National Library of Energy BETA

Sample records for rooms motel rooms

  1. Reading Room

    Broader source: Energy.gov [DOE]

    Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters.

  2. Press Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Room News, information and graphic resources from Fermilab and the world of high-energy physics: Press Releases All the news from Fermilab, from 1995 through today. Subscribe to the press release mailing list. Fermilab Fact Sheets Learn more about Fermilab's lasting scientific, social and economic impacts. Office of Communication Information, interviews with experts, speakers' bureau, background materials, emergency physics lessons for the on-deadline perplexed... Photo Archive High-res

  3. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proud Legacy, Bold Future, Since 1943 News Room Your source for the latest news releases, fast facts, images and access to scores of scientists, engineers and other experts from Los Alamos National Laboratory. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets James TenCate James TenCate elected Acoustical Society of America fellow TenCate's research focuses on nonlinear acoustics and elasticity, seismology and nonlinear imaging. 8/30/16 The

  4. Public Reading Room

    Office of Legacy Management (LM)

    By law, DOE must and will make a Public Reading Room available through site closure. Post-Closure: LM will maintain a Public Reading Room in accordance with EPA and Ohio EPA ...

  5. Clean room wiping cloths

    SciTech Connect (OSTI)

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  6. Business Electronic Reading Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Reading Room SOLICITATION UPDATES: Reference No. DE-SOL-0007251: Contract DE-FE0026066 has been awarded to SSC-Deltha, LLC., in response to the Site Administrative Support (SAS) services solicitation (DE-SOL-0007251). Reference No. DE-SOL-0006851: Contract DE -FE0024337 has been awarded to DFW Security Protective Force, Inc., in response to the Site Security Services solicitation (DE-SOL-0006851) Reference No. DE-SOL-0005388: Contract DE-FE0025912 has been awarded to KeyLogic Systems,

  7. CEBAF Control Room Renovation

    SciTech Connect (OSTI)

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  8. CEBAF Control Room Renovation

    SciTech Connect (OSTI)

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  9. Electronic Docket Room (e-Docket Room) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Docket Room (e-Docket Room) Electronic Docket Room (e-Docket Room) E-Docket -- Browse Searchable Database of Current and Historical Applications Submitted to DOE (click SHOW for drop down menu) Authorizations/Orders Granted by the Department -- NOTE: 1977 thru 2016 will take you to an external link. 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

  10. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling ... of a long room, then look for a fan control known as "Power Thrust" or "Super ...

  11. Reading Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reading Room Reading Room Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters. The FOIA requires certain kinds of documents to be made available to the public for inspection and copying. This is a requirement for agencies of the executive branch of the federal government. The documents that are required to be made available by the FOIA are: Final Opinions [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting

  12. Public Reading Room | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room Welcome to the U.S. Department of Energy Public Reading Room. In the Reading Room, you will find a host of technical and non-technical reports about Jefferson Lab and its operations. These reports include the lab's performance report card, environmental impact studies and more. Paper copies of these documents may be read at Jefferson Lab's Public Reading Area, located in CEBAF Center (Building 12), 12000 Jefferson Ave., Newport News, VA 23606. The reading area is located in

  13. Conference Rooms | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Admin. Contacts Lauren Raino Nancy Rezek Samantha L. Tezak Raquel C Young Conference Rooms The calendars for building 360 and 362 conference rooms are available on Google. To make a reservation, please contact one of the administrative contacts at left. Video conference/special needs require AV support. Please contact help@anl.gov. Building 360, Room A-224 Seating for ~50 Projector (ceiling mounted) Conference phone Video conferencing (Polycom, Skype, EVO, Vidyo) Conference table w/extra

  14. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  15. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  16. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect (OSTI)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but

  17. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...

  18. Public Reading Room: Environmental Documents, Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Environmental documents and reports are available online. Hard copies...

  19. Electronic FOIA Reading Room - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freedom of Information Act Regulations Privacy Act Regulations DOE Public Reading Room PNNL Technical Library Electronic FOIA Reading Room FOIA EDocuments Freedom of...

  20. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Researchers with the Argonne Center for Collaborative Energy Storage Science (ACCESS) will partner with industry to improve lead-acid battery performance. (Photo: Shutterstock) Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance Full Story » Exploring the unrealized potential of lead batteries is the goal of a new collaboration between Argonne National Laboratory and two leading lead recycling and lead battery manufacturing

  1. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  2. DOE-ID FOIA Reading Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reading Room READING ROOM Eectronic Freedom of Information Act, E-FOIA RECORDS UNDER THE E-FOIA The Electronic Freedom of Information Act Amendments of 1996 addresses the issues...

  3. Carbon War Room | Open Energy Information

    Open Energy Info (EERE)

    War Room Jump to: navigation, search Name: Carbon War Room Place: Washington, DC Number of Employees: 1-10 Website: www.carbonwarroom.com Coordinates: 38.8951118, -77.0363658...

  4. Public Reading Room: Environmental Documents, Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Environmental documents and reports are available online. Hard copies are available at the Laboratory's Public Reading Room in Pojoaque, New Mexico. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Public Reading Room: Environmental Documents, Reports Online Annual Environmental Report Electronic Public Reading

  5. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  6. Bioenergy 2015 Press Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Room Bioenergy 2015 Press Room This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news. Event Overview The U.S. Department of Energy's Bioenergy Technologies Office (BETO) will host its eighth annual conference-Bioenergy 2015: Opportunities in a Changing Energy Landscape. Co-hosted with the Clean Energy Research and Education Foundation, this year's conference will

  7. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Room Air Conditioners -- v1.6 (147.68 KB) More Documents & Publications

  8. Laboratory's Electronic Public Reading room training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Electronic Public Reading Room Training Laboratory's Electronic Public Reading room training WHEN: Oct 14, 2015 4:00 PM - 6:00 PM WHERE: J. Robert Oppenheimer Study Center, Room JRO 1&2 West Jemez Road at Casa Grande CATEGORY: Community Environment INTERNAL: Calendar Login Event Description The Department of Energy (DOE) and the Los Alamos National Security, LLC (LANS), are holding training on the contents and use of the Los Alamos National Laboratory (LANL) Electronic Public

  9. Room Temperature Ferrimagnetism and Ferroelectricity in Strained...

    Office of Scientific and Technical Information (OSTI)

    The demonstration of strain induced, high temperature multiferroism is a prom- ising development for future spintronic and memory applications at room temperature and above. 1. ...

  10. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above. Authors: ...

  11. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  12. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  13. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  14. Los Alamos test-room results

    SciTech Connect (OSTI)

    McFarland, R.D.; Balcomb, J.D.

    1982-01-01

    Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

  15. TA1 Room Layout with Newport Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCALE: 12" X 12" N S E W 22.50 JUPITER LASER FACILITY TA1 ROOM TA1 CHAMBER WEST BEAM CABLE COVER VISAR VIDMAR C O N T R O L R A C K...

  16. OMEGA Control Room - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Room - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE ...

  17. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect (OSTI)

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  18. Room-temperature creep of tantalum tritides

    SciTech Connect (OSTI)

    Schober, T.; Trinkaus, H. )

    1990-06-15

    We report on long-term creep experiments on dilute tantalum tritides at room temperature. Significant deviations of the recorded strain rates from isotropic swelling are found above approximately 30 MPa. We attribute this room-temperature creep to a stress-induced preferential dislocation loop punching by bubbles in crystallographic directions close the stress axis. Quantitative estimates show that this mechanism can indeed account for the observed creep rates.

  19. New Flexible Channels for Room Temperature Tunneling Field Effect...

    Office of Scientific and Technical Information (OSTI)

    New Flexible Channels for Room Temperature Tunneling Field Effect Transistors Citation Details In-Document Search Title: New Flexible Channels for Room Temperature Tunneling Field ...

  20. Golden Reading Room: Office of Acquisition Documents, Better...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Golden Reading Room: Office of Acquisition Documents, Better Buildings Initiative Support Services Below are electronic versions of Golden Field Office Reading Room documents that ...

  1. Golden Reading Room: Office of Acquisition Documents, Sole of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Golden Reading Room: Office of Acquisition Documents, Sole of Limited Source Justifications Below are electronic versions of Golden Field Office Reading Room documents that were ...

  2. Method of remotely constructing a room

    DOE Patents [OSTI]

    Michie, J.D.; De Hart, R.C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  3. Method of Remotely Constructing a Room

    DOE Patents [OSTI]

    Michie, J. D.; De Hart, R. C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  4. Control room habitability system review models

    SciTech Connect (OSTI)

    Gilpin, H. )

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs.

