Cheng, Meng-Dawn (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

236

Passive Millimeter-Wave Spectrometer for Remote Chemical Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed Captioning Transcript Closed Captioning Transcript Welcome to a demonstration of the Passive Millimeter-Wave Spectrometer for Remote Chemical Detection. The ultimate goal of the project was to detect a hot target gas in front of a cooler background. This setup was eventually tested at the Nevada Test Site. Prior to field test we tested the concept in a laboratory. We simulated the field conditions by simultaneously reducing the two relative temperatures. In this demonstration we will show a room temperature gas (CH3CN) with a cold background (liquid nitrogen). To understand the experiment we will be showing, the first subplot here represents all data channels plotted on a single plot, the second plot represents a two-dimensional representation of the same data, the X axis represents time, the Y axis represents frequency. As the plot is animated later the first and second subplots will have a cross section marker sweep across them.

237

Neutron beam imaging at neutron spectrometers at Dhruva  

SciTech Connect

A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 10{sup 6}-10{sup 7} n/cm{sup 2}/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

Desai, Shraddha S.; Rao, Mala N. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

2012-06-05T23:59:59.000Z

238

An omegatron mass spectrometer for plasma ion species analysis  

DOE Green Energy (OSTI)

An omegatron mass spectrometer which can be used to measure the ion species and charge state distribution in a magnetized plasma is described. In the conventional omegatron, ions are formed as the result of gas ionization by a fine electron beam passing through the center of the analyzer along the magnetic field. In the plasma omegatron, the plasma ions are entering the analyzer through a small floating aperture. We employ a biasing technique to reduce the ion velocity along the magnetic field and, thus, achieve improved ion collection and sensitivity. Experiments have been performed to demonstrate the instrument's operation in the PISCES-A linear plasma device, at a magnetic field {ital B}=1.3 kG. Mass spectra have been obtained in hydrogen, helium, and nitrogen plasmas, and typical results are presented.

Wang, E.Y.; Schmitz, L.; Ra, Y.; LaBombard, B.; Conn, R.W. (Institute of Plasma and Fusion Research, (USA) Department of Mechanical, Aerospace, and Nuclear Engineering, Los Angeles, CA (USA) University of California, Los Angeles, Los Angeles, CA (USA))

1990-08-01T23:59:59.000Z

239

E parallel B canted detector neutral-particle spectrometer  

DOE Green Energy (OSTI)

A multichannel, mass-discriminating, neutral-particle spectrometer using parallel E and B analyzer fields has been operational on the Doublet III tokamak. The device records 60 energy channels each of hydrogen and deuterium, simultaneously, during a shot with a dynamic range in energy of greater than 20. Its unique feature is a microchannel plate detector plane set at an angle to the exit face of the magnet. This angled detector plane linearizes the columns of each mass which simplifies the detector design, and permits the magnet gap to be very small. The narrow gap minimizes figure field effects on particle trajectories and simplifies power supply and cooling design. Details are given on the design, calibration, and instrumentation of the device, as well as on its operation and experimental results.

Armentrout, C.J.; Bramson, G.; Evanko, R.

1985-11-01T23:59:59.000Z

240

Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration  

SciTech Connect

In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Report on Second Activations with the Lead Slowing Down Spectrometer  

SciTech Connect

Summary On August 18 and 19 2011, five items were irradiated with neutrons using the Lead Slowing Down Spectrometer (LSDS). After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials. As during the first activation run, we observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation of the samples was short lived, with half-lives on the scale of hours to days, except for 60Co which has a half-life of 5.3 y.

Stave, Sean C.; Mace, Emily K.; Pratt, Sharon L.; Warren, Glen A.

2012-04-27T23:59:59.000Z

242

Dynamic multiplexed analysis method using ion mobility spectrometer  

DOE Patents (OSTI)

A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

Belov, Mikhail E [Richland, WA

2010-05-18T23:59:59.000Z

243

Ion mobility spectrometer using frequency-domain separation  

DOE Patents (OSTI)

An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

1998-08-04T23:59:59.000Z

244

Ion mobility spectrometer using frequency-domain separation  

DOE Patents (OSTI)

An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Schubert, W. Kent (Albuquerque, NM)

1998-01-01T23:59:59.000Z

245

Linear electronic field time-of-flight ion mass spectrometers  

DOE Patents (OSTI)

Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

Funsten, Herbert O. (Los Alamos, NM)

2010-08-24T23:59:59.000Z

246

Seven Channel Multi-collector Isotope Ratio Mass Spectrometer  

Science Conference Proceedings (OSTI)

A new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously has been designed, constructed and is in preliminary testing. The instrument utilizes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently (35 mm) to allow a full-sized discrete dynode pulse counting multiplier to be used for each beam. The ion dispersion lens is a two element electrostatic 90 degree sector device that causes the beam-to-beam dispersion to increase faster than the intra-beam dispersion. Each multiplier is contained in an isolated case with a deflector/condenser lens at the entrance. A 9-sample filament cartridge is mounted on a micro-manipulator two-axis stage that enables adjustment of the filament position with 10 micron resolution within the ion lens. Results of initial testing with actinides will be presented.

Anthony D. Appelhans

2008-07-01T23:59:59.000Z

247

Calibration of the Spectrometer aboard the INTEGRAL satellite  

E-Print Network (OSTI)

SPI, the Spectrometer on board the ESA INTEGRAL satellite, to be launched in October 2002, will study the gamma-ray sky in the 20 keV to 8 MeV energy band with a spectral resolution of 2 keV for photons of 1 MeV, thanks to its 19 germanium detectors spanning an active area of 500 cm2. A coded mask imaging technique provides a 2 deg angular resolution. The 16 deg field of view is defined by an active BGO veto shield, furthermore used for background rejection. In April 2001 the flight model of SPI underwent a one-month calibration campaign at CEA in Bruy\\`eres le Ch\\^atel using low intensity radioactive sources and the CEA accelerator for homogeneity measurements and high intensity radioactive sources for imaging performance measurements. After integration of all scientific payloads (the spectrometer SPI, the imager IBIS and the monitors JEM-X and OMC) on the INTEGRAL satellite, a cross-calibration campaign has been performed at the ESA center in Noordwijk. A set of sources has been placed in the field of view of the different instruments in order to compare their performances and determine their mutual influence. Some of those sources had already been used in Bruy\\`eres during the SPI standalone test. For the lowest energy band calibration an X-ray generator has been used. We report on the scientific goals of this calibration activity, and present the measurements performed as well as some preliminary results.

Stéphane Schanne; B. Cordier; M. Gros; D. Attié; P. v. Ballmoos; L. Bouchet; R. Carli; P. Connell; R. Diehl; P. Jean; J. Kiener; A. v. Kienlin; J. Knödlseder; P. Laurent; G. Lichti; P. Mandrou; J. Paul; P. Paul; J. -P. Roques; F. Sanchez; V. Schönfelder; C. Shrader; G. Skinner; A. Strong; S. Sturner; V. Tatischeff; B. Teegarden; G. Vedrenne; G. Weidenspointner; C. Wunderer

2003-10-28T23:59:59.000Z

248

CTAX: the US/Japan Cold Neutron Triple-Axis Spectromete at HFIR | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

CTAX-US/Japan Cold Neutron Triple-Axis Spectrometer CTAX-US/Japan Cold Neutron Triple-Axis Spectrometer CTAX US/Japan Cold Neutron Triple-Axis Spectrometer (CG-4C). (larger image) The U.S.-Japan Cold Neutron Triple-Axis Spectrometer (CTAX) is a conventional triple-axis spectrometer with variable incident energy and variable monochromator-sample and sample-analyzer distances. The cold guide 4 bender and guide hall shielding reduce background levels at CG-4C, and the 15-cm-tall guide profile is well exploited by CG-4C's vertically focusing monochromator (PG 002). To enhance accommodation of strong magnetic fields at the sample position and to simplify future polarization analysis, the amount of ferromagnetic material has been minimized in the construction of this instrument. CG-4C is a collaboration of Oak Ridge National Laboratory, the Neutron

249

A Baroclinic Laminar State for Rotating Stratified Flows  

Science Conference Proceedings (OSTI)

A baroclinic laminar model is developed as the late-time equilibrium state in the free decay of rotating stratified turbulence under low-Froude-number scaling. Vertical motions are suppressed by stratification and ambient rotation, and in the ...

Che Sun

2008-08-01T23:59:59.000Z

250

Centrifugally activated bearing for high-speed rotating machinery  

SciTech Connect

A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

Post, Richard F. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

251

Entrainment in Shallow Rotating Gravity Currents: A Modeling Study  

Science Conference Proceedings (OSTI)

The physics of shallow gravity currents passing through a rotating channel at subcritical Froude number is investigated here with a series of idealized numerical experiments. It is found that the combined effects of friction and rotation set up a ...

Lars Umlauf; Lars Arneborg; Richard Hofmeister; Hans Burchard

2010-08-01T23:59:59.000Z

252

Rotating Shocks in a Separated Laboratory Channel Flow  

Science Conference Proceedings (OSTI)

Laboratory studies of the effects of wall separation on a hydraulic jump in a rotating channel of rectangular cross section are described. Separation is induced by increasing the rotation rate while maintaining a constant flow rate through the ...

L. J. Pratt

1987-04-01T23:59:59.000Z

253

A Three-Dimensional Balance Theory for Rapidly Rotating Vortices  

Science Conference Proceedings (OSTI)

A three-dimensional balance formulation for rapidly rotating vortices, such as hurricanes, is presented. The asymmetric balance (AB) theory represents a new mathematical framework for studying the slow evolution of rapidly rotating fluid systems. ...

Lloyd J. Shapiro; Michael T. Montgomery

1993-10-01T23:59:59.000Z

254

BOUNDARY EFFECTS IN ROTATING-PLASMA EXPERIMENTS  

SciTech Connect

The problem of current continuity and viscous drag at the boundaries in rotating-plasma experiments is discussed. A hypothetical model having a steady state with axial symmetry is emphasized; it is shown that the discharge impedance derived from this model does not agree with many observations. The Homopolar III'' experiment is described in which the flux surfaces were strongly convex and parallel to the toroidal-shaped electrodes. In this way friction at the insulators was reduced. But the structure of the discharge deviated drastically from axial symmetry near the outer surface. Several studies led to the conclusion that the flow pattern probably involved secondary flows. A detailed analysis of this structure was not possible. It was also found that the rotational speed could not be raised above a few cm/ mu sec because the insulators failed in spite of the special design of the experiment. 28 references. (auth)

Kunkel, W.B.; Baker, W.R.; Bratenahl, A.; Halbach, K.

1962-08-01T23:59:59.000Z

255

A renormalization approach to irrational rotations  

E-Print Network (OSTI)

We introduce a renormalization procedure which allows us to study in a unified and concise way different properties of the irrational rotations on the unit circle $\\beta \\mapsto \\set{\\alpha+\\beta}$, $\\alpha \\in \\R\\setminus \\Q$. In particular we obtain sharp results for the diffusion of the walk on $\\Z$ generated by the location of points of the sequence $\\{n\\alpha +\\beta\\}$ on a binary partition of the unit interval. Finally we give some applications of our method.

Bonanno, Claudio

2007-01-01T23:59:59.000Z

256

Quantum Key Distribution Using Quantum Faraday Rotators  

E-Print Network (OSTI)

We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against eavesdropping for single-photon source on a noisy environment and robust against impersonation attacks. It also allows for unconditionally secure key distribution for multiphoton source up to two photons. The protocol could be implemented experimentally with the current spintronics technology on semiconductors.

Choi, T; Choi, Mahn-Soo; Choi, Taeseung

2006-01-01T23:59:59.000Z

257

Rotating sample holder at low temperature  

SciTech Connect

A low temperature rotary device (cryoturbine) for use in extended x-ray-absorption fine structure measurements in fluorescence mode has been designed and manufactured. The instrument works at a temperature close to liquid Nitrogen and can reach frequencies up to 100 Hz with good stability. The rotation speed is measured with a light-emitting diode driven in stroboscopic mode by a simple electronic circuit.

Pasternak, Sebastien; Perrin, Florian; Ciatto, Gianluca; Palancher, Herve; Steinmann, Ricardo [European Synchrotron Radiation Facility, 38043 Grenoble (France)

2007-07-15T23:59:59.000Z

258

A HIGH-RESOLUTION HIGH-LUMINOSITY BETA-RAY SPECTROMETER DESIGN EMPLOYING AZIMUTHALLY VARYING MAGNETIC FIELDS  

E-Print Network (OSTI)

BETA-RAY SPECTROMETER DESIGN EMPLOYING AZIMUTHALLY VARYING MAGNETIC FIELDSBETA-RAY SPECTROMETER DESIGN EMPLOYING AZIMUTHALLY VARYING MAGNETIC FIELDSfield of the present type. UCRL-16802 Introduction In attempting to find an efficient magnetic beta-

Bergkvist, Karl-Erik

2008-01-01T23:59:59.000Z

259

An Intercomparison of Two Tunable Diode Laser Spectrometers Used for Eddy Correlation Measurements of Methane Flux in a Prairie Wetland  

Science Conference Proceedings (OSTI)

An intercomparison was made between two tunable diode laser spectrometers used to measure methane fluxes by the eddy correlation technique at a prairie wetland site. The spectrometers were built by Unisearch Associates Inc. of Concord, Ontario, ...

D. P. Billesbach; Joon Kim; R. J. Clement; S. B. Verma; F. G. Ullman

1998-02-01T23:59:59.000Z

260

Spin-stabilized magnetic levitation without vertical axis of rotation  

DOE Patents (OSTI)

The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aaronson, Gene (Albuquerque, NM)

2009-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurement of turbulent wind velocities using a rotating boom apparatus  

DOE Green Energy (OSTI)

The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

Sandborn, V.A.; Connell, J.R.

1984-04-01T23:59:59.000Z

262

THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS  

Science Conference Proceedings (OSTI)

We present the results of a search for unusually rapidly rotating giant stars in a large sample of K giants ({approx}1300 stars) that had been spectroscopically monitored as potential targets for the Space Interferometry Mission's Astrometric Grid. The stars in this catalog are much fainter and typically more metal-poor than those of other catalogs of red giant star rotational velocities, but the spectra generally only have signal-to-noise ratio (S/N) of {approx}20-60, making the measurement of the widths of individual lines difficult. To compensate for this, we have developed a cross-correlation method to derive rotational velocities in moderate S/N echelle spectra to efficiently probe this sample for rapid rotator candidates. We have discovered 28 new red giant rapid rotators as well as one extreme rapid rotator with a vsin i of 86.4 km s{sup -1}. Rapid rotators comprise 2.2% of our sample, which is consistent with other surveys of brighter, more metal-rich K giant stars. Although we find that the temperature distribution of rapid rotators is similar to that of the slow rotators, this may not be the case with the distributions of surface gravity and metallicity. The rapid rotators show a slight overabundance of low-gravity stars and as a group are significantly more metal-poor than the slow rotators, which may indicate that the rotators are tidally locked binaries.

Carlberg, Joleen K.; Majewski, Steven R.; Patterson, Richard J. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM (United States); Smith, Verne V.; Cunha, Katia, E-mail: jkm9n@virginia.edu, E-mail: srm4n@virginia.edu, E-mail: ricky@virginia.edu, E-mail: dmbiz@apo.nmsu.edu, E-mail: vsmith@noao.edu, E-mail: cunha@noao.edu [NOAO, Tucson, AZ (United States)

2011-05-01T23:59:59.000Z

263

Rotational and Parabolic Surfaces in PSL2(R, ) and Applications  

E-Print Network (OSTI)

Rotational and Parabolic Surfaces in PSL2(R, ) and Applications By Carlos Espinoza Pe~nafiel 1 of either rotational isometries or parabolic isometries, immersed into the homogeneous manifold PSL2(R, ). Also, we give some applications. Keywords. Constant mean curvature. Rotational surfaces. Parabolic

Paris-Sud XI, Université de

264

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons carrying three units of angular momentum aligned with the rotational axis. The condensation represents a quantum phase transition. Discrete phonon energy and parity conservation generate oscillations of the rotational sequences with positive and negative parity. The phonon condensate co-rotates with quadrupole shape forming a rotating heart shape. The coupling between the quadrupole and octupole modes reaches a maximum in the $N\\approx 136$ isotones, approaching the limit of a static heart shape.

