Powered by Deep Web Technologies
Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Novel room temperature ferromagnetic semiconductors  

SciTech Connect (OSTI)

Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Gupta, Amita

2004-11-01T23:59:59.000Z

2

Topological Insulators at Room Temperature  

SciTech Connect (OSTI)

Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

2010-03-25T23:59:59.000Z

3

ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE  

E-Print Network [OSTI]

ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE FR´ED´ERIC CAUPIN AND VINCENT FOURMOND on ultrasonic cavitation in freon (1,1,2-trichloro 1,2,2-trifluoro ethane). We use a high intensity 1 MHz observe the nucleation of bubbles. We describe the three different methods we use to detect cavitation

Caupin, Frédéric

4

Absorber Materials at Room and Cryogenic Temperatures  

SciTech Connect (OSTI)

We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

2011-09-01T23:59:59.000Z

5

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

6

Determination of the Acceptable Room Temperature Range for Local Cooling  

E-Print Network [OSTI]

Determination of the acceptable room temperature range is a key problem in satisfactory design of local cooling for energy savings. At the room temperatures ranging from neutral to warm, three sensitive body parts-the face, chest and back-were each...

Zhang, Y.; Zhao, R.

2006-01-01T23:59:59.000Z

7

Terahertz Room-Temperature Photonic Crystal Nanocavity Laser  

E-Print Network [OSTI]

We describe an efficient surface-passivated photonic crystal nanocavity laser, demonstrating room-temperature operation with 3-ps total pulse duration (detector response limited) and low-temperature operation with ultra-low-threshold near 9uW.

Dirk Englund; Hatice Altug; Ilya Fushman; Jelena Vuckovic

2007-06-21T23:59:59.000Z

8

Control and Room Temperature Optimization of Energy Efficient Buildings  

SciTech Connect (OSTI)

The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

2012-01-01T23:59:59.000Z

9

The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner  

E-Print Network [OSTI]

A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

2006-01-01T23:59:59.000Z

10

Room Temperature Metastability of Multilayer Graphene Oxide Films  

E-Print Network [OSTI]

Room Temperature Metastability of Multilayer Graphene Oxide Films Suenne Kim1 , Si Zhou2 , Yike Hu1 Centre National de la Recherche Scientifique Institut Neel, Grenoble, B.P. 166, 38042 France Graphene oxide has multiple potential applications. The chemistry of graphene oxide and its response to external

Paris-Sud XI, Universit de

11

Room-temperature magnetoelectric multiferroic thin films and applications thereof  

DOE Patents [OSTI]

The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

Katiyar, Ram S; Kuman, Ashok; Scott, James F.

2014-08-12T23:59:59.000Z

12

Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature  

SciTech Connect (OSTI)

Among the hard alloys, WC alloys find wide industrial applications as tips for cutting tools and wear-resistant parts. Their intrinsic resistance to oxidation and corrosion at high temperatures also makes them desirable as a protective coating for devices at elevated temperatures. In the industrial scale of production, WC is prepared by a direct union of the elements at a temperature of 3,273 to 3,473 K. Accordingly, the high cost of preparation is a disadvantage of this process. Here, the authors report a novel technique for preparing a large amount of WC powder using a simple method. This process is based on mechanical solid-state reduction (MSSR) followed y solid-state reaction (SSR) during room-temperature ball milling (a high energy ball mill, Fritsch P6, was used at a rotation speed of 4.2 s{sup {minus}1}) of a mixture of WO{sub 3}, Mg, and C powders.

El-Eskandarany, M.S.; Omori, M.; Ishikuro, M.; Konno, T.J.; Takada, K.; Sumiyama, K.; Hirai, T.; Suzuki, K. [Tohoku Univ., Sendai (Japan)

1996-12-01T23:59:59.000Z

13

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

Wagh, A.S.; Singh, D.

1997-07-08T23:59:59.000Z

14

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

1997-01-01T23:59:59.000Z

15

Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature  

SciTech Connect (OSTI)

Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ?T for the two opposite polarization orientations. This difference under a typical writing voltage of 3?V can reach over 1?K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53?K/V) with ?T being over 4.5?K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

Liu, Yang, E-mail: liuyangphy52@gmail.com; Infante, Ingrid C.; Dkhil, Brahim, E-mail: brahim.dkhil@ecp.fr [Laboratoire Structures, Proprits et Modlisation des Solides, UMR 8580 CNRS-Ecole Centrale Paris, Grande Voie des Vignes, Chtenay-Malabry Cedex 92295 (France); Lou, Xiaojie [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 (China)

2014-02-24T23:59:59.000Z

16

Quantum-confined single photon emission at room temperature from Silicon carbide tetrapods  

E-Print Network [OSTI]

Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) a geometry that creates a spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predict that a bound exciton should exist at the 3C 4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights towards understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.

Castelletto, Stefania; Magyar, Andrew P; Gentle, Angus; Gali, Adam; Aharonovich, Igor

2014-01-01T23:59:59.000Z

17

Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature  

E-Print Network [OSTI]

Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

2015-01-01T23:59:59.000Z

18

Room temperature triggered single-photon source in the near infrared  

E-Print Network [OSTI]

We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.

E. Wu; James Rabeau; Grard Roger; Franois Treussart; Heping Zeng; Philippe Grangier; Steven Prawer; Jean-Franois Roch

2007-08-14T23:59:59.000Z

19

A dynamic macroscopic quantum oscillator at room temperature  

E-Print Network [OSTI]

We demonstrate a dynamic macroscopic quantum oscillator of a light--matter hybrid state in high-density plasmas created in an optically induced confining potential in a semiconductor microcavity at room temperature. One major advancement is the visualization of quantum oscillator states in a micrometer-scale optical potential at quantized energies up to 4 meV, an order of magnitude higher than that previously observed in spatially confined polariton condensates at cryogenic temperatures. Another advancement is the ability to characterize the time evolution and optical spin polarization of the quantum oscillator states directly from the consequent pulse radiation. The ability to control the macroscopic coherent state of plasma polaritons enables ultrafast multiple pulse lasing in a semiconductor microcavity.

Xie, Wei; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

2015-01-01T23:59:59.000Z

20

Room temperature ferromagnetism in a phthalocyanine based carbon material  

SciTech Connect (OSTI)

We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490??10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2014-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tailoring room temperature photoluminescence of antireflective silicon nanofacets  

SciTech Connect (OSTI)

In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Schivalaya Marg. Bhubaneswar 751 005 (India); Kanjilal, A. [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh 201 314 (India); Sahoo, P. K. [National Institute of Science Education and Research, Bhubaneswar 751 005 (India)

2014-09-21T23:59:59.000Z

22

Electrodrift purification of materials for room temperature radiation detectors  

DOE Patents [OSTI]

A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

1997-06-24T23:59:59.000Z

23

Electrodrift purification of materials for room temperature radiation detectors  

DOE Patents [OSTI]

A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

James, Ralph B. (5420 Lenore Ave., Livermore, Alameda County, CA 94550); Van Scyoc, III, John M. (P.O. Box 93, 65 Main St., Apt. 1, Plainfield, Cumberland County, PA 17081); Schlesinger, Tuviah E. (8 Carleton Dr., Mt. Lebanon, Allegheny County, PA 15243)

1997-06-24T23:59:59.000Z

24

14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes  

E-Print Network [OSTI]

14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes PAUL L. VOSS based on InGaAs/InP avalanche photodiodes for use at 1.55 mm wavelength. Operation at room temperature at the above wavelengths for conventional high light-level measurements with PIN or ava- lanche photodiodes

Köprülü, Kahraman Güçlü

25

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity  

E-Print Network [OSTI]

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity sensors for room-temperature hydrogen monitoring. The Pt/LaF3 interface leads to a Nernst-type response s and was independent of hydrogen concentration. A method for the stabilization of a long-term behavior of the sensor

Moritz, Werner

26

Intermediate Temperature Solid Oxide Fuel Cell Development  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

27

Room-Temperature Synthesis Leading to Nanocrystalline Frederic Sauvage,  

E-Print Network [OSTI]

.; Laffont, L.; Leriche, J.-B.; Masquelier, C. Solid State Ionics 2006, 177, 333­341. (3) Sauvage, F.; Baudrin, E.; Gengembre, L.; Tarascon, J.-M. Solid State Ionics 2005, 176, 1869­1876. (4) Drezen, T.; Kwon. Introduction The need for energy storage gave rise to the lithium-ion battery, while the effort given

Poeppelmeier, Kenneth R.

28

Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor Data  

E-Print Network [OSTI]

that our model can predict future indoor temperature trends with a 90th percentile aggregate error between thermo- stat actuates the heating, ventilation, and air condition- ing (HVAC) infrastructure to bring and these energy approaches, a heating model could allow future temperature trends to be predicted using

Hazas, Mike

29

Sum frequency generation study on the orientation of room-temperature ionic liquid at the grapheneionic liquid interface  

E-Print Network [OSTI]

such as dye-sensitized solar cells and super capacitors, room-temperature ionic liquids are considered

Bao, Jiming

30

Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes  

E-Print Network [OSTI]

We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

Sun, Xiaochen

31

Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and  

E-Print Network [OSTI]

Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and the response time. Rutile-structured tin oxide (SnO2) is an n-type semiconducting material widely used in gas

Chen, Junhong

32

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network [OSTI]

on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings...

Spain, S.

1985-01-01T23:59:59.000Z

33

Optical gain and lasing from band-engineered Ge-on-Si at room temperature  

E-Print Network [OSTI]

We present theoretical modeling and experimental results of optical gain and lasing from tensile-strained, n[superscript +] Ge-on-Si at room temperature. Compatible with silicon CMOS, these devices are ideal for large-scale ...

Liu, Jifeng

34

Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size  

E-Print Network [OSTI]

Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain literature. The aim was to propose the most effective methods for assessing mineralogy, concentration and domain state within environmental magnetic studies. Establishing the magnetic mineralogy is essential

Utrecht, Universiteit

35

Research on the Temperature Control Method of an Artificial Climate Room  

E-Print Network [OSTI]

An artificial climate room plays an important role in the research of an apparatus test and indoor/outdoor environment simulation. Generally, the refrigerator is used to decrease temperature to simulate outdoor environment, while a heater is used...

Jiang, Y.; Tan, W.; Wei, B.; Guo, R.

2006-01-01T23:59:59.000Z

36

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network [OSTI]

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

37

Stability limit of room air temperature of a VAV system  

SciTech Connect (OSTI)

To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

Matsuba, Tadahiko; Kamimura, Kazuyuki [Yamatake-Honeywell Co., Ltd., Tokyo (Japan). Building System Div.; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru [Oyama National Coll. of Technology (Japan); Murasawa, Itaru; Hashimoto, Yukihiko [Tonets Corp., Tokyo (Japan). Engineering Project Dept.

1998-12-31T23:59:59.000Z

38

aerobic room temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

superconducting quantum interference device SQUID-temperature RT sample scanning superconduct- ing quantum interference device SQUID microscopy SSM is a very Weiss, Benjamin P....

39

Epitaxy of Nanocrystalline Silicon Carbide on Si(111) at Room Temperature  

E-Print Network [OSTI]

Epitaxy of Nanocrystalline Silicon Carbide on Si(111) at Room Temperature Roberto Verucchi carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting Si or plastics that cannot withstand high temperatures. Silicon carbide (SiC) has unique properties that make

Alfè, Dario

40

Silicon single-electron quantum-dot transistor switch operating at room temperature  

E-Print Network [OSTI]

, which showed drain current oscillations at room temperature. These oscillations are attributed currentvoltage characteristic indicates that the energy level separation is about 110 meV and the silicon current (Id) as a function of the gate voltage (Vg) (IV) was measured at different temperatures

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature  

E-Print Network [OSTI]

A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature Jia Zhang,ab Chao temperature oxygen sensor based on TiO2/graphene device was developed with an enhanced sensing performance­hole pairs in the TiO2 film and the photogenerated electrons were scavenged by graphene and percolated

Cao, Wenwu

42

Failure modes at room and elevated temperatures. Technical report  

SciTech Connect (OSTI)

Successful development of reliable ceramic composites will depend on an understanding of matrix cracking and damage mechanisms in these materials. Therefore, the objective of the Failure Models subtask is to investigate failure and damage mechanisms in fiber reinforced ceramic composites. Issues such as how fiber coatings, the fiber/matrix interface, residual stresses, and fiber volume fraction affect frictional stresses, fiber debonding, fiber pull-out and failure modes will be examined. The effect of these microstructural parameters on matrix crack initiation, propagation and damage will also be determined. The resulting observations and measurements data will be used to develop theoretical models for damage mechanisms in fiber reinforced composites. This report presents results concerning the effect of temperature on the failure modes of continuous fiber ceramic composites performed during the last quarter of FY 1993 and FY 1994. The Raman stress measurements and calculations were performed during the last quarter of FY 1994 and the first quarter of FY 1995.

Braun, L.M.

1995-04-01T23:59:59.000Z

43

Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode  

SciTech Connect (OSTI)

In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

2014-05-19T23:59:59.000Z

44

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1986-01-01T23:59:59.000Z

45

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

1985-01-01T23:59:59.000Z

46

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1987-01-01T23:59:59.000Z

47

Solid velocity correction schemes for a temperature transforming  

E-Print Network [OSTI]

for a temperature transforming model (TTM) for convection controlled solid-liquid phase-change problem. Design gravitational acceleration, 9.8 m/s2 H height of the vertical wall (m) k thermal conductivity (W/(m K)) K, K T * scaled temperature, T 0 2 T0 m; K T0 c cold surface temperature, K T0 m melting (or

Zhang, Yuwen

48

Experimental Studies of Active Temperature Control in Solid Breeder Blankets  

E-Print Network [OSTI]

1 Experimental Studies of Active Temperature Control in Solid Breeder Blankets M. S. Tillack, A. R barrier regions for solid breeder blankets. In particular, particle beds have been studied because breeder blankets is thermomechanical behavior in the fusion environment. Stable and predictable

Tillack, Mark

49

Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes  

SciTech Connect (OSTI)

Self-assembled InSb submonolayer quantum dots (QDs) in an InAs matrix have been grown by molecular beam epitaxy using Sb{sub 2} and As{sub 2} fluxes. The structures exhibit bright midinfrared photoluminescence up to room temperature. Intense room temperature electroluminescence with a peak at wavelength near 3.8 {mu}m was observed from p-i-n light emitting diode structures containing ten InSb submonolayer QD sheets inserted within the InAs active region.

Carrington, P. J.; Solov'ev, V. A.; Zhuang, Q.; Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Ivanov, S. V. [Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St. Petersburg 194021 (Russian Federation)

2008-09-01T23:59:59.000Z

50

Room-Temperature Multiferroic Hexagonal LuFeO3 Films  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics.

Wang, Wenbin; Zhao, Jun; Wang, Wenbo; Gai, Zheng; Balke, Nina; Chi, Miaofang; Lee, Ho Nyung; Tian, Wei; Zhu, Leyi; Cheng, Xuemei; Keavney, David J.; Yi, Jieyu; Ward, Thomas Z.; Snijders, Paul C.; Christen, Hans M.; Wu, Weida; Shen, Jian; Xu, Xiaoshan

2013-06-01T23:59:59.000Z

51

Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases  

SciTech Connect (OSTI)

Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO{sub 2} nanowires towards NO{sub 2} is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A. [EME/XaRMAE/IN2 UB, Dept. Electronica, Universitat de Barcelona, C/Marti i Franques 1, E-08028 Barcelona Spain (Spain); Hernandez-Ramirez, F. [Electronic Nanosystems S. L., Barcelona (Spain); Morante, J. R. [EME/XaRMAE/IN2 UB, Dept. Electronica, Universitat de Barcelona, C/Marti i Franques 1, E-08028 Barcelona Spain (Spain); Institut de Recerca en Energia de Catalunya (IREC), C/Josep Pla 2, B3, PB, E-08019 Barcelona (Spain)

2009-05-23T23:59:59.000Z

52

Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature  

SciTech Connect (OSTI)

We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J., E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Han, Z. [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Laboratoire Aim Cotton, cole Normale Suprieure de Cachan, CNRS, Universit Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France); Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E. [Laboratoire Aim Cotton, cole Normale Suprieure de Cachan, CNRS, Universit Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France)

2014-02-24T23:59:59.000Z

53

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents [OSTI]

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

54

Velocity of sound in solid methane near melting temperatures  

E-Print Network [OSTI]

VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

Whitehead, John Martin

1968-01-01T23:59:59.000Z

55

Room-Temperature in situ Nuclear Spin Hyperpolarization from Optically-Pumped Nitrogen Vacancy Centers in Diamond  

E-Print Network [OSTI]

We report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field nuclear magnetic resonance (NMR). The hyperpolarization is achieved by optical pumping (OP) of nitrogen vacancy defect centers in diamond accompanied by dynamic nuclear polarization (DNP). The technique harnesses the large optically-induced spin polarization of NV- centers at room temperature, which is many orders of magnitude greater than thermal equilibrium polarization and typically achievable only at sub-Kelvin temperatures. Transfer of the spin polarization to the 13C nuclear spins is accomplished via a combination of OP and microwave irradiation. The OP/DNP is performed at 420 mT, where inductive detection of NMR is feasible, in contrast to the typically exploited level anticrossing regimes at 100 mT and 50 mT. Here, we report a bulk nuclear spin polarization of 6%. This polarization was generated in situ and detected with a standard, inductive NMR probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via OP/DNP should operate at arbitrary magnetic fields, enabling orders of magnitude sensitivity enhancement for NMR of solids and liquids at ambient conditions.