  5. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  6. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect (OSTI)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  7. Local public document room directory. Revision 7

    SciTech Connect (OSTI)

    1998-04-01

    This directory (NUREG/BR-0088, Revision 7) lists local public document rooms (LPDRs) for commercial nuclear power plants with operating or possession-only licenses or under construction, plus the LPDRs for potential high-level radioactive waste repository sites, gaseous diffusion plants, certain fuel cycle facilities, certain low-level waste disposal facilities, and any temporary LPDRs established for the duration of licensing proceedings. In some instances, the LPDR libraries maintain document collections for more than one licensed facility. The library staff members listed are the persons most familiar with the LPDR collections. Reference librarians in the NRC Headquarters Public Document Room (PDR) are also available to assist the public in locating NRC documents.

  8. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  9. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  10. Hanford workers begin cleaning out historic McCluskey Room

    Broader source: Energy.gov [DOE]

    Workers have entered one of the most hazardous rooms at the Hanford Site in Washington state to begin final cleanup of a room that became known to workers over the years by the name of a worker...

  11. Clean Room Challenge: Nanoscientist Quiz 2 | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Room Challenge: Nanoscientist Quiz 2 Click to email this to a friend (Opens in new ... Clean Room Challenge: Nanoscientist Quiz 2 Ron Olson 2011.04.15 Everybody, it is time for ...

  12. Clean Room Challenge: Nanoscientist Quiz 1 | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Room Challenge: Nanoscientist Quiz 1 Click to email this to a friend (Opens in new ... Clean Room Challenge: Nanoscientist Quiz 1 Ron Olson 2011.03.23 Hello everybody As you ...

  13. Certification of DOE Reading Rooms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification of DOE Reading Rooms Certification of DOE Reading Rooms Certification of DOE Reading Rooms by Ingrid Kolb, Chief FOIA Officer, October, 17, 2008. (57.79 KB) More Documents & Publications Memorandum from Secretary Moniz on the Freedom of Information Act (FOIA) Before the Subcommittee on National Parks - Senate Committee on Energy and Natural Resources DRAFT 2012 DOE Project Management Workshop Agenda

  14. Imprinting bulk amorphous alloy at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  15. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    SciTech Connect (OSTI)

    Le Blanc, Katya Lee; Oxstrand, Johanna Helene; Joe, Jeffrey Clark

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  16. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  17. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  18. Atomically resolved force microscopy at room temperature

    SciTech Connect (OSTI)

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  19. Covered Product Category: Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Covered Product Category: Room Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for room air conditioners, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law. MEETING EFFICIENCY REQUIREMENTS FOR FEDERAL PURCHASES The

  20. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Variable Speed Fan Retrofits for Computer Room Air Conditioners Variable Speed Fan Retrofits for Computer Room Air Conditioners Case study describes various concepts for more cost-effective cooling solutions in data centers, while keeping in mind that the reliability of computing systems and their respective cooling systems is always a key criterion. Download the Variable Speed Fan Retrofits for Computer Room Air Conditioners case study. (352.57 KB) More Documents &

  1. NEPA Reading Room | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    NEPA Reading Room Welcome to the National Nuclear Security Administration's NEPA Reading Room. This site serves as a focal point for NNSA NEPA implementation and contains information about past and current NNSA NEPA actions as well as other resources for NEPA practitioners and members of the public. Welcome to the National Nuclear Security Administration's NEPA Reading Room. This site serves as a focal point for NNSA NEPA implementation and contains information about past and current NNSA NEPA

  2. Time dependent deformation of metals at room temperature. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Time dependent deformation of metals at room temperature. Abstract not provided. Authors: Deibler, Lisa Anne ; Boyce, Brad Lee ; Puskar, Joseph D. Publication Date: ...

  3. B-Target Room Tunnel Redesigned

    SciTech Connect (OSTI)

    Esfandiari, Reza; /San Jose State U. /SLAC

    2010-08-25

    Several groups at SLAC National Accelerator Laboratory are currently working on a RF Modulator prototype for a future linear collider known as the International Linear Collider (ILC). The ILC runs using about a 1000 Klystrons which create high power carrier waves for the particle acceleration. Klystrons receive their electrical input power from modulators. In order to move beyond the prototype phase, the laboratory might expand its ground base further down a tunnel located at the End Station B (ESB) in order to house four new Klystron Modulator Test Stations. This area is known as the B-Target Room Tunnel, and the task was to redesign the tunnel layout for the upcoming changes. The project first began by collecting substantial amount of information about the prototyped project, the tunnel and the researchers feedback of what they would like to see in the upcoming design. Subsequent to numerous planning and presentations, one particular design was. Calculations for this design were then performed for the most complex aspects of the project. Based on the results of the calculations, specific sample beams, welds, bolts and materials were chosen for the possible future construction.

  4. Golden Reading Room: Office of Acquisition Documents, Small Purchases |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small Purchases Golden Reading Room: Office of Acquisition Documents, Small Purchases Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Small Purchases

  5. proposed designs for surface and subsurface information rooms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buried Room and Information Center located in middle of the berm Isometric view of the a subsurface room magnets could be used to alert would be intruders Information Center containing the most amount of information in several different languages and pictographs

  6. WIPP Reaches Milestone „ First Disposal Room Filled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Reaches Milestone - First Disposal Room Filled CARLSBAD, N.M., September 4, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that Room 7 of Panel 1 at the Waste Isolation Pilot Plant (WIPP), the first underground room used for disposal operations, has been filled to capacity with transuranic waste. The milestone was reached at about 3:30 p.m. on August 24, as Waste Handling personnel emplaced a shipment of waste from the Idaho National Engineering and

  7. Argonne scientists announce first room-temperature magnetic skyrmion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left to right: Argonne researchers Wanjun Jiang, Suzanne G.E. te Velthuis, and Axel Hoffman published a new way to make magnetic skyrmion bubbles at room temperature. Photo by...

  8. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  9. Five ENERGY STAR Room Air Conditioners Fail Testing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Enforcement announced today that DOE testing has identified five Friedrich room air conditioners that do not meet the ENERGY STAR Program’s energy...

  10. Measurements and computations of room airflow with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.; Hu, Y.; Yang, X.

    1999-07-01

    This paper presents a set of detailed experimental data of room airflow with displacement ventilation. These data were obtained from a new environmental test facility. The measurements were conducted for three typical room configurations: a small office, a large office with partitions, and a classroom. The distributions of air velocity, air velocity fluctuation, and air temperature were measured by omnidirectional hot-sphere anemometers, and contaminant concentrations were measured by tracer gas at 54 points in the rooms. Smoke was used to observe airflow. The data also include the wall surface temperature distribution, air supply parameters, and the age of air at several locations in the rooms. A computational fluid dynamics (CFD) program with the Re-Normalization Group (RNG) {kappa}-{epsilon} model was also used to predict the indoor airflow. The agreement between the computed results and measured data of air temperature and velocity is good. However, some discrepancies exist in the computed and measured concentrations and velocity fluctuation.

  11. OMEGA EP Control Room - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Room - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE ...

  12. Golden Reading Room: FOIA Requester Service Centers and Public Liaisons |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOIA Requester Service Centers and Public Liaisons Golden Reading Room: FOIA Requester Service Centers and Public Liaisons U.S. Department of Energy http://energy.gov/management/foia-contacts

  13. Golden Reading Room: Environmental Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessments Golden Reading Room: Environmental Assessments Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DOCUMENTS AVAILABLE FOR DOWNLOAD June 29, 2016 EA-2021: Draft Environmental Assessment Energy Conservation Standards for Manufactured Housing (RIN

  14. Golden Reading Room: FINAL Environmental Impact Statements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FINAL Environmental Impact Statements Golden Reading Room: FINAL Environmental Impact Statements Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Final Environmental Impact Statement for the Proposed Abengoa Biorefinery Project, Hugoton, Stevens County,

  15. Golden Reading Room: FOIA Frequently Requested Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Frequently Requested Documents Golden Reading Room: FOIA Frequently Requested Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DE-EE0002884 Sapphire Energy GO-12-043 Redacted Sapphire FOIA DE-EE0002877 Recovery Act Definitized Subcontract No.

  16. Golden Reading Room: FOIA Proactive Disclosures and Contracts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Proactive Disclosures and Contracts Golden Reading Room: FOIA Proactive Disclosures and Contracts Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). 2013 Solar Decathlon Information Click on this link for updates: Solar Decathlon Information. Alliance for

  17. Golden Reading Room: Office of Acquisition Documents, Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Support Services | Department of Energy Better Buildings Initiative Support Services Golden Reading Room: Office of Acquisition Documents, Better Buildings Initiative Support Services Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DE-SOL-0005538

  18. Golden Reading Room: Office of Acquisition Documents, Sole of Limited

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source Justifications | Department of Energy Sole of Limited Source Justifications Golden Reading Room: Office of Acquisition Documents, Sole of Limited Source Justifications Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Sole of Limited Source Justificati

  19. Golden Reading Room: Other NEPA Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other NEPA Documents Golden Reading Room: Other NEPA Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility at the University of California, Davis in Yolo County, California

  20. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOE Patents [OSTI]

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  1. Golden Field Office Reading Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Business Operations » Golden Field Office » Golden Field Office Reading Room Golden Field Office Reading Room The Golden Field Office was designated a Department of Energy (DOE) field office in December 1992 to support the development and commercialization of renewable energy and energy-efficient technologies. As a field office within DOE's Office of Energy Efficiency and Renewable Energy (EERE), Golden's mission is to award grants and manage contracts for clean energy projects,

  2. Golden Reading Room: NREL Environmental and NEPA Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NREL Environmental and NEPA Documents Golden Reading Room: NREL Environmental and NEPA Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year the National

  3. Golden Reading Room: Other NREL Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other NREL Documents Golden Reading Room: Other NREL Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 Director's Discretionary Research and Development Program, Annual Report FY 2007

  4. Spa Motel Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Spa Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Spa Motel Pool & Spa Low Temperature Geothermal Facility Facility Spa Motel Sector...