Frauendorf, S

2007-01-01T23:59:59.000Z

265

Dust-induced instability in a rotating plasma  

SciTech Connect

The effect of immobile dust on stability of a magnetized rotating plasma is analyzed. In the presence of dust, a term containing an electric field appears in the one-fluid equation of plasma motion. This electric field leads to an instability of the magnetized rotating plasma called the dust-induced rotational instability (DRI). The DRI is related to the charge imbalance between plasma ions and electrons introduced by the presence of charged dust. In contrast to the well-known magnetorotational instability requiring the decreasing radial profile of the plasma rotation frequency, the DRI can appear for an increasing rotation frequency profile.

Mikhailovskii, A. B.; Vladimirov, S. V.; Lominadze, J. G.; Tsypin, V. S.; Churikov, A. P.; Erokhin, N. N.; Galvao, R. M. O. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); School of Physics, University of Sydney, Sydney, N.S.W. 2006 (Australia); Kharadze Abastumani National Astrophysical Observatory, 2a, Kazbegi Ave., Tbilisi 0160 (Georgia); Brazilian Center for Physics Research, Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro (Brazil); Syzran Branch of Samara Technical University, 45, Sovetskaya Str., Syzran, Samara Region 446001 (Russian Federation); Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); Physics Institute, University of Sao Paulo, Cidade Universitaria, 05508-900, Sao Paulo, Brazil and Brazilian Center for Physics Research, Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro (Brazil)

2008-01-15T23:59:59.000Z

266

In-situ droplet monitoring for self-tuning spectrometers  

DOE Patents (OSTI)

A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

Montaser, Akbar (Potomac, MD); Jorabchi, Kaveh (Arlington, VA); Kahen, Kaveh (Kleinburg, CA)

2010-09-28T23:59:59.000Z

267

Lithium depletion and the rotational history of exoplanet host stars  

E-Print Network (OSTI)

Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We have developed rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a high degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that lithium-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.

Jerome Bouvier

2008-08-28T23:59:59.000Z

268

DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers  

DOE Patents (OSTI)

A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

Fan, Non Q. (San Diego, CA); Clarke, John (Berkeley, CA)

1993-01-01T23:59:59.000Z

269

DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers  

DOE Patents (OSTI)

A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

Fan, N.Q.; Clarke, J.

1993-10-19T23:59:59.000Z

270

Isorotation and differential rotation in a magnetic mirror with imposed E Multiplication-Sign B rotation  

SciTech Connect

Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.

Romero-Talamas, C. A.; Elton, R. C.; Young, W. C.; Reid, R.; Ellis, R. F. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2012-07-15T23:59:59.000Z

271

A charged rotating cylindrical shell 1  

E-Print Network (OSTI)

We give an example of a spacetime having an infinite thin rotating cylindrical shell constituted by a charged perfect fluid as a source. As the interior of the shell the Bonnor–Melvin universe is considered, while its exterior is represented by Datta– Raychaudhuri spacetime. We discuss the energy conditions and we show that our spacetime contains closed timelike curves. Trajectories of charged test particles both inside and outside the cylinder are also examined. Expression for the angular velocity of a circular motion inside the cylinder is given.

P. Klepá?; J. Horsk´y

2003-01-01T23:59:59.000Z

272

Rotating Einstein-Yang-Mills Black Holes  

E-Print Network (OSTI)

We construct rotating hairy black holes in SU(2) Einstein-Yang-Mills theory. These stationary axially symmetric black holes are asymptotically flat. They possess non-trivial non-Abelian gauge fields outside their regular event horizon, and they carry non-Abelian electric charge. In the limit of vanishing angular momentum, they emerge from the neutral static spherically symmetric Einstein-Yang-Mills black holes, labelled by the node number of the gauge field function. With increasing angular momentum and mass, the non-Abelian electric charge of the solutions increases, but remains finite. The asymptotic expansion for these black hole solutions includes non-integer powers of the radial variable.

B. Kleihaus; J. Kunz; F. Navarro-Lerida

2002-07-10T23:59:59.000Z

273

Two-component Bose gases under rotation  

SciTech Connect

We examine the formation of vortices in a one- and two-component gas of bosonic atoms in a harmonic trap that is set rotating. Both the mean-field Gross-Pitaevskii approach, and the numerical diagonalization method are employed. For a two-component Bose gas, we show that beside the well-known coreless vortices of single quantization, the interatomic interactions between the two species may lead to coreless vortices of multiple quantization. We furthermore comment on the geometries of the interlaced vortex patterns. In the limit of weak interactions, we finally demonstrate a number of exact results.

Bargi, S.; Kaerkkaeinen, K.; Christensson, J.; Reimann, S. M. [Mathematical Physics, LTH, Lund University, SE-22100 Lund (Sweden); Kavoulakis, G. M. [Department of Sciences, TEI of Crete, P.O. Box 1939 Heraklion, 71004 Greece (Greece); Manninen, M. [NanoScience Center, Department of Physics, FIN-40014 University of Jyvaeskylae (Finland)

2008-04-04T23:59:59.000Z

274

Manipulator for rotating and examining small spheres  

SciTech Connect

A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

Weinstein, Berthold W. (Livermore, CA); Willenborg, David L. (Livermore, CA)

1980-01-01T23:59:59.000Z

275

Upgrade of the PNNL TEPC and Multisphere Spectrometer  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) has used two types of instruments, the tissue equivalent proportional counter (TEPC) and the multisphere spectrometer for characterizing neutron radiation fields in support of neutron dosimetry at the Hanford site. The US Department of Energy recently issued new requirements for radiation protection standards in 10 CFR 835 which affect the way that neutron dose equivalent rates are evaluated. In response to the new requirements, PNNL has upgraded the analyses used in conjunction with the TEPC and multisphere. The analysis software for the TEPC was modified for this effort, and a new analysis code was selected for the multisphere. These new analysis techniques were implemented and tested with measurement data that had been collected in previous measurements. In order to test the effectiveness of the changes, measurements were taken in PNNL’s Low Scatter Room using 252Cf sources in both unmoderated and D2O-moderated configurations that generate well-characterized neutron fields. The instruments were also used at Los Alamos National Laboratory (LANL), in their Neutron Free-in-Air calibration room, also using neutron sources that generate well-characterized neutron fields. The results of the software modifications and the measurements are documented in this report. The TEPC measurements performed at PNNL agreed well with accepted dose equivalent rates using the traditional analysis, agreeing with the accepted value to within 13% for both unmoderated and moderated 252Cf sources. When the new analysis was applied to the TEPC measurement data, the results were high compared to the new accepted value. A similar pattern was seen for TEPC measurements at LANL. Using the traditional analysis method, results for all neutron sources showed good agreement with accepted values, nearly always less than 10%. For the new method of analysis, however, the TEPC responded with higher dose equivalent rates than accepted, by as much as 25%. The reason for the overresponse is that there is very little attenuation of the neutrons by tissue, so it cannot match the effect of attenuation by 1 cm of tissue called for in the new standards. This could be corrected with a modified instrument with a thicker wall, or by analytical means that would need to be developed. The multisphere spectrometer performed reasonably well both at PNNL and at LANL. It could produce a neutron spectrum that was similar to the accepted spectrum, and total flux values were usually within 15% of the accepted values. Dose equivalent rates were usually within 18% of the accepted values. The average energies, however, were usually lower than the accepted values. The performance of this instrument could be much better than seen in this study. If PNNL were to add some moderating spheres to its measurement set and calculate a new set of instrument response functions, performance could be improved. The multisphere could then be a more useful instrument for assessing the dose equivalent rate in the workplace.

Scherpelz, Robert I.; Conrady, Matthew M.

2008-09-10T23:59:59.000Z

276

Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties  

Science Conference Proceedings (OSTI)

An airborne scanning spectrometer was developed for measuring reflected solar and emitted thermal radiation in 50 narrowband channels between 0.55 and 14.2 µm. The instrument provides multispectral images of outgoing radiation for purposes of ...

Michael D. King; W. Paul Menzel; Patrick S. Grant; Jeffrey S. Myers; G. Thomas Arnold; Steven E. Platnick; Liam E. Gumley; Si-Chee Tsay; Christopher C. Moeller; Michael Fitzgerald; Kenneth S. Brown; Fred G. Osterwisch

1996-08-01T23:59:59.000Z

277

Chemical Reaction of Cobalt Clusters with Ethanol by Using FT-ICR Mass Spectrometer  

E-Print Network (OSTI)

Spectrometer Shuhei Inoue*3 and Shigeo Maruyama*4 *3 Dept. of Mech. Sys. Eng., Hiroshima Univ., 1-4-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima, 739-8527, Japan *4 Dept. of Mech. Eng., The Univ. of Tokyo, 7

Maruyama, Shigeo

278

Real-Time Detection of Performance Degradation of the Forward-scattering Spectrometer Probe  

Science Conference Proceedings (OSTI)

A method for detecting malfunctions during collection of data with the forward-scattering spectrometer probe (FSSP) is discussed. Droplet spectra measured with the probe are not sufficient to alert operators of probe failures, such as those ...

Jean-Louis Brenguier; A. R. Rodi; G. Gordon; P. Wechsler

1993-02-01T23:59:59.000Z

279

A Chemical Ionization Mass Spectrometer for Ground-Based Measurements of Nitric Acid  

Science Conference Proceedings (OSTI)

A chemical ionization mass spectrometer (CIMS) instrument has been developed for high-precision measurements of gaseous nitric acid (HNO3) specifically under high- and variable-humidity conditions in the boundary layer. The instrument’s ...

Kazuyuki Kita; Yu Morino; Yutaka Kondo; Yuichi Komazaki; Nobuyuki Takegawa; Yuzo Miyazaki; Jun Hirokawa; Shigeru Tanaka; Thomas L. Thompson; Ru-Shan Gao; David W. Fahey

2006-08-01T23:59:59.000Z

280

Effects of Coincidence on Measurements with a Forward Scattering Spectrometer Probe  

Science Conference Proceedings (OSTI)

A PMS Forward Scattering Spectrometer Probe (FSSP) may fail to detect a droplet that enters the illuminated volume in coincidence with another droplet, or such a coincident pair may be assigned an erroneous size. This effect is shown to distort ...

William A. Cooper

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Calibration of the Forward-scattering Spectrometer Probe: Modeling Scattering from a Multimode Laser Beam  

Science Conference Proceedings (OSTI)

Scattering calculations using a more detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out by using a recently developed extension to Mie scattering theory. From this model, new ...

Edward A. Hovenac; James A. Lock

1993-08-01T23:59:59.000Z

282

Testing and Performance of Two-Dimensional Optical Array Spectrometers with Greyscale  

Science Conference Proceedings (OSTI)

Two laboratory optical array spectrometers with greyscale were evaluated for their sizing, depth of field and timing performance; these three factors are necessary to calculate concentrations and liquid water contents. The probes were of 10 and ...

Paul Joe; Roland List

1987-03-01T23:59:59.000Z

283

Superconducting gamma and fast-neutron spectrometers with high energy resolution  

DOE Patents (OSTI)

Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

Friedrich, Stephan (San Jose, CA); , Niedermayr, Thomas R. (Oakland, CA); Labov, Simon E. (Berkeley, CA)

2008-11-04T23:59:59.000Z

284

Testing and Final Construction of the Superconducting Magnet for the Alpha Magnetic Spectrometer  

E-Print Network (OSTI)

The Alpha Magnetic Spectrometer (AMS) is a particle physics experiment based on the International Space Station (ISS). At the heart of the detector is a large superconducting magnet, cooled to a temperature of 1.8 K by ...

Harrison, Stephen

285

Theoretical Simulation and Experimental Characterization of an Expansion-Type Kelvin Spectrometer with Intrinsic Calibration  

Science Conference Proceedings (OSTI)

An expansion-type Kelvin spectrometer has been designed and its performance has been shown to agree with the theoretical simulation within experimental uncertainty. In the intrinsically calibrated mode, number concentration as well as ...

W. Holländer; W. Dunkhorst; H. Lödding; H. Windt

2002-11-01T23:59:59.000Z

286

Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time Response and Laser Inhomogeneity Limitations  

Science Conference Proceedings (OSTI)

The electronic response time of the Forward Scattering Spectrometer Probe (FSSP) has been evaluated and is shown to affect the measurement of droplet size. The size of droplets are underestimated when airspeeds exceed 50 m s?1 and size ...

Darrel Baumgardner; Michael Spowart

1990-10-01T23:59:59.000Z

287

Advances in field-portable mass spectrometers for on-site analytics  

Science Conference Proceedings (OSTI)

Learn how the combination of ambient ionization with portable mass spectroscopy can speed chemical analysis by streamlining sample preparation and throughput requirements. Advances in field-portable mass spectrometers for on-site analytics inform M

288

Redundant CORDIC Rotator Based on Parallel Prediction  

E-Print Network (OSTI)

In this work we present a Cordic rotator, using carry--save arithmetic, based on the prediction of all the coefficients into which the rotation angle is decomposed. The prediction algorithm is based on the use of radix--2 microrotations with multiple shifts in the first iterations and the use of a redundant radix--2 and radix--4 representation for the coefficients in the rest of the microrotations. The use of multiple shifts facilitates the prediction of the coefficients in the case of microrotations where i n=4, being n the precision of the algorithm, and the use of radix--4 microrotations helps to reduce the total number of iterations. The prediction is carried out using the redundant representation of the z coordinate, without any need for conversions to a non--redundant representation. Finally, we present a VLSI architecture based on this algorithm. As the production of the coefficients is very fast, and they are known before starting each microrotation, the resulting architecture...

E. Antelo; J.D. Bruguera; J. Villalba; E.L. Zapata; Elisardo Antelo; Javier D. Bruguera Julio Villalba; Emilio L. Zapata

1995-01-01T23:59:59.000Z

289

Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows  

SciTech Connect

Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.

Lim, Chjan [RPI

2013-12-18T23:59:59.000Z

290

Atomic data for the ITER Core Imaging X-ray Spectrometer  

SciTech Connect

The parameters of the ITER core plasmas will be measured using the Core Imaging X-ray Spectrometer (CIXS), a high-resolution crystal spectrometer focusing on the L-shell spectra of highly ionized tungsten atoms. In order to correctly infer the plasma properties accurate atomic data are required. Here, some aspects of the underlying physics are discussed using experimental data and theoretical predictions from modeling.

Clementson, J; Beiersdorfer, P; Biedermann, C; Bitter, M; Delgado-Aparicio, L F; Graf, A; Gu, M F; Hill, K W; Barnsley, R

2012-06-15T23:59:59.000Z

291

Testing of an Echelle Spectrometer as a LIBS Detector at Sandia  

Science Conference Proceedings (OSTI)

Some useful information has been obtained regarding the potential use of the echelle spectrometer system for Laser-Induced Breakdown Spectroscopy (LIBS) monitoring applications, despite the AOTF-computer operational problems during the Sandia site-test. Currently, the use of the echelle spectrometer with the LIBS system is not suitable for trace-level analyte detection. This is due, in part, to the lower light throughput of the echelle spectrometer system compared to the SpectraPro-275. The low duty cycle of the LIBS system, which results from the use of a low-repetition-rate (but low-cost and portable) laser, also limits the detection sensitivity achievable using a high-resolution spectrometer. At high analyte concentrations, the echelle spectrometer is able to resolve spectral interferences including the Cd-As line pair at 228.8-nm and other LIBS emission features not resolved using the SpectraPro-275. A definite positive result obtained is the determination that at the high resolution of the echelle spectrometer, time-gating of the CCD detector is not necessary to discriminate analyte spectral signals from the LIBS background emission. The cost of the gated CCD and associated electronics is a significant portion of the cost of the Sandia LIBS system. Incorporation of a low-cost version of the echelle spectrometer for process monitoring applications not requiring trace-level detection could make LIBS a more viable technique where cost is a limiting factor. We hope to have the opportunity to perform additional collaborative work using the AOTF-echelle spectrometer for on-line LIBS monitoring applications, in order to demonstrate the advantage of rapid line-switching (using the AOTF) and simultaneous detection of multiple emission features across the spectral range of the echelle.

David P. Baldwin; Daniel S. Zamzow; David K. Ottesen; Howard A. Johnsen

2001-04-25T23:59:59.000Z

292

Electron Positron Proton Spectrometer for use at Laboratory for Laser Energetics  

Science Conference Proceedings (OSTI)

The Electron Positron Proton Spectrometer (EPPS) is mounted in a TIM (Ten-Inch Manipulator) system on the Omega-60 or Omega-EP laser facilities at the University of Rochester, Laboratory for Laser Energetics (LLE), when in use, see Fig. 1. The Spectrometer assembly, shown in Fig. 2, is constructed of a steel box containing magnets, surrounded by Lead 6% Antimony shielding with SS threaded insert, sitting on an Aluminum 6061-T6 plate.