Jonathan P. King; Keunhong Jeong; Christophoros C. Vassiliou; Chang S. Shin; Ralph H. Page; Claudia E. Avalos; Hai-Jing Wang; Alexander Pines

2015-01-13T23:59:59.000Z

56

Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus  

DOE Patents [OSTI]

Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

Zaromb, S.

1994-06-21T23:59:59.000Z

57

Solid oxide fuel cell operable over wide temperature range  

DOE Patents [OSTI]

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

2001-01-01T23:59:59.000Z

58

Room temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel  

E-Print Network [OSTI]

water, reflecting greater occupancy of higher energy vibrational states. In pure water, hydrogen bonding state between 250K and 240K. (Tiny droplets of water have been shown to spontaneously freeze at aboutRoom temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel F

59

Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene  

E-Print Network [OSTI]

Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene . The hot-electron photothermoelectric effect in graphene is a prom- ising detection mechanism; photoexcited, we demonstrate a graphene thermoelectric terahertz photodetector with sensi- tivity exceeding 10 V W

Murphy, Thomas E.

60

Dye-doped cholesteric-liquid-crystal room-temperature single-photon source*  

E-Print Network [OSTI]

Dye-doped cholesteric-liquid-crystal room-temperature single-photon source* SVETLANA G. LUKISHOVAy) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band

Boyd, Robert W.

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Dye-sensitized near-infrared room-temperature photovoltaic photon detectors  

E-Print Network [OSTI]

Dye-sensitized near-infrared room-temperature photovoltaic photon detectors P. V. V. Jayaweera Studies, Hantana, Kandy, Sri Lanka (Received 5 August 2004; accepted 11 October 2004) Dye molecules bonded to a semiconductor surface could inject carriers to a band on photoexcitation. This process known as dye

Perera, A. G. Unil

62

Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate  

E-Print Network [OSTI]

Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

Vuckovic, Jelena

63

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network [OSTI]

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

64

Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals  

E-Print Network [OSTI]

Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces

Southern California, University of

65

Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions  

E-Print Network [OSTI]

CONCEPTS Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions. Keywords: single-moleculedetection - single-moleculema- nipulation - laser-induced fluorescence * optical, frcquency-modulated optical ab- sorption and fluorescence excitation have been used to investi- gate

Zare, Richard N.

66

Optical gain from the direct gap transition of Ge-on-Si at room temperature  

E-Print Network [OSTI]

We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

Liu, Jifeng

67

Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions  

SciTech Connect (OSTI)

We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

Tang, Linlong [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China); Du, Jinglei, E-mail: dujl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Shi, Haofei, E-mail: shi@cigit.ac.cn; Wei, Dongshan; Du, Chunlei, E-mail: cldu@cigit.ac.cn [Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China)

2014-10-15T23:59:59.000Z

68

Iron-aluminum alloys having high room-temperature and method for making same  

DOE Patents [OSTI]

Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

1993-01-01T23:59:59.000Z

69

Cu-Cu direct bonding achieved by surface method at room temperature  

SciTech Connect (OSTI)

The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

2014-02-20T23:59:59.000Z

70

Novel Low Temperature Solid State Fuel Cells  

SciTech Connect (OSTI)

We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400?C up to 800?C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800?C.

Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

2009-12-15T23:59:59.000Z

71

Regeneration tests of a room temperature magnetic refrigerator and heat pump  

E-Print Network [OSTI]

A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

Brown, G V

2014-01-01T23:59:59.000Z

72

Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy  

E-Print Network [OSTI]

Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy B Jolla, California 92093 Received 23 July 2002; accepted 30 September 2002 Trace amounts of oxygen CoPt3 grown by vapor deposition at or slightly above room temperature. Oxygen is known to act

Hellman, Frances

73

FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids  

SciTech Connect (OSTI)

DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

VAJO, JOHN

2014-06-12T23:59:59.000Z

74

Coupling of PbS Quantum Dots to Photonic Crystal Cavities at Room Temperature  

E-Print Network [OSTI]

We demonstrate the coupling of PbS quantum dot emission to photonic crystal cavities at room temperature. The cavities are defined in 33% Al, AlGaAs membranes on top of oxidized AlAs. Quantum dots were dissolved in Poly-methyl-methacrylate (PMMA) and spun on top of the cavities. Quantum dot emission is shown to map out the structure resonances, and may prove to be viable sources for room temperature cavity coupled single photon generation for quantum information processing applications. These results also indicate that such commercially available quantum dots can be used for passive structure characterization. The deposition technique is versatile and allows layers with different dot densities and emission wavelengths to be re-deposited on the same chip.

Ilya Fushman; Dirk Englund; Jelena Vuckovic

2005-05-14T23:59:59.000Z

75

Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals  

E-Print Network [OSTI]

For the purpose of developing optimized control algorithm for room air-conditioners to ensure their energy efficiency, a short time interval (i.e., one minute) simulation of building thermal performance is necessary because the sampling time...

Wang, F.; Yoshida, H.; Matsumoto, K.

2006-01-01T23:59:59.000Z

76

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature  

E-Print Network [OSTI]

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature Simone film crystal growth of silicon carbide (SiC), a semiconductor syn- thesized to replace silicon in harsh

Alfè, Dario

77

On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics  

E-Print Network [OSTI]

A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

Reginald B. Little

2014-03-27T23:59:59.000Z

78

Room temperature performance of mid-wavelength infrared InAsSb nBn detectors  

SciTech Connect (OSTI)

In this work, we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5??m. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77325?K temperature range, indicating potential for room temperature operation. The current generation of nBn detectors shows an increase of operational bias with temperature, which is attributed to a shift in the Fermi energy level in the absorber. Analysis of the device performance shows that operational bias and quantum efficiency of these detectors can be further improved. The device dark current stays diffusion limited in the 150?K325?K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities are D*(?)?=?1??10{sup 9} (cm Hz{sup 0.5}/W) at T?=?300?K and D*(?)?=?5??10{sup 9} (cm Hz{sup 0.5}/W) at T?=?250?K, which is easily achievable with a one stage TE cooler.

Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Rosenberg, Robert; Kowalczyk, Robert; Khoshakhlagh, Arezou; Fisher, Anita; Ting, David Z.-Y.; Gunapala, Sarath D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91030 (United States)

2014-07-14T23:59:59.000Z

79

Light storage in a room temperature atomic vapor based on coherent population oscillations  

E-Print Network [OSTI]

We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $\\Lambda$ system selected by polarization in metastable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $\\Lambda$ system.

M. -A. Maynard; F. Bretenaker; F. Goldfarb

2014-10-21T23:59:59.000Z

80

Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature  

SciTech Connect (OSTI)

The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

2006-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature  

E-Print Network [OSTI]

We investigate the optical properties of Dibenzoterrylene (DBT) molecules in a spin-coated crystalline film of anthracence. By performing single molecule studies, we show that the dipole moments of the DBT molecules are oriented parallel to the plane of the film. Despite a film thickness of only 20 nm, we observe an exceptional photostability at room temperature and photon count rates around one million per second from a single molecule. These properties together with an emission wavelength around 800 nm make this system attractive for applications in nanophotonics and quantum optics.

C. Toninelli; K. Early; J. Bremi; A. Renn; S. Goetzinger; V. Sandoghdar

2010-02-04T23:59:59.000Z

82

Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications  

E-Print Network [OSTI]

Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.Tubular Solid Oxide Fuel Cell Technology, U.S. Department ofOxide Films for Solid Oxide Fuel Cell Applications by Jason

Nicholas, Jason.D.

2007-01-01T23:59:59.000Z

83

Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths  

E-Print Network [OSTI]

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({\\Delta}{\\lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects a...

Shakoor, A; Cardile, P; Portalupi, S L; Gerace, D; Welna, K; Boninelli, S; Franzo, G; Priolo, F; Krauss, T F; Galli, M; Faolain, L O

2013-01-01T23:59:59.000Z

84

Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film  

SciTech Connect (OSTI)

Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 10{sup ?9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

Wang, Jun, E-mail: ueoewj@gmail.com; Gou, Jun; Li, Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2014-02-15T23:59:59.000Z

85

Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide  

E-Print Network [OSTI]

Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

Pereira, LMC; Wahl, U

86

Iron-aluminum alloys having high room-temperature and method for making same  

DOE Patents [OSTI]

A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

Sikka, V.K.; McKamey, C.G.

1993-08-24T23:59:59.000Z

87

Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films  

SciTech Connect (OSTI)

Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

2014-04-24T23:59:59.000Z

88

Experimental Observation of the Inverse Spin Hall Effect at Room Temperature  

SciTech Connect (OSTI)

We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

2010-03-16T23:59:59.000Z

89

CW Room Temperature Re-Buncher for the Project X Front End  

SciTech Connect (OSTI)

At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

2012-05-09T23:59:59.000Z

90

High-k (k=30) amorphous hafnium oxide films from high rate room temperature deposition  

SciTech Connect (OSTI)

Amorphous hafnium oxide (HfO{sub x}) is deposited by sputtering while achieving a very high k{approx}30. Structural characterization suggests that the high k is a consequence of a previously unreported cubiclike short range order in the amorphous HfO{sub x} (cubic k{approx}30). The films also possess a high electrical resistivity of 10{sup 14} {Omega} cm, a breakdown strength of 3 MV cm{sup -1}, and an optical gap of 6.0 eV. Deposition at room temperature and a high deposition rate ({approx}25 nm min{sup -1}) makes these high-k amorphous HfO{sub x} films highly advantageous for plastic electronics and high throughput manufacturing.

Li, Flora M.; Bayer, Bernhard C.; Hofmann, Stephan; Milne, William I.; Flewitt, Andrew J. [Department of Engineering, Electrical Engineering Division, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Dutson, James D.; Wakeham, Steve J.; Thwaites, Mike J. [Plasma Quest Ltd., Unit 1B, Rose Estate, Osborn Way, Hook, Hampshire RG27 9UT (United Kingdom)

2011-06-20T23:59:59.000Z

91

CDZNTE ROOM-TEMPERATURE SEMICONDUCTOR GAMMA-RAY DETECTOR FOR NATIONAL-SECURITY APPLICATIONS.  

SciTech Connect (OSTI)

One important mission of the Department of Energy's National Nuclear Security Administration is to develop reliable gamma-ray detectors to meet the widespread needs of users for effective techniques to detect and identify special nuclear- and radioactive-materials. Accordingly, the Nonproliferation and National Security Department at Brookhaven National Laboratory was tasked to evaluate existing technology and to develop improved room-temperature detectors based on semiconductors, such as CdZnTe (CZT). Our research covers two important areas: Improving the quality of CZT material, and exploring new CZT-based gamma-ray detectors. In this paper, we report on our recent findings from the material characterization and tests of actual CZT devices fabricated in our laboratory and from materials/detectors supplied by different commercial vendors. In particular, we emphasize the critical role of secondary phases in the current CZT material and issues in fabricating the CZT detectors, both of which affect their performance.

CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; KOHMAN, K.T.; JAMES, R.B.

2007-05-04T23:59:59.000Z

92

Could light harvesting complexes exhibit non-classical effects at room temperature?  

E-Print Network [OSTI]

Mounting experimental and theoretical evidence suggests that coherent quantum effects play a role in the efficient transfer of an excitation from a chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein complex. However, it is conceivable that a satisfying alternate interpretation of the results is possible in terms of a classical theory. To address this possibility, we consider a class of classical theories satisfying the minimal postulates of macrorealism and frame Leggett-Garg-type tests that could rule them out. Our numerical simulations indicate that even in the presence of decoherence, several tests could exhibit the required violations of the Leggett-Garg inequality. Remarkably, some violations persist even at room temperature for our decoherence model.

Mark M. Wilde; James M. McCracken; Ari Mizel

2009-11-05T23:59:59.000Z

93

Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids  

SciTech Connect (OSTI)

Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

Zhang, Hongwei [University of Tennessee, Knoxville (UTK); Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2005-01-01T23:59:59.000Z

94

Room temperature ferromagnetism in Co-doped amorphous carbon composites from the spin polarized semiconductor band  

SciTech Connect (OSTI)

This study provides conclusive evidence of room temperature ferromagnetism in Co-doped amorphous carbon (a-C) composites from the spin polarized semiconductor band. These composites are constructed from discontinuous [Co(3?nm)/a-C(d{sub c} nm)]{sub 5} multilayers with d{sub c}?=?3?nm and d{sub c}?=?6?nm. Only remnant circular dichroism (CD) was observed from the d{sub c}?=?3?nm sample but not when d{sub c}?=?6?nm. In addition, the remnant CD peaks at 5.5?eV, which is comparable with the absorption peak associated with the C ?-?* gap transition. We suggest that the possible mechanism for this coupling can be considered as a magnetic proximity effect in which a ferromagnetic moment in the C medium is induced by Co/C interfaces.

Hsu, H. S., E-mail: hshsu@mail.nptu.edu.tw; Chien, P. C.; Chang, Y. Y. [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Sun, S. J. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lee, C. H. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

2014-08-04T23:59:59.000Z

95

Ceramic stabilization of hazardous wastes: a high performance room temperature process  

SciTech Connect (OSTI)

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products.

Maloney, M.D.

1996-10-01T23:59:59.000Z

96

Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature  

SciTech Connect (OSTI)

Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

Wu, Yan; Ji, Lingfei, E-mail: ncltji@bjut.edu.cn; Lin, Zhenyuan; Jiang, Yijian [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Zhai, Tianrui [College of Applied Science, Beijing University of Technology, Beijing 100124 (China)

2014-01-27T23:59:59.000Z

97

Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals  

SciTech Connect (OSTI)

Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

2009-12-07T23:59:59.000Z

98

Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys  

SciTech Connect (OSTI)

Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

1994-02-01T23:59:59.000Z

99

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene  

E-Print Network [OSTI]

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

2015-01-01T23:59:59.000Z

100

Room-temperature condensation in whispering gallery microresonators assisted by longitudinal optical phonons  

E-Print Network [OSTI]

We report condensation of hexagonal whispering gallery modes (WGM) at room temperature in ZnO microwires that embody nearly perfect polygonal whispering gallery microresonators. The condensate regime is achieved in the UV spectral range only at energies below the first longitudinal optical (LO) phonon replica of the free ZnO A-exciton transition and at non-zero wave vectors. We demonstrate that the multimodality of the WGM system and the high population of free excitons and phonons with various momenta strongly enhance the probability of an interaction of quasiparticles of the cavity exciton-photon system with LO phonons. We further examine the far-field mode pattern of lasing WGM and demonstrate their spatial coherence.

Dietrich, Christof P; Michalsky, Tom; Lange, Martin; Grundmann, Marius

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times as short as 85 days. In all cases, the cracking appeared to be associated with pitting or localized general corrosion. Crack initiation at other sites, such as surface imperfections or inclusions, cannot be excluded. Cracks appear in most cases to initiate through an intergranular mode and transition to a transgranular mode.

Mickalonis, J.; Duffey, J.

2012-09-12T23:59:59.000Z

102

ROOM TEMPERATURE COMPRESSION PROPERTIES OF TWO HEATS OF UNIRRADIATED V-4Cr-4Ti  

SciTech Connect (OSTI)

Vanadium alloys are of interest to the Fusion program as potential first wall structural materials. The expected irradiation conditions for the first wall structural material include a range of temperatures where very high hardening caused by a high density of small, but shearable defect clusters results in a type of deformation called "localized deformation". At the onset of yield in a tensile test, a dislocation may move through a grain shearing the obstacles and clearing out a channel. Subsequent dislocations may easily pass through this channel. As the test progresses, more channels form. In the early stages of deformation, it is thought that the plastic deformation is confined to these channels. One important macroscopic result of this deformation behavior is rapid onset of necking in a tensile test and very low uniform elongation. As a means to help understand the range of stress states where localized deformation may adversely affect macroscopic ductility in vanadium alloys, compression test specimens fabricated from two heats of V-4Cr-4Ti are currently under irradiation in the High Flux Isotope Reactor (HFIR). The results of room temperature compression tests on the unirradiated control materials are presented here and compared with uniaxial tensile values from the literature.

Toloczko, Mychailo B.; Kurtz, Richard J.

2004-06-30T23:59:59.000Z

103

New insights into designing metallacarborane based room temperature hydrogen storage media  

SciTech Connect (OSTI)

Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

Bora, Pankaj Lochan; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2013-10-28T23:59:59.000Z

104

Nanowire-based frequency-selective capacitive photodetector for resonant detection of infrared radiation at room temperature  

SciTech Connect (OSTI)

Characteristics of a capacitive infrared photodetector that works at room temperature by registering a change in capacitance upon illumination are reported. If used in an ideal resonant inductor-resistor-capacitor circuit, it can exhibit zero dark current, zero standby power dissipation, infinite detectivity, and infinite light-to-dark contrast ratio. It is also made frequency-selective by employing semiconductor nanowires that selectively absorb photons of energies close to the nanowire's bandgap. Based on measured parameters, the normalized detectivity is estimated to be ?3??10{sup 7} Jones for 1.6??m IR wavelength at room temperature.

Bandyopadhyay, Saumil, E-mail: saumilb@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

2014-07-14T23:59:59.000Z

105

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INLs test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

2010-06-01T23:59:59.000Z

106

Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}  

SciTech Connect (OSTI)

The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

Matteppanavar, Shidaling; Angadi, Basavaraj [Department of Physics, JB Campus, Bangalore University, Bangalore -560056 (India); Rayaprol, Sudhindra [UGC-DAE-CSR, Mumbai Centre, BARC, Mumbai - 400085 (India)

2013-02-05T23:59:59.000Z

107

Room-Temperature Metal-Hydride Discharge Source, with Observations on NiH and FeH Raphael Vallon,  

E-Print Network [OSTI]

Room-Temperature Metal-Hydride Discharge Source, with Observations on NiH and FeH Raphae¨l Vallon laser excitation and dispersed fluorescence spectra of NiH have also been recorded. The source has been are strong enough to record dispersed fluorescence from NiH by Fourier transform interferometry in magnetic

Ashworth, Stephen H.