  5. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  6. Control Room operations: an investigation of the task of the operator in a Colliery Control Room. Final report

    SciTech Connect (OSTI)

    Simpson, G.C.; Best, C.F.; Ferguson, C.A.; Graveling, R.A.; Nicholl, A.G.M.

    1982-09-01

    A detailed study of the ergonomics aspects of four representative Colliery Control Rooms was carried out. Numerous ergonomics limitations, many common to each of the control rooms studied, were identified particularly in relation to workspace dimensions, console layout and lighting. In order to overcome these limitations in future designs, a report detailing the Ergonomics Principles of Colliery Control Room design and Layout was prepared on the basis of the information obtained. Task analysis carried out during the studies revealed that control room operators could have a direct effect on production and that ergonomics aspects were involved in these situations. Indications of potential ergonomics problems in the wider sphere of job design were also identified particularly in relation to information handling.

  7. Energy Efficiency in Small Server Rooms: Field Surveys and Findings

    SciTech Connect (OSTI)

    Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh; Brown, Richard; Tschudi, William

    2014-08-11

    Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 small server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.

  8. Control room envelope unfiltered air inleakage test protocols

    SciTech Connect (OSTI)

    Lagus, P.L.; Grot, R.A.

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  9. Information Foraging in Nuclear Power Plant Control Rooms

    SciTech Connect (OSTI)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  10. A computerized main control room for NPP: Development and investigation

    SciTech Connect (OSTI)

    Anokhin, A. N.; Marshall, E. C.; Rakitin, I. D.; Slonimsky, V. M.

    2006-07-01

    An ergonomics assessment of the control room at Leningrad Nuclear Power Plant has been undertaken as part of an international project funded by the EU TACIS program. The project was focused on the upgrading of the existing control facilities and the installation of a validation facility to evaluate candidate refurbishment proposals before their implementation at the plant. The ergonomics methodology applied in the investigation was wide ranging and included an analysis of reported events, extensive task analysis (including novel techniques) and validation studies using experienced operators. The paper addresses the potential difficulties for the human operator associated with fully computerized interfaces and shows how the validation facility and the outcomes from ergonomics assessment will be used to minimise any adverse impact on performance that may be caused by proposed control room changes. (authors)

  11. Code System for Evaluation of Control Room Habitability.

    Energy Science and Technology Software Center (OSTI)

    2002-04-11

    Version: 01 HABIT 1.1 is a suite of computer codes designed for evaluating control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. EXTRAN 1.2, CHEM, TACT5, FPFP_2, and CONHAB are included in the system. HABIT was used in the verification and validation of RADTRAD, which NRC now uses to assess radiation exposure, typically in the control room, as well as site boundary doses, and to estimate dose attenuationmore » due to modification of a facility or accident sequence. RADTRAD does not assess chemical exposure, so HABIT is retained in the RSICC collection for this purpose. RADTRAD is available from Alion Science http://radtrad.com/.« less

  12. Operator experiences on working in screen-based control rooms

    SciTech Connect (OSTI)

    Salo, L.; Laarni, J.; Savioja, P.

    2006-07-01

    This paper introduces the results of two interview studies carried out in Finland in four conventional power plants and one nuclear power plant. The aim of the studies was to gather data on user experiences on the effects of control room modernization and digital control room technology on operator work Since the number of completed digitalization projects in nuclear power plants is small supplementary information was gathered by interviewing operators in conventional power plants. Our results suggest that even though the modernization processes have been success stories, they have created new challenges for operator personnel. Examples of these challenges are increased requirements for competence and collaboration, problems in trust calibration and development of awareness of the process state. Some major differences in the digitalization of human-system interfaces between conventional and nuclear power plants were discussed. (authors)

  13. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOE Patents [OSTI]

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  14. Golden Reading Room: NEPA Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Categorical Exclusions Golden Reading Room: NEPA Categorical Exclusions Categorical Exclusion Determinations issued by Golden Field Office of the Office of Energy Efficiency and Renewable Energy (EERE). DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 2016 CX-100668 Categorical Exclusion Determination A New Remote Communications Link to Reduce Residential PV Solar Costs Award Number: DE-EE0007592 CX(s) Applied: A9, B5.15 Solar Energy Technology Office Date: 7/26/2016 Location(s): CA Office(s):

  15. The selection of turbulence models for prediction of room airflow

    SciTech Connect (OSTI)

    Nielsen, P.V.

    1998-10-01

    The airflow in buildings involves a combination of many different flow elements. It is, therefore, difficult to find an adequate, all-round turbulence model covering all aspects. Consequently, it is appropriate and economical to choose turbulence models according to the situation that is to be predicted. This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation for room dimensions and velocity level also is discussed. A {kappa}-{epsilon} model expanded by damping functions is used to improve the prediction of the flow in a room ventilated by displacement ventilation. The damping functions especially take into account the turbulence level and the vertical temperature gradient. Low Reynolds number models (LNR models) are used to improve the prediction of evaporation-controlled emissions from building material, which is shown by an example. Finally, large eddy simulation (LES) of room airflow is discussed and demonstrated.

  16. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  17. Verification and Validation of Digitally Upgraded Control Rooms

    SciTech Connect (OSTI)

    Boring, Ronald; Lau, Nathan

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  18. Room temperature ferromagnetism in conducting α-(In{sub 1-x...

    Office of Scientific and Technical Information (OSTI)

    Room temperature ferromagnetism in conducting -(Insub 1-xFesub x)sub 2Osub 3 alloy films Citation Details In-Document Search Title: Room temperature ferromagnetism in ...

  19. DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy $1.5M Settlement with Room Air Conditioner Manufacturer DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer October 27, 2015 - 5:48pm Addthis The General Counsel's enforcement office settled an enforcement action against Friedrich Air Conditioning Company for $1,494,626.25, for the distribution of room air conditioners that failed to meet federal minimum standards for energy efficiency. Room air conditioners must meet minimum efficiency standards to be

  20. Golden Reading Room: Freedom of Information Act (FOIA) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Freedom of Information Act (FOIA) Golden Reading Room: Freedom of Information Act (FOIA) The Golden FOIA Office within the Office of Energy Efficiency and Renewable Energy (EERE) exists to execute the legal requirements of the Freedom of Information Act (5 U.S.C. § 552(a)(3)(A) (2006), amended by OPEN Government Act of 2007, Pub. L. No. 110175, 121 Stat. 2524). Enacted on July 4, 1966, and taking effect on one year later, the Freedom of Information Act provides that any person has a

  1. Guest Room Lighting at the Hilton Columbus Downtown

    SciTech Connect (OSTI)

    2014-06-30

    At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code. This document is a summary case study of the report.

  2. Press Room - Events - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Press Room Glossary › FAQS › Overview Press Releases Testimony Presentations Radio Events Events 2016 EIA Annual Energy Conference Previous EIA conferences Media Contacts Jonathan Cogan Email: Jonathan.Cogan@eia.gov Phone: 202-586-8719 Office of Communications Email: Infoctr@eia.gov Subject Matter Experts Gasoline prices prior to Labor Day lowest in 12 years graph of U.S. regular retail gasoline price, as explained in the article text p> See More › Resources What's New Upcoming Reports

  3. The Committee convened in the Clark Room, Holiday Inn Capitol,

    U.S. Energy Information Administration (EIA) Indexed Site

    MEETING - - - Thursday, April 25, 1996 - - - The Committee convened in the Clark Room, Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Dr. Timothy D. Mount, Chairman, presiding. PRESENT: TIMOTHY D. MOUNT, Chairman SAMPRIT CHATTERJEE BRENDA G. COX JOHN D. GRACE CALVIN KENT GRETA M. LJUNG RICHARD A. LOCKHART DANIEL A. RELLES PRESENT (Continued): BRADLEY O. SKARPNESS G. CAMPBELL WATKINS ALSO PRESENT: RENEE MILLER YVONNE BISHOP MARY HUTZLER JAY HAKES DOUGLAS HALE ART HOLLAND

  4. Twin Peaks Motel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin...

  5. Box Canyon Motel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canyon Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box...