Ayers, S L

2010-04-07T23:59:59.000Z

293

President's Management Council Interagency Rotation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President's Management Council Interagency Rotation Program President's Management Council Interagency Rotation Program President's Management Council Interagency Rotation Program To maximize effectiveness and broaden perspectives and potential, Federal agencies should invest in and emphasize career development. The Federal Government must continue to prepare its talent for challenges on the horizon. In 2011, the President's Management Council (PMC) and the Chief Human Capital Officers Council (CHCO) launched the PMC Interagency Rotation Program to bolster cross-agency exposure for high-potential GS 13-15s. Agency representatives designed the program and provide both participants and rotational opportunities. The PMC Interagency Rotation Program strengthens agency collaboration, facilitates best practice sharing across Departments, and builds a pipeline

294

Rotational actuator of motor based on carbon nanotubes  

DOE Patents (OSTI)

A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

Zettl, Alexander K. (Kensington, CA); Fennimore, Adam M. (Berkeley, CA); Yuzvinsky, Thomas D. (Berkeley, CA)

2008-11-18T23:59:59.000Z

295

ROTATION MEASURE SYNTHESIS OF GALACTIC POLARIZED EMISSION WITH THE DRAO 26-m TELESCOPE  

SciTech Connect

Radio polarimetry at decimeter wavelengths is the principal source of information on the Galactic magnetic field. The diffuse polarized emission is strongly influenced by Faraday rotation in the magneto-ionic medium and rotation measure (RM) is the prime quantity of interest, implying that all Stokes parameters must be measured over wide frequency bands with many frequency channels. The Dominion Radio Astrophysical Observatory (DRAO) 26 m Telescope has been equipped with a wide-band feed, a polarization transducer to deliver both hands of circular polarization, and a receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between 40 and 30 arcmin. A digital Field-Programmable Gate Array spectrometer, based on commercially available components, produces all Stokes parameters in 2048 frequency channels over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier Transform is applied to each data stream. Stokes parameters are then generated in each frequency channel. This instrument is in use at DRAO for a Northern sky polarization survey. Observations consist of scans up and down the Meridian at a drive rate of {approx}0.{sup 0}9 per minute to give complete coverage of the sky between declinations -30 deg. and 90 deg. This paper presents a complete description of the receiver and data acquisition system. Only a small fraction of the frequency band of operation is allocated for radio astronomy, and about 20% of the data are lost to interference. The first 8% of data from the survey are used for a proof-of-concept study, which has led to the first application of RM-Synthesis to the diffuse Galactic emission obtained with a single-antenna telescope. We find RM values for the diffuse emission as high as {approx}{+-}100 rad m{sup -2}, much higher than recorded in earlier work.

Wolleben, M.; Landecker, T. L.; Hovey, G. J.; Messing, R.; Davison, O. S.; House, N. L.; Somaratne, K. H. M. S.; Tashev, I. [National Research Council of Canada, Herzberg Institute of Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, British Columbia V2A 6J9 (Canada)], E-mail: maik.wolleben@nrc.gc.ca

2010-04-15T23:59:59.000Z

296

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

297

Neoclassical diffusion of heavy impurities in a rotating tokamak plasma  

SciTech Connect

Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle simulation is carried out and the results offer a qualitative explanation for some experimental data from the Tokamak Test Reactor (TFTR). 13 refs., 2 figs.

Wong, K.L.; Cheng, C.Z.

1987-08-01T23:59:59.000Z

298

Alpha Channeling in Rotating Plasma with Stationary Waves  

SciTech Connect

An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

299

Sphere Lower Bound for Rotated Lattice Constellations in Fading Channels  

E-Print Network (OSTI)

We study the error probability performance of rotated lattice constellations in frequency-flat Nakagami-$m$ block-fading channels. In particular, we use the sphere lower bound on the underlying infinite lattice as a performance benchmark. We show that the sphere lower bound has full diversity. We observe that optimally rotated lattices with largest known minimum product distance perform very close to the lower bound, while the ensemble of random rotations is shown to lack diversity and perform far from it.

Fabregas, Albert Guillen i

2007-01-01T23:59:59.000Z

300

Forming rotated SAR images by real-time motion compensation.  

SciTech Connect

Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

Doerry, Armin Walter

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NBS Monograph 115: 2. Symmetry prop. rotational energy ...  

Science Conference Proceedings (OSTI)

... The rotational energy levels of homonuclear diatomic ... in the usual group theory tables [6] (pp. ... symmetry operations on nuclear displacement vectors ...

302

Radial Segregation of Granular Materials in Rotating Cylinders  

Science Conference Proceedings (OSTI)

... tablet manufacturing to cement production to rock cutting transportation with drilling fluids. Rotating cylinders are used as kilns, mixers, dryers and granulators .

303

Electromagnetic Analysis of Rotating Permanent Magnet Exciters for Hydroelectric Generators.  

E-Print Network (OSTI)

??The purpose of this project is to analyse different design possibilities for a rotating permanent magnet exciter for a hydroelectric generator. This is done through… (more)

Nöland, Jonas

2013-01-01T23:59:59.000Z

304

An Unexpected Connection Between Rotation Reversal and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

rotation can have a strong beneficial effect on plasma transport and stability, but in a fusion reactor, unlike most current experiments, there will be little or no external...

305

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

306

Educational Assessment of Medical Student Rotation in Emergency Ultrasound  

E-Print Network (OSTI)

Bedside echocardiography by emergency physicians. Ann Emergno . 3 : August 2007 Western Journal of Emergency MedicineStudent Rotation in Emergency Ultrasound J. Christian Fox,

2007-01-01T23:59:59.000Z

307

Rotating heat pipe for air-conditioning  

SciTech Connect

A unique rotary hermetic heat pipe is disclosed for transferring heat from an external source to an external heat sink. The heat pipe has a tapered condensing surface which is curved preferably to provide uniform pumping acceleration, the heat pipe being rotated at a velocity such that the component of centrifugal acceleration in an axial direction parallel to the tapered surface is greater than lG and so that the condensing surface is kept relatively free of liquid at any attitude. The heat pipe may be incorporated in an air conditioning apparatus so that it projects through a small wall opening. In the preferred air conditioning apparatus, a hollow hermetic air impeller is provided which contains a liquefied gaseous refrigerant, such as freon, and means are provided for compressing the refrigerant in the evaporator region of the heat pipe.

Gray, V.H.

1976-12-28T23:59:59.000Z

308

Energy usage of rotating biological contractor facilities  

SciTech Connect

A recent US Environmental Protection Agency field study investigated the energy requirements for rotating biological contactor (RBC) units. The energy measurements for mechanically driven units varied considerably, but the overall average of 2.03 kW/shaft was very close to current manufacturer estimates. The power factor of most of the mechanically driven units was very low, and most installations could benefit from power factor correction. The energy requirements of air driven units also were highly variable and must be evaluated on an individual plant basis. The results of this study provide factual data on energy usage of RBC units, as well as a basis for developing design and operational considerations to reduce energy usage and maximize operational flexibility and plant performance. 9 references, 7 tables.

Gilbert, W.G.; Wheeler, J.F.; MacGregor, A.

1986-01-01T23:59:59.000Z

309

The influence of cracks in rotating shafts  

E-Print Network (OSTI)

In this paper, the influence of transverse cracks in a rotating shaft is analysed. The paper addresses the two distinct issues of the changes in modal properties and the influence of crack breathing on dynamic response during operation. Moreover, the evolution of the orbit of a cracked rotor near half of the first resonance frequency is investigated. The results provide a possible basis for an on-line monitoring system. In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by using the alternate frequency/time domain approach. It is shown that this method evaluates the nonlinear behaviour of the rotor system rapidly and efficiently by modelling the breathing crack with a truncated Fourier series. The dynamic response obtained by applying this method is compared with that evaluated through numerical integration. The resulting orbit during transient operation is presented and some distinguishing features of a cracked rotor are examined.

Jean-Jacques Sinou; A. W. Lees

2008-01-19T23:59:59.000Z

310

Short Rotation Crops in the United States  

DOE Green Energy (OSTI)

responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy?s Bioenergy Feedstock Development Program are described in an appendix to the paper.

Wright, L.L.

1998-06-04T23:59:59.000Z

311

Bunch Profiling Using a Rotating Mask  

Science Conference Proceedings (OSTI)

The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

Miller, Mitchell; /SLAC /IIT, Chicago

2012-08-24T23:59:59.000Z

312

On a problem in the Stability Discussion of Rotating black  

E-Print Network (OSTI)

On a problem in the Stability Discussion of Rotating black holes Irina Craciun Research Student metric · Kerr metric #12;Kerr black holes · A more complex solution to EFE, discovered by Roy Kerr in 1963, the Kerr metric describes the geometry of spacetime around a rotating massive body · Kerr black

Allen, Gabrielle

313

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

314

A preconditioned method for rotating flows at arbitrary mach number  

Science Conference Proceedings (OSTI)

An improved preconditioning is proposed for viscous flow computations in rotating and nonrotating frames at arbitrary Mach numbers. The key to the current method is the use of both free stream Mach number and rotating Mach number to construct a preconditioning ...

Chunhua Sheng

2011-01-01T23:59:59.000Z

315

Magnetic and antimagnetic rotation in covariant density functional theory  

Science Conference Proceedings (OSTI)

Progress on microscopic and self-consistent description of the magnetic rotation and antimagnetic rotation phenomena in tilted axis cranking relativistic mean-field theory based on a point-coupling interaction are briefly reviewed. In particular, the microscopic pictures of the shears mechanism in {sup 60}Ni and the two shears-like mechanism in {sup 105}Cd are discussed.

Zhao, P. W.; Liang, H. Z.; Peng, J.; Ring, P.; Zhang, S. Q.; Meng, J. [State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China) and Physik Department, Technische Universitat Muenchen, D-85747 Garching (Germany); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China); State Key Lab Nucl. Phys. and Tech., School of Physics, Peking University, Beijing 100871 (China) and Department of Physics, University of Stellenbosch, Stellenbosch (South Africa)

2012-10-20T23:59:59.000Z

316

Fuzzy-wavelet based prediction of Earth rotation parameters  

Science Conference Proceedings (OSTI)

Prediction of Earth rotation parameters (ERPs) is of importance especially for near real-time applications including navigation, remote sensing, and hazard monitoring. Therefore, prediction of ERPs at least over a few days in the future is necessary. ... Keywords: Earth rotation, Fuzzy-inference systems, Prediction, Wavelet transform

O. Akyilmaz; H. Kutterer; C. K. Shum; T. Ayan

2011-01-01T23:59:59.000Z

317

Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling*  

E-Print Network (OSTI)

Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling* Institut für Angewandte. The condensate was set into such a fast rotation that the centrifugal force in the corotating frame potential becomes sombrero shaped. We present an analysis for an ideal Bose gas that is confined

Pelster, Axel

318

Neutron response of the LAMBDA spectrometer and neutron interaction length in BaF2  

E-Print Network (OSTI)

We report on the neutron response of the LAMBDA spectrometer developed earlier for high-energy gamma-ray measurement. The energy dependent neutron detection efficiency of the spectrometer has been measured using the time-of-flight (TOF) technique and compared with that of an organic liquid scintillator based neutron detector (BC501A). The extracted efficiencies have also been compared with those obtained from Monte Carlo GEANT4 simulation. We have also measured the average interaction length of neutrons in the BaF2 crystal in a separate experiment, in order to determine the TOF energy resolution. Finally, the LAMBDA spectrometer has been tested in an in-beam-experiment by measuring neutron energy spectra in the 4He + 93Nb reaction to extract nuclear level density parameters. Nuclear level density parameters obtained by the LAMBDA spectrometer were found to be consistent with those obtained by the BC501A neutron detector, indicating that the spectrometer can be efficiently used as a neutron detector to measure the nuclear level density parameter.

Balaram Dey; Debasish Mondal; Deepak Pandit; S. Mukhopadhyay; Surajit Pal; K. Banerjee; Srijit Bhattacharya; A. De; S. R. Banerjee

2013-06-17T23:59:59.000Z

319

Film cooling effectiveness measurements on rotating and non-rotating turbine components  

E-Print Network (OSTI)

Detailed film cooling effectiveness distributions were measured on the stationary blade tip and on the leading edge region of a rotating blade using a Pressure Sensitive Paint technique. Air and nitrogen gas were used as the film cooling gases and the oxygen concentration distribution for each case was measured. The film cooling effectiveness information was obtained from the difference of the oxygen concentration between air and nitrogen gas cases by applying the mass transfer analogy. In the case of the stationary blade tip, plane tip and squealer tip blades were used while the film cooling holes were located (a) along the camber line on the tip or (b) along the span of the pressure side. The average blowing ratio of the cooling gas was controlled to be 0.5, 1.0, and 2.0. Tests were conducted in a five-bladed linear cascade with a blow down facility. The free stream Reynolds number, based on the axial chord length and the exit velocity, was 1,100,000 and the inlet and the exit Mach number were 0.25 and 0.59, respectively. Turbulence intensity level at the cascade inlet was 9.7%. All measurements were made at three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span. Results show that the locations of the film cooling holes and the presence of squealer have significant effects on surface static pressure and film-cooling effectiveness. Same technique was applied to the rotating turbine blade leading edge region. Tests were conducted on the first stage rotor of a 3-stage axial turbine. The Reynolds number based on the axial chord length and the exit velocity was 200,000 and the total to exit pressure ratio was 1.12 for the first rotor. The effects of the rotational speed and the blowing ratio were studied. The rotational speed was controlled to be 2400, 2550, and 3000 rpm and the blowing ratio was 0.5, 1.0, and 2.0. Two different film cooling hole geometries were used; 2-row and 3-row film cooling holes. Results show that the rotational speed changes the directions of the coolant flows. Blowing ratio also changes the distributions of the coolant flows. The results of this study will be helpful in understanding the physical phenomena regarding the film injection and designing more efficient turbine blades.

Ahn, Jaeyong

2005-12-01T23:59:59.000Z

320

1  

NLE Websites -- All DOE Office Websites (Extended Search)

The Multi-Filter Rotating Shadowband Radiometer - The Multi-Filter Rotating Shadowband Radiometer - A Look Ahead G. Hodges Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado Introduction The multi-filter rotating shadowband radiometer (MFRSR) is one of the Atmospheric Radiation Measurement (ARM) Program's original instruments. As atmospheric research has advanced, the ways in which the MFRSR has been used have increased, along with an ever advancing desire from the scientific community for well calibrated measurements. As the ARM Program has matured, however, the upkeep of the MFRSR network and the refinement of its calibration procedures have not kept up as one would hope to accommodate the modern requirements of climate researchers. This has led to the

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Filter Rotating Shadowband Radiometers Mentor Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status G. Hodges Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado Overview Currently 24 multi-filter rotating shadowband radiometers (MFRSRs) operate within the Atmospheric Radiation Measurement (ARM) Program. Eighteen MFRSRs are located at Southern Great Plains (SGP) site, one is located at each of the North Slope of Alaska (NSA) and Tropical Western Pacific (TWP) sites, and one is part of the instrumentation of the ARM Mobile Facility. The SGP site, that has four extended facilities that are equipped for an MFRSR but do not have one due to instrument failure or a lack of spare instruments. Table 1 lists all the sites supporting MFRSRs along with the instrument

322

Orbit effects on impurity transport in a rotating tokamak plasma  

SciTech Connect

Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs.

Wong, K.L.; Cheng, C.Z.

1988-05-01T23:59:59.000Z

323

Gravity-induced resonances in a rotating trap  

E-Print Network (OSTI)

It is shown that in an anisotropic harmonic trap that rotates with the properly chosen rotation rate, the force of gravity leads to a resonant behavior. Full analysis of the dynamics in an anisotropic, rotating trap in 3D is presented and several regions of stability are identified. On resonance, the oscillation amplitude of a single particle, or of the center of mass of a many-particle system (for example, BEC), grows linearly with time and all particles are expelled from the trap. The resonances can only occur when the rotation axis is tilted away from the vertical position. The positions of the resonances (there are always two of them) do not depend on the mass but only on the characteristic frequencies of the trap and on the direction of the angular velocity of rotation.

Iwo Bialynicki-Birula; Tomasz Sowinski

2004-12-01T23:59:59.000Z

324

Rotational dynamics of cargos at pauses during axonal transport  

SciTech Connect

Direct visualization of axonal transport in live neurons is essential for our understanding of the neuronal functions and the working mechanisms of microtubule-based motor proteins. Here we use the high-speed single particle orientation and rotational tracking technique to directly visualize the rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport, with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause.