108

Room Temperature, Intrinsic Vacancy Mediated Ferromagnetism in Cr:Ga2Se3/Si E. N. Yitamben,1,  

E-Print Network [OSTI]

Room Temperature, Intrinsic Vacancy Mediated Ferromagnetism in Cr:Ga2Se3/Si E. N. Yitamben,1, T. C of 4 µB/Cr. The intrinsic- vacancy structure of defected-zinc-blende -Ga2Se3 enables Cr incorporation, as well as strong overlap between Cr 3d states and the Se 4p states lining the intrinsic vacancy rows, ob

Olmstead, Marjorie

109

Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array  

SciTech Connect (OSTI)

Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 5070?nm and lengths of 200250?nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

2014-08-25T23:59:59.000Z

110

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

Uday B. Pal; Srikanth Gopalan

2005-01-24T23:59:59.000Z

111

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

Uday B. Pal; Srikanth Gopalan

2006-01-12T23:59:59.000Z

112

Line coupling effects in the isotropic Raman spectra of N{sub 2}: A quantum calculation at room temperature  

SciTech Connect (OSTI)

We present quantum calculations of the relaxation matrix for the Q branch of N{sub 2} at room temperature using a recently proposed N{sub 2}-N{sub 2} rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10?200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.

Thibault, Franck, E-mail: franck.thibault@univ-rennes1.fr [Institut de Physique de Rennes, UMR CNRS 6251, Universit de Rennes I, Campus de Beaulieu, Bt. 11B, F-35042 Rennes (France)] [Institut de Physique de Rennes, UMR CNRS 6251, Universit de Rennes I, Campus de Beaulieu, Bt. 11B, F-35042 Rennes (France); Boulet, Christian [Institut des Sciences Molculaires dOrsay, UMR CNRS 8214, Universit Paris-Sud 11, Campus dOrsay, Bt. 350, F-91405 Orsay (France)] [Institut des Sciences Molculaires dOrsay, UMR CNRS 8214, Universit Paris-Sud 11, Campus dOrsay, Bt. 350, F-91405 Orsay (France); Ma, Qiancheng [NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University 2880 Broadway, New York, New York 10025 (United States)] [NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University 2880 Broadway, New York, New York 10025 (United States)

2014-01-28T23:59:59.000Z

113

Fluorescence spectroscopy of single molecules at room temperature and its applications  

SciTech Connect (OSTI)

We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

Ha, Taekjip

1996-12-01T23:59:59.000Z

114

Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room-Temperature  

E-Print Network [OSTI]

Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room for Charge Collecting Signals . . . . 22 2.2.2 Optimal Filter for Transient signals . . . . . . . . . 26 2 . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Maxwell . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 The Signal Induction

He, Zhong

115

hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature.  

E-Print Network [OSTI]

hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature. J in NMR pacs 03.67.-a: Quantum information pacs 67.57.Lm: Spin dynamics Abstract Nuclear spin interference in a static mag- netic field B0 4.7 T. For a homogeneity of B0 of the order of B0/B0 = 2 10-8 , the nuclear

Boyer, Edmond

116

Degradation in Solid Oxide Cells During High Temperature Electrolysis  

SciTech Connect (OSTI)

Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation, held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: Delamination of O2-electrode and bond layer on steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

Manohar Sohal

2009-05-01T23:59:59.000Z

117

Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide  

SciTech Connect (OSTI)

Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul

2011-07-24T23:59:59.000Z

118

Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays  

SciTech Connect (OSTI)

Cobalt and nickel doped ZnO nanowire arrays were synthesized by an electrochemical process at a temperature of 90 deg. C. Energy dispersive x-ray spectroscopy and x-ray diffraction show that the dopants are incorporated into the wurtzite-structure ZnO. Anisotropic ferromagnetism with an easy direction of magnetization either perpendicular or parallel to the wire axis, depending on the wire geometry and density, was observed in 1.7% Co and 2.2% Ni-doped ZnO nanowires at room temperature. The anisotropic magnetism was explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanowires.

Cui, J.B.; Gibson, U.J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000 (United States)

2005-09-26T23:59:59.000Z

119

Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature  

E-Print Network [OSTI]

], spark welding [3], explosive bonding [4], and diffusion bonding [5,6]. However, the processing such as diffusion bonding [5,6], friction welding [7e11], vacuum roll bonding [12] and hot roll bonding [13Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room

Howlader, Matiar R

120

Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis  

SciTech Connect (OSTI)

CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

Huang Yuying [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Sun Fengqiang, E-mail: fengqiangsun@yahoo.c [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in GuangDong Universities, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

122

Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO(110) Rutile.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: Sulfur K-edgeDepartment|Room to|

123

Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents  

SciTech Connect (OSTI)

Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1??10{sup 5}?L (1 L?=?1??10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that HfOH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

2015-01-01T23:59:59.000Z

124

Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic CH Functionalization  

E-Print Network [OSTI]

A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic CH bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

Cheung, Chi Wai

125

Room temperature strain rate sensitivity in precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposites  

SciTech Connect (OSTI)

Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ? 3.7 10{sup ?3} is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O) clusters are responsible for the limited flowability in these ceramics.

Sujith, Ravindran; Kumar, Ravi, E-mail: nvrk@iitm.ac.in [Materials Processing Section, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India. (India)] [Materials Processing Section, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India. (India)

2014-01-15T23:59:59.000Z

126

Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region  

SciTech Connect (OSTI)

Microring cavities (diameter D = 2.7-7 {mu}m) with an active region based on InAs/InGaAs quantum dots are fabricated and their characteristics are studied by the microphotoluminescence method and near-field optical microscopy. A value of 22 000 is obtained for the Q factor of a microring cavity with the diameter D = 6 {mu}m. Lasing up to room temperature is obtained in an optically pumped ring microlaser with a diameter of D = 2.7 {mu}m.

Kryzhanovskaya, N. V., E-mail: kryj@mail.ioffe.ru; Zhukov, A. E.; Nadtochy, A. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Moiseev, E. I. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Kulagina, M. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Savelev, A. V.; Arakcheeva, E. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Lipovskii, A. A. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Zubov, F. I. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Kapsalis, A.; Mesaritakis, C.; Syvridis, D. [University of Athens (Greece)] [University of Athens (Greece); Mintairov, A. [University of Notre Dame (United States)] [University of Notre Dame (United States); Livshits, D. [Innolume GmbH (Germany)] [Innolume GmbH (Germany)

2013-10-15T23:59:59.000Z

127

Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond  

E-Print Network [OSTI]

The nitrogen-vacancy defect center (NV center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single NV center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.

Fazhan Shi; Xing Rong; Nanyang Xu; Ya Wang; Jie Wu; Bo Chong; Xinhua Peng; Juliane Kniepert; Rolf-Simon Schoenfeld; Wolfgang Harneit; Mang Feng; Jiangfeng Du

2010-02-12T23:59:59.000Z

128

C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies  

SciTech Connect (OSTI)

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.

GJ Lumetta; DJ Bates; JP Bramson; LP Darnell; OT Farmer III; SK Fiskum; LR Greenwood; FV Hoopes; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-05-17T23:59:59.000Z

129

Near fifty percent sodium substituted lanthanum manganitesA potential magnetic refrigerant for room temperature applications  

SciTech Connect (OSTI)

Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300?K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5?Jkg{sup ?1}K{sup ?1} was observed near 300?K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300?K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300?K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62?K at 280?K.

Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

2014-03-03T23:59:59.000Z

130

Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs  

SciTech Connect (OSTI)

Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

Thallapally, Praveen K.; Strachan, Denis M.

2012-06-06T23:59:59.000Z

131

High temperature solid electrolyte fuel cell with ceramic electrodes  

DOE Patents [OSTI]

A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

Marchant, David D. (Richland, WA); Bates, J. Lambert (Richland, WA)

1984-01-01T23:59:59.000Z

132

Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm  

E-Print Network [OSTI]

A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simulations follow distinctly different energetic pathways during the applied shear deformation at low temperatures and experimental strain rates, which implies that extrapolation of the governing deformation mechanisms from MD strain rates to experimental may not be valid.

Penghui Cao; Xi Lin; Harold S. Park

2014-05-12T23:59:59.000Z

133

High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature  

SciTech Connect (OSTI)

The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

Bu, J. H.; Schaefer, A.; Hgele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universitt Bochum, Universittsstrae 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

2014-11-03T23:59:59.000Z

134

Selective-area room temperature visible photoluminescence from SiC/Si heterostructures  

E-Print Network [OSTI]

shown8 to produce monocrystalline thin films, while minimizing the high temperature exposure. The Sic mismatch, heteroepitaxial growth of Sic films on Si has been achieved by several groups?-' In addition, SicSi. For example, polycrystalline Sic deposited on Si after it is rendered porous has been utilized9

Steckl, Andrew J.

135

Solid Nitrogen at Extreme Conditions of High Pressure and Temperature  

SciTech Connect (OSTI)

We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

Goncharov, A; Gregoryanz, E

2004-04-05T23:59:59.000Z

136

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature  

SciTech Connect (OSTI)

In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others

2013-01-28T23:59:59.000Z

137

Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um  

SciTech Connect (OSTI)

Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

2000-06-05T23:59:59.000Z

138

Room-temperature ferromagnetism of Fe-doped TiO{sub 2} nanoparticles driven by oxygen vacancy  

SciTech Connect (OSTI)

Graphical abstract: A series of Ti{sub 1?x}Fe{sub x}O{sub 2??} (x ? 0.03) nanoparticles (NPs) were synthesized by solgel route. The room temperature ferromagnetism (RTFM) has been explained in terms of vacancy induced bound magnetic polaron (BMP) model, where the Fe{sup 3+} ions ferromagnetically coupled mediated by oxygen vacancies. Display Omitted Highlights: ? The Fe-doped NPs have been synthesized by solgel method. ? Ferromagnetism of Fe-doped TiO{sub 2} NPs are intrinsic property. ? Room temperature ferromagnetism observed in all the Fe-doped samples. ? Variation in M{sub s} is attributed due to oxygen vacancies and defect formation. -- Abstract: A series of Ti{sub 1?x}Fe{sub x}O{sub 2??} (0 ? x ? 0.03) nanoparticles (NPs) were synthesized by solgel route. The NPs had a size distribution in the range of 1540 nm and were identified as the anatase TiO{sub 2} by X-ray diffraction (XRD) and Raman analysis. XRD, selected area electron diffraction, Raman and Mssbauer analysis ruled out the signature of Fe-cluster or any other oxides of Fe. The redshifting of the band edge emission peak observed in UVvis absorption studies further confirmed the doping of Fe ions in the TiO{sub 2} lattice. Raman studies show the shifting and broadening in E{sub g}(1) and E{sub g}(3) modes with Fe doping. It suggested that the activation of ferromagnetism with increasing Fe doping concentration was related to the oxygen vacancy defects. The presence of such defects was further confirmed from electron paramagnetic resonance (EPR) measurements. The observed ferromagnetism is interpreted in terms of bound magnetic polaron (BMP) model.

Patel, Sandeep K.S.; Kurian, Sajith [Department of Chemistry, Indian Institute of Technology Kanpur, 208016 (India)] [Department of Chemistry, Indian Institute of Technology Kanpur, 208016 (India); Gajbhiye, Namdeo S., E-mail: gajbhiyens@gmail.com [Department of Chemistry, Indian Institute of Technology Kanpur, 208016 (India)

2013-02-15T23:59:59.000Z

139

Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature  

SciTech Connect (OSTI)

Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield rectangular I?V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ?12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

2010-01-01T23:59:59.000Z

140

Thin film growth and characterization of Potassium-Tantalate-Niobate room temperature ferroelectric  

E-Print Network [OSTI]

is al&says present in the solution due to additiou ol &cscess solute &naterial or due ]o cooliug ol the solutiou belov' its liquidus tempera]ure. Spon], aueous uuclea], ion ac], iva]es gro&vth. 3. Sl, ep-cooled gro&vth: The gro&vth occurs at a..., cvlindrica] sl eel rod ivas iiiscrtcd which ivould serve as flic seai foi I lie alumina. crucible. An S-type (Pt. ? 10'zh Pt/Ri&) thermo& ouple inserted throuzli this rod gives Ihe temperature at the bottom of the crucible. 39 The furnace was modified...

Muntha, Nageswara Rao Venkat

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature  

SciTech Connect (OSTI)

The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

2007-10-15T23:59:59.000Z

142

Room temperature organic exciton-polariton flow exploiting high-speed, high-Q propagating modes  

E-Print Network [OSTI]

Exciton-polaritons, bosonic quasi-particles formed by the interaction of light and matter, have shown a plethora of exciting phenomena that have been chiefly restricted to inorganic semiconductors and low temperature operation. Only recently, polariton condensation and non-linear effects have been demonstrated with polymers and organic molecules, making these systems suited for a realistic new generation of all-optical devices. However, polariton propagation in the plane of the device, essential for on-chip integration, is still limited by the very strong dissipation inherent to present organic microcavities. Here, we demonstrate strong-coupling of organic excitons with a Bloch surface wave (Q $\\approx$ 3000) which sustains polariton propagation for distances longer than 300 $\\mu$m and polariton lifetimes of about 1 ps, a record value in organic devices. The group velocity of the polariton mode is found to be $\\approx$ 50% the speed of light, about two order of magnitude higher than in any planar microcavity.

Lerario, Giovanni; Cannavale, Alessandro; Mangione, Federica; Gambino, Salvatore; Dominici, Lorenzo; De Giorgi, Milena; Gigli, Giuseppe; Sanvitto, Daniele

2015-01-01T23:59:59.000Z

143

Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature  

E-Print Network [OSTI]

Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

2015-01-01T23:59:59.000Z

144

MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL  

SciTech Connect (OSTI)

AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

Uday B. Pal; Srikanth Gopalan

2004-02-15T23:59:59.000Z

145

Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation  

SciTech Connect (OSTI)

In this study the authors report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. They show that this zone refining method is very efficient in removing impurities from lead iodide, and they also determine the segregation coefficient for some of these impurities. Triple axis X-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier-phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

Hermon, H.; James, R.B.; Lund, J. [Sandia National Labs., Livermore, CA (United States)] [and others

1998-12-31T23:59:59.000Z

146

Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation  

SciTech Connect (OSTI)

In this study, we report on the results of the investigation of lead iodide material properties. The effectiveness of zone refining purification methods on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide and we also determine the segregation coefficient for some of these impurities. Triple axis x- ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching, and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier- phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

Hermon, H.; James, R.B.; Cross, E. [and others

1997-02-01T23:59:59.000Z

147

Metalized T graphene: A reversible hydrogen storage material at room temperature  

SciTech Connect (OSTI)

Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7?wt. %) with an optimal adsorption energy of 0.19?eV/H{sub 2}. The adsorption/desorption of H{sub 2} at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

2014-09-21T23:59:59.000Z

148

640 CEREAL CHEMISTRY Quick Fiber Process: Effect of Mash Temperature, Dry Solids,  

E-Print Network [OSTI]

640 CEREAL CHEMISTRY Quick Fiber Process: Effect of Mash Temperature, Dry Solids, and Residual Germ on using ethanol in alternative fuels. Be- sides being the clean alternative to MTBE in the gasoline market, use of ethanol saves the consumers from 2 to 5/gal of gasoline purchased (Renewable Fuels Association

149

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature  

E-Print Network [OSTI]

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature; accepted 22 March 2001 Abstract A method for submicrosecond heating of sensor surfaces and simultaneous as well as photo thermal and scanning force microscopy measurements were performed to optimize the heating

Moritz, Werner

150

Mechanism and Kinetics of Solid-State Transformation in High-Temperature Processed Linepipe Steel  

E-Print Network [OSTI]

Mechanism and Kinetics of Solid-State Transformation in High-Temperature Processed Linepipe Steel P, Cambridge CB2 3QZ, U.K. Abstract: A relatively new class of linepipe steels with yield strength above 500 systems. The design concept for the steels takes advantage of the enhanced role which higher levels

Cambridge, University of

151

Room temperature reduction of multilayer graphene oxide film on a copper substrate: Penetration and participation of coper phase in redox reactions.  

SciTech Connect (OSTI)

A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.

Voylov, Dmitry N [ORNL] [ORNL; Agapov, Alexander L [ORNL] [ORNL; Sokolov, Alexei P [ORNL] [ORNL; Shulga, Y.M. [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia] [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia; Arbuzov, Artem [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia] [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia

2014-01-01T23:59:59.000Z

152

Core-shell multi-quantum wells in ZnO / ZnMgO nanowires with high optical efficiency at room temperature  

E-Print Network [OSTI]

Nanowire-based light-emitting devices require multi-quantum well heterostructures with high room temperature optical efficiencies. We demonstrate that such efficiencies can be attained through the use of ZnO/Zn(1-x)MgxO core shell quantum well heterostructures grown by metal organic vapour phase epitaxy. Varying the barrier Mg concentration from x=0.15 to x=0.3 leads to the formation of misfit induced dislocations in the multi quantum wells. Correlatively, temperature dependant photoluminescence reveals that the radial well luminescence intensity decreases much less rapidly with increasing temperature for the lower Mg concentration. Indeed, about 54% of the 10K intensity is retained at room temperature with x=0.15, against 2% with x=0.30. Those results open the way to the realization of high optical efficiency nanowire-based light emitting diodes.