  6. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

  7. Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Facility Home...

  8. Room-temperature ferromagnetism in cerium dioxide powders

    SciTech Connect (OSTI)

    Rakhmatullin, R. M. Pavlov, V. V.; Semashko, V. V.; Korableva, S. L.

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  9. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  10. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    SciTech Connect (OSTI)

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ion layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.

  11. Subsidence vulnerability in shallow room-and-pillar mines

    SciTech Connect (OSTI)

    Missavage, R.

    1985-07-01

    Concern over mining-related subsidence is inhibiting the development of surface land uses in previously mined areas and is constraining the recovery of coal resources in areas with established land uses that might be impacted by subsequent subsidence. The determination of subsidence vulnerability of mined-out areas (especially abandoned mine areas) can be a useful tool in the design and location of surface structures. A model has been developed for assessing subsidence vulnerability in shallow room-and-pillar mines based on the flexural rigidity and strength characteristics of the overlying strata. The model does not predict the subsidence profile or when the subsidence will occur. It only predicts those areas that are likely to subside. This paper briefly describes the model and its testing.

  12. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  13. Room-temperature LINAC structures for the spallation neutron source

    SciTech Connect (OSTI)

    Billen, J. H.; Young, L. M.; Kurennoy, S.; Crandall, K. R.

    2001-04-01

    Los Alamos National Laboratory is building room-temperature rf accelerating structures for the Spallation Neutron Source (SNS). These structures, for H{sup -} ions, consist of six 402.5-MHz, 2-MW drift-tube linac (DTL) tanks from 2.5 to 87 MeV followed by four 805-MHz, 4-MW coupled-cavity linac (CCL) modules to 186 MeV. The DTL uses permanent magnet quadrupoles inside the drift tubes arranged in a 6{beta}{lambda} FFODDO lattice with every third drift tube available for diagnostics and steering. The CCL uses a 13{beta}{lambda} FODO electromagnetic quadrupole lattice. Diagnostics and magnets occupy the 2.5{beta}{lambda} spaces between 8-cavity segments. This paper discusses design of the rf cavities and low-power modeling work.

  14. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    SciTech Connect (OSTI)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  15. Current Approaches for Control Room I and C Modernization

    SciTech Connect (OSTI)

    Lopez, Alberto; Jimenez, Alfonso

    2002-07-01

    In general, instrumentation and control (I and C) systems for nuclear power plants were made using analogic systems and relays, since this was the only technology available by the time these systems were designed. This fact impacts on the operational and maintenance capabilities required to these systems. For this reason, nuclear power plants are facing nowadays two challenges: on one hand, the obsolescence of these systems contributes to the increase in the operation and maintenance costs - due to the difficulties for getting spare parts and support from the system vendors -. On the other hand, there has been an increase in the utilities competitiveness due to the electric power market liberalization. All this, of course, along with the commitment to maintain the current safety levels and meet the new requirements and standards that may arise in the near future. The application of current technologies, especially digital technology, solves the obsolescence problems and allows for a more functional and updated human-machine interface. Nevertheless, the cost associated to these modifications makes it necessary to develop strategies to determine which systems need to be modified and how to implement modifications effectively, so that these systems can work jointly with others using different technologies. Other issues inherent to digital technology must be considered, such as verification and validation of the software and of the human-machine interface, which are required for its licensing. This presentation describes the current approaches for I and C modernization, the main reasons, technologies and implementation plans, focusing on the control room and on the impact on operations. The main issues to be considered for developing a specific modernization plan are analysed. The goals and status of the 'Feasibility Study of the Control Room I and C Modernization' are described. This study is currently being developed by Endesa, Iberdrola and Tecnatom, and is included

  16. ISC Conventional Reading Rooms | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISC Conventional Reading Rooms Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Advisory Exemptions How to Submit a FOIA Request Fee Waiver and Reduction Criteria Electronic Reading Room ISC Conventional Reading Rooms Reference Links Privacy Act NEPA Documents Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Kenneth Tarcza U.S. Department of Energy

  17. Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor

    DOE Patents [OSTI]

    O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.

    1981-01-01

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  18. Electronic Reading Room | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Reading Room Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Advisory Exemptions How to Submit a FOIA Request Fee Waiver and Reduction Criteria Electronic Reading Room ISC Conventional Reading Rooms Reference Links Privacy Act NEPA Documents Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Kenneth Tarcza U.S. Department of Energy 200

  19. ISSUANCE 2015-06-09: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

  20. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect (OSTI)

    Comandar, L. C.; Patel, K. A.; Frhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50?km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  1. System and method for the identification of radiation in contaminated rooms

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2015-09-29

    Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.

  2. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  3. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect (OSTI)

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  4. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  5. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  6. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  7. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  8. Stability analysis of a backfilled room-and-pillar mine

    SciTech Connect (OSTI)

    Tesarik, D.R.; Seymour, J.B.; Yanske, T.R.; McKibbin, R.W.

    1995-12-31

    Displacement and stress changes in cemented backfill and ore pillars at the Buick Mine, near Boss, MO, were monitored by engineers from the US Bureau of Mines and The Doe Run Co., St. Louis, MO. A test area in this room-and-pillar mine was backfilled to provide support when remnant ore pillars were mined. Objectives of this research were to evaluate the effect of backfill on mine stability, observe backfill conditions during pillar removal, and calibrate a numerical model to be used to design other areas of the mine. Relative vertical displacements in the backfill were measured with embedment strain gauges and vertical extensometers. Other types of instruments used were earth pressure cells (to identify loading trends in the backfill), borehole extensometers (to measure relative displacement changes in the mine roof and support pillars), and biaxial stressmeters (to measure stress changes in several support pillars and abutments). Two- and three-dimensional numeric codes were used to model the study area. With information from these codes and the installed instruments, two failed pillars were identified and rock mass properties were estimated.

  9. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive Room-to-Room Air Transfer Fresno, California PROJECT INFORMATION Construction: Retrofit Type: Single-family Builder: GreenEarthEquities (retrofit); http://greenearthequities.com/ Size: 1,621 ft 2 Price range: About $140,000 Date completed: 2011 Climate zone: Mixed-dry PERFORMANCE DATA HERS index: Not available Builder standard practice: Not available Case study house: 1,621 ft 2 With renewables: Not applicable Without renewables: 50.1% Projected annual energy cost savings: Not available

  10. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect (OSTI)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  11. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  12. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates...

  13. Microstructure evolution in Xe-irradiated UO2 at room temperature

    SciTech Connect (OSTI)

    L.F. He; J. Pakarinen; M.A. Kirk; J. Gan; A.T. Nelson; X.-M. Bai; A. El-Azab; T.R. Allen

    2014-07-01

    In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 keV Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation.

  14. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  15. Crews Make First Entry into McCluskey Room for Final Cleanup at Hanford

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site | Department of Energy Crews Make First Entry into McCluskey Room for Final Cleanup at Hanford Site Crews Make First Entry into McCluskey Room for Final Cleanup at Hanford Site September 30, 2014 - 12:00pm Addthis Bryan Harting, nuclear chemical operator for CH2M HILL Plateau Remediation Company, was part of the crew that made the first entry to begin final cleanup of the McCluskey Room at Hanford’s Plutonium Finishing Plant this month. Bryan Harting, nuclear chemical operator for

  16. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    SciTech Connect (OSTI)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  17. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    SciTech Connect (OSTI)

    Altiero, Nicholas

    2014-10-28

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  18. Y-12 helps transform Children's Museum room | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex helps transform ... Y-12 helps transform Children's Museum room Posted: May 21, 2015 - 4:54pm At a recent ribbon cutting ceremony, Children's Museum of Oak Ridge Executive Director Mary Ann Damos (at left) discusses the new Mars Rocket Room with CMOR Board Chair Tom Beehan, CMOR board member and Y-12er Chris Clark, Dawn Van Eek of CMOR and museum volunteer Larry Burkholder. The Children's Museum of Oak Ridge recently debuted its new Mars Rocket Room, giving kids an interactive space

  19. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect (OSTI)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  20. Room-temperature lithium metal battery closer to reality > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-temperature lithium metal battery closer to reality February 3rd, 2016 By Tom ... The relative non-conductivity and brittleness of such barriers, however, means the battery ...

  1. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect (OSTI)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  2. Chapter_2_Limited_Areas_Vault-Type_Rooms_and_Temporary_Limited...

    Energy Savers [EERE]

    ... When the transfer needs to take place (date or range of dates). 3. For removal of a STE or vIPER, the e-mail should include: a. Username b. Room number c. Contact number d. STE or ...

  3. Summary of MgO Bag and Room Model Team | Department of Energy

    Office of Environmental Management (EM)

    This document corresponds to Appendix D: Modeling Integrated Summary Report of the Technical Assessment Team Report. Summary of MgO Bag and Room Model Team (2.85 MB) More Documents ...