Gu, Yan; Sun, Wei; Wang, Gufeng; Jeftinija, Ksenija; Jeftinija, Srdija; Fang, Ning

2012-08-28T23:59:59.000Z

325

Molecular heat pump for rotational states  

E-Print Network (OSTI)

In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems.

C. Lazarou; M. Keller; B. M. Garraway

2010-01-25T23:59:59.000Z

326

Short Rotation Woody Crops Program: Project summaries  

DOE Green Energy (OSTI)

This document is a compilation of summaries describing research efforts in the US Department of Energy's Short Rotation Woody Crops Program (SRWCP). The SRWCP is sponsored by DOE's Biofuels and Municipal Waste Technology Division and is field-managed at Oak Ridge National Laboratory. The SRWCP is an integrated basic research program with 18 field research projects throughout the United States. The overall objective of the program is to improve the productivity and increase the cost efficiency of growing and harvesting woody trees and shrubs. In a competitive technical review, 25 projects were chosen to form a new research program. Although some of the original projects have ended and new ones have begun, many of the long-term research projects still form the core of the SRWCP. This document contains individual summaries of each of the 18 research projects in the SRWCP from October 1985 to October 1986. Each summary provides the following information: name and address of the contracting institution, principal investigator, project title, current subcontract or grant number, period of performance, and annual funding through fiscal year 1986. In addition, each summary contains a brief description of the project rationale, objective, approach, status, and future efforts. A list of publications that have resulted from DOE-sponsored research follows many of the summaries.

Not Available

1986-11-01T23:59:59.000Z

327

NSE: the Neutron Spin Echo Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Spin Echo Spectrometer at SNS Spin Echo Spectrometer at SNS NSE NSE is funded and operated by the Jülich Centre for Neutron Science. The SNS NSE instrument provides ultrahigh resolution spectroscopy with a Fourier time range that covers τ = 1 ps to a nominal 350 ns with a high effective neutron flux, aiming to be the best of its class in both resolution and dynamic range (please refer to the instrument fact sheet for a detailed current status). Researchers use this instrument to investigate soft condensed matter and complex fluids applications in a variety of fields. The planned optional ferromagnetic and intensity-modulated modes will allow for detailed investigation of magnetic samples and phenomena. The design of the NSE spectrometer takes full advantage of recent progress in neutron optics and polarizing supermirror microbenders,1,2 resulting in

328

CNCS: the Cold Neutron Chopper Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold Neutron Chopper Spectrometer at SNS Cold Neutron Chopper Spectrometer at SNS CNCS detector array Interior of the CNCS detector array. CNCS is a high-resolution, direct-geometry, multi-chopper inelastic spectrometer designed to provide flexibility in the choice of energy resolution and to perform best at low incident energies (2 to 50 meV). Although the detector coverage around the sample is 1.7 sr, a later upgrade to 3 sr is possible. Experiments at CNCS typically use energy resolutions between 10 and 500 µeV. A broad variety of scientific problems, ranging from complex and quantum fluids to magnetism and chemical spectroscopy, are being addressed through experiments at CNCS. Applications Schematic of CNCS (larger image). Complex fluids: dilute protein solutions, biological gels, selective

329

The Wide Angular-Range Chopper Spectrometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

The Wide Angular-Range Chopper Spectrometer at SNS The Wide Angular-Range Chopper Spectrometer at SNS and Doug Abernathy at ARCS Materials researcher Judy Pang and instrument scientist Doug Abernathy at ARCS. ARCS is optimized to provide a high neutron flux at the sample and a large solid angle of detector coverage. This spectrometer is capable of selecting incident energies over the full energy spectrum of neutrons, making it useful for studies of excitations from a few to several hundred milli-electron volts. An elliptically shaped supermirror guide in the incident flight path boosts the performance at the lower end of this range. The sample and detector vacuum chambers provide a window-free final flight path and incorporate a large gate valve to allow rapid sample changeout. A T0 neutron chopper not only blocks the prompt radiation from the source

330

Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field  

SciTech Connect

Temperature and nonlinearity effects are two important factors that limit the use of photodiode array spectrometers. Usually the spectrometer is calibrated at a known temperature against a reference source of a particular spectral radiance, and then it is used at different temperatures to measure sources of different spectral radiances. These factors are expected to be problematic for nontemperature-stabilized instruments used for in-the-field experiments, where the radiant power of the site changes continuously with the sun tilt. This paper describes the effect of ambient temperature on a nontemperature-stabilized linear photodiode array spectrometer over the temperature range from 5 deg. C to 40 deg. C. The nonlinearity effects on both signal amplification and different levels of radiant power have also been studied and are presented in this paper.

Salim, Saber G. R.; Fox, Nigel P.; Theocharous, Evangelos; Sun, Tong; Grattan, Kenneth T. V.

2011-02-20T23:59:59.000Z

331

Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source  

SciTech Connect

We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.

Bakeman, M. S. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tilborg, J. van; Sokollik, T.; Baum, D.; Ybarrolaza, N.; Duarte, R.; Toth, C.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-10-15T23:59:59.000Z

332

High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region  

DOE Green Energy (OSTI)

A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.

Beiersdorfer, P; Brown, G V; Goddard, R; Wargelin, B J

2004-02-20T23:59:59.000Z

333

Novel rotating field probe for inspection of tubes  

SciTech Connect

Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S. [Nondestructive Evaluation Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824 (United States)

2012-05-17T23:59:59.000Z

334

The empirical Earth rotation model from VLBI observations  

E-Print Network (OSTI)

AIMS: An alternative to the traditional method for modeling kinematics of the Earth's rotation is proposed. The purpose of developing the new approach is to provide a self-consistent and simple description of the Earth's rotation in a way that can be estimated directly from observations without using intermediate quantities. METHODS: Instead of estimating the time series of pole coordinates, the UT1--TAI angles, their rates, and the daily offsets of nutation, it is proposed to estimate coefficients of the expansion of a small perturbational rotation vector into basis functions. The resulting transformation from the terrestrial coordinate system to the celestial coordinate system is formulated as a product of an a priori matrix of a finite rotation and an empirical vector of a residual perturbational rotation. In the framework of this approach, the specific choice of the a priori matrix is irrelevant, provided the angles of the residual rotation are small enough to neglect their squares. The coefficients of the expansion into the B-spline and Fourier bases, together with estimates of other nuisance parameters, are evaluated directly from observations of time delay or time range in a single least square solution. RESULTS: This approach was successfully implemented in a computer program for processing VLBI observations. The dataset from 1984 through 2006 was analyzed. The new procedure adequately represents the Earth's rotation, including slowly varying changes in UT1--TAI and polar motion, the forced nutations, the free core nutation, and the high frequency variations of polar motion and UT1.

L. Petrov

2006-11-26T23:59:59.000Z

335

Activity-rotation relations for lower main-sequence stars  

Science Conference Proceedings (OSTI)

It has been known for some time that stellar rotation and activity are related, both for chromospheric activity (e.g., Noyes et al. 1984) and coronal activity (e.g., Pallavicini et al. 1981; Maggio et al. 1987). Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun, activity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity we may expect to see. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. This thesis examines the relationship between activity (both chromospheric and coronal) and rotation in order to better define and express such a relation (or relations).

Dobson-Hockey, A.K.

1987-01-01T23:59:59.000Z

336

Short Rotation Crops in the United States  

SciTech Connect

The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy?s Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy?s Bioenergy Feedstock Development Program are described in an appendix to the paper.

Wright, L.L.

1998-06-04T23:59:59.000Z

337

Transformation of quantum states using uniformly controlled rotations  

E-Print Network (OSTI)

We consider a unitary transformation which maps any given state of an $n$-qubit quantum register into another one. This transformation has applications in the initialization of a quantum computer, and also in some quantum algorithms. Employing uniformly controlled rotations, we present a quantum circuit of $2^{n+2}-4n-4$ CNOT gates and $2^{n+2}-5$ one-qubit elementary rotations that effects the state transformation. The complexity of the circuit is noticeably lower than the previously published results. Moreover, we present an analytic expression for the rotation angles needed for the transformation.

Mikko Mottonen; Juha J. Vartiainen; Ville Bergholm; Martti M. Salomaa

2004-07-01T23:59:59.000Z

338

Simulations of Jets Driven by Black Hole Rotation  

E-Print Network (OSTI)

The origin of jets emitted from black holes is not well understood, however there are two possible energy sources, the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.

Vladimir Semenov; Sergey Dyadechkin; Brian Punsly

2004-08-20T23:59:59.000Z

339

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network (OSTI)

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

340

Dynamics of lettuce drop incidence and Sclerotinia minor inoculum under varied crop rotations  

E-Print Network (OSTI)

Koike, S. T. 1998. Effects of crop rotation and irrigationImplications for yield and crop rotation. Asp. Appl. Biol.minor Inoculum Under Varied Crop Rotations J. J. Hao and K.

Hao, J J; Subbarao, K V

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impact of tillage and crop rotation on aggregate-associated carbon in two oxisols  

E-Print Network (OSTI)

Oades. 1980. The effect of crop rotation on aggregation in aand J.H. Long. 1990. Crop rotation and tillage effects onImpact of Tillage and Crop Rotation on Aggregate-Associated

2005-01-01T23:59:59.000Z

342

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Microphysical and Optical Properties from Microphysical and Optical Properties from Multifilter Rotating Shadowband Radiometers E. Kassianov, J. Barnard, T. Ackerman, C. Flynn, and D. Flynn Pacific Northwest National Laboratory Richland, Washington Introduction Multifilter rotating shadowband radiometers (MFRSRs) provide measurements of the total and diffuse solar irradiances at six wavelengths (415, 500, 615, 673, 870 and 940 nm). Direct solar irradiances are inferred by finding the difference between the two measured irradiances, and the direct irradiances are used to derive spectral values of the aerosol optical depth (AOD; Harrison and Michalsky 1994; Alexandrov et al. 2002). Single-scattering albedos (SSAs) can be obtained from diffuse irradiances (Petters et al. 2003).

343

DISCLAIMER  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook With subsections for the following derivative instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR) GB Hodges JJ Michalsky January 2011 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research GB Hodges and JJ Michalsky, January 2011, DOE/SC-ARM/TR-059 iii Acronyms and Abbreviations AMF ARM Mobile Facility ARM Atmospheric Radiation Measurement EMF electromagnetic field ESRL Earth System Research Laboratory FOV field-of-view GMD Global Monitoring Division IMMS Instrument Mentor Monthly Summary MFR multifilter radiometer MFRSR multifilter rotating shadowband radiometer

344

Chemical Ionization Mass Spectrometer (CIMS) Shanhu Lee, Kent State University (http://www.personal.kent.edu/~slee19/)  

E-Print Network (OSTI)

Chemical Ionization Mass Spectrometer (CIMS) Shanhu Lee, Kent State University (http ionization mass spectrometry (PTR-CIMS). A typical CIMS instrument can be constructed from an ion source, an ion molecular reactor, and a quadrupole mass spectrometer. Shown below is schematic diagram of a CIMS

Lee, Shan-Hu

345

A High-Speed FPGA-Based Lossless Data Compression Design for the X-ray Spectrometer Solar Energy Spectra  

Science Conference Proceedings (OSTI)

In order to meet the real-time compression requirements effectively for the solar energy spectrum data of the X-ray spectrometer used as a key payload of Chang'E Mission, the design and implementation of the bit wise OR algorithm based on FPGA is presented ... Keywords: data compression, X-ray spectrometer, bitwise OR algorithm, FPGA

RuiMin Ma; HuanYu Wang

2011-09-01T23:59:59.000Z

346

Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds  

DOE Patents (OSTI)

Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

Grindstaff, Quirinus G. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

347

High-resolution bent-crystal spectrometer for the ultra-soft x-ray region  

SciTech Connect

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda/sub 0/ = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

1988-10-01T23:59:59.000Z

348

Sensitivity Upgrades to the Idaho Accelerator Center Neutron Time of Flight Spectrometer  

Science Conference Proceedings (OSTI)

Past experiments have shown that discrimination between between fissionable and non?fissionable materials is possible using an interrogation technique that monitors for high energy prompt fission neutrons. Several recent upgrades have been made to the neutron time of flight spectrometer at the Idaho Accelerator Center with the intent of increasing neutron detection sensitivity

S. J. Thompson; M. T. Kinlaw; J. F. Harmon; D. P. Wells; A. W. Hunt

2007-01-01T23:59:59.000Z

349

High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region  

DOE R&D Accomplishments (OSTI)

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

1988-10-00T23:59:59.000Z

350

Gamma-ray energies for calibration of Ge(Li) spectrometers  

SciTech Connect

Gamma-ray energies are compared for bent-crystal measurements, Ge(Li) measurements, and other measurements. 150 gamma-ray energies below 3450 keV from 35 isotopes are being calibrated for calibration of Ge(Li) spectrometers. (WHK)

Helmer, R.G.; Greenwood, R.C.; Gehrke, R.J.

1975-01-01T23:59:59.000Z

351

Measuring the absolute deuteriumtritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF  

E-Print Network (OSTI)

neutron spectrometer at ASDEX Upgrade Rev. Sci. Instrum. 82, 123504 (2011) The new cold neutron chopper. Paguio8 1 Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139, USA 2 Laboratory confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion

352

An AOTF-LDTOF spectrometer suite for in situ organic detection and characterization  

Science Conference Proceedings (OSTI)

We discuss the development of a miniature near-infrared point spectrometer, operating in the 1.7 -- 4 mm region, based on acousto-optic tunable filter (AOTF) technology. This instrument may be used to screen and corroborate analyses of samples containing ...

Nancy J. Chanover; David A. Glenar; David G. Voelz; Xifeng Xiao; Rula Tawalbeh; Penelope J. Boston; William B. Brinckerhoff; Paul R. Mahaffy; Stephanie Getty; Inge ten Kate; Amy McAdam

2011-03-01T23:59:59.000Z

353

Atmospheric Water Content over the Tropical Pacific Derived from the Nimbus-6 Scanning Microwave Spectrometer  

Science Conference Proceedings (OSTI)

The scanning microwave spectrometer (SCAMS) aboard Nimbus-6 contains a 22.23 GHz water vapor channel and 31.65 GHz window channel for deriving integrated water vapor (precipitable water) and cloud liquid water through a column over the oceans. ...

N. C. Grody; A. Gruber; W. C. Shen

1980-08-01T23:59:59.000Z

354

Effect of Working Fluid and Fluid Loading on the Performance of Rotating Heat Pipes.  

E-Print Network (OSTI)

?? The steady state heat transfer performance of axially rotating heat pipes with methanol, ethanol and water as working fluid was measured for rotational speeds… (more)

Home, Deepayan

2004-01-01T23:59:59.000Z

355

Crop rotation and genetic resistance reduce risk of damage from Fusarium wilt in lettuce  

E-Print Network (OSTI)

ReVIEW Article Crop rotation and genetic resistance reduceon lettuce, not on any other crops tested (Hubbard and Gerikapproach that includes crop rotation to reduce soil inoculum

2012-01-01T23:59:59.000Z

356

Physics of Intrinsic Plasma Rotation Explained for the First Time  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics of Intrinsic Physics of Intrinsic Plasma Rotation Explained for First Time Physics of Intrinsic Plasma Rotation Explained for First Time Key understanding for modeling future fusion reactors such as ITER July 23, 2013 | Tags: Fusion Energy Sciences (FES), Hopper CHANG.JPG Flamelets or hot spots along the plasma edge (a) drive turbulence intensity (b), temperature intensity (c), and intrinsic torque (d) inward, converting heat into toroidal rotation. (S. Ku et al.) If humans could harness nuclear fusion, the process that powers stars like our sun, the world could have an inexhaustible, clean energy source. Scientists have taken another step towards that goal with research that uncovers why the hot, gaseous stews used in fusion reactions sometimes spontaneously rotate in their donut-shaped containment "pots," called

357

Disky: a DIY Rotational Interface with Inherent Dynamics  

E-Print Network (OSTI)

Disky: a DIY Rotational Interface with Inherent Dynamics Karl Yerkes University of California dynamics, DIY 1. INTRODUCTION We describe Disky, a USB turntable controller, as a do- it-yourself project

California at Santa Barbara, University of

358

Design and cavitation performance of contra-rotating propellers  

E-Print Network (OSTI)

Improvement of the propulsive efficiency of ships has always been one of the main objectives for naval architects and marine engineers. Contra-Rotating propellers (CRP) are propulsor configurations offering higher efficiency ...