Thierry, Robin; Jouneau, Pierre-Henri; Ferret, Pierre; Feuillet, Guy; 10.1088/0957-4484/23/8/085705

2013-01-01T23:59:59.000Z

153

Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium  

SciTech Connect (OSTI)

Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460?K for Zn{sub 0.97}Al{sub 0.03}O, 463?K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503?K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

2014-03-07T23:59:59.000Z

154

Electrical characterization of H{sub 2}S adsorption on hexagonal WO{sub 3} nanowire at room temperature  

SciTech Connect (OSTI)

We have characterized the electrical transport properties of Au/WO{sub 3} nanowire/Au devices in ambient air and gaseous H{sub 2}S to investigate the adsorption kinetics of H{sub 2}S molecules on the surface of WO{sub 3} nanowire at room temperature. The WO{sub 3} nanowire devices exhibit increasing linear conductance and electrical hysteresis in H{sub 2}S. Furthermore, the contact type between Au electrode and WO{sub 3} nanowire can be converted from original ohmic/Schottky to Schottky/ohmic after being exposed to H{sub 2}S. These results suggest that adsorbed H{sub 2}S molecules are oxidized by holes to form hydrogen ions and S atoms, which will result in formation of hydrogen tungsten bronze and desorption of previously chemically adsorbed H{sub 2}O molecules. Adsorbed H{sub 2}S molecules can also oxidize previously adsorbed and ionized oxygen, which will release the electrons from the ionized oxygen and then weaken upward band bending at the surface of WO{sub 3} nanowire.

Liu, Binquan; Tang, Dongsheng, E-mail: dstang@hunnu.edu.cn; Zhou, Yong; Yin, Yanling; Peng, Yuehua; Zhou, Weichang; Qin, Zhu'ai; Zhang, Yong [Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China)

2014-10-28T23:59:59.000Z

155

Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films  

SciTech Connect (OSTI)

In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

Cezar, A. B. [Instituto Federal do Paran (IFPR), Campus Paranagu (Brazil); Graff, I. L., E-mail: graff@fisica.ufpr.br; Varalda, J.; Schreiner, W. H.; Mosca, D. H. [Departamento de Fsica, Universidade Federal do Paran (UFPR), Curitiba (Brazil)

2014-10-28T23:59:59.000Z

156

Room-temperature optical absorption in the InAs/GaAs quantum-dot superlattice under an electric field  

SciTech Connect (OSTI)

Electroluminescence and absorption spectra of a ten-layer InAs/GaAs quantum dot (QD) superlattice built in a two-section laser with sections of equal length is experimentally studied at room temperature. The thickness of the GaAs spacer layer between InAs QD layers, determined by transmission electron microscopy, is {approx}6 nm. In contrast to tunnel-coupled QDs, QD superlattices amplify the optical polarization intensity and waveguide absorption of the TM mode in comparison with the TE mode. It is found that variations in the multimodal periodic spectrum of differential absorption of the QD superlattice structure are strongly linearly dependent on the applied electric field. Differential absorption spectra exhibit the Wannier-Stark effect in the InAs/GaAs QD superlattice, in which, in the presence of an external electric field, coupling of wave functions of miniband electron states is suppressed and a series of discrete levels called the Wannier-Stark ladder states are formed.

Sobolev, M. M., E-mail: m.sobolev@mail.ioffe.ru; Gadzhiev, I. M.; Bakshaev, I. O.; Nevedomskii, V. N.; Buyalo, M. S.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

2011-08-15T23:59:59.000Z

157

CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS  

SciTech Connect (OSTI)

Idaho National Laboratorys (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

2008-03-01T23:59:59.000Z

158

Solid sorbents for removal of carbon dioxide from gas streams at low temperatures  

DOE Patents [OSTI]

New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

Sirwardane, Ranjani V. (Morgantown, WV)

2005-06-21T23:59:59.000Z

159

C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies  

SciTech Connect (OSTI)

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-01-26T23:59:59.000Z

160

Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La{sub 0.8}Na{sub 0.1}MnO{sub 3}  

SciTech Connect (OSTI)

The La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide was prepared by the solid-state reaction and annealed in air. The X-ray diffraction data reveal that the sample is crystallized in a rhombohedral structure with R3{sup }c space group. Magnetic study shows a second-order magnetic phase transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C}?=?295?K. In addition, the magnetizations as a function of temperature and the magnetic field is used to evaluate the magnetic entropy change ?S{sub M}. Then, we have deduced that the La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide has a large magnetocaloric effect at room temperature. Such effect is given by the maximum of the magnetic entropy change ?S{sub Mmax}?=?5.56, and by the Relative cooling power (RCP) factor which is equal to 235 under a magnetic field of 5?T. Moreover, the magnetic field dependence of the magnetic entropy change is used to determine the critical exponents ?, ?, and ? which are found to be ??=?0.495, ??=?1.083, and ??=?3.18. These values are consistent with the prediction of the mean field theory (??=?0.5, ??=?1, and ??=?3). Above all, the temperature dependence of electrical resistivity shows a metalinsulator transition at T{sub ?}. The electrical resistivity decrease when we apply a magnetic field giving a magnetoresistance effect in the order of 60% at room temperature.

Khlifi, M., E-mail: khlifimouadh3000@yahoo.fr; Dhahri, E. [Laboratoire de Physique Applique, Facult des Sciences de Sfax, B.P. 802, Universit de Sfax, Sfax 3018 (Tunisia); Hlil, E. K. [Institut Nel, CNRS et Universit Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

2014-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

162

Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode  

E-Print Network [OSTI]

Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode.1088/0022-3727/44/4/045102 Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal in this article are in colour only in the electronic version) 1. Introduction Dye-sensitized solar cells (DSCs

Demir, Hilmi Volkan

163

Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report  

SciTech Connect (OSTI)

Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

1980-11-01T23:59:59.000Z

164

Origin of room temperature d{sup 0} ferromagnetism and characteristic photoluminescence in pristine SnO{sub 2} nanowires: A correlation  

SciTech Connect (OSTI)

Arrays of SnO{sub 2} nanowires are fabricated by employing a wet chemical template assisted sol-gel route using ordered nanoporous anodic aluminium oxide as the host. The origin of room temperature d{sup 0} ferromagnetism in pristine polycrystalline SnO{sub 2} nanowires is investigated by correlating photoluminescence and electron paramagnetic resonance (EPR) studies. It has been found that the naturally grown structural defects of oxygen vacancies namely singly ionised oxygen vacancy (V{sub O}{sup {center_dot}}) clusters induce the characteristic photoluminescence and contribute in ferromagnetism of pristine SnO{sub 2} nanowires at room temperature. The presence of the V{sub O}{sup {center_dot}} structural defects in the pure SnO{sub 2} nanowires is also assured by the EPR spectroscopy. Present study will help understand the puzzle about the unexpected magnetic phenomenon in these undoped wide band gap oxide semiconductors. Highlights: Black-Right-Pointing-Pointer SnO{sub 2} NWs are fabricated by wet chemical AAO template assisted route. Black-Right-Pointing-Pointer SnO{sub 2} NWs exhibit d{sup 0} ferromagnetism at room temperature. Black-Right-Pointing-Pointer Origin of ferromagnetism is correlated with photoluminescence and EPR studies. Black-Right-Pointing-Pointer Oxygen vacancy clusters are attributed to boost ferromagnetism in SnO{sub 2} NWs.

Khan, Gobinda Gopal, E-mail: gobinda@bose.res.in [Department of Material Sciences, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, West Bengal (India); Ghosh, S.; Mandal, Kalyan [Department of Material Sciences, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, West Bengal (India)

2012-02-15T23:59:59.000Z

165

Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device  

SciTech Connect (OSTI)

The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde [Advanced Materials Processing and Analysis Center (AMPAC) and Mechanical Materials Aerospace Engineering (MMAE) Department, Engineering 381, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States); National Aeronautics and Space Administration (NASA), John F. Kennedy Space Center, Kennedy Space Center (KSC), Florida 32899 (United States)

2005-03-01T23:59:59.000Z

166

MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS  

E-Print Network [OSTI]

Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim...

Lim, Wendy

2011-02-22T23:59:59.000Z

167

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

Eric D. Wachsman; Keith L. Duncan

2002-03-31T23:59:59.000Z

168

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique  

E-Print Network [OSTI]

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

Reid, Scott A.

169

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

SciTech Connect (OSTI)

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

170

Room-temperature mid-infrared M-type GaAsSb/InGaAs quantum well lasers on InP substrate  

SciTech Connect (OSTI)

We have demonstrated experimentally the InP-based M-type GaAsSb/InGaAs quantum-well (QW) laser lasing at 2.41??m at room temperature by optical pumping. The threshold power density per QW and extracted internal loss were about 234?W/cm{sup 2} and 20.5?cm{sup ?1}, respectively. The temperature-dependent photoluminescence (PL) and lasing spectra revealed interesting characteristics for this type of lasers. Two distinct regions in the temperature dependent threshold behavior were observed and the transition temperature was found to coincide with the cross over point of the PL and lasing emission peaks. The current-voltage characteristic of M-type QW laser was superior to the inverse W-type one due to its thinner barrier for holes. Further improvement of the M-type QW structure could lead to a cost-effective mid-infrared light source.

Chang, Chia-Hao; Li, Zong-Lin; Pan, Chien-Hung; Lu, Hong-Ting; Lee, Chien-Ping; Lin, Sheng-Di, E-mail: sdlin@mail.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

2014-02-14T23:59:59.000Z

171

2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

2009-11-01T23:59:59.000Z

172

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

173

Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit  

SciTech Connect (OSTI)

We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 {mu}K. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to {approx}200 {mu}K. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid.

Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Skyba, P. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Institute of Experimental Physics, Watsonova 47, 04353 Kosice (Slovakia)

2006-09-07T23:59:59.000Z

174

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

175

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

176

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network [OSTI]

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

177

Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiClKCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

Cynthia Hanson; Supathorn Phongikaroon; Jill R. Scott

2014-07-01T23:59:59.000Z

178

Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow  

E-Print Network [OSTI]

of California, Berkeley, 2011 SURF Fellow Advisor: Prof. Meilin Liu Graduate Mentors: Mingfei Liu, Ben Rainwater Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCs) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

Li, Mo

179

Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films  

SciTech Connect (OSTI)

Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F. [Universite de Lorraine, Institut Jean Lamour, Departement CP2S, UMR CNRS 7198, Nancy, F-54042 (France); Laffez, P. [Groupe de Recherche Electronique, Materiaux, Acoustique, Nanoscience (GREMAN), Universite Francois Rabelais de Tours, UMR CNRS 7347, IUT de Blois, 15 rue de la Chocolaterie, Blois, F-41000 (France)

2012-06-01T23:59:59.000Z

180

Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications  

SciTech Connect (OSTI)

Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

Nicholas, Jason.D.

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Room temperature ferromagnetic and ferroelectric properties of Bi{sub 1?x}Ca{sub x}MnO{sub 3} thin films  

SciTech Connect (OSTI)

Bi{sub 1?x}Ca{sub x}MnO{sub 3} (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 C and 800 C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca{sup 2+} ions into BiMnO{sub 3} films. The BCMO (x = 0.2) film grown at 400 C shows better magnetization (M{sub sat}) and polarization (P{sub s})with the measured values of 869 emu / cc and 6.6 ?{sub C}/ cm{sup 2} respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca{sup 2+} ions substituted BMO films makes potentially interesting for spintronic device applications.

Pugazhvadivu, K. S.; Tamilarasan, K., E-mail: dr.k.tamilarasan@gmail.com [Thin Film Laboratory, Department of Physics, Kongu Engineering College, Perundurai - 638 052 (India); Balakrishnan, L. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India); Mohan Rao, G. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore - 560 012 (India)

2014-11-15T23:59:59.000Z

182

Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})  

SciTech Connect (OSTI)

We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Parsons, Gregory N.; Losego, Mark D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-06-23T23:59:59.000Z

183

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

SciTech Connect (OSTI)

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

184

An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode  

SciTech Connect (OSTI)

Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF20% GDC composite cathode shows a power density of 1.07 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

2012-05-01T23:59:59.000Z

185

Luminescence thermometry below room temperature via up-conversion emission of Y{sub 2}O{sub 3}:Yb{sup 3+},Er{sup 3+} nanophosphors  

SciTech Connect (OSTI)

This study explores potential of Er{sup 3+}-Yb{sup 3+} doped phosphors for up-conversion luminescence thermometry in the temperature range from 10?K to 300?K. Yttrium oxide nanopowder doped with trivalent ytterbium and erbium ions (Y{sub 1.97}Yb{sub 0.02}Er{sub 0.01}O{sub 3}) was prepared by hydrothermal synthesis as an example. The intensity ratios of up-conversion emissions from thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} show strong temperature dependence (in the range 150?K300?K) with much higher relative sensitivity than those reported for thermometry above room temperature with Er{sup 3+}-Yb{sup 3+} based up-conversion materials. The maximal value of relative sensitivity is 5.28%K{sup ?1} at 150?K, with temperature resolution ranging from 0.81?K to 0.06?K. In addition, the intensity ratios of emission from thermally non-coupled Er{sup 3+} levels ({sup 2}H{sub 9/2} and {sup 4}F{sub 9/2}) and from {sup 4}S{sub 3/2} also show temperature dependence that can be approximated with an exponential function. With these up-conversion emission ratios, it is possible measure temperature in the range of 10?K to 300?K with excellent sensitivity and resolution.

Lojpur, V.; Nikoli?, G.; Drami?anin, M. D., E-mail: dramican@vinca.rs [Vin?a Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia)

2014-05-28T23:59:59.000Z

186

Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions  

DOE Patents [OSTI]

The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

2004-12-14T23:59:59.000Z

187

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

2002-12-01T23:59:59.000Z

188

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

Eric D. Wachsman

2000-10-01T23:59:59.000Z

189

Room-temperature ferromagnetism in Zn{sub 1-x}Co{sub x}O magnetic semiconductors prepared by sputtering  

SciTech Connect (OSTI)

We have used magnetron cosputtering to grow Zn{sub 1-x}Co{sub x}O magnetic dilute semiconductors. The growth has been performed on SiO{sub 2}/Si and Al{sub 2}O{sub 3}(0001) substrates. The Co concentration has been varied between 0.1 and 0.25 and the substrate temperature between room temperature and 600 deg. C. X-ray diffraction analysis has shown that for the films grown on Si substrates the structural quality of the film is improved by increasing the growth temperature and/or postgrowth annealing. The films are textured with c axis of the wurtzite structure along the growth direction. However, for the films grown on Al{sub 2}O{sub 3} substrate quasi-epitaxial films have been obtained for 600 deg. C substrate temperature. Magnetization measurements have shown that the ferromagnetism is directly correlated to the structural quality and appears by increasing the growth temperature and/or postgrowth annealing. Moreover, for the highly textured film a clear magnetic perpendicular anisotropy has been evidenced with the easy magnetization axis along the growth direction. To evidence the intrinsic nature of the ferromagnetism in the films, transmission optical measurements have been used. They show three absorption bands that are characteristics of d-d transitions of tetrahedrally coordinated Co{sup 2+}. This has been supported by nuclear magnetic resonance and magnetic thermal variation.

Dinia, A.; Schmerber, G.; Meny, C.; Pierron-Bohnes, V.; Beaurepaire, E. [Institut de Physique et Chimie des Materiaux de Strasbourg IPCMS, Centre National de la Recherche Scientifique CNRS-United Mixte de Recherche UMR 7504, Universite Louis Pasteur - ULP -Ecole Europeenne de Chimie, Polymeres et Materiaux ECPM, 23 rue du Loess, F-67034 Strasbourg (France)

2005-06-15T23:59:59.000Z

190

Measurement of bitumen viscosity in the room-temperature drop experiment: student education, public outreach and modern science in one  

E-Print Network [OSTI]

Slow flow of the viscous liquid is a thought-provoking experiment that challenges students, academics and public to think about some fundamental questions in modern science. In the Queensland demonstration, the world-longest running experiment earning the Ig Nobel prize, one drop of pitch takes about 10 years to fall, leading to problems of actually observing the drops. Here, we describe our recent demonstration of slowly-flowing bitumen where appreciable flow is observed on the time scale of months. The experiment is free from dissipative heating effects and has the potential to improve the accuracy of measurement. Bitumen viscosity was calculated by undergraduate students during the summer project. The worldwide access to the running experiment is provided by webcams uploading the images to a dedicated website, enhancing student education experience and promotion of science. This demonstration serves as an attractive student education exercise and stimulates the discussion of fundamental concepts and hotly debated ideas in modern physics research: difference between solids and liquids, the nature of liquid-glass transition, emergence of long time scales in a physical process, and the conflict between human intuition and physical reality.

A. T. Widdicombe; P. Ravindrarajah; A. Sapelkin; A. E. Phillips; D. Dunstan; M. T. Dove; V. V. Brazhkin; K. Trachenko

2014-03-21T23:59:59.000Z

191

One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler-Volmer and Symmetric Marcus-Hush theories using microdisc electrodes  

E-Print Network [OSTI]

The voltammetry for the reduction of oxygen at a microdisc electrode is reported in two room temperature ionic liquids: 1-butyl-1-methylpyyrolidinium bis(trifluoromethylsulfonyl) imide ([Bmpyrr][NTf2]) and trihexyltetradecylphosphonium bis9trifluoromethylsulfonyl) imide ([P14,6,6,6][NTf2]) at 298 K. Simulated voltammograms using Butler-Volmer theory and Symmetric Marcus-Hush (SMH) theory were compared with experimental data. Butler-Volmer theory consistently provided experimental parameters with a higher level of certainty than SMH theory. A value of solvent reorganisation energy for oxygen reduction in ionic liquids was inferred for the first time as 0.4-0.5 eV, which is attributable to inner-sphere reorganisation with a negligible contribution from solvent reorganisation. The developed Butler-Volmer and Symmetric Marcus-Hush programs are also used to theoretically study the possibility of kinetically limited steady state currents, and to establish an approximate equivalence relationship between microdisc el...