  4. Workers Prepare to Safely Enter One of Hanford Site’s Most Hazardous Rooms

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – When workers enter the hazardous, historic McCluskey Room at the Hanford site this summer, they will be safer due to their preparation and involvement in planning and training for the job.

  5. The LANL C-NR counting room and fission product yields

    SciTech Connect (OSTI)

    Jackman, Kevin Richard

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  6. Hanford Disposal Facility Expands Vertically to Make Room for More Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Disposal Facility Expands Vertically to Make Room for More Waste Hanford Disposal Facility Expands Vertically to Make Room for More Waste February 11, 2016 - 12:25pm Addthis This photo illustration of the conceptual view shows the vertical expansion of the Environmental Restoration Disposal Facility. The large area on the right includes the uppermost surface of the vertical expansion, which will be shaped to form a crown and will be covered with a 2 percent grade and

  7. Room-temperature calorimeter for x-ray free-electron lasers

    SciTech Connect (OSTI)

    Tanaka, T. Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-15

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%)

  8. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    SciTech Connect (OSTI)

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong; Gu, Junxing; Liang, Yan; Li, Wentao; Wang, Weihua; Jin, Kuijuan; Gu, Lin; Guo, Jiandong

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth. Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.

  9. EARLY-STAGE DESIGN AND EVALUATION FOR NUCLEAR POWER PLANT CONTROL ROOM UPGRADES

    SciTech Connect (OSTI)

    Ronald L. Boring; Jeffrey C. Joe; Thomas A. Ulrich; Roger T. Lew

    2015-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate operator performance with these systems as part of a verification and validation process. While there is regulatory and industry guidance for some modernization activities, there are no well defined standard processes or predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages. This paper proposes a framework defining the design process and metrics for evaluating human system interfaces as part of control room modernization. The process and metrics are generalizable to other applications and serve as a guiding template for utilities undertaking their own control room modernization activities.

  10. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-μm transport was observed within an electron spin lifetime of 1.2 ns at room temperature when using an in-plane electric field of 1.75 kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  11. Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes

    SciTech Connect (OSTI)

    Liao, Yulong E-mail: hwzhang@uestc.edu.cn; Zhang, Huaiwu E-mail: hwzhang@uestc.edu.cn; Li, Jie; Yu, Guoliang; Zhong, Zhiyong; Bai, Feiming; Jia, Lijun; Zhang, Shihong; Zhong, Peng

    2014-05-07

    This study reports the room-temperature ferromagnetism in Cr-doped TiO{sub 2} nanotubes (NTs) synthesized via the electrochemical method followed by a novel Cr-doping process. Scanning electron microscopy and transmission electron microscopy showed that the TiO{sub 2} NTs were highly ordered with length up to 26 ?m, outer diameter about 110 nm, and inner diameter about 100 nm. X-ray diffraction results indicated there were no magnetic contaminations of metallic Cr clusters or any other phases except anatase TiO{sub 2}. The Cr-doped TiO{sub 2} NTs were further annealed in oxygen, air and argon, and room-temperature ferromagnetism was observed in all Cr-doped samples. Moreover, saturation magnetizations and coercivities of the Cr-doped under various annealing atmosphere were further analyzed, and results indicate that oxygen content played a critical role in the room-temperature ferromagnetism.

  12. HYBRID ALARM SYSTEMS: COMBINING SPATIAL ALARMS AND ALARM LISTS FOR OPTIMIZED CONTROL ROOM OPERATION

    SciTech Connect (OSTI)

    Ronald L. Boring; J.J. Persensky

    2012-07-01

    The US Department of Energy (DOE) is sponsoring research, development, and deployment on Light Water Reactor Sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current nuclear power plants. One of the main areas of focus is control room modernization. Within control room modernization, alarm system upgrades present opportunities to meet the broader goals of the LWRS project in demonstrating the use and safety of the advanced instrumentation and control (I&C) technologies and the short-term and longer term objectives of the plant. In this paper, we review approaches for and human factors issues behind upgrading alarms in the main control room of nuclear power plants.

  13. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  14. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    SciTech Connect (OSTI)

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Department of Nanotechnology, School of Interdisciplinary Courses, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629180, Tamil Nadu ; Chavali, Murthy; Department of Applied Chemistry, Providence University, 200 Chungchi Road, Shalu, Taichung Hsien 433, Taiwan, R.O.C

    2012-07-15

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R{sub air}/R{sub alcohol}) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R{sup 2} of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  15. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  16. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  17. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature

    SciTech Connect (OSTI)

    Lucivero, Vito Giovanni; Anielski, Pawel; Gawlik, Wojciech; Mitchell, Morgan W.

    2014-11-15

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/?(Hz) at 7.6 ?T. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 ?T to 75??T. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  18. PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Authors: Flory, J.D., Shinde, S., Lin, S., Liu, Y., Yan, H., Ghirlanda, G., and Fromme, P. Title: PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Source: J. Am. Chem. Soc. Year: 2013 Volume: 135 (18) Pages: 6985-6993 ABSTRACT: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA

  19. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect (OSTI)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  20. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect (OSTI)

    Jokstad, Håkon; Boring, Ronald

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has

  1. Charles Motel & Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Charles Motel & Bathhouse Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  2. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOE Patents [OSTI]

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  3. Method of installing a control room console in a nuclear power plant

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  4. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    SciTech Connect (OSTI)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  5. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    SciTech Connect (OSTI)

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  6. Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air

    ScienceCinema (OSTI)

    Charles Weschler

    2010-09-01

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).

  7. Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air

    SciTech Connect (OSTI)

    Charles Weschler

    2010-03-29

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).

  8. Current methods to handle wall conduction and room internal heat transfer

    SciTech Connect (OSTI)

    Davies, M.G.

    1999-07-01

    This paper reviews methods of handling wall conduction and room internal heat exchange adopted by ASHRAE (1993 Handbook of Fundamentals and later developments), CIBSE (1986 Guide and current proposals), and the CEN/TC89/WG6 proposals to calculate heating and cooling loads and related topics.

  9. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect (OSTI)

    Gilbertson, Adam; Cohen, L. F.; Lambert, C. J.; Solin, S. A.

    2013-12-04

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  10. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy waste and improves the kinetics of the oxygen reduction reaction, toward a more efficient fuel cell cycle. Los Alamos explores hybrid ultrasmall gold nanocluster for...

  11. Headquarters Facilities Master Security Plan- Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas

    Office of Energy Efficiency and Renewable Energy (EERE)

    2016 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas Describes DOE Headquarters procedures for establishing, maintaining, and deactivating Limited Areas and Vault-Type Rooms and protecting the classified information handled within those Areas.

  12. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    SciTech Connect (OSTI)

    Le Blanc, Katya; Joe, Jeffrey; Rice, Brandon; Ulrich, Thomas; Boring, Ronald

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  13. BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Boring; Vivek Agarwal

    2012-07-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  14. Realization of ground-state artificial skyrmion lattices at room temperature

    SciTech Connect (OSTI)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  15. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  16. Method and global relationship for estimation of transmitted solar energy distribution in passive solar rooms

    SciTech Connect (OSTI)

    Athienitis, A.K.; Stylianou, M. )

    1991-01-01

    Estimation of the distribution of transmitted solar radiation within a room with large windows is required for correct prediction of building thermal performance and for optimal positioning of the thermal storage mass. This article presents a detailed computer method that determines the instantaneous solar radiation transmitted through a window and absorbed by each room interior surface, and a correlation for estimating the fraction of daily total transmitted solar radiation absorbed by the floor for several latitudes, for different shapes of enclosures, and for varying surface solar absorptances. The correlation was developed by fitting an exponential relationship to results obtained from a numerical study of the variation of the following parameters influencing the distribution of solar radiation: latitude, day of year, geometry of enclosure (width-to-depth ratio and window azimuth angle), window-to-floor area ratio, and surface absorptances.

  17. Room-temperature elastic constants of Sc and ScD[sub 0. 18

    SciTech Connect (OSTI)

    Leisure, R.G. ); Schwarz, R.B.; Migliori, A.; Lei, M. )

    1993-07-01

    The complete set of elastic constants for Sc and ScD[sub 0.18] has been measured at room temperature. The results show that the addition of hydrogen to this rare-earth metal has a qualitatively different effect than the addition of hydrogen to transition metals such as palladium, vanadium, niobium, and tantalum. In the case of Sc all five elastic constants increase with the addition of hydrogen. The bulk modulus for ScD[sub 0.18] is 9.5% higher than that for Sc. The Debye temperature computed from the room-temperature elastic constants is 355 K for Sc and 371 K for ScD[sub 0.18].