Laskos, Dimitrios

2010-01-01T23:59:59.000Z

359

Aerodynamic performance measurements in a counter-rotating aspirated compressor.  

E-Print Network (OSTI)

??This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives… (more)

Onnée, Jean-François

2005-01-01T23:59:59.000Z

360

Carderock Rotating Arm Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Rotating Arm Tow Tank Rotating Arm Tow Tank Jump to: navigation, search Basic Specifications Facility Name Carderock Rotating Arm Tow Tank Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Beam(m) 79.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Rotating Arm facility is a circular indoor basin 79.2m in diameter. The arm is a bridge-like structure with a span of 39.3m and pivots on a pedestal in the center of the basin. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 25.8 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Frequency Oscillations in a Rotating Annulus with Topography  

Science Conference Proceedings (OSTI)

Experiments were performed in a rotating, differentially heated annulus, with and without bottom topography of azimuthal wavenumber 2. Both water and a viscous glycerol-water mixture were used as a working fluid. In one series of experiments, ...

P. Bernardet; A. Butet; M. Déqué; M. Ghil; R. L. Pfeffer

1990-12-01T23:59:59.000Z

362

Obliquely Rotated Principal Components: An Improved Meteorological Map Typing Technique?  

Science Conference Proceedings (OSTI)

A detailed analysis of obliquely rotated principal components as a map typing technique was performed. This type of transformation does not constrain orthogonality of the vectors, allowing the components or map types the freedom to better reflect ...

Michael B. Richman

1981-10-01T23:59:59.000Z

363

Magnetic instabilities in collisionless astrophysical rotating plasma with anisotropic pressure  

Science Conference Proceedings (OSTI)

A technique is developed for analytical study of instabilities in collisionless astrophysical rotating plasma with anisotropic pressure that may lead to magnetic turbulence. Description is based on a pair of equations for perturbations of the radial magnetic field and the sum of magnetic field and perpendicular plasma pressures. From these equations, a canonical second-order differential equation for the perturbed radial magnetic field is derived and, subsequently, the dispersion relation for local perturbations. The paper predicts two varieties of hybrid instabilities due to the effects of differential plasma rotation and pressure anisotropy: The rotational-firehose and rotational-mirror ones. When the gravitation force is weak compared with the perpendicular pressure gradient, a new family of instabilities (the pressure-gradient-driven) is revealed.

Mikhailovskii, A. B.; Pustovitov, V. D.; Erokhin, N. N. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); Lominadze, J. G. [Kharadze Abastumani National Astrophysical Observatory, 2a, Kazbegi Ave., Tbilisi 0160 (Georgia); Nodia Institute of Geophysics, 1, Aleksidze Str., Tbilisi 0193 (Georgia); Smolyakov, A. I. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, 1, Kurchatov Sq., Moscow 123182 (Russian Federation); University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Churikov, A. P. [Syzran Branch of Samara Technical University, 45, Sovetskaya Str., Syzran, Samara Region 446001 (Russian Federation)

2008-06-15T23:59:59.000Z

364

Aerodynamic performance measurements in a counter-rotating aspirated compressor  

E-Print Network (OSTI)

This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

Onnée, Jean-François

2005-01-01T23:59:59.000Z

365

Spontaneous Emission by Rotating Objects: A Scattering Approach  

E-Print Network (OSTI)

We study the quantum electrodynamics vacuum in the presence of a body rotating along its axis of symmetry and show that the object spontaneously emits energy if it is lossy. The radiated power is expressed as a general ...

Jaffe, Robert L.

366

Laboratory Study of Rotating, Stratified, Oscillatory Flow over a Seamount  

Science Conference Proceedings (OSTI)

Pure oscillatory flow of a rotating, linearly stratified fluid in the vicinity of an isolated topography of revolution is considered in the laboratory. The pertinent dimensionless parameters governing the motion are the Rossby (Ro), temporal ...

Xiuzhang Zhang; Don L. Boyer

1993-06-01T23:59:59.000Z

367

Effects of Rotation on Convective Plumes from Line Segment Sources  

Science Conference Proceedings (OSTI)

Effects of rotation on finite-length line plumes are studied with a three-dimensional nonhydrostatic numerical model. Geophysical convection with this source geometry occurs, for example, as the result of fissure releases of hot hydrothermal ...

J. W. Lavelle; D. C. Smith IV

1996-06-01T23:59:59.000Z

368

Tracking 3-D Rotations with the Quaternion Bingham Filter  

E-Print Network (OSTI)

A deterministic method for sequential estimation of 3-D rotations is presented. The Bingham distribution is used to represent uncertainty directly on the unit quaternion hypersphere. Quaternions avoid the degeneracies of ...

Glover, Jared

2013-03-27T23:59:59.000Z

369

The Time-dependent Collapse of a Rotating Fluid Cylinder  

Science Conference Proceedings (OSTI)

The behavior of a reduced-gravity cylinder of fluid, released from rest in a rotating system, is considered. The eventual steady state, found by normal principles of conservation of angular momentum, mass, and potential vorticity, is shown to ...

Peter D. Killworth

1992-04-01T23:59:59.000Z

370

New Methodology For Use in Rotating Field Nuclear Magnetic Resonance  

E-Print Network (OSTI)

MHz and the permanent magnet’s motor’s mechanical rotationa stepping motor held away from the magnet, a pulley system,permanent magnet mechanically is rotated with a motor while

Jachmann, Rebecca C.

2007-01-01T23:59:59.000Z

371

Stability of the toroidal magnetic field in rotating stars  

E-Print Network (OSTI)

The magnetic field in stellar radiation zones can play an important role in phenomena such as mixing, angular momentum transport, etc. We study the effect of rotation on the stability of a predominantly toroidal magnetic field in the radiation zone. In particular we considered the stability in spherical geometry by means of a linear analysis in the Boussinesq approximation. It is found that the effect of rotation on the stability depends on a magnetic configuration. If the toroidal field increases with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation. Rotation can only decrease the growth rate of instability. If the field decreases with the radius, the instability has a threshold and can be completey suppressed.

Bonanno, Alfio

2013-01-01T23:59:59.000Z

372

Rotational suppression of the Tayler instability in stellar radiation zones  

E-Print Network (OSTI)

The study of the magnetic field in stellar radiation zones is an important topic in modern astrophysics because the magnetic field can play an important role in several transport phenomena such as mixing and angular momentum transport. We consider the influence of rotation on stability of a predominantly toroidal magnetic field in the radiation zone. We find that the effect of rotation on the stability depends on the magnetic configuration of the basic state. If the toroidal field increases sufficiently rapidly with the spherical radius, the instability cannot be suppressed entirely even by a very fast rotation although the strength of the instability can be significantly reduced. On the other hand, if the field increases slowly enough with the radius or decreases, the instability has a threshold and can be completely suppressed in rapidly rotating stars. We find that in the regions where the instability is entirely suppressed a particular type of magnetohydrodynamic waves may exist which are marginally stabl...

Bonanno, Alfio

2013-01-01T23:59:59.000Z

373

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

374

Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX  

Science Conference Proceedings (OSTI)

This paper describes the Verification of the Origins of Rotation in Tornadoes Experiment planned for 1994 and 1995 to evaluate a set of hypotheses pertaining to tornadogenesis and tornado dynamics. Observations of state variables will be obtained ...

Erik N. Rasmussen; Jerry M. Straka; Robert Davies-Jones; Charles A. Doswell III; Frederick H. Carr; Michael D. Eilts; Donald R. MacGorman

1994-06-01T23:59:59.000Z

375

System design description for the HMT Rotation Motor Heater System  

SciTech Connect

This document is the design description for the Rotation Motor Heater System on waste tank 241-SY-101. The description includes the certified vendor (CV) file number, operators instructions, and heater sizing calculations.

Vargo, G.F. Jr.

1995-05-18T23:59:59.000Z

376

Thermally Driven Flow in a Rotating Spherical Shell: Axisymmetric States  

Science Conference Proceedings (OSTI)

Numerical models are utilized to study a spherical analogue of the rotating annulus experiments modeling atmospheric motion. Motivation for this work is partially provided by NASA's proposal to conduct such an experiment on Spacelab (the ...

Timothy L. Miller; Robert L. Gall

1983-04-01T23:59:59.000Z

377

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Descriptions Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (Site Descriptions) West, T.O., and W.M. Post. 2002. Soil Organic Carbon...

378

MHK Technologies/Sub Surface Counter Rotation Current Generator | Open  

Open Energy Info (EERE)

Sub Surface Counter Rotation Current Generator Sub Surface Counter Rotation Current Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sub Surface Counter Rotation Current Generator.jpg Technology Profile Primary Organization Cyclocean LLC Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Self regulated sub surface current generators that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology Dimensions Device Testing Date Submitted 20:10.1 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sub_Surface_Counter_Rotation_Current_Generator&oldid=681657

379

Interval Translation Maps of three intervals reduce to Double Rotations  

E-Print Network (OSTI)

We show that any interval translation map (ITM) of three intervals can be reduced either to a rotation or a double rotation. As a consequence, the subset of ITMs of finite type in the space of all ITMs of three intervals is open, dense, and full Lebesgue measure. The set of ITMs of infinite type is a Cantor set of zero measure and of Hausdorff dimension less than full.

Volk, Denis

2012-01-01T23:59:59.000Z

380

Manipulator for rotating and translating a sample holder  

DOE Patents (OSTI)

A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

van de Water, Jeroen (Breugel, NL); van den Oetelaar, Johannes (Eindhoven, NL); Wagner, Raymond (Gorinchem, NL); Slingerland, Hendrik Nicolaas (Venlo, NL); Bruggers, Jan Willem (Eindhoven, NL); Ottevanger, Adriaan Huibert Dirk (Malden, NL); Schmid, Andreas (Berkeley, CA); Olson, Eric A. (Champaign, IL); Petrov, Ivan G. (Champaign, IL); Donchev, Todor I. (Urbana, IL); Duden, Thomas (Kensington, CA)

2011-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Differential rotation in solar-like stars from global simulations  

E-Print Network (OSTI)

To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a subadiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear...

Guerrero, G; Kosovichev, A G; Mansour, N N

2013-01-01T23:59:59.000Z

382

Influence of Rotations on the Critical State of Soil Mechanics  

E-Print Network (OSTI)

The ability of grains to rotate can play a crucial role on the collective behavior of granular media. It has been observed in computer simulations that imposing a torque at the contacts modifies the force chains, making support chains less important. In this work we investigate the effect of a gradual hindering of the grains rotations on the so-called critical state of soil mechanics. The critical state is an asymptotic state independent of the initial solid fraction where deformations occur at a constant shear strength and compactness. We quantify the difficulty to rotate by a friction coefficient at the level of particles, acting like a threshold. We explore the effect of this particle-level friction coefficient on the critical state by means of molecular dynamics simulations of a simple shear test on a poly-disperse sphere packing. We found that the larger the difficulty to rotate, the larger the final shear strength of the sample. Other micro-mechanical variables, like the structural anisotropy and the distribution of forces, are also influenced by the threshold. These results reveal the key role of rotations on the critical behavior of soils and suggest the inclusion of rotational variables into their constitutive equations.

W. F. Oquendo; J. D. Muñoz; A. Lizcano

2010-11-23T23:59:59.000Z

383

PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION  

SciTech Connect

We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)] [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2013-03-01T23:59:59.000Z

384

Magneto-Rotational Transport in the Early Sun  

E-Print Network (OSTI)

Angular momentum transport must have occurred in the Sun's radiative zone to explain its current solid body rotation. We survey the stability of the early Sun's radiative zone with respect to diffusive rotational instabilities, for a variety of plausible past configurations. We find that the (faster rotating) early Sun was prone to rotational instabilities even if only weak levels of radial differential rotation were present, while the current Sun is not. Stability domains are determined by approximate balance between dynamical and diffusive timescales, allowing generalizations to other stellar contexts. Depending on the strength and geometry of the weak magnetic field present, the fastest growing unstable mode can be hydrodynamic or magneto-hydrodynamic (MHD) in nature. Our results suggest that diffusive MHD modes may be more efficient at transporting angular momentum than their hydrodynamic (``Goldreich-Schubert-Fricke'') counterparts because the minimum spatial scale required for magnetic tension to be destabilizing limits the otherwise very small scales favored by double-diffusive instabilities. Diffusive magneto-rotational instabilities are thus attractive candidates for angular momentum transport in the early Sun's radiative zone.

Kristen Menou; Joel LeMer

2006-06-14T23:59:59.000Z

385

ARM - Publications: Science Team Meeting Documents: Using EOF analysis to  

NLE Websites -- All DOE Office Websites (Extended Search)

Using EOF analysis to uncover inhomogeneities in data from ground-based Using EOF analysis to uncover inhomogeneities in data from ground-based aerosol monitoring devices Gianelli, Scott NASA/GISS Carlson, Barbara NASA/Goddard Institute for Space Studies Lacis, Andrew NASA/Goddard Institute for Space Studies Empirical Orthogonal Function (EOF) analysis is performed on ground-based shadowband and sun photometer data. The instruments examined for this study include the Rotating Shadowband Spectroradiometer (RSS) and the CIMEL sun photometer CSPHOT located at the central facility of the Southern Great Plains (SGP) site; networks of Multi-Filter Rotating Shadowband Radiometer (MFRSR) devices sponsored by ARM and the USDA; and the network of nephelometers and aerosol particle counters of the Climate Monitoring Diagnostics Laboratory (CMDL). The original purpose of this investigation

386

Vibrational, rotational, and isotopic dependence of CaBr X/sup 2/. sigma. spin-rotational and HFS parameters  

Science Conference Proceedings (OSTI)

The previously published molecular-beam, laser-rf, double-resonance study of the rotational and isotopic dependences of the spin-rotational and hyperfine interactions in the v'' = 0, X/sup 2/..sigma.. state of CaBr is supplemented here with data for v''=1. The vibrational dependence of the parameters is now obtained. The results for CaBr are displayed along with analogous, previously published results for CaF and CaCl.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1982-01-01T23:59:59.000Z

387

Viscosity and Rotation in Core-Collapse Supernovae  

E-Print Network (OSTI)

We construct models of core-collapse supernovae in one spatial dimension, including rotation, angular momentum transport, and viscous dissipation employing an alpha-prescription. We compare the evolution of a fiducial 11 M_sun non-rotating progenitor with its evolution including a wide range of imposed initial rotation profiles (1.25rotation period of the iron core). This range of P_0 covers the region of parameter space from where rotation begins to modify the dynamics (P_0~8 s) to where angular velocities at collapse approach Keplerian (P_0~1 s). Assuming strict angular momentum conservation, all models in this range leave behind neutron stars with spin periods <10 ms, shorter than those of most radio pulsars, but similar to those expected theoretically for magnetars at birth. A fraction of the gravitational binding energy of collapse is stored in the free energy of differential rotation. This energy source may be tapped by viscous processes, providing a mechanism for energy deposition that is not strongly coupled to the mass accretion rate through the stalled supernova shock. This effect yields qualitatively new dynamics in models of supernovae. We explore several potential mechanisms for viscosity in the core-collapse environment: neutrino viscosity, turbulent viscosity caused by the magnetorotational instability (MRI), and turbulent viscosity by entropy- and composition-gradient-driven convection. We argue that the MRI is the most effective. We find that for rotation periods in the range P_0<~5 s, and a range of viscous stresses, that the post-bounce dynamics is significantly effected by the inclusion of this extra energy deposition mechanism; in several cases we obtain strong supernova explosions.

Todd A. Thompson; Eliot Quataert; Adam Burrows

2004-03-09T23:59:59.000Z

388

Study on Processing Condition of Submerged Rotating MBR for Wastewater Treatment  

Science Conference Proceedings (OSTI)

A submerged rotating membrane bioreactor (SRMBR), with a rotatable, rounded, flat-sheet Poly(vinyldiene fluoride) (PVDF) membrane module fixed on the hollow axes and moved by an electromotor, was used for wastewater reclamation. The efficiencies of SRMBR, ... Keywords: Submerged rotating MBR, rotation speed, permeate flux, PVDF flat-sheet composite membrane

Danying Zuo; Hongjun Li

2009-10-01T23:59:59.000Z

389

NMR system and method having a permanent magnet providing a rotating magnetic field  

DOE Patents (OSTI)

Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

2009-05-19T23:59:59.000Z

390

ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE  

SciTech Connect

The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

Martinez Gonzalez, M. J. [Instituto de Astrofisica de Canarias, Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Asensio Ramos, A. [Departamento de Astrofisica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain)

2012-08-20T23:59:59.000Z

391

New portable sensor system for rotational seismic motion measurements  

SciTech Connect

A new mechanical sensor system for recording the rotation of ground velocity has been constructed. It is based on measurements of differential motions between paired sensors mounted along the perimeter of a rigid (undeformable) disk. The elementary sensors creating the pairs are sensitive low-frequency geophones currently used in seismic exploration to record translational motions. The main features of the new rotational seismic sensor system are flat characteristics in the wide frequency range from 1 to 200 Hz and sensitivity limit of the order of 10{sup -8} rad/s. Notable advantages are small dimensions, portability, easy installation and operation in the field, and the possibility of calibrating the geophones in situ simultaneously with the measurement. An important feature of the instrument is that it provides records of translational seismic motions together with rotations, which allows many important seismological applications. We have used the new sensor system to record the vertical rotation velocity due to a small earthquake of M{sub L}=2.2, which occurred within the earthquake swarm in Western Bohemia in autumn 2008. We found good agreement of the rotation record with the transverse acceleration as predicted by theory. This measurement demonstrates that this device has a much wider application than just to prospecting measurements, for which it was originally designed.