Tanner, Eden E L; Barnes, Edward O; Compton, Richard G

2015-01-01T23:59:59.000Z

192

Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers  

SciTech Connect (OSTI)

Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers are proposed and demonstrated. The nanowires are axially excited by evanescent wave outside a microfiber with a diameter about 10??m via a ns-pulse laser. The lasing emission with a low effective threshold less than 90 nJ is achieved at 868.62?nm along with a linewidth of ?1.8?nm. Moreover, multiple lasing lines in a wavelength range from 852.56?nm to 882.48?nm are observed. The mechanism of diverse lasing wavelengths is revealed. Furthermore, the proposed GaAs/AlGaAs nanowire laser has advantages such as simple structure, easy to operate, and controllable lasing wavelength, tending to be practical in optical communications and integrated photonic circuits.

Wei, Wei; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 66, Beijing 100876 (China); Liu, Yange, E-mail: ygliu@nankai.edu.cn; Wang, Zhi [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

2014-06-02T23:59:59.000Z

193

Observation of room temperature optical absorption in InP/GaAs type-II ultrathin quantum wells and quantum dots  

SciTech Connect (OSTI)

Room temperature optical absorption process is observed in ultrathin quantum wells (QWs) and quantum dots (QDs) of InP/GaAs type-II band alignment system using surface photovoltage spectroscopy technique, where no measurable photoluminescence signal is available. Clear signature of absorption edge in the sub band gap region of GaAs barrier layer is observed for the ultrathin QWs and QDs, which red shifts with the amount of deposited InP material. Movement of photogenerated holes towards the sample surface is proposed to be the main mechanism for the generation of surface photovoltage in type-II ultrathin QWs and QDs. QDs of smaller size are found to be free from the dislocations as confirmed by the high resolution transmission electron microscopy images.

Singh, S. D., E-mail: devsh@rrcat.gov.in; Porwal, S.; Mondal, Puspen; Srivastava, A. K.; Mukherjee, C.; Dixit, V. K.; Sharma, T. K.; Oak, S. M. [Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

2014-06-14T23:59:59.000Z

194

A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance  

SciTech Connect (OSTI)

A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

2013-10-15T23:59:59.000Z

195

Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells  

SciTech Connect (OSTI)

Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

Shaowu Zha; Meilin Liu

2005-03-23T23:59:59.000Z

196

Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane  

SciTech Connect (OSTI)

This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

Pyati, R.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)

1996-02-01T23:59:59.000Z

197

Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids  

SciTech Connect (OSTI)

The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R. [Department of Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada)

2014-10-28T23:59:59.000Z

198

Heating remote rooms in passive solar buildings  

SciTech Connect (OSTI)

Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

199

Magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations and tunnel magnetoresistance effect at room temperature  

SciTech Connect (OSTI)

Fe{sub 3}O{sub 4} is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe{sub 3}O{sub 4} electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe{sub 3}O{sub 4}(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe{sub 3}O{sub 4} (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe{sub 3}O{sub 4}(110) electrodes and obtained a TMR effect of ?12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe{sub 3}O{sub 4} predicted from band calculations.

Nagahama, Taro, E-mail: nagahama@eng.hokudai.ac.jp; Matsuda, Yuya; Tate, Kazuya; Kawai, Tomohiro; Takahashi, Nozomi; Hiratani, Shungo; Watanabe, Yusuke; Yanase, Takashi; Shimada, Toshihiro [Graduate School of Engineering, Hokkaido University, Kita13 Nishi8, Kitak-ku, Sapporo 060-8628 (Japan)

2014-09-08T23:59:59.000Z

200

Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature  

SciTech Connect (OSTI)

We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.

Chen, D. Y., E-mail: cdy7659@126.com [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China); Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Sun, Y.; He, Y. J. [Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Xu, L.; Xu, J. [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China)

2014-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

News Room  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/News Archives NewsRoom

202

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

203

Reversible temperature regulation of electrical and thermal conductivity using liquidsolid phase transitions  

E-Print Network [OSTI]

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

Zheng, Ruiting

204

High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors  

E-Print Network [OSTI]

combustors Lydie Le Forestier a,*, Guy Libourel b,c a ISTO, UMR 6113 CNRS-Universit d'Orlans, Polytech, a destruction of pathogenic agents and a possible recovery of energy. Whatever MSW combustor used, combustion of MSW produces two kinds of solid residues: (i) bottom ashes recovered from the primary combustor

Paris-Sud XI, Universit de

205

High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid-state NMR study  

E-Print Network [OSTI]

High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid 2014 Keywords: Steam-treatment of PBI, PEEK, PEKK Solid-state NMR Water and D2O uptake polymers a b with D2O steam at temperatures of 150 and 315 C. All samples are studied by TGA, IR, 13 C CP/MAS, 1 H

Bluemel, Janet

206

Electrochemical properties of all solid state Li/S battery  

SciTech Connect (OSTI)

All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup ?1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup ?1}-sulfur after 10 cycles.

Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing; Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kang, Yongku [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Wang, Guoxiu [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of) [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

2012-10-15T23:59:59.000Z

207

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

SciTech Connect (OSTI)

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

208

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

209

Volume 16I, number I CHEMICAL PHYSICS LETTERS 1SeDtember 1989 DISPERSIVE ELECTRONIC EXCITATION TRANSPORT IN POLYMERIC SOLIDS  

E-Print Network [OSTI]

TRANSPORT IN POLYMERIC SOLIDS AT AND NEAR ROOM TEMPERATURE Alan D. STEIN, Kristen A. PETERSON ' and M in a polymeric solid as a function of excitation wavelength between 300 and 50 K. The characteristicsofthe in micelles [ 51, and chromophores in polymeric systems [6-lo], the em- phasis has been on the relationship

Fayer, Michael D.

210

Development of intermediate temperature planar solid oxide fuel cells. Annual report, September 1992-1993  

SciTech Connect (OSTI)

Dense, uniform thin films (0.5 - 0.2 micrometer) of LSCF, YSZ and LSM were deposited on dense or porous substrates at temperatures not exceeding 600 C. Cathode/electrolyte interaction studies revealed the formation of reaction products at the interface. The presence of a CSO buffer layer eliminated the interactions and decreased the interfacial resistance appreciably. Both LSCF and YCF systems have been evaluated and are considered potential cathode materials at reduced temperatures. They are chemically and structurally stable over a wide range of temperature and oxygen activity, they exhibit mixed conductivity and their thermal expansion coefficient can be made to match that of YSZ. Blocking electrode experiments revealed that the partial ionic conductivity of LSCF is comparable to that of YSZ. Single cells based on planar thin film design will be fabricated and tested.

Nasrallah, M.M.; Anderson, H.U.; Huebner, W.

1993-10-01T23:59:59.000Z

211

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

SciTech Connect (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

212

Mathematics Help Room  

E-Print Network [OSTI]

Link to Help Room Schedule. The Mathematics Help Room is available to help you with your 100 and 200 level Algebra, Algebra/Trigonometry, or Calculus...

213

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect (OSTI)

Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

Anil V. Virkar

2002-03-26T23:59:59.000Z

214

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents [OSTI]

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

215

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect (OSTI)

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

216

Developing TiAIN Coatings for Intermediate Temperature-Solid Oxide Fuel Cell Interconnect Applications  

SciTech Connect (OSTI)

TiN-type coatings have potential to be used as SOFC interconnect coatings SOFC because of their low resistance and high temperature stability. In this research, various (Ti,Al)N coatings were deposited on stainless steels by filtered-arc method. ASR and XRD tests were conducted on these coatings, and SEM/EDAX analysis were conducted after ASR and XRD tests. SEM/EDAX analyses show that (Ti,Al)N remains stable at temperature up to 700C. It is also indicated that Al has beneficial effect on the stability of TiN type coatings. At 900C, (Ti-30Al)N is fully oxidized and some of (Ti-50Al)N coating still remains as nitride. The analyses on cross-sectional samples show that these coatings are effective barrier to the Cr migration. In summary, (Ti.Al)N coatings are good candidates for the SOFC interconnect applications at 700C. The future directions of this research are to improve the stability of these coatings by alloy-doping and to develop multi-layer coatings.

Liu, X. (West Virginia University); Johnson, C.D.; Li, C. (West Virginia University); Xu, J. (West Virginia University); Cross, C.

2007-02-01T23:59:59.000Z

217

Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol  

E-Print Network [OSTI]

X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

Marina Kveder; Dalibor Merunka; Milan Joki?; Boris Rakvin

2010-08-24T23:59:59.000Z

218

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents [OSTI]

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

1992-04-21T23:59:59.000Z

219

Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts  

SciTech Connect (OSTI)

Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

Carr, C W; Bude, J D; Shen, N; Demange, P

2010-10-26T23:59:59.000Z

220

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High-Temperature Thermoelectric Properties of the SolidSolution Zintl Phase Eu11Cd6Sb12xAsx (x < 3)  

SciTech Connect (OSTI)

Zintl phases are compounds that have shown promise for thermoelectric applications. The title solidsolution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ?3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.780.49 W/mK for x = 0; 0.720.53 W/mK for x = 1; and 0.700.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 ? V/K) but also high electrical resistivity (6.8 to 12.8 m?cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12xAsx are interpreted in discussion with the As site substitution.

Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J.; Snyder, G. Jeffrey; Kauzlarich, Susan M.

2014-02-11T23:59:59.000Z

222

Au-mediated low-temperature solid phase epitaxial growth of a SixGe1 x alloy on Si(001)  

E-Print Network [OSTI]

a silicide or a germanide of a near noble metal e.g., Pd, Pt , obtained by the reaction of the metal- taxial growth techniques. Metal-mediated solid phase epitaxy SPE has been stud- ied in a variety or Ge is accomplished at low temperatures by using a eutectic-forming metal e.g., Au, Al, Ag, etc

Allen, Leslie H.

223

Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions  

SciTech Connect (OSTI)

The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

Yu, Tang-Qing, E-mail: tangqing.yu@nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Chen, Pei-Yang; Chen, Ming [Department of Chemistry, New York University, New York, New York 10003 (United States); Samanta, Amit [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tuckerman, Mark, E-mail: mark.tuckerman@nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

2014-06-07T23:59:59.000Z

224

Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene  

SciTech Connect (OSTI)

A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750C and 0.8 volts was 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.

Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.

2013-08-15T23:59:59.000Z

225

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

226

New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels.  

E-Print Network [OSTI]

??Unlike polymer electrolyte fuel cells, solid-oxide fuel cells (SOFCs) have the potential to use a wide variety of fuels, including hydrocarbons and gasified coal or (more)

Yang, Lei

2011-01-01T23:59:59.000Z

227

SRO : single room occupancy  

E-Print Network [OSTI]

During August of 1996, I stayed in a series of SRO hotels in New York City leaving a book and diary behind when I checked out of each room. The books that were left in the rooms differ from one room to the other but all ...

Shimada, Taketo

1997-01-01T23:59:59.000Z

228

The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures  

E-Print Network [OSTI]

shaft. With the impeller in place and rotating, gas was drawn into the top port and ejected at the impeller mount. The reactor pressure was monitored via the transducer port. The transducer was a Viatran Pressure Transducer, model 103. The liquid...THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial...

Hess, Richard Kenneth

2012-06-07T23:59:59.000Z

229

High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid-State NMR Study  

E-Print Network [OSTI]

1 High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid Supplementary Information Figure S1. TGA of melt-molded PBI after stirring in H2O at RT and steam-treatment with H2O at 150 °C and 315 °C. Figure S2. TGA of melt-molded PEEK after stirring in D2O at RT and steam

Bluemel, Janet

230

Common Help Room Hours  

E-Print Network [OSTI]

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16200 - MATH 205 - Nathanael Cox...

231

Common Help Room Hours  

E-Print Network [OSTI]

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16010 - MATH 205 - Alessandra...

232

Variable-temperature solid-state NMR studies of iron(II) and iron(III) complexes  

E-Print Network [OSTI]

the first communication reporting the use of C CP/MAS NMR to observe paramagnetic solids directly. Zust as shift reagents had been used in solution-state NMR, selected paramagnetic lanthanide acetates exhibited paramagnetic shifts in the solid state... of the Fe(III) chloride salt yields the w-oxo-bis[porphine- iron(III)] dimer where the two iron centers are bridged via an oxygen. The synthesis, characterization and crystal structure of the metallo-porphyrin dimer w-oxo-bis[tetra- phenylporphineiron...

Shepard, Patricia Arlene

1989-01-01T23:59:59.000Z

233

Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature  

SciTech Connect (OSTI)

Our current state-of-the-art X-ray diffraction experiments are primarily sensitive to the position of the uranium atom. While the uranium - low-Z element bond (such as U-H or U-F) changes under pressure and temperature the X-ray diffraction investigations do not reveal information about the bonding or the stoichiometry. Questions that can be answered by Raman spectroscopy are (i) whether the bonding strength changes under pressure, as observed by either blue- or red-shifted peaks of the Raman active bands in the spectrum and (ii) whether the low-Z element will eventually be liberated and leave the host lattice, i.e. do the fluorine, oxygen, or hydrogen atoms form dimers after breaking the bond to the uranium atom. Therefore Raman spectra were also collected in the range where those decomposition products would appear. Raman is particularly well suited to these types of investigations due to its sensitivity to trace amounts of materials. One challenge for Raman investigations of the uranium compounds is that they are opaque to visible light. They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on the tens of milliWatt range consequently affecting signal to noise. Recent modern investigations also used very small laser spot sizes (micrometer range) but ran again into the problem of heating and chemical sensitivity to the environment. In the studies presented here (in contrast to all other studies that were performed at ambient conditions only) we employ micro-Raman spectroscopy of samples situated in a diamond anvil cell. This increases the trustworthiness of the obtained data in several key-aspects: (a) We surrounded the samples in the DAC with neon as a pressure transmitting medium, a noble gas that is absolutely chemically inert. (b) Through the medium the sample is thermally heat sunk to the diamond anvils, diamond of course possessing the very best heat conductivity of any material. Therefore local heating and decomposition are avoided, a big challenge with other approaches casting doubts on their results. (c) This in turn benefits the signal/noise ratio tremendously since the Raman features of uranium-compounds are very small. The placement of the samples in DACs allows for higher laser powers to impinge on the sample spot while keeping the spot-size larger than in previous studies and keep the samples from heating up. Raman spectroscopy is a very sensitive non-invasive technique and we will show that it is even possible to distinguish the materials by their origin / manufacturer as we have studied samples from Cameco (Canada) and IBI-Labs (US-Florida) and can compare with ambient literature data for samples from Strem (US-MA) and Areva (Pierrelatte, France).

Lipp, M J; Jenei, Z; Park-Klepeis, J; Evans, W J

2011-12-15T23:59:59.000Z

234

Room temperature and productivity in office work  

E-Print Network [OSTI]

2003. Proceedings of Healthy Buildings 2003 Conference.building, Proceedings of Healthy Buildings 2003 Conference.work. Proceedings of Healthy Buildings Conference 2003.

Seppanen, O.; Fisk, W.J.; Lei, Q.H.

2006-01-01T23:59:59.000Z

235

Room temperature and productivity in office work  

E-Print Network [OSTI]

vigilance in a moving vehicle. Ergonomics 39 (1996)1,61-75.paired associate learning. Ergonomics, 21 [2] Berglund, L. ,

Seppanen, O.; Fisk, W.J.; Lei, Q.H.

2006-01-01T23:59:59.000Z

236

Room Temperature Dispenser Photocathode Using Elemental Cesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: Sulfur K-edgeDepartment

237

HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES  

SciTech Connect (OSTI)

A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ?few 10{sup 8} L{sub ?}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

Boley, A. C. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Morris, M. A. [Center for Meteorite Studies, Arizona State University, P.O. Box 876004, Tempe, AZ 88287-6004 (United States); Desch, S. J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

2013-10-20T23:59:59.000Z

238

A "permanent" high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen  

E-Print Network [OSTI]

This thesis explores a new design for a portable "permanent" superconducting magnet system. The design is an alternative to permanent low-temperature superconducting (LTS) magnet systems where the magnet is cooled by a ...

Haid, Benjamin J. (Benjamin John Jerome), 1974-

2001-01-01T23:59:59.000Z

239

Solid Flame: Fundamentals and  

E-Print Network [OSTI]

;Self-propagating High-temperature Synthesis (SHS) Or Combustion Synthesis TECHNOLOGY FOR MATERIAL (solid) ignition front propagation cooling The Phenomenon of Wave Localization for Solid State Self-propagating) 1.0000 Temperature (K) 2744 Gas products amount (mol) 6.00E-15 Products heat capacity (J/K) 74

Mukasyan, Alexander

240

High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles  

E-Print Network [OSTI]

A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

Boley, A C; Desch, S J

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface  

E-Print Network [OSTI]

The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid-liquid interface, with a time and space resolution of 100 {\\mu}s and 20 {\\mu}m, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid-gas boundary. For cases involving evaporation, the diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. High-speed visualizations are performed to provide matching parameters for the wetting model used in the simulations. Numerical and experimental results are compar...