  18. Observation of optical spin injection into Ge-based structures at room temperature

    SciTech Connect (OSTI)

    Yasutake, Yuhsuke; Hayashi, Shuhei; Fukatsu, Susumu; Yaguchi, Hiroyuki

    2013-06-17

    Non-zero spin polarization induced by optical orientation was clearly observed at room temperature in a Ge/Ge{sub 0.8}Si{sub 0.2} quantum well grown on Ge and a Ge layer grown on Si by molecular beam epitaxy, whereas it was absent in bulk Ge. This occurred because indirect-gap photoluminescence (PL), which can obscure the spin-polarization information carried by the direct-gap PL, was quenched by unintentional growth-related defects in the epitaxial layers. Such interpretation was confirmed by applying time gating that effectively removed the indirect-gap PL characterized by a slower rise time, which allowed us to demonstrate the existence of room-temperature spin polarization in bulk Ge.

  19. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  20. Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature

    SciTech Connect (OSTI)

    Liu, Yang Infante, Ingrid C.; Dkhil, Brahim; Lou, Xiaojie

    2014-02-24

    Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ΔT for the two opposite polarization orientations. This difference under a typical writing voltage of 3 V can reach over 1 K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53 K/V) with ΔT being over 4.5 K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

  1. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect (OSTI)

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  2. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  3. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect (OSTI)

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  4. Research on cw electron accelerators using room-temperature rf structures: Annual report

    SciTech Connect (OSTI)

    Not Available

    1986-08-15

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits.

  5. The Committee met in Room 8E089 in the Forrestal Building, 1800

    U.S. Energy Information Administration (EIA) Indexed Site

    APRIL 4, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1800 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT: F. JAY BREIDT, Chair MARK BERNSTEIN, Committee Member JOHNNY BLAIR, Committee Member JAE EDMONDS, Committee Member MOSHE FEDER, Committee Member JAMES K. HAMMITT, Committee Member NEHA KHANNA, Committee Member WILLIAM G. MOSS, Committee Member NAGARAJ K. NEERCHAL, Committee Member POLLY A. PHIPPS, Committee

  6. Wobbling Molecules Probe Wiggle Room in Nanochannels | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Wobbling Molecules Probe Wiggle Room in Nanochannels Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.14 Wobbling Molecules

  7. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partnersthe U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI designboth for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  8. Method of Production of Pure Hydrogen Near Room Temperature From Ultra High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Hydride Materials - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Method of Production of Pure Hydrogen Near Room Temperature From Ultra High Capacity Hydride Materials Ames Laboratory Contact AMES About This Technology Technology Marketing Summary This is a cost-effective method for the production of pure hydrogen gas from ultra high capacity hydride

  9. Golden Reading Room: Request for Proposals (RFP) Number DE-RP36-07GO97036 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Request for Proposals (RFP) Number DE-RP36-07GO97036 Golden Reading Room: Request for Proposals (RFP) Number DE-RP36-07GO97036 RFP DE-RP36-07GO97036 -- Management and Operation of the National Renewable Energy Laboratory Alliance Prime Contract No. DE-AC36-08GO28308, through modification 1033

  10. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect (OSTI)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  11. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    3 Lodging Industry Profile (Thousands) 2004 2006 2008 2010 Location Properties Rooms Properties Rooms Properties Rooms Properties Rooms Suburban Highway Urban Airport Resort Small Metro Rate Under $30 $30-44.99 $45-59.99 $60-85 Over $85 Number of Rooms Under 75 75 - 149 150 - 299 300 - 500 Over 500 Source(s): 17.5 1,746 6.7 446 6.8 452 7.1 480 7.3 498 15.8 1,564 15.9 1,577 16.8 1,668 4.9 754 1.9 274 2.0 275 2.1 294 2.2 305 4.6 706 4.5 691 4.7 721 3.8 595 14.5 826 14.4 827 15.1 878 15.4 904 4.1

  12. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    SciTech Connect (OSTI)

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  13. ISSUANCE 2015-07-17: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information, Extension of the Public Comment Period

  14. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  15. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect (OSTI)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  16. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  17. Control room modernization at Finnish nuclear power plants - Two projects compared

    SciTech Connect (OSTI)

    Laarni, J.; Norros, L.

    2006-07-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  18. Staff Radiation Doses in a Real-Time Display Inside the Angiography Room

    SciTech Connect (OSTI)

    Sanchez, Roberto Vano, E.; Fernandez, J. M.; Gallego, J. J.

    2010-12-15

    MethodsThe evaluation of a new occupational Dose Aware System (DAS) showing staff radiation doses in real time has been carried out in several angiography rooms in our hospital. The system uses electronic solid-state detectors with high-capacity memory storage. Every second, it archives the dose and dose rate measured and is wirelessly linked to a base-station screen mounted close to the diagnostic monitors. An easy transfer of the values to a data sheet permits further analysis of the scatter dose profile measured during the procedure, compares it with patient doses, and seeks to find the most effective actions to reduce operator exposure to radiation.ResultsThe cumulative occupational doses measured per procedure (shoulder-over lead apron) ranged from 0.6 to 350 {mu}Sv when the ceiling-suspended screen was used, and DSA (Digital Subtraction Acquisition) runs were acquired while the personnel left the angiography room. When the suspended screen was not used and radiologists remained inside the angiography room during DSA acquisitions, the dose rates registered at the operator's position reached up to 1-5 mSv/h during fluoroscopy and 12-235 mSv/h during DSA acquisitions. In such case, the cumulative scatter dose could be more than 3 mSv per procedure.ConclusionReal-time display of doses to staff members warns interventionists whenever the scatter dose rates are too high or the radiation protection tools are not being properly used, providing an opportunity to improve personal protection accordingly.

  19. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    SciTech Connect (OSTI)

    Joe, Jeffrey Clark; Thomas, Kenneth David; Boring, Ronald Laurids

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  20. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    SciTech Connect (OSTI)

    Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2006-02-06

    The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

  1. A comparison of hydrogen and mercury embrittlement in monel at room temperature

    SciTech Connect (OSTI)

    Taylor, L.B.; Price, C.E.

    1986-01-01

    Slow strain rate tensile tests were performed on annealed and cold drawn Monel 400 and Monel R405 at room temperature in air, mercury, and electrolyte hydrogen. Hydrogen and mercury caused embrittlement with the fractures having the same specific features. Crack initiation was largely intergranular but an increasing proportion of transgranular cracking occurred subsequently, especially in the presence of hydrogen and for monel R405. It is believed that the decreased cohesive strength and enhanced shear models of embrittlement apply to the intergranular and transgranular crack modes respectively.

  2. The Committee convened in the Clark Room of the Holiday Inn

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - - COMMITTEE ON ENERGY STATISTICS - - - - - MEETING - - - - - FRIDAY, APRIL 26, 1996 The Committee convened in the Clark Room of the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., DR. TIMOTHY D. MOUNT, Chair, presiding. PRESENT: TIMOTHY D. MOUNT, Chair SAMPRIT CHATTERJEE BRENDA G. COX JOHN D. GRACE CALVIN KENT GRETA M. LJUNG RICHARD A. LOCKHART DANIEL A. RELLES BRADLEY O. SKARPNESS G. CAMPBELL WATKINS ALSO PRESENT: RENEE MILLER YVONNE M. BISHOP DIANE LIQUE L.A.

  3. The Committee met at 8:30 a.m., in Room 8E-089, Forrestal

    U.S. Energy Information Administration (EIA) Indexed Site

    + + + + + FALL MEETING + + + + + Friday, November 3, 2000 + + + + + The Committee met at 8:30 a.m., in Room 8E-089, Forrestal Building, U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C., Dr. Carol Gotway Crawford, Chairperson, presiding. PRESENT: CAROL A. GOTWAY CRAWFORD, Ph.D., Chairperson F. JAY BREIDT, Ph.D., Vice Chairperson THOMAS G. COWING, Ph.D. JAMES K. HAMMITT, Ph.D. CALVIN A. KENT, Ph.D. W. DAVID MONTGOMERY, Ph.D. WILLIAM G. MOSS, Ph.D. PRESENT (Continued):

  4. The Committee met in the Columbia Room at the Holiday Inn

    U.S. Energy Information Administration (EIA) Indexed Site

    Friday, April 21, 1995 - - - The Committee met in the Columbia Room at the Holiday Inn Capitol, 550 C Street S.W., Washington, D.C., at 9:00 a.m., Timothy D. Mount, Chairman, presiding. PRESENT: TIMOTHY D. MOUNT, Chair DAVID R. BELLHOUSE CHARLES W. BISCHOFF BRENDA G. COX FAYE DUCHIN JOHN D. GRACE PHILIP HANSWER CALVIN KENT GRETA M. LJUNG JAMES L. O'BRIEN DANIEL A. RELLES BRADLEY O. SKARPNESS G. CAMPBELL WATKINS A-G-E-N-D-A Page No. Introductory Remarks, TIMOTHY MOUNT, Chairman 3 Announcement of