Brokesova, Johana [Department of Geophysics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Malek, Jiri [Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holesovickach 41, 18209 Prague (Czech Republic)

2010-08-15T23:59:59.000Z

392

Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider  

E-Print Network (OSTI)

The International Linear Collider and other proposed high energy e+ e- machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 1e-4. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006--2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5e-4 was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance.

A. Lyapin; H. J. Schreiber; M. Viti; C. Adolphsen; R. Arnold; S. Boogert; G. Boorman; M. V. Chistiakova; F. Gournaris; V. Duginov; C. Hast; M. D. Hildreth; C. Hlaing; F. Jackson; O. Khainovsky; Yu. G. Kolomensky; S. Kostromin; K. Kumar; B. Maiheu; D. McCormick; D. J. Miller; N. Morozov; T. Orimoto; E. Petigura; M. Sadre-Bazzaz; M. Slater; Z. Szalata; M. Thomson; D. Ward; M. Wendt; M. Wing; M. Woods

2010-11-01T23:59:59.000Z

393

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Steve Dunagan, Roy Johnson: Steve Dunagan, Roy Johnson: Battelle PND: Connor Flynn, Beat Schmid, Battelle PND: Connor Flynn, Beat Schmid, Evgueni Kassianov Evgueni Kassianov NASA GSFC: Alexander Sinyuk, Brent NASA GSFC: Alexander Sinyuk, Brent Holben Holben , , & AERONET Team & AERONET Team Collaboration involving: Collaboration involving: NASA Ames, Battelle PND, NASA GSFC NASA Ames, Battelle PND, NASA GSFC 4S 4S TAR TAR : : S S pectrometer for pectrometer for S S ky ky - - S S canning, canning, S S un un - - T T racking racking A A tmospheric tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research Atmospheric Research

394

ORISS Isomer and Isobar Spectrometer and Separator for Study of Exotic Decays  

NLE Websites -- All DOE Office Websites (Extended Search)

ORISS Isomer ORISS Isomer and Isobar Spectrometer and Separator for Study of Exotic Decays A. Piechaczek for the 2 EMIS 2007 UNIRIB Consortium * The purpose is to provide a nuclear research facility at ORNL for consortium members * Consortium members: 3 EMIS 2007 * Our Deliverable is Science - Nuclear Physics * We do research * We give scientific reports at meetings * We train students * UNIRIB, with ORISE and ORAU, provides a university atmosphere in a national laboratory 4 Motivation to build ORISS - Oak Ridge Isomer/Isobar Spectrometer and Separator: * Decay studies often possible from yield considerations, but limited by background from isobaric/isomeric contamination * Need high resolution separator for background suppression ORISS predicted performance: * High mass resolving power, M/∆M

395

Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology  

SciTech Connect

The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

2013-08-06T23:59:59.000Z

396

Spectrometer sensitivity calibration in the extreme uv by means of branching ratios of magnetic dipole lines  

SciTech Connect

Relative intensity measurements of various line pairs resulting from magnetic dipole transitions within the configurations s/sup 2/p/sup 2/ and s/sup 2/p/sup 4/, in conjunction with calculated transition probabilities, have been used to determine the wavelength dependence of the sensitivity of a grazing incidence spectrometer, in the range 400 to 1000 A. Emissions from Cr XIX, Fe XXI, Ni XXI and XXIII, Cu XXIV, and Zr XXVII ions in PLT tokamak discharges were used for this purpose. Absolute sensitivity of the spectrometer at selected wavelengths had been determined by the traditional hydrogen, helium, carbon, and oxygen electric-dipole line pairs from the same discharges. Similar attempts to use transitions in the s/sup 2/p/sup 3/ configurations in Cr XVIII, Zr XXVI, and Mo XXVIII ions resulted in significant discrepancies that are ascribed to uncertainties in the corresponding calculated transition probabilities.

Denne, B.; Hinnov, E.

1984-04-01T23:59:59.000Z

397

Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer  

DOE Patents (OSTI)

This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

Chastgner, P.

1991-05-08T23:59:59.000Z

398

Radiation damage control in the BNL hypernuclear spectrometer drift chamber system  

SciTech Connect

A high rate drift chamber system has been in use at the BNL hypernuclear spectrometer system for the past three years. Some of the chambers have accumulated charge doses up to about 0.2 C/cm-wire without showing external signs of aging. The system design and performance will be discussed as well as the results of some laboratory drift chamber aging tests. 5 refs., 9 figs.

Pile, P.H.

1986-01-01T23:59:59.000Z

399

Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

Lerner, Scott A. (Corvalis, OR)

2006-01-10T23:59:59.000Z

400

Ge(Li) low level in-situ gamma-ray spectrometer applications  

SciTech Connect

Currently a Ge(Li) spectrometer is being employed for in-situ measurements of radionuclides contained in soil. This is being done at nuclear reactor sites and in complex radionuclide fields at the Nevada Test Site. The methodology and precision of the in-situ spectrometric technique was previously established for analysis of radionuclides in soil. Application of the technique to gaseous and liquid effluents containing radionuclides has shown a great deal of promise. (auth)

Phelps, P.L.; Anspaugh, L.R.; Roth, S.J.; Huckabay, G.W.; Sawyer, D.L.

1973-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SPHERES, Juelich's high-flux neutron backscattering spectrometer at FRM II  

SciTech Connect

SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Juelich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 {mu}eV, a dynamic range of {+-} 31 {mu}eV, and a signal-to-noise ratio of up to 1750:1.

Wuttke, Joachim; Budwig, Alfred; Drochner, Matthias; Kaemmerling, Hans; Kayser, Franz-Joseph; Kleines, Harald; Ossovyi, Vladimir; Pardo, Luis Carlos; Prager, Michael; Richter, Dieter; Schneider, Gerald J.; Schneider, Harald; Staringer, Simon [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

2012-07-15T23:59:59.000Z

402

Airborne gamma-ray spectrometer and magnetometer survey: Mitchell Quadrangle, South Dakota. Final report  

SciTech Connect

The results of a high-sensitivity aerial gamma-ray spectrometer survey of the Mitchell Quadrangle, South Dakota are presented. Instrumentation and methods are described in volume 1 of this report. The purpose of this study is to acquire and compile geologic information to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the US. (DMC)

1981-04-01T23:59:59.000Z

403

Regenerative braking device with rotationally mounted energy storage means  

DOE Patents (OSTI)

A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

Hoppie, Lyle O. (Birmingham, MI)

1982-03-16T23:59:59.000Z

404

Well apparatuses and anti-rotation device for well apparatuses  

SciTech Connect

This patent describes an anti-rotation device for an item used in wellbores for inhibiting relative rotation between the item and an adjacent apparatus having apparatus protrusions, the apparatus protrusions having tips, the anti-rotation device. It comprises a cylindrical body member having two circular ends with a projecting lip protruding from one end thereof and extending around that end, the lip having an inner wall, a recess in the body member, the recess defined by the inner wall of the lip and a bottom surface within the body member, the lip extending above the bottom surface, a plurality of device protrusions extending from the bottom surface of the recess and beyond the lip, the device protrusions disposed for engaging the apparatus protrusions of the adjacent apparatus, and the inner wall of the lip sloping from the lip to the bottom surface of the body member.

Glaser, M.C.

1992-05-19T23:59:59.000Z

405

Comparing the NEATM with a Rotating, Cratered Thermophysical Asteroid Model  

E-Print Network (OSTI)

A cratered asteroid acts somewhat like a retroflector, sending light and infrared radiation back toward the Sun, while thermal inertia in a rotating asteroid causes the infrared radiation to peak over the ``afternoon'' part. In this paper a rotating, cratered asteroid model is described, and used to generate infrared fluxes which are then interpreted using the Near Earth Asteroid Thermal Model (NEATM). Even though the rotating, cratered model depends on three parameters not available to the NEATM (the dimensionless thermal inertia parameter and pole orientation), the NEATM gives diameter estimates that are accurate to 10 percent RMS for phase angles less than 60 degrees. For larger phase angles, such as back-lit asteroids, the infrared flux depends more strongly on these unknown parameters, so the diameter errors are larger. These results are still true for the non-spherical shapes typical of small Near Earth objects.

Edward L. Wright

2007-03-05T23:59:59.000Z

406

An Ion Doppler Spectrometer Instrument for Ion Temperature and Flow Measurements on SSPX  

DOE Green Energy (OSTI)

A high-resolution ion Doppler spectrometer has been installed on the Sustained Spheromak Plasma Experiment to measure ion temperatures and plasma flow. The system is composed of a 1 meter focal length Czerny-Turner spectrometer with diffraction grating line density of 2400 lines/mm, which allows for first order spectra between 300 and 600 nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126 nm per channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber optic survey spectrometer sensitive to a wavelength range 200 to 1100 nm and having resolution 0.2 nm, is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of C III 464.72 nm line in the plasma shows time-resolved ion temperatures up to 250 eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvenic plasma flow ranging from 5 to 45 km/s for helium discharges.

King, J D; McLean, H S; Wood, R D; Romero-Talamas, C A; Moller, J M; Morse, E C

2008-05-19T23:59:59.000Z

407

The use of chopper spectrometers for cold-to-epithermal neutron scattering at IPNS  

SciTech Connect

A multi-detector chopper spectrometer enables measurements of the scattering function S(Q,E) to be made over a wide range of momentum and energy transfer (Q,E). The application of pulsed-source chopper spectrometers for inelastic measurements at thermal and epithermal energies (50 meV < E < 1000 meV) is well known. Recently at IPNS, we have extended the energy-transfer region down to about 0.5 meV with a resolution of the order of 150 {mu}eV. It is made possible by utilizing the cold-neutron incident spectrum of the 100 K methane moderator in conjunction with a dual beryllium-body rotor system. Neutron incident energies can be changed efficiently over the 4 to 1000 meV region while maintaining an undisturbed sample environment. We describe the operation of the IPNS chopper spectrometers (HRMECS and LRMECS), the instrumental resolution and the background-suppression performance. The capability of measuring inelastic features from 0.5 to 100 meV with an energy resolution of {Delta}E/E{sub 0} = 2.5% is demonstrated by experimental results of crystal-field excitation spectra of a high-Tc superconductor ErBa{sub 2}Cu{sub 3}O{sub 7}. Preliminary data of quasielastic scattering from a room-temperature molten salt AlCl{sub 3}-EMIC are presented.

Loong, C.K.; Donley, L.I.; Ostrowski, G.E.; Kleb, R.; Hammonds, J.P.; Soderholm, L.; Takahashi, S.

1993-09-01T23:59:59.000Z

408

Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system  

Science Conference Proceedings (OSTI)

The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5x10{sup 17} m{sup -3} which corresponds to a local carbon concentration of 2%.

Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr [Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Burhenn, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany)

2008-09-15T23:59:59.000Z

409

What Caused the Lead burn-out in Spectrometer Magnet 2B  

SciTech Connect

The spectrometer solenoids are supposed to be the first magnets installed in the MICE Cooling Channel. The results of the test of Spectrometer Magnet 2B are reported in a previous MICE Note. Magnet 2B was tested with all five coils connected in series. The magnet failed because a lead to coil M2 failed before it could be trained to its full design current of 275 A. First, this report describes the condition of the magnet when the lead failure occurred. The lead that failed was between the cold mass feed-through and the heavy lead that connected to coil M2 and the quench protection diodes. It is believed that the lead failed because the minimum propagation zone (MPZ) length was too short. The quench was probably triggered by lead motion in the field external to the magnet center coil. The effect of heat transfer on quench propagation and MPZ length is discussed. The MPZ length is compared for a number of cases that apply to the spectrometer solenoid 2B as built and as it has been repaired. The required heat transfer coefficient for cryogenic stability and the quench propagation velocity along the leads are compared for various parts of the Magnet leads inside the cold mass cryostat. The effect of the insulation on leads on heat transfer is and stability is discussed.

Green, Michael A

2010-11-29T23:59:59.000Z

410

Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics  

SciTech Connect

The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

Reginatto, M.; Zimbal, A. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

2011-03-14T23:59:59.000Z

411

A differential rotation driven dynamo in a stably stratified star  

E-Print Network (OSTI)

We present numerical simulations of a self-sustaining magnetic field in a differentially rotating non-convective stellar interior. A weak initial field is wound up by the differential rotation; the resulting azimuthal field becomes unstable and produces a new meridional field component, which is then wound up anew, thus completing the `dynamo loop'. This effect is observed both with and without a stable stratification. A self-sustained field is actually obtained more easily in the presence of a stable stratification. The results confirm the analytical expectations of the role of Tayler instability.

J. Braithwaite; H. C. Spruit

2005-09-22T23:59:59.000Z

412

Spin rotation of polarized beams in high energy storage ring  

E-Print Network (OSTI)

The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

V. G. Baryshevsky

2006-03-23T23:59:59.000Z

413

Well apparatuses and anti-rotation device for well apparatuses  

Science Conference Proceedings (OSTI)

This patent describes an anti-rotation device for an item used in wellbores for inhibiting relative rotation between the item and an adjacent apparatus having apparatus protrusions. It comprises a substantially cylindrical body member having two ends, a recess in one of the ends of the body member, the recess having a bottom surface within the body member and a circular ring load member extending above the bottom surface and about the body member and encircling the recess, teeth extending from the bottom surface of the recess and beyond the circular ring load member, and the teeth disposed for engaging the apparatus protrusions of the adjacent apparatus.

Glaser, M.C.

1991-06-25T23:59:59.000Z

414

Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth  

Science Conference Proceedings (OSTI)

Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

Batzill M.; Sutter P.; Dahal, A.; Addou, R.

2012-06-11T23:59:59.000Z

415

Plasma rotation and rf heating in DIII-D  

SciTech Connect

In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current.

deGrassie, J.S.; Baker, D.R.; Burrell, K.H. [General Atomics, San Diego, CA (United States)] [and others

1999-05-01T23:59:59.000Z

416

A Diode Laser Spectrometer for the In Situ Measurement of the HNO3 Content of Polar Stratospheric Clouds  

Science Conference Proceedings (OSTI)

A new instrument realized for measuring the HNO3 concentration in air is described. The device is a midinfrared absorption spectrometer based on a tunable diode laser and a multipass absorption cell. The instrument is specifically designed for ...

G. Toci; P. Mazzinghi; M. Vannini

1999-10-01T23:59:59.000Z

417

A Near-Infrared Diode Laser Spectrometer for the In Situ Measurement of Methane and Water Vapor from Stratospheric Balloons  

Science Conference Proceedings (OSTI)

The Spectromètre à Diodes Laser Accordables (SDLA), a balloonborne near-infrared diode laser spectrometer, was developed to provide simultaneous in situ measurements of methane and water vapor in the troposphere and the lower stratosphere. The ...

Georges Durry; Ivan Pouchet

2001-09-01T23:59:59.000Z

418

PGAA Spectrometer  

Science Conference Proceedings (OSTI)

... of the peaks at these energies reveal their ... resulting in higher counting efficiency and better sensitivity, especially in the energy region below ...

2012-10-01T23:59:59.000Z

419

RECURSIVELY RENEWABLE WORDS AND CODING OF IRRATIONAL ROTATIONS  

E-Print Network (OSTI)

RECURSIVELY RENEWABLE WORDS AND CODING OF IRRATIONAL ROTATIONS SHIGEKI AKIYAMA AND MASAYUKI us come back to a general A = {0, 1, . . . , m - 1}. An element z = z0z1 · · · AN is k-renewable is called recursively k-renewable. To be more precise, z = z0z1 . . . is recursively k- renewable when

Akiyama, Shigeki

420

Meridional Flow Field of Axisymmetric Flows in a Rotating Annulus  

Science Conference Proceedings (OSTI)

Measurements of the flow field were made of the axisymmetric flow in a differentially heated rotating fluid annulus by using a long-term tracking of a tracer particle. Its meridional flow profile is composed of a flow circulating in a large ...