Bhardwaj, Rajneesh; Attinger, Daniel

2010-01-01T23:59:59.000Z

242

Adsorption of acetonitrile (CH{sub 3}CN) on Si(111)-7x7 at room temperature studied by synchrotron radiation core-level spectroscopies and excited-state density functional theory calculations  

SciTech Connect (OSTI)

The room temperature adsorption of acetonitrile (CH{sub 3}-C{identical_to}N) on Si(111)-7x7 is examined by synchrotron radiation N 1s x-ray photoemission and x-ray absorption spectroscopies. The experimental spectroscopic data point to multiple adsorption geometries. Candidate structures are optimized using density functional theory (DFT), the surface being simulated by silicon clusters encompassing one (adjacent) adatom-rest atom pair. This is followed by the DFT calculation of electron transition energies and cross sections. The comparison of theoretical spectra with experimental ones indicates that the molecule is adsorbed on the surface under two forms, a nondissociated geometry (an sp{sup 2}-hybridized CN) and a dissociated one (leading to a pendent sp-hybridized CN). In the nondissociative mode, the molecule bridges an adatom-rest atom pair. For bridge-type models, the discussion of the core-excited state calculations is focussed on the so-called silicon-molecule mixed-state transitions that strongly depend on the breaking or not of the adatom backbonds and on the attachment of the nitrogen end either to the adatom or to the rest atom. Concerning the dissociated state, the CH bond cleavage leads to a cyanomethyl (Si-CH{sub 2}-CN) plus a silicon monohydride, which accounts for the spectroscopic evidence of a free C{identical_to}N group (we do not find at 300 K any spectroscopic evidence for a C{identical_to}N group datively bonded to a silicon atom via its nitrogen lone pair). Therefore the reaction products of acetonitrile on Si(111)-7x7 are similar to those detected on the Si(001)-2x1 surface at the same temperature, despite the marked differences in the reconstruction of those two surfaces, especially the distance between adjacent silicon broken bonds. In that respect, we discuss how adatom backbond breaking in the course of adsorption may explain why both surface orientations react the same way with acetonitrile.

Bournel, F.; Carniato, S.; Dufour, G.; Gallet, J.-J.; Ilakovac, V.; Rangan, S.; Rochet, F.; Sirotti, F. [Laboratoire de Chimie Physique Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Boite Postale 48, 91192 Gif sur Yvette Cedex (France)

2006-03-15T23:59:59.000Z

243

Room temperature multiferroic properties of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} composites  

SciTech Connect (OSTI)

We report the crystal structure, magnetic, ferroelectric, dielectric, and magneto-dielectric properties of [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}]{sub (1?x)}[Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}]{sub x}: (x?=?0.1, 0.2, 0.3, and 0.4) composites. Rietveld refinement results of X-ray diffraction patterns confirm the formation of these composites for all x values. All the composites show well-saturated ferroelectric and ferromagnetic hysteresis (multiferroic-composite behavior) at room temperature. With increase in Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) content an increase in saturation magnetization, and decrease in saturation polarization, remanent polarization, and dielectric constant are observed. The ferroelectric phase transition temperature increases with increase in CZFO content. All of the compositions undergo second-order ferroelectric phase transitions, which can be explained by Landau-Devonshire theory. The recoverable energy density (?0.20 to 0.04?J/cm{sup 3}) and charge-curve energy density (?0.84 to 0.11?J/cm{sup 3}) decrease with increase in the CZFO content. The room-temperature magneto-dielectric measurements provide direct evidence of magneto-electric coupling via strain at room temperature.

Pradhan, Dhiren K., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Katiyar, Ram S., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Narayan Tripathy, Satya; Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India); Scott, J. F. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

2013-12-21T23:59:59.000Z

244

Prediction of Room Air Diffusion for Reduced Diffuser Flow Rates  

E-Print Network [OSTI]

?, IEA Annex 20 project. The simulated results, in terms of maximum velocity, distribution of velocity and temperature in the room are validated against the experimental data. 3.1.1 Study the effect of various parameters on the CFD simulation. A study... and the walls of the room. The window is assumed to have a surface temperature of 30 0C.The diffuser used is a ?HESCO? type diffuser, which was used in the International Energy Agency (IEA) Annex 20 project (1993): ?Room air and contaminant flow, evaluation...

Gangisetti, Kavita

2011-02-22T23:59:59.000Z

245

Press Room | JCESR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &User ServicesRadioPress Room Tesla

246

Room to grow | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: Sulfur K-edgeDepartment|Room to

247

Cs{sub 4}P{sub 2}Se{sub 10}: A new compound discovered with the application of solid-state and high temperature NMR  

SciTech Connect (OSTI)

The new compound Cs{sub 4}P{sub 2}Se{sub 10} was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. {sup 31}P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of -52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs{sub 4}P{sub 2}Se{sub 10} has the triclinic space group P-1 with a=7.3587(11) A, b=7.4546(11) A, c=10.1420(15) A, {alpha}=85.938(2){sup o}, {beta}=88.055(2){sup o}, and {gamma}=85.609(2){sup o} and contains the [P{sub 2}Se{sub 10}]{sup 4-} anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe{sub 4}) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs{sub 4}P{sub 2}Se{sub 10} was recovered upon annealing. The static {sup 31}P NMR spectrum at 350 deg. C contained a single peak with a -35 ppm chemical shift and a {approx}7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature. - Graphical abstract: The new compound Cs{sub 4}P{sub 2}Se{sub 10} was discovered following a high-temperature in situ synthesis in the NMR spectrometer and the structure was determined by single-crystal X-ray diffraction. It contains the new [P{sub 2}Se{sub 10}]{sup 4-} anion.

Gave, Matthew A.; Canlas, Christian G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Chung, In [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Iyer, Ratnasabapathy G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu; Weliky, David P. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: weliky@chemistry.msu.edu

2007-10-15T23:59:59.000Z

248

State-of-the-Art and Outlook: Thermal Properties of Phase Change Wallboard Rooms  

E-Print Network [OSTI]

technology and the thermal characteristic- analyzing method commonly applied in building envelopes, proposes future research methods for phase change material wall rooms, and lays a solid foundation for the research of the heat transfer mechanism and thermal...

Feng, G.; Liang, R.; Li, G.

2006-01-01T23:59:59.000Z

249

Mixed oxide solid solutions  

DOE Patents [OSTI]

The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

2003-01-01T23:59:59.000Z

250

Clean Room Orientation/Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shoes Shoe covers before entering gowning room Head cover, then coverall. Boots over shoe covers. Gloves If gloves get ripped or soiled during your time in...

251

Cryo Utilities Room Cooling System  

SciTech Connect (OSTI)

Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

Ball, G.S.; /Fermilab

1989-01-26T23:59:59.000Z

252

Finite-temperature second-order many-body perturbation and HartreeFock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers  

SciTech Connect (OSTI)

Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted HartreeFock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the dimerized low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

He, Xiao [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States) [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Ryu, Shinsei [Department of Physics, University of Illinois at Urbana-Champaign, 1100 West Green Street, Urbana, Illinois 61801 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, 1100 West Green Street, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States) [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

2014-01-14T23:59:59.000Z

253

Solid state radiative heat pump  

DOE Patents [OSTI]

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

254

Solid state radiative heat pump  

DOE Patents [OSTI]

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

255

Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy  

SciTech Connect (OSTI)

We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600?C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

Benkert, A., E-mail: andreas.benkert@kit.edu, E-mail: l.weinhardt@kit.edu [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Universitt Wrzburg, Experimentelle Physik VII, Am Hubland, 97074 Wrzburg (Germany); Gemeinschaftslabor fr Nanoanalytik, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Blum, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Meyer, F. [Universitt Wrzburg, Experimentelle Physik VII, Am Hubland, 97074 Wrzburg (Germany)] [Universitt Wrzburg, Experimentelle Physik VII, Am Hubland, 97074 Wrzburg (Germany); Wilks, R. G. [Solar Energy Research, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)] [Solar Energy Research, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Yang, W. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)] [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Br, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Solar Energy Research, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Insitut fr Physik und Chemie, Brandenburgische Technische Universitt Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); and others

2014-01-15T23:59:59.000Z

256

Computer Room Fresh Air Cooling  

E-Print Network [OSTI]

This paper discusses the concept of a computer room fresh air cooling system with evaporative humidification. The system offers significantly lower energy consumption than conventional cooling units, with 24% reduction for Dallas and 56% reduction...

Wenger, J. D.

1985-01-01T23:59:59.000Z

257

Nuclear reactor control room construction  

DOE Patents [OSTI]

A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

258

Nuclear reactor control room construction  

DOE Patents [OSTI]

A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

Lamuro, R.C.; Orr, R.

1993-11-16T23:59:59.000Z

259

Spin reorientation transition and near room-temperature multiferroic properties in a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}  

SciTech Connect (OSTI)

In this Letter, we investigate the magnetic and multiferroic properties of a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}. Due to the strong planar contribution to the anisotropy provided by Co{sup 2+} ions, this hexaferrite shows a spin reorientation transition from easy-axis to easy-cone at 302?K, which is different from the onset temperature of ferroelectric polarization, 275?K. By applying magnetic field, a remarkable drop of polarization is observed, suggesting a large magnetoelectric effect in this multiferroics. The difference between spin reorientation and ferroelectric phase transition temperature as well as the origin of magnetoelectric effect are discussed.

Song, Y. Q.; Fang, Y.; Wang, L. Y.; Zhou, W. P.; Cao, Q. Q.; Wang, D. H., E-mail: wangdh@nju.edu.cn; Du, Y. W. [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-03-07T23:59:59.000Z

260

News Room | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/News Archives NewsRoomNews Room

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack with CFD and Experimental Results  

SciTech Connect (OSTI)

A one-dimensional model has been developed to predict the thermal and electrochemical behavior of a high-temperature steam electrolysis stack. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet gas flow rates, current density, cell active area, and external heat loss or gain. The model includes a temperature-dependent area-specific resistance (ASR) that accounts for the significant increase in electrolyte ionic conductivity that occurs with increasing temperature. Model predictions are shown to compare favorably with results obtained from a fully 3-D computational fluid dynamics model. The one-dimensional model was also employed to demonstrate the expected trends in electrolyzer performance over a range of operating conditions including isothermal, adiabatic, constant steam utilization, constant flow rate, and the effects of operating temperature.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2005-11-01T23:59:59.000Z

262

High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996  

SciTech Connect (OSTI)

This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

Southards, W.T.; Blude, J.D.; Dickinson, J.A. [and others

1997-06-01T23:59:59.000Z

263

W.-C. Li, Y. Lin, B. Kim, Z. Ren, and C. T.-C. Nguyen, "Quality factor enhancement in micromechanical resonators at cryogenic temperatures," the Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers'09), Denver, Colorado, June 21-25, 2  

E-Print Network [OSTI]

a ~2.5? increase in Q over the room temperature value, equivalent to a nearly 10-dB improvement factor, loss, os- cillator, filter, RF MEMS, wireless communications. INTRODUCTION On-chip vibrating resonators with CMOS sustaining transistor circuits have been demonstrated with phase noise marks commen

Nguyen, Clark T.-C.

264

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect (OSTI)

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

265

The Live Room : transducing resonant architectures  

E-Print Network [OSTI]

The Live Room is a temporary site specific installation presented in building N 51, room 117 on the MIT campus on May 7, 1998 and concluded on June 10, 1998. Using small acoustic intensifying equipment which mount directly ...

Bain, Mark, 1966-

1998-01-01T23:59:59.000Z

266

Energy Integration Visualization Room (Fact Sheet)  

SciTech Connect (OSTI)

This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

Not Available

2012-08-01T23:59:59.000Z

267

Open Data: the elephant in the room?  

E-Print Network [OSTI]

Journal of the European Association for Health Information and Libraries (November 2008) vol.4(4) pp.4-6 Open Data: the elephant in the room?(*) Peter Morgan Cambridge University Medical... elephant in the room ... is an English idiom for an obvious truth that is being ignored or goes unaddressed. It is based on the idea that an elephant in a room would be impossible to overlook; thus, people in the room who pretend the elephant...

Morgan, Peter

268

Library Reserved Room Policy All Meeting Spaces  

E-Print Network [OSTI]

Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

Mather, Patrick T.

269

Multisurface Interaction in the WILD Room  

E-Print Network [OSTI]

- 1 - Multisurface Interaction in the WILD Room Michel Beaudouin-Lafon, Stéphane Huot, Mathieu University Abstract The WILD room (wall-sized interaction with large datasets) serves as a testbed. (2012), "Multisurface Interaction in the WILD Room", IEEE Computer, vol 45, nº 4, pp. 48-56. DOI

Paris-Sud XI, Université de

270

The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650{degree}C  

SciTech Connect (OSTI)

The effect of counterface selection on the tribological performance of a Ag/BaF{sub 2}-CaF{sub 2} containing composite coating is studied. Ceramic (Al{sub 2}O{sub 3}) and metal (Inconel X-750) pins are slid against PS300 (a metal bonded chrome oxide coating with Ag and BaF{sub 2}/CaF{sub 2} lubricant additives) in a pin-on-disk tribometer at 25, 500 and 650 C. Compared to the ceramic counterface, the metal counterface generally exhibited lower friction and wear at 25 C but higher friction and wear at 650 C. Friction coefficients, for example, for the Al{sub 2}O{sub 3}/PS300 combination at 25 C were 0.64 compared to 0.23 for the Inconel/PS300 sliding couple. At 650 C the ranking was reversed. The Al{sub 2}O{sub 3}/PS300 combination gave a friction coefficient of 0.19 while the friction for the metal counterface increased slightly to about 0.3. Based upon these tribological results and other information found in the literature, it appears that the performance of each counterface/PS300 combination is affected by the ability of the solid lubricant additives to form an adequate transfer film. The effects of surface wettability and tribological compatibility are discussed in relation to the observed tribological results.

DellaCorte, C.

1996-05-01T23:59:59.000Z

271

Last Updated 8/12/2013 Page 1 of 2 Meeting Room 2 Meeting Room 3 Meeting Room 4 Meeting Room 5 Meeting Room 6  

E-Print Network [OSTI]

Cities Light Rail Monitoring Bioretention and Rainwater Harvesting Systems Urban Trees as a LID Source Meeting Room 6 8:00 a.m.-12:00 noon Intro to LID Rainwater Harvesting 1:00-5:00 p.m. Advances in Design for CSO Communities LID Research Panel Urban Trees and Stormwater Management LID Education Approaches

Minnesota, University of

272

Ge-on-Si laser operating at room temperature  

E-Print Network [OSTI]

Monolithic lasers on Si are ideal for high-volume and large-scale electronicphotonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide ...

Liu, Jifeng

273

Fast diffusion in a room temperature ionic liquid confined in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1(a) , E. Mamontov 1 , S. Dai 2 , X. Wang 2(b) , P. F. Fulvio 2 and D. J. Wesolowski 2 1 Neutron Scattering Science Division, Oak Ridge National Laboratory - Oak Ridge, TN 37831,...

274

Numerical modelling and analysis of a room temperature magnetic  

E-Print Network [OSTI]

are separated by channels of a heat transfer fluid. The time-dependent model solves the momentum and continuity equations of the flow of the heat transfer fluid and the coupled energy equations of the heat transfer and it was concluded that the model has energy conservation and that the solution is independent of the chosen grid

275

Efficient room-temperature source of polarized single photons  

DOE Patents [OSTI]

An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

Lukishova, Svetlana G. (Honeoye Falls, NY); Boyd, Robert W. (Rochester, NY); Stroud, Carlos R. (Rochester, NY)

2007-08-07T23:59:59.000Z

276

Aqueous, Room Temperature Electrochemical Deposition of Compact Si Films  

E-Print Network [OSTI]

. For all Si deposi- tion experiments, the Al sample was rotated at 850 rpm with a rotat- ing disc electrode scanning electron microscope (FESEM), following Au=Pd sputtering. X-ray diffraction measure- ments were

Suni, Ian Ivar

277

AB Electronic Tubes and Quasi-Superconductivity at Room Temperature  

E-Print Network [OSTI]

Author offers and researches a new idea - filling tubes by electronic gases. He shows: If the insulating envelope (cover) of the tube is charged positively, the electrons within the tube are not attracted to covering. Tube (as a whole) remains a neutral (uncharged) body. The electron gas in the tube has very low density and very high conductivity, close to superconductivity. If we take the density (pressure) of electron gas as equal to atmospheric pressure, the thickness of insulator film may be very small and the resulting tube is very light. Author shows the offered tubes can be applied to many technical fields. For example: (1) Transfer of energy over very long distance with very small electric losses. (2) Design of cheap high altitude electric lines without masts. (3) Transfer of energy from one continent to another continent through the ionosphere. (4) Transfer of a plasma beam (which can convey thrust and energy) from Earth surface to a space ship. (5) Observation of the sky by telescope without atmospheric hindrances. (6) Dirigibles (air balloons) of the highest lift force. (7) Increasing of gun range severalfold. (8) Transfer of matter. And so on. Key words: AB tubes, electronic tubes, superconductivity, transmission energy.

Alexander Bolonkin

2008-05-02T23:59:59.000Z

278

Generating Ultrafast Inhomogeneous Strain in Room-Temperature Multiferroics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals. | EMSL

279

Mechanistic Studies on Room Temperature Photoexcitation Effects on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the NanoscaleMechanical Behavior ofAPS ...Mixtures: the Source

280

Temperature Sensor Data Michael W. Bigrigg  

E-Print Network [OSTI]

in the room. Sensor networks can be used to identify larger trends in temperature which could be used to report energy usage, HVAC problems, computer failures based on high temperatures, and fire evacuation

Sadeh, Norman M.