  5. The Committee met in Conference Room 8E-089 in the Forrestal

    U.S. Energy Information Administration (EIA) Indexed Site

    THURSDAY APRIL 13, 2000 + + + + + The Committee met in Conference Room 8E-089 in the Forrestal Building at 10th Street and Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Carol Gotway Crawford, Chair, presiding. PRESENT: CAROL A. GOTWAY CRAWFORD, PhD Chair JAY BREIDT, PhD Member THOMAS G. COWING, PhD Member CALVIN A. KENT, PhD Member W. DAVID MONTGOMERY, PhD Member WILLIAM G. MOSS, PhD Member POLLY A. PHIPPS, PhD Member RANDY R. SITTER, PhD Member ROY WHITMORE, PhD Member JOHNNY

  6. The Committee met in Room 1E-245 of the Forrestal Building,

    U.S. Energy Information Administration (EIA) Indexed Site

    COMMITTEE ON ENERGY STATISTICS MEETING FRIDAY NOVEMBER 20, 1998 The Committee met in Room 1E-245 of the Forrestal Building, Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C. at 8:30 a.m., Daniel A. Relles, Chair, presiding. PRESENT: Daniel A. Relles, Chair Carol Gotway Crawford, Vice Chair David R. Bellhouse Charles W. Bischoff Jay Breidt R. Samprit Chatterjee Greta M. Ljung Polly A. Phipps Seymour Sudman ALSO PRESENT: Lynda CarlsonBob Jewett Mary CarlsonRoy Kass Jay

  7. The Committee met in Room 1E-246 of the Forrestal Building at

    U.S. Energy Information Administration (EIA) Indexed Site

    MEETING + + + + + THURSDAY NOVEMBER 19, 1998 The Committee met in Room 1E-246 of the Forrestal Building at the Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Daniel A. Relles, Chair, presiding. PRESENT: DANIEL A. RELLES Chair CAROL GOTWAY CRAWFORD Vice Chair DAVID R. BELLHOUSE CHARLES W. BISCHOFF JAY BREIDT R. SAMPRIT CHATTERJEE JAMES HAMMITT GRETA M. LJUNG POLLY A. PHIPPS SEYMOUR SUDMAN ALSO PRESENT: ERIN BOEDECKER STEPHEN CALOPEDIS LYNDA CARLSON SAM COHEN

  8. The Committee met in the Clark Room in the Holiday Inn Capitol,

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - COMMITTEE ON ENERGY STATISTICS - - - THURSDAY, APRIL 23, 1998 - - - The Committee met in the Clark Room in the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Daniel A. Relles, Chair, presiding. PRESENT: DANIEL A. RELLES Chair CHARLES W. BISCHOFF Member CAROL A. GOTWAY CRAWFORD Member PHILIP HANSER Member CALVIN KENT Member GRETA M. LJUNG Member POLLY A. PHIPPS Member SEYMOUR SUDMAN Member ROY W. WHITMORE Member DENNY ELLERMAN Guest JAMES HAMMITT Guest I N D E X

  9. The Committee met in the Clark Room in the Holiday Inn Capitol,

    U.S. Energy Information Administration (EIA) Indexed Site

    FRIDAY APRIL 24, 1998 - - - The Committee met in the Clark Room in the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Daniel Relles, Chair, presiding. PRESENT: DANIEL RELLES Chair CHARLES BISCHOFF Member CAROL CRAWFORD Member CALVIN KENT Member GRETA M. LJUNG Member POLLY PHIPPS Member SEYMOUR SUDMAN Member ROY WHITMORE Member JAMES HAMMITT Guest I N D E X Page Opening Comments from the Chair 3 Recognizing Previous Judges of the EIA Graphics 4 Contest and Announcing

  10. The Committee met in the Clark Room of the Capitol Holiday Inn,

    U.S. Energy Information Administration (EIA) Indexed Site

    PUBLIC MEETING + + + + + THURSDAY NOVEMBER 13, 1997 + + + + + WASHINGTON, D.C. The Committee met in the Clark Room of the Capitol Holiday Inn, 550 C Street, S.W., at 9:00 a.m., G. Campbell Watkins, Chair, presiding. PRESENT: G. CAMPBELL WATKINS Chair DANIEL A. RELLES Vice Chair DAVID R. BELLHOUSE R. SAMPRIT CHATTERJEE BRENDA G. COX CAROL A. GOTWAY CRAWFORD PHILIP HANSEN CALVIN KENT GRETA M. LJUNG ROY WHITMORE INVITED GUESTS: SEYMOUR SUDMAN RICHARD TABORS EIA STAFF: JAY HAKES EIA Administrator

  11. The Committee met in the Clark Room, Holiday Inn Capitol at 550

    U.S. Energy Information Administration (EIA) Indexed Site

    PUBLIC MEETING + + + THURSDAY, APRIL 10, 1997 + + + The Committee met in the Clark Room, Holiday Inn Capitol at 550 C Street, S.W., Washington, D.C., at 9:00 a.m., G. Campbell Watkins, Chairman, presiding. PRESENT: G. CAMPBELL WATKINS, Chairman DAVID R. BELLHOUSE CHARLES W. BISCHOFF BRENDA G. COX CAROL A. GOTWAY CRAWFORD CALVIN KENT GRETA M. LJUNG DANIEL A. RELLES BRADLEY O. SKARPNESS PRESENT (Continued): ROY WHITMORE C O N T E N T S PAGE Opening Remarks, Lynda Carlson 10 Update on 1997

  12. The Committee met in the Columbia Room at the Holiday Inn Capitol,

    U.S. Energy Information Administration (EIA) Indexed Site

    THURSDAY, APRIL 20, 1995 The Committee met in the Columbia Room at the Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Timothy D. Mount, Chair, presiding. PRESENT: TIMOTHY D. MOUNT, Chair DAVID R. BELLHOUSE CHARLES W. BISCHOFF BRENDA G. COX FAYE DUCHIN JOHN D. GRACE PHILIP HANSER CALVIN KENT GRETA M. LJUNG JAMES L. O'BRIEN DANIEL A. RELLES BRADLEY O. SKARPNESS G. CAMPBELL WATKINS AGENDA Introductions by Committee Chair . . . . . . . . . 3 Opening Remarks by Administrator

  13. The meeting was held at 8:30 in Room 8E-089 of the Department

    U.S. Energy Information Administration (EIA) Indexed Site

    THURSDAY, OCTOBER 24, 2002 The meeting was held at 8:30 in Room 8E-089 of the Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C., Carol A. Gotway Crawford, Chair, presiding. PRESENT: CAROL A. GOTWAY CRAWFORD, Ph.D. Chair F. JAY BREIDT, Ph.D. Vice Chair MARK BERNSTEIN, Ph.D. JOHNNY BLAIR MARK BURTON, Ph.D. JAY EDMONDS, Ph.D. JAMES K. HAMMITT, Ph.D. NICHOLAS W. HENGARTNER WILLIAM G. MOSS, Ph.D. POLLY A. PHIPPS, Ph.D. RANDY R. SITTER, Ph.D. ROY WHITMORE, Ph.D. ENERGY INFORMATION

  14. Microstructure development during equal channel angular drawing of Al at room temperature

    SciTech Connect (OSTI)

    Chakkingal, U.; Suriadi, A.B.; Thomson, P.F.

    1998-08-11

    In this study 3004 aluminum alloy can-stock remelt (composition 99.9% Al) was subjected to Equal Channel Angular Drawing (ECAD) at room temperature. Tests were conducted to an applied true strain of 2.95. Mechanical properties like tensile strength, ductility at fracture, and microhardness were measured. The development of the substructure was studied using optical and transmission electron microscopy. Subgrain sizes and their angular misorientations were measured as a function of the applied strain. In general, a substructure that consists of cells and subgrains was seen to evolve, as is expected for the case of high SFE fcc metals.

  15. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect (OSTI)

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  16. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  17. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    SciTech Connect (OSTI)

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.

  18. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    SciTech Connect (OSTI)

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.

  19. Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

    SciTech Connect (OSTI)

    Rahman, Rezwanur; Ohno, Tim R.; Taylor, P. C.; Scales, John A.

    2014-05-05

    Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100350?GHz (0.10.35 THz, or 0.41?meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

  20. A waterjet mining machine for use in room and pillar mining operations

    SciTech Connect (OSTI)

    Summers, D.A.

    1990-06-01

    A new mining machine is constructed for use in room and pillar mining operations. This machine uses the action of computer controlled, centrally located high pressure cutting lances to cut deep slots in a coal face. These slots stress relieve the coal ahead of the machine and outline blocks of coal. The movement forward of the machine then wedges up the lower block of coal. This wedging action is assisted by the gathering arms of the loader section of the machine, and by underlying oscillating waterjets which create a slot ahead of the loading wedge as it advances. Finally the top section of coal is brought down by the sequential advance of wedge faced roof support members, again assisted by the waterjet action from the central cutting arms. The machine is designed to overcome major disadvantages of existing room and pillar mining machines in regard to a reduction in respirable dust, the creation of an immediate roof support, and an increase in product size, with concomitant reduction in cleaning costs.