T. Tajima; T. Nakamura

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A rotation invariant face recognition method based on complex network  

Science Conference Proceedings (OSTI)

Face recognition is an important field that has received a lot of attention from computer vision community, with diverse set of applications in industry and science. This paper introduces a novel graph based method for face recognition which is rotation ... Keywords: complex network, face recognition, graph

Wesley Nunes Gonçalves; Jonathan De Andrade Silva; Odemir Martinez Bruno

2010-11-01T23:59:59.000Z

422

Counter Rotating Open Rotor Animation using Particle Image Velocimetry  

E-Print Network (OSTI)

This article describes the two accompanying fluid dynamics videos for the "Counter rotating open rotor flow field investigation using stereoscopic Particle Image Velocimetry" presented at the 64th Annual Meeting of the APS Division of Fluid Dynamics in Baltimore, Maryland, November 20-22, 2011.

Roosenboom, E W M; Geisler, R; Pallek, D; Agocs, J; Neitzke, K -P

2011-01-01T23:59:59.000Z

423

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

424

TRANSIT LIGHTCURVES OF EXTRASOLAR PLANETS ORBITING RAPIDLY ROTATING STARS  

Science Conference Proceedings (OSTI)

Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbit alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.

Barnes, Jason W., E-mail: jwbarnes@uidaho.ed

2009-11-01T23:59:59.000Z

425

Testing and Error Analysis of Acceleration of Rotating Transformer  

Science Conference Proceedings (OSTI)

From the working principle of rotary transformers, the paper in-depth analyses the relationship between output voltage and rotor angle as well as speed. By using the method of series expansion and discrete, angular acceleration formula which is used ... Keywords: Rotating Transformer, Acceleration, Error of Measurement, slip frequency

Lu Xiuhe; Xue Peng

2010-07-01T23:59:59.000Z

426

Solar activity and earth rotation variability R. Abarca del Rioa,  

E-Print Network (OSTI)

Solar activity and earth rotation variability R. Abarca del Rioa, *, D. Gambisb , D. Salsteinc , P to investigate a possible connection with solar activity fluctuations from interannual to secular time scales in AAM and LOD agrees with that in solar activity with regard to the decadal cycle in the stratospheric

Dai, Aiguo

427

Solar differential rotation and properties of magnetic clouds  

E-Print Network (OSTI)

The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

2005-11-09T23:59:59.000Z

428

The solar interior - radial structure, rotation, solar activity cycle  

E-Print Network (OSTI)

Some basic properties of the solar convection zone are considered and the use of helioseismology as an observational tool to determine its depth and internal angular velocity is discussed. Aspects of solar magnetism are described and explained in the framework of dynamo theory. The main focus is on mean field theories for the Sun's magnetic field and its differential rotation.

Axel Brandenburg

2007-03-28T23:59:59.000Z

429

Numerical Discretization of Rotated Diffusion Operators in Ocean Models  

Science Conference Proceedings (OSTI)

A method to improve the behavior of the numerical discretization of a rotated diffusion operator such as, for example, the isopycnal diffusion parameterization used in large-scale ocean models based on the so-called z-coordinate system is ...

J-M. Beckers; H. Burchard; E. Deleersnijder; P. P. Mathieu

2000-08-01T23:59:59.000Z

430

Energy Partitioning and Horizontal Dispersion in a Stratified Rotating Lake  

Science Conference Proceedings (OSTI)

The response of a stratified rotating basin to the release of a linearly tilted interface is derived. This case is compared with a uniformly forced basin in the two limits when the duration of the forcing is much greater than the period of the ...

Roman Stocker; Jörg Imberger

2003-03-01T23:59:59.000Z

431

Transient Eddies and the Seasonal Mean Rotational Flow  

Science Conference Proceedings (OSTI)

Virtually all investigations of transient-eddy effects on the large-scale mean vorticity start from the premise that only the rotational transient motion need be considered. In this paper, the seasonal mean vorticity balance at 250 mb is examined,...

Brian J. Hoskins; Prashant D. Sardeshmukh

1987-01-01T23:59:59.000Z

432

High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer  

Science Conference Proceedings (OSTI)

The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

Porter, F S; Adams, J S; Beiersdorfer, P; Brown, G V; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A

2009-10-01T23:59:59.000Z

433

High Energy Photoemission: Development of a New Electrostatic Lens for a Novel High Resolution Spectrometer  

SciTech Connect

In recent years growing interest has been dedicated to photoemission experiments at high energy because a significant bulk sensitivity in photoemission measurements can be achieved only by increasing the kinetic energy of the analysed photoelectrons. Within the 5th European framework, a RTD project named VOLPE (VOLume PhotoEmission from solids) has been funded. Aim of the project is to measure bulk electronic properties on solids by the Photoemission Spectroscopy with Synchrotron Radiation preserving an energy resolution comparable to modern surface sensitive photoemission spectra. This will be possible by performing photoemission experiments in a photolectron Kinetic Energy range of 6-10 keV, keeping the overall energy resolution at 20-30 meV. Presently, the beamline ID16 at ESRF posses the necessary characteristics (1011 photons/sec and 15-100 meV resolution at photon energies between 6 keV and 15 keV) to perform these class of experiments, while a new spectrometer is being developed in the framework of VOLPE project. This spectrometer is an hemispherical deflector analyser with electrostatic input lens and 2D position sensitive detector. The spectrometer will be characterised by an ultimate resolving power of 3 105 at 10 keV. We will report on the particular lens system developed for this project which is optimised to guarantee very high retarding ratio, between 50 and 600, with constant linear magnification. A prototype of this lens has been realised and we will report on the first measurements performed at INFM, Unita Roma Tre.

Paolicelli, G.; Fondacaro, A.; Offi, F. [INFM, Unita Roma Tre, Via della Vasca Navale 84 -I 00146 Rome (Italy); Stefani, G. [INFM, Unita Roma Tre, Via della Vasca Navale 84 -I 00146 Rome (Italy); Dip. di Fisica 'E. Amaldi', Universita Roma Tre Via della Vasca Navale 84-I 00146 Rome (Italy)

2004-05-12T23:59:59.000Z

434

A small diameter, flexible, all attitude, self-contained germanium spectrometer. Operator`s manual  

SciTech Connect

The end of the Cold War has brought about tremendous changes in the nuclear complex of the Department of Energy. One of the many changes has been the shutdown or decommissioning of many facilities that performed nuclear work. One of the steps in the process of decommissioning a facility involves the decontamination or removal of drain lines or pipes that may have carried radioactive materials at one time. The removal of all these pipes and drain lines to a nuclear disposal facility could be quite costly. It was suggested by Pacific Northwest National Laboratory (PNNL) that a germanium spectrometer could be built that could fit through straight pipes with a diameter as small as 5.08 cm (2 inches) and pass through curved pipes with a diameter as small as 7.6 cm (3 inches) such as that of a 3-inch p-trap in a drain line. The germanium spectrometer could then be used to simultaneously determine all gamma-ray emitting radionuclides in or surrounding the pipe. By showing the absence of any gamma-ray emitting radionuclides, the pipes could then be reused in place or disposed of as non-radioactive material, thus saving significantly in disposal costs. A germanium spectrometer system has been designed by PNNL and fabricated by Princeton Gamma Tech (PGT) that consists of three segments, each 4.84 cm in diameter and about 10 cm in length. Flexible stainless steel bellows were used to connect the segments. Segment 1 is a small liquid nitrogen reservoir. The reservoir is filled with a sponge-like material which enables the detector to be used in any orientation. A Stirling cycle refrigerator is under development which can replace the liquid nitrogen reservoir to provide continuous cooling and operation.

Bordzindki, R.L.; Lepel, E.A.; Reeves, J.H. [Battelle, Pacific Northwest National Lab., Richland, WA (United States); Kohli, R. [Battelle, Columbus Lab., OH (United States)

1997-05-01T23:59:59.000Z

435

Rapid Rotation, Active Nests of Convection and Global-scale Flows in Solar-like Stars  

E-Print Network (OSTI)

In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation, as measured by latitudinal angular velocity contrast, Delta_Omega, increases with more rapid rotation while the relative shear, Delta_Omega/Omega, decreases. In contrast, at more rapid rotation the meridional circulations decrease in both energy and peak velocities and break into multiple cells of circulation in both radius and latitude.

Benjamin P. Brown; Matthew K. Browning; Allan Sacha Brun; Mark S. Miesch; Juri Toomre

2008-01-10T23:59:59.000Z

436

A new method of alpha ray measurement using a Quadrupole Mass Spectrometer  

E-Print Network (OSTI)

We propose a new method of alpha($\\alpha$)-ray measurement that detects helium atoms with a Quadrupole Mass Spectrometer(QMS). A demonstration is undertaken with a plastic-covered $^{241}$Am $\\alpha$-emitting source to detect $\\alpha$-rays stopped in the capsule. We successfully detect helium atoms that diffuse out of the capsule by accumulating them for one to 20 hours in a closed chamber. The detected amount is found to be proportional to the accumulation time. Our method is applicable to probe $\\alpha$-emitting radioactivity in bulk material.

Y. Iwata; Y. Inoue; M. Minowa

2007-04-16T23:59:59.000Z

437

Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers  

Science Conference Proceedings (OSTI)

Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the generalized Breit interaction (GBI) on electron-impact excitation cross sections was performed. This measurement found that for theoretical electron-impact excitation cross sections to fit with experimental data the GBI needs to be taken into account.

Thorn, D B

2008-11-03T23:59:59.000Z

438

Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers  

SciTech Connect

Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design.

Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

2000-08-08T23:59:59.000Z

439

Atomic hydrogen density measurements in an ion source plasma using a vacuum ultraviolet absorption spectrometer  

DOE Green Energy (OSTI)

A system to determine the density and temperature of ground state hydrogen atoms in a plasma by vacuum ultraviolet laser absorption spectroscopy is described. The continuous tunability of the spectrometer allows for analysis at any of the Lyman transitions. The narrow bandwidth of the laser system allows for the accurate determination of the absorption lineshape and hence the translational temperature. The utility of the system is exemplified by data obtained on an ion-source plasma. The measurements demonstrate the quality of the data as well as illustrating the behavior of this ion source under varying discharge conditions. 9 refs., 5 figs., 1 tab.

Stutzin, G.C.; Young, A.T.; Schlachter, A.S.; Stearns, J.W.; Leung, K.N.; Kunkel, W.B.; Worth, G.T.; Stevens, R.R.

1989-01-01T23:59:59.000Z

440

The development of high performance online tracker for High Level Trigger of Muon Spectrometer of ALICE  

E-Print Network (OSTI)

The Muon Spectrometer (MS) of the ALICE experiment at LHC is equipped with a HLT (High Level Trigger), whose aim is to improve the accuracy of the trigger cuts delivered at the L0 stage. A computational challenge of real-time event reconstruction is satisfied to achieve this software trigger cut of the HLT. After the description of the online algorithms, the performance of the online tracker is compared with that of the offline tracker using the measured pp collisions at $\\sqrt{s}=7$ TeV.

Indranil Das

2011-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The development of high performance online tracker for High Level Trigger of Muon Spectrometer of ALICE  

E-Print Network (OSTI)

The Muon Spectrometer (MS) of the ALICE experiment at LHC is equipped with a HLT (High Level Trigger), whose aim is to improve the accuracy of the trigger cuts delivered at the L0 stage. A computational challenge of real-time event reconstruction is satisfied to achieve this software trigger cut of the HLT. After the description of the online algorithms, the performance of the online tracker is compared with that of the offline tracker using the measured pp collisions at $\\sqrt{s}=7$ TeV.

Das, Indranil

2011-01-01T23:59:59.000Z

442

Anti-Clockwise Rotation of the Wind Hodograph. Part I: Theoretical Study  

Science Conference Proceedings (OSTI)

In a first theoretical study, the reasons for anti-clockwise rotation (clockwise rotation in the Southern Hemisphere) of the wind hodograph in the boundary layer are investigated. As observations of wind hodographs show two different kinds of ...

M. Kusuda; P. Alpert

1983-02-01T23:59:59.000Z

443

Ferrofluid spin-up flows from uniform and non-uniform rotating magnetic fields  

E-Print Network (OSTI)

When ferrofluid in a cylindrical container is subjected to a rotating azimuthally directed magnetic field, the fluid "spins up" into an almost rigid-body rotation where ferrofluid nanoparticles have both a linear and an ...

Khushrushahi, Shahriar Rohinton

2010-01-01T23:59:59.000Z

444

Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part II: Analysis  

Science Conference Proceedings (OSTI)

The physics of frictional control for channelized rotating gravity currents are analyzed using an extensive dataset including hydrographic, current, and microstructure measurements from the western Baltic Sea. Rotational effects in these gravity ...

Lars Umlauf; Lars Arneborg

2009-10-01T23:59:59.000Z

445

Classification of 500 mb Height Anomalies Using Obliquely Rotated Principal Components  

Science Conference Proceedings (OSTI)

The objective of this study was to classify 500 mb height anomaly patterns for North America using principal component analysis with oblique rotation. Two versions of the oblique rotation, oblimax and direct oblimin, were applied to two gridded ...

Stewart J. Cohen

1983-12-01T23:59:59.000Z

446

The behavior of rotator cuff tendon cells in three-dimensional culture  

E-Print Network (OSTI)

The rotator cuff is composed of the supraspinatus, infraspinatus, subcapularis, and teres minor tendons. Rotator cuff injuries are common athletic and occupational injuries that surgery cannot fully repair. Therefore tendon ...

Gill, Harmeet (Harmeet Kaur)

2007-01-01T23:59:59.000Z

447

Nonlinear stability of magnetic islands in a rotating helical plasma  

Science Conference Proceedings (OSTI)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

Nishimura, S.; Toda, S.; Narushima, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yagi, M. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

2012-12-15T23:59:59.000Z

448

Electron beam machining using rotating and shaped beam power distribution  

DOE Patents (OSTI)

An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

Elmer, John W. (Pleasanton, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

449

Dual annular rotating "windowed" nuclear reflector reactor control system  

DOE Patents (OSTI)

A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

Jacox, Michael G. (Idaho Falls, ID); Drexler, Robert L. (Idaho Falls, ID); Hunt, Robert N. M. (Idaho Falls, ID); Lake, James A. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

450

Aerodynamic testing of a rotating wind turbine blade  

DOE Green Energy (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

451

Are vortices in rotating superfluids breaking the Weak Equivalence Principle?  

E-Print Network (OSTI)

Due to the breaking of gauge symmetry in rotating superfluid Helium, the inertial mass of a vortex diverges with the vortex size. The vortex inertial mass is thus much higher than the classical inertial mass of the vortex core. An equal increase of the vortex gravitational mass is questioned. The possibility that the vortices in a rotating superfluid could break the weak equivalence principle in relation with a variable speed of light in the superfluid vacuum is debated. Experiments to test this possibility are investigated on the bases that superfluid Helium vortices would not fall, under the single influence of a uniform gravitational field, at the same rate as the rest of the superfluid Helium mass.

Clovis Jacinto de Matos

2009-09-15T23:59:59.000Z

452

Electromagnetic Forces and Fields in a Rotating Reference Frame  

E-Print Network (OSTI)

Maxwell’s equations and the equations governing charged particle dynamics are presented for a rotating coordinate system with the global time coordinate of an observer on the rotational axis. Special care is taken in defining the relevant entities in these equations. Ambiguities in the definitions of the electromagnetic fields are pointed out, and in fact are shown to be essential in such a system of coordinates. The Lorentz force is found to have an extra term in this frame, which has its origins in relativistic mass. A related term in the energy equation, which allows inertia to be gained even during strict corotation, suggests ways existing pulsar magnetosphere models may be modified to match observed ‘braking indices ’ more closely. Subject headings: magnetic fields — relativity — pulsars: general – 3 –

Paul N. Arendt

1998-01-01T23:59:59.000Z

453

X-ray Detection of a Rotating Radio Transient  

E-Print Network (OSTI)

Abstract “Rotating RAdio Transients ” (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.