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NATURAL CONVECTION IN ROOM GEOMETRIES  

SciTech Connect (OSTI)

Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

1980-06-01T23:59:59.000Z

282

A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy  

SciTech Connect (OSTI)

Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

2014-01-01T23:59:59.000Z

283

UTEPBioinformaticsProgram Bell Hall, Room 138  

E-Print Network [OSTI]

UTEPBioinformaticsProgram Bell Hall, Room 138 The University of Texas at El Paso El Paso, TX 79968:www.bioinformatics.utep.edu UTEPBioinformatics BellHall,Room138 TheUniversityofTexasatElPaso 500W.UniversityAvenue ElPaso,TX79968 and Student Fitness Center with its two swimming pools underline the University's commitment to provide

Fuentes, Olac

284

Utrecht University's High Potential Programme Making Room  

E-Print Network [OSTI]

Utrecht University's High Potential Programme Making Room for Talent 2 #12;Making Room for Talent Utrecht University has a worldwide reputation for excellence in research across a broad range. This is why in 2003 Utrecht University created the High Potential Programme, an incentive scheme which gives

Utrecht, Universiteit

285

Also Known As (Room or Building)  

E-Print Network [OSTI]

Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

Mottram, Nigel

286

Los Alamos test-room results  

SciTech Connect (OSTI)

Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

McFarland, R.D.; Balcomb, J.D.

1982-01-01T23:59:59.000Z

287

SOLID WOOD PRODUCTS EFFECTS OF ELEVATED AND  

E-Print Network [OSTI]

SOLID WOOD PRODUCTS EFFECTS OF ELEVATED AND HIGH-TEMPERATURE SCHEDULES ON NARP IN SOUTHERN YELLOW-temperature (ET) from ET and HT schedules. and a high-temperature (HT) schedule. Wood properties including juvenile wood content, density, ring count, largest knot area, presence of pith, moisture content

288

Temperature effects on the electronic conductivity of single-walled carbon nanotubes  

E-Print Network [OSTI]

The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

Mascaro, Mark Daniel

2007-01-01T23:59:59.000Z

289

Synthesis, structures and properties of new hybrid solids containing ruthenium complexes and polyoxometalates  

SciTech Connect (OSTI)

Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy){sub 3}]{sub 2}[H{sub 2}W{sub 12}O{sub 40}]{center_dot}8H{sub 2}O (1), the [Ru(bpy){sub 3}]{sup 2+} (bpy=2,2 Prime -bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H{sub 2}W{sub 12}O{sub 40}]{sup 6-} linked through {l_brace}KO{sub 7}{r_brace} and {l_brace}NaO{sub 6}{r_brace} polyhedra, while in K{sub 6}[Ru(pzc){sub 3}]{sub 2}[SiW{sub 12}O{sub 40}] Bullet 12H{sub 2}O (2), the [Ru(pzc){sub 3}]{sup -} (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW{sub 12}O{sub 40}]{sup 4-} clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion Midline-Horizontal-Ellipsis {pi} interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature. - Graphical abstract: Two three-dimensional framework solids are constructed from polyoxoanions and ruthenium-organic complexes through noncovalent interactions. Highlights: Black-Right-Pointing-Triangle Ru complexes form hybrid solids with polyoxometalates. Black-Right-Pointing-Triangle Anion Midline-Horizontal-Ellipsis {pi} interaction between polyoxometalates and metal complexes was observed. Black-Right-Pointing-Triangle Noncovalent interactions play an important role in the assembly of solids. Black-Right-Pointing-Triangle The hybrid solid shows luminescence properties.

Yan Bangbo, E-mail: bangbo.yan@wku.edu [Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101 (United States); Hodsdon, Samantha A.; Li Yanfen; Carmichael, Christopher N.; Cao Yan; Pan Weiping [Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101 (United States)

2011-12-15T23:59:59.000Z

290

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

291

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

292

Training Room Equipment Instructions Projector and TV Display  

E-Print Network [OSTI]

Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

Crawford, T. Daniel

293

LED Light Fixture Project FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis  

E-Print Network [OSTI]

. A light-emitting diode (LED) is a solid-state lighting source that switches on instantly, is readilyLED Light Fixture Project ­ FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis light fixtures in existing or new buildings across campus. Scope of Work On August 27, 2012, the six

Johnston, Daniel

294

Solid Waste (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

295

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

296

John S. Wright Forestry Center Room Sizes, Capacities, and Rates  

E-Print Network [OSTI]

Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765

297

Interfacial material for solid oxide fuel cell  

DOE Patents [OSTI]

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

298

Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems  

SciTech Connect (OSTI)

Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

2008-08-01T23:59:59.000Z

299

High-Temperature Falling-Particle Receiver  

Broader source: Energy.gov (indexed) [DOE]

temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

300

Process and material that encapsulates solid hazardous waste  

DOE Patents [OSTI]

A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System  

E-Print Network [OSTI]

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

Whitehouse, Kamin

302

Solid oxide electrochemical reactor science.  

SciTech Connect (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

303

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

Bulicz, Tytus R. (Hickory Hills, IL)

1990-01-01T23:59:59.000Z

304

Refreshments will be served For more information contact Kim Coleman at kcole@wustl.edu  

E-Print Network [OSTI]

and solid poly- mers, proteins, asphaltenes, and Room Temperature Ionic Liquids as well as numerical

Subramanian, Venkat

305

Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications  

SciTech Connect (OSTI)

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

2012-05-02T23:59:59.000Z

306

Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture  

SciTech Connect (OSTI)

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Y [NETL; Sorescu, D C [NETL; Luebke, D [NETL; Li, B Y; Zhang, K; King, D

2013-05-16T23:59:59.000Z

307

Room Q data report: Test borehole data from April 1989 through November 1991  

SciTech Connect (OSTI)

Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.

Jensen, A.L. [Sandia National Labs., Albuquerque, NM (United States); Howard, C.L. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Peterson, T.P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-03-01T23:59:59.000Z

308

Operation Manual for the TA Instruments TGA Q-500: Temperature Range: Room Temperature 1000C  

E-Print Network [OSTI]

Sample Weight: 10 mg 1 g Platinum Sample Pans are supplied by the lab. 1. If the TGA Q-500 experimental by EQUILIBRATE at 60C. This will cool the furnace down without collecting data. The instrument is set to cool

Alpay, S. Pamir

309

Temperature Dependent Neutron Scattering Sections for Polyethylene  

E-Print Network [OSTI]

This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

Roger E. Hill; C. -Y. Liu

2003-09-05T23:59:59.000Z

310

Covered Product Category: Room Air Conditioners  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

311

Forensic Entomology & Taphonomy Smith Hall Room 125  

E-Print Network [OSTI]

ENTM 295T Forensic Entomology & Taphonomy Smith Hall Room 125 Monday 8:30 ­ 11:20 a.m. Fall and on the postmortem fate of human remains. Ralph Williams, Ph.D. D-ABFE Professor of Entomology Entomology, Smith B9

Ginzel, Matthew

312

Biology Advising Office Building 44, Room 135  

E-Print Network [OSTI]

Biology Advising Office Building 44, Room 135 Mailing Address: Biology Advising Office, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840 http://www.biology.utah.edu/undergraduate/advising.php Email: advising@biology.utah.edu Phone: (801) 581-6244 Fax: (801) 581-8571 Dr. David Gard, Director

Tipple, Brett

313

Advanced nuclear plant control room complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

314

Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

2009-07-15T23:59:59.000Z

315

Demonstration of Entanglement-Enhanced Phase Estimation in Solid  

E-Print Network [OSTI]

Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here, we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy (NV) centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: a NV centre electron spin and a proximal ${}^{13}$C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent a more generalized and elemental demonstration of enhancement of quantum metrology against classical procedure, which fully exploits the quantum nature of the system and probes.

Gang-Qin Liu; Yu-Ran Zhang; Yan-Chun Chang; Jie-Dong Yue; Heng Fan; Xin-Yu Pan

2014-08-03T23:59:59.000Z

316

Lactation Room Locations Building Location Room Details Contact Name Contact Info Instructions  

E-Print Network [OSTI]

, hot water heater, educational info Natalie Blais narnold@pitt.edu Contact Natalie to receive and request a key to this locked room. Public Health A712 Crabtree Hall table, chairs, storage cabinet, fridge

Jiang, Huiqiang

317

Rotary bulk solids divider  

DOE Patents [OSTI]

An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

318

Laser cooling of solids  

SciTech Connect (OSTI)

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

319

Tetraphenylborate Solids Stability Tests  

SciTech Connect (OSTI)

Tetraphenylborate solids provide a potentially large source of benzene in the slurries produced in the In-Tank Precipitation process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene.

Walker, D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

1997-12-19T23:59:59.000Z

320

Solid State Division  

SciTech Connect (OSTI)

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

322

Local public document room directory. Revision 7  

SciTech Connect (OSTI)

This directory (NUREG/BR-0088, Revision 7) lists local public document rooms (LPDRs) for commercial nuclear power plants with operating or possession-only licenses or under construction, plus the LPDRs for potential high-level radioactive waste repository sites, gaseous diffusion plants, certain fuel cycle facilities, certain low-level waste disposal facilities, and any temporary LPDRs established for the duration of licensing proceedings. In some instances, the LPDR libraries maintain document collections for more than one licensed facility. The library staff members listed are the persons most familiar with the LPDR collections. Reference librarians in the NRC Headquarters Public Document Room (PDR) are also available to assist the public in locating NRC documents.

NONE

1998-04-01T23:59:59.000Z

323

Priority coding for control room alarms  

DOE Patents [OSTI]

Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1994-01-01T23:59:59.000Z

324

NEPA Reading Room | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale Subsurface Biogeochemical ModelingMySSTReading Room |

325

Laser sheet light flow visualization for evaluating room air flowsfrom Registers  

SciTech Connect (OSTI)

Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

Walker, Iain S.; Claret, Valerie; Smith, Brian

2006-04-01T23:59:59.000Z

326

Solid Waste Management Written Program  

E-Print Network [OSTI]

Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

Pawlowski, Wojtek

327

Subdue solids in towers  

SciTech Connect (OSTI)

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

328

Release of DRAFT RFP Headquarters Reading Room Instructions/Guidelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release of DRAFT RFP Headquarters Reading Room InstructionsGuidelines 1. Reading Room Points of Contact: 721 - 88, Mike Baehre, (202) 586-6575 89 - Close of Draft RFP, John...

329

Solids fluidizer-injector  

DOE Patents [OSTI]

An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

Bulicz, T.R.

1990-04-17T23:59:59.000Z

330

Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks  

SciTech Connect (OSTI)

The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-06-01T23:59:59.000Z

331

Observation of Kerr nonlinearity inObservation of Kerr nonlinearity in micromicro--cavities at room temperaturecavities at room temperature  

E-Print Network [OSTI]

phenomenanonlinear phenomena nn High quality factorHigh quality factor (Q)(Q) and smalland small mode volumesmode 2 2 xC Vn n QQP P P eff pumpeff pump total probepump probe probe = sfthermal µ 52/1 == s n R DD

332

HELP ROOMS AND PRIVATE TUTORING The following list of private tutors and departmental help rooms is intended as a resource for Columbia  

E-Print Network [OSTI]

1 HELP ROOMS AND PRIVATE TUTORING The following list of private tutors and departmental help rooms is intended as a resource for Columbia students seeking extra academic help. This is all publicly available://www.columbia.edu/cu/chemistry/undergrad/tutors/index.html Help Room Schedule (Help Room Schedule (Help Room Schedule (Help Room Schedule (Spring 2013Spring 2013

Hone, James

333

INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE  

E-Print Network [OSTI]

chilled water cooling coil, and supply fan. The fan is aspecify the VAV box cooling design supply air temperature (the underfloor supply plenum (thereby, reducing room cooling

2012-01-01T23:59:59.000Z

334

Predicting Youngs Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing  

SciTech Connect (OSTI)

We study the temperature dependent Youngs modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenological model is developed to model the temperature dependent Youngs modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Youngs modulus is used to validate the model predictions

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

2008-12-01T23:59:59.000Z

335

Media Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1UsLocationsMedia Room

336

News Room | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/News Archives NewsRoomNews

337

OMEGA Control Room - Laboratory for Laser Energetics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchivesNuclearControl Room - Laboratory for

338

Carbon War Room | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,ResearchInformation Sector ofWar Room

339

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

340

POLYMERIC MICROCOMBUSTORS FOR SOLID-PHASE CONDUCTIVE FUELS  

E-Print Network [OSTI]

combustor for the ignition and reaction of solid conductive fuels. Solid fuels can he made conductive, the hum rate of fuel in the overall combustor can he decoupled from the chemical reaction rate by changing igniter volume density; the combustor housing can be made of a low-temperature, low-cost mate

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nikolaos Bonanos Fuel Cells & Solid State Chemistry Dept.  

E-Print Network [OSTI]

Nikolaos Bonanos Fuel Cells & Solid State Chemistry Dept. Risø, Technical University of Denmark, P Oxide Fuel Cells, Genova, Italy, 22-24 October 2007 nikolaos.bonanos@risoe.dk Materials for SPFCs conductors I: Danish-French workshop on solid state materials for low to medium temperature fuel cells

342

Solid Waste Management (Connecticut)  

Broader source: Energy.gov [DOE]

Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

343

Solid Electrolyte Batteries  

Broader source: Energy.gov (indexed) [DOE]

Kim Texas Materials Institute The University of Texas at Austin Solid Electrolyte Batteries This presentation does not contain any proprietary or confidential information. DOE...

344

Solid Waste Management (Indiana)  

Broader source: Energy.gov [DOE]

The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

345

Solid Waste Permits (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

346

Solid-State Lighting  

Broader source: Energy.gov (indexed) [DOE]

research and design. Quality LED luminaires require program designed to successfully move solid-state lighting precise design of several components -LED arrays, electronic into the...

347

Solid Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

348

Thermodynamic optimization of a planar solid oxide fuel cell.  

E-Print Network [OSTI]

??Solid oxide fuel cells (SOFCs) are high temperature (600C-1000C) composite metallic/ceramic-cermet electrochemical devices. There is a need to effectively manage the heat transfer through the (more)

Ford, James Christopher

2012-01-01T23:59:59.000Z

349

E-Print Network 3.0 - automated in-tube solid-phase Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: automated in-tube solid-phase Page: << < 1 2 3 4 5 > >> 1 Date Student Topic Advisor 082211 Introduction Summary: 3111 Indika Galpothdeniya Temperature-Response...

350

Delivery system for molten salt oxidation of solid waste  

DOE Patents [OSTI]

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

351

SAMPLE RESULTS FROM MCU SOLIDS OUTAGE  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

2014-09-22T23:59:59.000Z

352

SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4  

SciTech Connect (OSTI)

Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition. Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.

O'Hara, Kelley [University of Missouri, Rolla; Smith, Jeffrey D [ORNL; Sander, Todd P. [Missouri University of Science and Technology; Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

353

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

1993-03-02T23:59:59.000Z

354

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

355

Room air monitor for radioactive aerosols  

DOE Patents [OSTI]

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

356

A holistic investigation of complexity sources in nuclear power plant control rooms  

E-Print Network [OSTI]

The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

Sasangohar, Farzan

2011-01-01T23:59:59.000Z

357

Solid state cavity QED : practical applications of strong coupling of light and matter  

E-Print Network [OSTI]

J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire ...

Tischler, Jonathan Randall, 1977-

2007-01-01T23:59:59.000Z

358

Solid State Communications, Vol. 74, No. 4, pp. 281-284, 1990. Printed in Great Britain.  

E-Print Network [OSTI]

Department of Chemistry, Stanford University, Stanford, CA, 94305, USA (Received 15 November 1989 by V sublimation flakes at room temperature. The laser excitation wavelength was tuned to the singlet exciton band

Fayer, Michael D.

359

Inelastic x-ray scattering study of supercooled liquid and solid silicon.  

SciTech Connect (OSTI)

Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

2006-01-01T23:59:59.000Z

360

The work function of elastic solids  

E-Print Network [OSTI]

In solid phase the pressure correlates to the elastic related volume change while the temperature to the thermal related volume change. These volume changes are not compatible with the exception of constant volume condition when the expanded volume converts completely compressed volume. Separating the thermal and elastic related volume changes the work functions for each of the thermodynamic conditions are derived. Based on theoretical consideration it is suggested that the thermal related volume change do not result mechanical work. Homogeneous model, both the system and the surrounding have the same phase, can completely explain the lack of the thermal related work and provide a self-consistent thermodynamic description for the elastic solids.

Jozsef Garai; Alexandre Laugier

2005-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The influence of hydrogen gas exposure and low temperature on the tribological characteristics of ti-6al-4v  

E-Print Network [OSTI]

tests. Each group was tested at two normal loads, 10N and 20N, at the same linear speed. Group 1 was unexposed and tested at room temperature, Group 2 was unexposed and tested at low temperature, Group 3 was exposed and tested at room temperature...

Gola, Ryan Travis

2009-05-15T23:59:59.000Z

362

Management of Solid Waste (Oklahoma)  

Broader source: Energy.gov [DOE]

The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

363

Electrochemical and Solid-State Letters, 9 ?6 ? A261-A264 ?2006? 1099-0062/2006/9?6?/A261/4/$20.00 The Electrochemical Society Alcohol Fuel Cells at Optimal Temperatures  

E-Print Network [OSTI]

High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH 2PO 4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al 2O 3 methanol steam-reforming catalyst. The temperature of operation, ?250C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm 2, respectively. The high power output ?305 mW/cm 2 ? obtained from reformate fuel containing 1 % CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures.

Tetsuya Uda; A Dane A. Boysen; B Calum R. I. Chisholm; Sossina M. Haile Z

364

How the Number and Placement of Sensors Controlling Room Air Distribution Systems Affect Energy Use and Comfort  

E-Print Network [OSTI]

, ISRACVE, ASHRAE, 1993 Li, Y., M. Sandberg, and L. Fuchs. ?Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modeling.? Indoor Air, 1992. Vol. 2, pp. 225-243. Linden, P.F., G.F. Lane-Serff,, and D...