  1. CuInP2S6 Room Temperature Layered Ferroelectric

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Belianinov, Alex; He, Qian; Dziaugys, Andrius; Maksymovych, Petro; Eliseev, Eugene; Borisevich, Albina Y.; Morozovska, Anna N.; Banys, Juras; Vysochanskii, Yulian; Kalinin, Sergei V.

    2015-05-01

    In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces,more » whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.« less

  2. CuInP2S6 Room Temperature Layered Ferroelectric

    SciTech Connect (OSTI)

    Belianinov, Alex; He, Qian; Dziaugys, Andrius; Maksymovych, Petro; Eliseev, Eugene; Borisevich, Albina Y.; Morozovska, Anna N.; Banys, Juras; Vysochanskii, Yulian; Kalinin, Sergei V.

    2015-05-01

    In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.

  3. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; Bendounan, Azzedine; Fullerton, Eric E.; Sirotti, Fausto

    2016-03-03

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less

  4. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect (OSTI)

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 060??V in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28?mV, Fabry-Perot interference with a period of 2.35??V under nonmagnetic conditions, and a Fano effect with a period of 0.26?mV for Vg and 0.2?T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  5. Improved design of room and pillar coal mining. Final technical report, October 1, 1978-March 31, 1982

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1982-06-30

    The objective of this research grant was to improve upon the design of roof spans and coal pillars in a coal mining technique known as room-and-pillar mining. Essentially, the project consisted of three aspects: determination of stable roof spans; determination of the strength of coal pillars; and determination of safety factors for room-and-pillar coal mining conditions in the United States. The study included a critical review of the available pillar design formulas as well as the design methods for selecting stable roof spans. Three novel approaches were utilized: (1) the petite sismique technique was assessed for possible determination of coal pillar deformability; this was the first use of this technique in the United States since its development in France; (2) the Geomechanics Classification was extended for determination of safe roof spans in room-and-pillar coal mining; and (3) a national survey of the current design practice as well as of the stable and failed coal pillars and roof spans was performed with the aim of determining factors of safety in room-and-pillar coal mining. Research investigations included field studies, laboratory testing and analytical computer simulations. The final outcome of the project is a proposal for a design code for room-and-pillar coal mining in the United States. In the course of this research, seven publications were prepared and three M.S. theses were completed. Practical applications of this research are discussed.

  6. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  7. Non-magnetic organic/inorganic spin injector at room temperature

    SciTech Connect (OSTI)

    Mathew, Shinto P.; Mondal, Prakash Chandra; Naaman, Ron; Moshe, Hagay; Mastai, Yitzhak

    2014-12-15

    Spin injection into solid-state devices is commonly performed by use of ferromagnetic metal electrodes. Here, we present a spin injector design without permanent magnet; rather, the spin selectivity is determined by a chiral tunneling barrier. The chiral tunneling barrier is composed of an ultrathin Al{sub 2}O{sub 3} layer that is deposited on top of a chiral self-assembled monolayer (SAM), which consists of cysteine or oligopeptide molecules. The experimentally observed magnetoresistance can be up to 20% at room temperature, and it displays an uncommon asymmetric curve as a function of the applied magnetic field. These findings show that the spin injector transmits only one spin orientation, independent of external magnetic field. The sign of the magnetoresistance depends on the handedness of the molecules in the SAM, which act as a spin filter, and the magnitude of the magnetoresistance depends only weakly on temperature.

  8. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  9. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect (OSTI)

    Wu, Yan; Ji, Lingfei Lin, Zhenyuan; Jiang, Yijian; Zhai, Tianrui

    2014-01-27

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  10. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  11. Comparative study of the embrittlement of Monel 400 at room temperature by hydrogen and by mercury

    SciTech Connect (OSTI)

    Price, C.E.; Fredell, R.S.

    1986-05-01

    Slow strain rate tensile tests were performed at room temperature on Monel 400 specimens of grain sizes 35 to 500 microns, in the environments of air, mercury, and electrolytically generated hydrogen. Specimens of grain size 250 microns were tested at a range of strain rates in the three environments. It was found that cracks initiated easiest in hydrogen but propagated easiest in mercury; consequently the embrittlement was usually more severe in mercury. The embrittlement decreased with increasing strain rate, and with increasing grain size in hydrogen. Embrittlement in mercury was maximum at intermediate grain sizes. A fracture sequence of intergranular to transgranular to microvoid coalescence was common. The intergranular and transgranular fractures are interpreted in terms of the reduced cohesive stress and enhanced shear models of embrittlement, respectively. 52 references.

  12. Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.

    2015-07-06

    Gd5(SixGe1-x)4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. As a result, magnetization at a highmore » temperature of 275K decreases with the increase in the milling time.« less

  13. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    SciTech Connect (OSTI)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; Zhang, Shoucheng; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  14. Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Wijnheijmer, A. P.; Koenraad, P. M.; Marti, X.; Holy, V.; Cukr, M.; Novak, V.; Jungwirth, T.

    2012-03-12

    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

  15. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect (OSTI)

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  16. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect (OSTI)

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  17. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  18. Using micro saint to predict performance in a nuclear power plant control room

    SciTech Connect (OSTI)

    Lawless, M.T.; Laughery, K.R.; Persenky, J.J.

    1995-09-01

    The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the {open_quotes}paper procedures{close_quotes} conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models` predictions were then compared to the experimental data from the {open_quotes}computerized conditions{close_quotes} of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed.

  19. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  20. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  1. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect (OSTI)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  2. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid.

    SciTech Connect (OSTI)

    Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L.; Chemistry

    2002-09-11

    The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO{sub 3}){sub 2}-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown ether complex is created in a two-phase water-RTIL system, however, only cationic Sr-crown ether complexes are observed in the RTIL phase. This difference in the coordination complexes arises from differences in the mechanism of cation extraction between the RTIL and conventional molecular organic solvents, a finding with important implications for synthesis, catalysis, and ion separations using two-phase water-RTIL systems.

  3. Stability analysis of a backfilled room-and-pillar mine. Report of investigations/1995

    SciTech Connect (OSTI)

    Tesarik, D.R.; Seymour, J.B.; Yanske, T.R.; McKibbin, R.W.

    1995-03-01

    Displacement and stress changes in cemented backfill and ore pillars at the Buick Mine, near Boss, MO, were monitored by engineers from the U.S. Bureau of Mines (USBM) and The Doe Run Co., St Louis, MO. A test area in this room-and-pillar mine was backfilled to provide support when remnant ore pillars were mined. Objectives of this research were to evaluate the effect of backfill on mine stability, observe backfill conditions during pillar removal, and calibrate a numeric model to be used to design other areas of the mine. Two-dimensional, finite-element and three-dimensional, displacement-discontinuity codes were used to model the study area. Combined with instrument data, these codes identified two failed pillars.

  4. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect (OSTI)

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600?nm down to 60?nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  5. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect (OSTI)

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  6. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect (OSTI)

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in threeterminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 ?V at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  7. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times

  8. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  9. Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature

    SciTech Connect (OSTI)

    Liu, S.H.; Qian, X.F.; Yuan, J.Y.; Yin, J.; He, R.; Zhu, Z.K

    2003-07-14

    Nanocomposite of CdSe/poly(styrene-alt-maleic anhydride) (PSM) was successfully prepared via an in situ reaction process at room temperature and ambient pressure. Transmission electron microscopy (TEM) analysis revealed that CdSe nanoparticles with a small size and narrow size distribution were obtained. The obtained nanocomposite was also characterized by FT-IR, XRD, ultraviolet-visible, and fluorescence spectroscopy.

  10. Usage possibilities of diesel aggregate for room heating and electric energy production

    SciTech Connect (OSTI)

    Kegl, K.; Vor Ic, J.

    1998-07-01

    Article shows reasons for introduction of cogeneration generally. The present manner of heating and electricity connection at the Faculty of electrical engineering and computer science in Maribor is described. The idea is to build in the cogeneration complex in heating room next to the existent boilers. Gathered data of electricity and heat demand are presented. Paper deals with question of electrical, heat and fuel connections. Comparison between two types of cogeneration (motor and turbine) helps to make a decision: cogeneration with motor. Depending to the daily electricity demands diagram and arranged heating diagram the authors focused to the small cogeneration (around 200 kWe). Availability of natural gas at the placement of the cogeneration leads us to the gas motor but leaves the diesel engine possibility opened. A brief economical estimation includes common investment costs regarding to the savings of energy and fuel expenses. Payback time calculation gives precedence to the gas motor if diesel is used with motor instead of fuel oil. Except the energy savings there are greater benefits of the cogeneration: it can be good study case for students of electrotechnics as well as future mechanical engineers.