Bryan M. Gaensler; Maura Mclaughlin; Stephen Reynolds Kazik; Borkowski N; Burgay Fern; Andrew Lyne; Ingrid Stairs; B. M. Gaensler; S. Chatterjee; M. Mclaughlin; S. Reynolds; K. Borkowski; N. Rea; A. Possenti; M. Burgay; Osservatorio Astronomico Di Roma; F. Camilo; M. Kramer; A. Lyne

2006-01-01T23:59:59.000Z

454

Thermodynamic geometry of charged rotating BTZ black holes  

SciTech Connect

We study the thermodynamics and the thermodynamic geometries of charged rotating Banados-Teitelboim-Zanelli black holes in (2+1)-gravity. We investigate the thermodynamics of these systems within the context of the Weinhold and Ruppeiner thermodynamic geometries and the recently developed formalism of geometrothermodynamics. Considering the behavior of the heat capacity and the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot describe completely the thermodynamics of these black holes and of their limiting case of vanishing electric charge. In contrast, the Legendre invariance imposed on the metric in geometrothermodynamics allows one to describe the charged rotating Banados-Teitelboim-Zanelli black holes and their limiting cases in a consistent and invariant manner.

Akbar, M. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Quevedo, H. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70543, Mexico, DF 04510 (Mexico); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Saifullah, K. [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan); Sanchez, A. [Departamento de Posgrado, CIIDET, AP 752, Queretaro, QRO 76000 (Mexico); Taj, S. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy)

2011-04-15T23:59:59.000Z

455

Design of Energy Scavengers Mounted on Rotating Shafts  

E-Print Network (OSTI)

In this paper, a novel energy scavenger is proposed. The scavenger consists of a cantilever beam on which piezoelectric films and a mass are mounted. The mass at the tip of the beam is known as the proof mass and the device is called either an energy scavenger or a beam-mass system. The beam-mass system is mounted on a rotating shaft, where the axis of the shaft is horizontal. A single-degree-of-freedom (SDOF) mathematical model is derived for the scavenger and its properties are carefully examined. From the model, it becomes clear that the rotation of the shaft and gravity cause both parametric excitations and exogenous forces which make the beam-mass system vibrate. Guidelines are provided as how to choose the scavenger parameters in order to have it resonate. Examples are given to illustrate the performance of the proposed scavenger.

Shahruz, S M

2008-01-01T23:59:59.000Z

456

Work plan for the Hydrogen Mitigation Test (HMT) rotation motor heater system  

DOE Green Energy (OSTI)

Workplan to design, fabricate, and install a heater system and cover hood for the HMT rotation motor and gearbox.

Vargo, G.F. Jr.

1995-02-16T23:59:59.000Z

457

Nuclear Maintenance Applications Center: Oil Lubrication Guide for Rotating Equipment  

Science Conference Proceedings (OSTI)

At a nuclear station, several types of safety-related and non-safety-related equipment rely on lubricating oil systems to provide lubrication to rotating components. These lubricating systems consist of gears, pumps, valves, heat exchangers, and other parts. In the event of a lubrication system failure, the supported equipment can be shut down, which in turn can lead to unanticipated entries into limiting conditions of operation, system degradation, or a unit trip. An understanding of how oil is affected...

2009-12-09T23:59:59.000Z

458

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC electric motors or DC electric generators. but there is a significant difference in their working principle; in a DC electric motor or generator the Lorence force is the driving force, while in an LFEG the Coulomb force is the deriving force. So in despite to usual electric generators, this generator does not use a magnetic field and is purely electrical, which brings a similarity to bio mechanisms. We have investigated the characteristics of such a generator experimentally. This investigation sheds light on the physics of Electrohydrodynamics on liquid films.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2013-05-30T23:59:59.000Z

459

Compressibility and local instabilities of differentially rotating magnetized gas  

E-Print Network (OSTI)

We study the stability of compressible cylindrical differentially rotating flow in the presence of the magnetic field, and show that compressibility alters qualitatively the stability properties of flows. Apart from the well-known magnetorotational instability that can occur even in incompressible flow, there exist a new instability caused by compressibility. The necessary condition of the newly found instability can easily be satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A; Bonanno, Alfio; Urpin, Vadim

2007-01-01T23:59:59.000Z

460

Plasma Frequency Shift Due to a Slowly Rotating Compact Star  

E-Print Network (OSTI)

We investigate the effects of a slowly rotating compact gravitational source on plasma oscillations using the gravitoelectromagnetic approximation to General Relativity. It is shown that there is a shift in the plasma frequency and hence in the refractive index of the plasma due to the gravitomagnetic force. Estimates for the difference in frequency of radially transmitted electromagnetic signals are given for typical compact star candidates. 1

Babur M. Mirza; Hamid Saleem

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in  

E-Print Network (OSTI)

of the barrier heights of 1, n-butane, and ethane, the time constants for n-butane and ethane internal rotation is not completely free. (2) The trans-gauche isomerization of 1,2- disubstituted ethane derivatives, such as n-butane energy barrier of the n-butane (Ã?3.4 kcal/mol) and of other simple 1,2-disubstituted ethane derivatives

Fayer, Michael D.

462

HomoFaber 2010 Turbine hydraulique contra-rotative  

E-Print Network (OSTI)

HomoFaber 2010 Turbine hydraulique contra-rotative Personne de contact Dr. Pierre Maruzewski inexploitée à ce jour. Le projet « Micro Turbine » est un projet visant à récupérer une partie de cette énergie perdue. L'idée est de turbiner à même les conduites afin d'assurer la perte de pression désirée

463

Application of a trochoidal electron monochromator/mass spectrometer system to the study of environmental chemicals  

SciTech Connect

A trochoidal electron monochromator has been interfaced to a mass spectrometer to perform electron capture negative ion mass spectrometric (ECNIMS) analyses of environmentally relevant chemicals. The kinetic energy of the electron beam can be varied from 0.025 to 30 eV under computer control. No reagent gas is used to moderate the electron energies. An electron energy spread of +/- 0.1 to +/- 0.4 eV full width at half-maximum (fwhm) can readily be obtained at a transmitted current of 2 x 10(-6) A, improving to +/- 0.07 eV at 5 x 10(-7) A. Comparisons of ECNI results from the electron monochromator/mass spectrometer system with those from a standard instrument that uses a moderating gas show similar spectra for heptachlor but not for the s-triazine herbicides, as for example, atrazine. This compound shows numerous adduct ions by standard ECNIMS that are eliminated by using the electron monochromator to generate the mass spectra. Isomeric tetrachlorodibenzo-p-dioxins show distinct differences in the electron energies needed to produce the maximum amount of parent and fragment anions. Multiple resonance states resulting in stable radical anions (M.-) are easily observed for nitrobenzene and for polycyclic aromatic hydrocarbons. Ionic products of dissociative electron capture invariably occur from several resonance states.

Laramee, J.A.; Kocher, C.A.; Deinzer, M.L. (Oregon State Univ., Corvallis (United States))

1992-10-15T23:59:59.000Z

464

Evaluation of dead time and gain shift correction for a liquid scintillation spectrometer  

SciTech Connect

The Department of Nuclear Engineering at Texas A and M University purchased a new generation liquid scintillation spectrometer--the LKB-Wallac Spectral Model 1219 in 1986. The Model 1219 features an auto sample changer with a capacity for 300 samples, and energy range of 1 to 2000 keV beta subdivided into 1024 channels, a Ra-226 external quench-correction standard, automatic dead time correction, and LED display of the beta energy spectrum. Gain stabilization is based on the use of a precision pulsed light-emitting diode (LED). The instrument's circuitry monitors the pulse height of the light emitted by the LED and adjusted the system gain as necessary to keep the LED-induced pulses constant, thus compensating for gain shifts. This paper reports that a simple test was devised to evaluate this liquid scintillation spectrometer's dead time correction and gain stabilization features. At the same time, the effectiveness of the counting chamber shielding was also tested for a specific situation.

McLain, M.E.; Grimes, M.J.; Lee, P.J.T. (Dept. of Nuclear Engineering, Texas A and M Univ., College Station, TX (US))

1987-09-01T23:59:59.000Z

465

Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection  

SciTech Connect

The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{sub B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G. [Laboratorio ANDAR, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, B1650KNA Partido de San Martin, Provincia de Buenos Aires (Argentina); Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F. [Laboratorio ANDAR, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, B1650KNA Partido de San Martin, Provincia de Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad Autonoma de Buenos Aires (Argentina); Fernandez Niello, J. O. [Laboratorio ANDAR, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, B1650KNA Partido de San Martin, Provincia de Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad Autonoma de Buenos Aires (Argentina); Universidad Nacional de General San Martin, Ayacucho 2197, B1650BWA Partido de San Martin, Provincia de Buenos Aires (Argentina)

2010-08-04T23:59:59.000Z

466

A high resolution gamma-ray spectrometer based on superconducting microcalorimeters  

SciTech Connect

Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O'Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

2012-09-15T23:59:59.000Z

467

On the toroidal plasma rotations induced by lower hybrid waves  

Science Conference Proceedings (OSTI)

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves.

Guan Xiaoyin; Fisch, Nathaniel J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2013-02-15T23:59:59.000Z

468

Trailing edge noise theory for rotating blades in uniform flow  

E-Print Network (OSTI)

This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.

Sinayoko, Samuel; Agarwal, Anurag

2013-01-01T23:59:59.000Z

469

Solar differential rotation and properties of magnetic clouds  

E-Print Network (OSTI)

The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they o...

Georgieva, K; Gavruseva, E; Javaraiah, J

2005-01-01T23:59:59.000Z

470

On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves  

SciTech Connect

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________

Xiaoyin Guan, Hong Qin, Jian Liu and Nathaniel J. Fisch

2012-11-14T23:59:59.000Z

471

An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction  

Science Conference Proceedings (OSTI)

Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ... Keywords: AUC, CRM, Customer churn prediction, Database marketing, Ensemble classification, ICA, Lift, RotBoost, Rotation Forest, Rotation-based ensemble classifiers

Koen W. De Bock; Dirk Van den Poel

2011-09-01T23:59:59.000Z

472

Study on the Maize Straw Process of Fast Pyrolysis in the Rotating Cone Reactor and Process  

Science Conference Proceedings (OSTI)

With maize straw as raw material and quartz sand as heat medium, the system of rapid pyrolysis of biology materials using a rotating cone reactor was established. seven main factors during the pyrolysis process including temperature, rotating rate, degree ... Keywords: biomass, maize straw, bio-oil, fast pyrolysis, rotating cone reactor

Li Junsheng

2010-03-01T23:59:59.000Z

473

Introducing knowledge redundancy practice in software development: Experiences with job rotation in support work  

Science Conference Proceedings (OSTI)

Context: Job rotation is a widely known approach to increase knowledge redundancy but empirical evidence regarding introduction and adoption in software development is scant. A lack of knowledge redundancy is a limiting factor for collaboration, flexibility, ... Keywords: Agile organizations, Empirical software engineering, Job rotation, Organizational learning, Personnel rotation, Software development

Tor Erlend Fægri; Tore Dybå; Torgeir Dingsøyr

2010-10-01T23:59:59.000Z

474

Comparison of Crop Rotation for Verticillium Wilt Management and Effect on Pythium Species in Conventional and Organic Strawberry Production  

E-Print Network (OSTI)

Koike, S. T. 1998. Effects of crop rotation and irrigationwww.apsnet.org Comparison of Crop Rotation for VerticilliumK. V. 2009. Comparison of crop rotation for Verticillium

Subbarao, Krishna V

2009-01-01T23:59:59.000Z

475

Flat Quartz-Crystal X-ray Spectrometer for Nuclear Forensics Applications  

E-Print Network (OSTI)

The ability to quickly and accurately quantify the plutonium (Pu) content in pressurized water reactor (PWR) spent nuclear fuel (SNF) is critical for nuclear forensics purposes. One non-destructive assay (NDA) technique being investigated to detect bulk Pu in SNF is measuring the self-induced x-ray fluorescence (XRF). Previous XRF measurements of Three Mile Island (TMI) PWR SNF taken in July 2008 and January 2009 at Oak Ridge National Laboratory (ORNL) successfully illustrated the ability to detect the 103.7 keV x ray from Pu using a planar high-purity germanium (HPGe) detector. This allows for a direct measurement of Pu in SNF. Additional gamma ray and XRF measurements were performed on TMI SNF at ORNL in October 2011 to measure the signal-to-noise ratio for the 103.7 keV peak. Previous work had shown that the Pu/U peak ratio was directly proportional to the Pu/U content and increased linearly with burnup. However, the underlying Compton background significantly reduced the signal-to-noise ratio for the x-ray peaks of interest thereby requiring a prolonged count time. Comprehensive SNF simulations by Stafford et al showed the contributions to the Compton continuum were due to high-energy gamma rays scattering in the fuel, shipping tube, cladding, collimator and detector1. The background radiation was primarily due to the incoherent scattering of the 137Cs 661.7 keV gamma. In this work methods to reduce the Compton background and thereby increase the signal-to-noise ratio were investigated. To reduce the debilitating effects of the Compton background, a crystal x-ray spectrometer system was designed. This wavelength-dispersive spectroscopy technique isolated the Pu and U x rays according to Bragg's law by x-ray diffraction through a crystal structure. The higher energy background radiation was blocked from reaching the detector using a customized collimator and shielding system. A flat quartz-crystal x-ray spectrometer system was designed specifically to fit the constraints and requirements of detecting XRF from SNF. Simulations were performed to design and optimize the collimator design and to quantify the improved signal-to-noise ratio of the Pu and U x-ray peaks. The proposed crystal spectrometer system successfully diffracted the photon energies of interest while blocking the high-energy radiation from reaching the detector and contributing to background counts. The spectrometer system provided a higher signal-to-noise ratio and lower percent error for the XRF peaks of interest from Pu and U. Using the flat quartz-crystal x-ray spectrometer and customized collimation system, the Monte Carlo N-Particle (MCNP) simulations showed the 103.7 keV Pu x-ray peak signal-to-noise ratio improved by a factor of 13 and decreased the percent error by a factor of 3.3.

Goodsell, Alison

2012-08-01T23:59:59.000Z

476

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

477

Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer  

SciTech Connect

A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper K{alpha} and K{beta} lines by using a flat {alpha}-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

Ghomeishi, Mostafa; Adikan, Faisal Rafiq Mahamd [Photonic Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Karami, Mohammad [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2012-10-15T23:59:59.000Z

478

Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector  

Science Conference Proceedings (OSTI)

A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

Kleymenov, Evgeny; Bokhoven, Jeroen A. van [Paul Scherrer Institut, 5232 Villigen (Switzerland); ETH Zurich, Institute for Chemical and Bioengineering, 8093 Zurich (Switzerland); David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten [Paul Scherrer Institut, 5232 Villigen (Switzerland); Glatzel, Pieter [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

2011-06-15T23:59:59.000Z

479

The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars  

E-Print Network (OSTI)

It has been speculated that WR winds may have contaminated the forming solar system, in particular with short-lived radionuclides (half-lives in the approximate 10^5 - 10^8 y range) that are responsible for a class of isotopic anomalies found in some meteoritic materials. We revisit the capability of the WR winds to eject these radionuclides using new models of single non-exploding WR stars with metallicity Z = 0.02. The earlier predictions for non-rotating WR stars are updated, and models for rotating such stars are used for the first time in this context. We find that (1) rotation has no significant influence on the short-lived radionuclide production by neutron capture during the core He-burning phase, and (2) 26Al, 36Cl, 41Ca, and 107Pd can be wind-ejected by a variety of WR stars at relative levels that are compatible with the meteoritic analyses for a period of free decay of around 10^5 y between production and incorporation into the forming solar system solid bodies. We confirm the previously published conclusions that the winds of WR stars have a radionuclide composition that can meet the necessary condition for them to be a possible contaminating agent of the forming solar system. Still, it remains to be demonstrated from detailed models that this is a sufficient condition for these winds to have provided a level of pollution that is compatible with the observations.

M. Arnould; S. Goriely; G. Meynet

2006-03-21T23:59:59.000Z

480

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS Tutorial_ROTATION_WITH_INDUSTRY.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROTATION WITH INDUSTRY ROTATION WITH INDUSTRY REV: APRIL 2009 1 1. The PMCDP participant must request a rotation through a supervisor/first line manager according to his or her program office policy. 2. Rotation with Industry assignments are available to project managers certified at Level 1 or higher as career-broadening experiences. Whether for certification or for CE credit, a Rotation with Industry assignment must be included as an IDP activity. 3. The PSO, Field Element Manger, Office Manager or other program official must nominate candidates for Rotation with Industry assignments. The Certification Review Board then approves certified federal project directors for rotational assignments according to his or her developmental needs and qualifications.

Note: This page contains sample records for the topic "rotating shadowband spectrometer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.