Wang, D.; Arens, E.; Webster, T.; Shi, M.

2002-01-01T23:59:59.000Z

365

Versatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department of Aerospace and Mechanical Engineering  

E-Print Network [OSTI]

temperature (250°C ­ 400°C), a catalyst is required. Breakdown products of chemical-agent molecules eitherVersatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department Number: CBDIF-2006-PRO01 (Individual Protection) Motivation and approach Practically all chemical

366

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network [OSTI]

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

367

Solid State Division progress report, September 30, 1981  

SciTech Connect (OSTI)

Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

Not Available

1982-04-01T23:59:59.000Z

368

Integrated Temperature and Humidity Control: A Unique Approach  

E-Print Network [OSTI]

as in Singapore. The results presented herein are from one of these sites, consisting of two adjacent unoccupied guest rooms in a hotel, each equipped with chilled- water fan coil units. The two, virtually identical adja- cent rooms were selected primarily... for comparing the operation and performance of the ITHC with that of a dry-bulb temperature controller (DBTC) under the exact same conditions (solar, outdoor temperature and humidity, internal loads, etc.). To obtain com- parative results, the fan coil unit...

Shah, D. J.

2000-01-01T23:59:59.000Z

369

An analysis of the impact of datacenter temperature on energy efficiency  

E-Print Network [OSTI]

The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

Lee, Heechang

2012-01-01T23:59:59.000Z

370

Solid Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

371

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

372

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

373

Thermal and electrical stabilities of solid nitrogen (SN2) cooled YBCO coated conductors for HTS magnet applications  

E-Print Network [OSTI]

Recently, a cooling system using a solid cryogen such as solid nitrogen (SN2), was introduced for high temperature superconducting (HTS) magnet applications. In order to apply the SN2 cooling system successfully to HTS ...

Song, J. B.

374

Architectures for individual and stacked micro single chamber solid oxide fuel cells  

E-Print Network [OSTI]

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that convert various fuel sources directly into electrical energy at temperatures ranging from 600C to 1000C. These high temperatures could potentially ...

Crumlin, Ethan J

2007-01-01T23:59:59.000Z

375

Solids Accumulation Scouting Studies  

SciTech Connect (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

376

Solid Waste Management (Kansas)  

Broader source: Energy.gov [DOE]

This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

377

Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest  

SciTech Connect (OSTI)

To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25 C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for {approximately}360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25 C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17{alpha}(H)- and 17{beta}(H)-hopanes, 5{alpha}(H),14{alpha}(H)-, 5{beta}(H),14{alpha}(H)-, 5{alpha}(H),14{beta}(H)-, and 5{beta}(H),14{beta}(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms. Calculations of this kind permit comprehensive thermodynamic description of the chemical evolution of organic matter with increasing depth in sedimentary basins.

Richard, L.; Helgeson, H.C. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics] [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

1998-12-01T23:59:59.000Z

378

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

379

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

380

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of ultralow energy (110 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids  

SciTech Connect (OSTI)

Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 110 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T., E-mail: pradeep@iitm.ac.in [DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)] [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)

2014-01-15T23:59:59.000Z

382

Aerodynamics simulation of operating rooms N. El Gharbi*  

E-Print Network [OSTI]

Aerodynamics simulation of operating rooms N. El Gharbi* A. Benzaoui*R. Bennacer** * Faculty. Keywords: Operating room, aerodynamics simulation, turbulent model, comfort, Airflow, Indoor air quality distribution scheme. To ensure these optimal conditions, a study of the aerodynamics flow in a conditioned

Paris-Sud XI, Université de

383

Exploring former interaction qualities for tomorrow's control room design  

E-Print Network [OSTI]

.g. in power plants or industrial production plants. One essential task in operating control rooms consists by virtual control elements that are operated through desktop computers. However this kind of interaction between power and reality as stated by Jacob et al. (2008): While digitization gave control rooms more

Reiterer, Harald

384

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.  

E-Print Network [OSTI]

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which seat x 1 Toilet roll holder x 1 INVENTORY FOR SHACKLETON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

Birmingham, University of

385

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.  

E-Print Network [OSTI]

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR MASON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

Birmingham, University of

386

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.  

E-Print Network [OSTI]

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which holder x 1 INVENTORY FOR TENNIS COURT BLOCK NO: FLAT NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

Birmingham, University of

387

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.  

E-Print Network [OSTI]

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR ELGAR COURT FLAT NO: BLOCK NO: ROOM NO: NAME

Birmingham, University of

388

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.  

E-Print Network [OSTI]

INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which rail x 1 INVENTORY FOR MAPLE BANK FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

Birmingham, University of

389

Housing & Residential Services Room and Board Rates 20112012  

E-Print Network [OSTI]

Housing & Residential Services Room and Board Rates 2011­2012 Campus housing offers a variety, please view the Housing & Residential Services website at: housing.iit.edu. McCormick Student Village to participate in the Residential 5 meal plan. Winter Break is included in MSV, Gunsaulus Hall and SSV. DAS room

Heller, Barbara

390

Raman and absorption spectrophotometric studies of selected lanthanide, californium-doped lanthanide, and actinide trihalides in the solid state  

SciTech Connect (OSTI)

The solid-state absorption spectra of Cf(III) ions as a dopant in lanthanide trihalide hosts (LnCl/sub 3/: Ln = Ce, Sm, and Y; LnBr/sub 3/: Ln = Ce, Sm, Tb, and Y; LnI/sub 3/: Ln = Ce and Y) have been recorded. The spectra of Cf(III) have been correlated with the various crystal structures. The phonon Raman spectra and solid-state absorption spectra of PmF/sub 3/, PmCl/sub 3/, PmBr/sub 3/, and two crystal modifications of PmI/sub 3/ have been recorded. Symmetry assignments have been made for the Raman-active bands for these trihalides and also the sesquioxide. The room-temperature absorption spectra have been correlated to crystal field effects. The symmetry assignments of the Raman-active phonon modes have been made based on polarized Raman spectra from single crystals of YF/sub 3/-type orthorhombic TbF/sub 3/ and PuBr/sub 3/-type orthorhombic NdBr/sub 3/. Raman spectra of other isostructural lanthanide compounds have been recorded and compared. Symmetry assignments for these compounds have been made by analogy to the single-crystal assignments. Raman spectra have been obtained and catalogued for a number of actinide compounds. Symmetry assignments have been made for the observed Raman-active phonon bands in this work based on the assignments made for isostructural lanthanide compounds. 29 figs., 22 tabs.

Wilmarth, W.R.

1988-03-01T23:59:59.000Z

391

Solid Target Options S. Childress  

E-Print Network [OSTI]

power is higher than for existing solid target designs - but not by a large factor. · NuMI graphite beam power) · High beam power solid targets frequently use higher z materials for increased yield plusSolid Target Options NuFACT'00 S. Childress Solid Target Options · The choice of a primary beam

McDonald, Kirk

392

Fabricating the Solid Core Heatpipe Reactor  

SciTech Connect (OSTI)

The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

Ring, Peter J.; Sayre, Edwin D. [Advanced Methods and Materials, Inc., 1190 Mountain View-Alviso Road, Suite P, Sunnyvale, CA 94089 (United States); Houts, Mike [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

2006-01-20T23:59:59.000Z

393

Generator configuration for solid oxide fuel cells  

DOE Patents [OSTI]

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

394

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

395

Pressure &Pressure & TemperatureTemperature  

E-Print Network [OSTI]

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

396

Solid oxide fuel cell steam reforming power system  

DOE Patents [OSTI]

The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

2013-03-12T23:59:59.000Z

397

Thermionic converter temperature controller  

DOE Patents [OSTI]

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

2001-04-24T23:59:59.000Z

398

Thermionic Converter Temperature Controller  

SciTech Connect (OSTI)

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

1999-08-23T23:59:59.000Z

399

Solid polymer electrolyte compositions  

DOE Patents [OSTI]

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

400

Staff Radiation Doses in a Real-Time Display Inside the Angiography Room  

SciTech Connect (OSTI)

MethodsThe evaluation of a new occupational Dose Aware System (DAS) showing staff radiation doses in real time has been carried out in several angiography rooms in our hospital. The system uses electronic solid-state detectors with high-capacity memory storage. Every second, it archives the dose and dose rate measured and is wirelessly linked to a base-station screen mounted close to the diagnostic monitors. An easy transfer of the values to a data sheet permits further analysis of the scatter dose profile measured during the procedure, compares it with patient doses, and seeks to find the most effective actions to reduce operator exposure to radiation.ResultsThe cumulative occupational doses measured per procedure (shoulder-over lead apron) ranged from 0.6 to 350 {mu}Sv when the ceiling-suspended screen was used, and DSA (Digital Subtraction Acquisition) runs were acquired while the personnel left the angiography room. When the suspended screen was not used and radiologists remained inside the angiography room during DSA acquisitions, the dose rates registered at the operator's position reached up to 1-5 mSv/h during fluoroscopy and 12-235 mSv/h during DSA acquisitions. In such case, the cumulative scatter dose could be more than 3 mSv per procedure.ConclusionReal-time display of doses to staff members warns interventionists whenever the scatter dose rates are too high or the radiation protection tools are not being properly used, providing an opportunity to improve personal protection accordingly.

Sanchez, Roberto, E-mail: rmsanchez.hcsc@salud.madrid.org; Vano, E.; Fernandez, J. M. [Hospital Clinico San Carlos, Medical Physics Department (Spain); Gallego, J. J. [Universidad Complutense de Madrid, Radiology Department (Spain)

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling control room crews for accident sequence analysis  

E-Print Network [OSTI]

This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

Huang, Y. (Yuhao)

1991-01-01T23:59:59.000Z

402

FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman  

E-Print Network [OSTI]

AUDITORY MODELLING FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman #12;Auditory modelling Promoties, in het openbaar te verdedigen op donderdag 15 september 2011 om 10:00 uur door Jasper VAN DORP

403

Innis Library Directory Kenneth Taylor Hall (KTH), Room 108  

E-Print Network [OSTI]

Innis Library Directory Kenneth Taylor Hall (KTH), Room 108 We may be small, but we've got it all, Directories, Encyclopedias, etc.] New Books Periodicals [Magazines & Newspapers] Bookstacks [A-HD] Group

Hitchcock, Adam P.

404

Sheets (most beds are Twin XL, room assignment will specify)  

E-Print Network [OSTI]

and DVD player Desk and desk chair Waste basket and recycle bin Room Décor Posters and pictures Dry Extension cords and multi-plug adapters Halogen lamps All pets except your fish (10 gal tank or less

Cina, Jeff

405

Clean Room Challenge: Nanoscientist Quiz 1 | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscientist Quiz 1 Clean Room Challenge: Nanoscientist Quiz 1 Ron Olson 2011.03.23 Hello everybody As you know, I have been sharing with you a series of videos discussing the...

406

SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS  

SciTech Connect (OSTI)

The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

Duff, M; Keisha Martin, K; S Crump, S

2007-03-23T23:59:59.000Z

407

Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte  

SciTech Connect (OSTI)

Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4-diphenylmethane diisocyanate (2,4-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 10{sup ?6} S cm{sup ?1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 36003100 cm{sup ?1}, carbonyl (-C=O) at 17501650 cm{sup ?1} and ether (-C-O-C-) at 11501000 cm{sup ?1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

408

Thermomechanical room and canister region benchmark analyses between STEALTH-WI and SPECTROM-32: Draft final report  

SciTech Connect (OSTI)

This report documents the benchmarking of the two-dimensional waste isolation version of STEALTH (designated STEALTH-WI) against the thermomechanical performance assessment calculations performed by RE/SPEC using SPECTROM-32. An axisymmetric, canister-scale (very-near-field) analysis was performed to compute the peak stress exerted by the salt on the waste package. A plane strain, room-scale (near-field) analysis was also performed to predict disposal room roof-to-floor closure and the temperatures at key locations in the vicinity of the disposal room. Comparisons between the STEALTH and SPECTROM-32 results showed that the temperature predictions agreed to within 5/degree/C, peak canister stresses better than 10%, and the average roof-to-floor closures within 30%. The stress and displacement differences were attributed to differences in the treatment of plasticity in the constitutive laws for salt employed in STEALTH and SPECTROM-32. The temperature differences were due to minor differences in the thermal models employed in STEALTH and SPECTROM- 41, the thermal analysis code which supplies temperatures for SPECTROM-32. 9 refs., 21 figs., 6 tabs.

Dial, B.W.; Maxwell, D.E.; Yee, G.

1987-12-01T23:59:59.000Z

409

An Analysis of Efficiency Improvements in Room Air Conditioner  

E-Print Network [OSTI]

NAECA NATIONAL APPLIANCE ENERGY CONSERVATION ACT NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT NTU NUMBER OF TRANSFER UNITS OEM ORIGINAL EQUIPMENT MANUFACTURER ORNL OAK RIDGE NATIONAL LABORATORY RAC ROOM AIR CONDITIONER.... There are two public domain models that we have considered using for this analysis: the Oak Ridge National Laboratory (ORNL) heat pump model [1] and the Arthur D. Little (ADL) room air conditioner model [2]. The ORNL model was completed in 1981. Although...

O'Neal, D. L.; Penson, S. B.

1988-01-01T23:59:59.000Z

410

Using a Research Simulator for Validating Control Room Modernization Concepts  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

2012-05-01T23:59:59.000Z

411

Solid Waste Management Program (Missouri)  

Broader source: Energy.gov [DOE]

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

412

Solid Waste Disposal Act (Texas)  

Broader source: Energy.gov [DOE]

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

413

Solid Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

414

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

415

Solid oxide MEMS-based fuel cells  

DOE Patents [OSTI]

A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

Jankowksi, Alan F.; Morse, Jeffrey D.

2007-03-13T23:59:59.000Z

416

Solid polymer MEMS-based fuel cells  

DOE Patents [OSTI]

A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

2008-04-22T23:59:59.000Z

417

Helium-cooled solid breeder blanket for ITER  

SciTech Connect (OSTI)

This paper summarizes the latest results of a design study of a helium-cooled solid breeder blanket for ITER. Attractive features of this design include the following: (1) There is a significant design margin since only part of the allowable solid breeder temperature window needs to be used. (2) There is an expanding data base available from solid breeder experiments carried out internationally. (3) The solid breeder can be designed to operate at high reactor-relevant temperature, while the helium is kept at moderate temperature and pressure for safety and reliability. In addition, since helium is a gas, it can be run so as to optimize the structure temperature and accommodate long term power variation without incurring any substantial pressure penalty. (4) The use of helium, an inert gas minimizing any chemical reaction and corrosion, in combination with a low activation solid breeder, is a safety advantage. An extensive list of the blanket operating parameters is provided and key factors are discussed.

Raffray, A.R.; Abdou, M.A.; Chou, P.; Gorbis, Z.; Tillack, M.; Watanabe, Y.; Ying, A.

1989-03-01T23:59:59.000Z

418

Coexistence of superfluid and solid helium in aerogel  

SciTech Connect (OSTI)

The results of recent neutron scattering studies of solid helium in silica aerogel are discussed. Previously I.V. Kalinin et al., Pis'ma Zh. Eksp. Teor. Fiz. 87 (1), 743 (2008) [JETP Lett. 87 (1), 645 (2008)], we detected the existence of a superfluid phase in solid helium at a temperature below 0.6 K and a pressure of 51 bar, although, according to the phase diagram, helium should be in the solid state under these conditions. This work is a continuation of the above studies whose main goal was to examine the detected phenomenon and to establish basic parameters of the existence of a superfluid phase. We have determined the temperature of the superfluid transition from solid to superfluid helium, T{sub C} = 1.3 K, by analyzing experimental data. The superfluid phase excitation parameters (lifetime, intensity, and energy) have a temperature dependence similar to that of bulk helium. The superfluid phase coexists with the solid phase in the entire measured temperature range from T = 0.05 K to T{sub C} and is a nonequilibrium one and disappears at T{sub C}.

Kalinin, I. V. [Institute for Physics and Power Engineering (Russian Federation); Kats, E. I.; Koza, M. [Institut Laue-Langevin (France); Lauter, V. V. [Oak Ridge National Laboratory (United States); Lauter, H. [Institut Laue-Langevin (France); Puchkov, A. V., E-mail: puchkov@ippe.r [Institute for Physics and Power Engineering (Russian Federation)

2010-08-15T23:59:59.000Z

419

Heat Recovery From Solid Waste  

E-Print Network [OSTI]

areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

Underwood, O. W.

1981-01-01T23:59:59.000Z

420

Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges  

E-Print Network [OSTI]

Efficiency of Room Air Conditioners in India: OpportunitiesStar Labeled room Air Conditioners. Ministry of Power (of Superefficient Room Air Conditioners, Lawrence Berkeley

Phadke, Amol

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

P:\\Room Numbering Standard\\MSU Room Number Standard 2012.doc 3/12/2012 Page 1 MSU Room Numbering Standard  

E-Print Network [OSTI]

and other spaces in university facilities. Numbering standards ensure continuity within the buildings is a customized standard that: · Accommodates a logical flow and pedestrian movement through buildings Numbering Standard. Minor renovations or additions to an existing building may continue to use existing room

Maxwell, Bruce D.

422

3 ThInK Space (301) iSci Faculty Work Room (306)  

E-Print Network [OSTI]

(B109-10) Silent Study Room (B115) McMaster Social Innovation Lab (B117/A) Group Study Rooms ­ Book

Haykin, Simon

423

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network [OSTI]

chapter we discuss market, energy consumption and technologyeffective Room AC energy efficiency market transformation42 Chapter 3 Room AC Market and Energy Consumption

Shah, Nihar

2014-01-01T23:59:59.000Z

424

E-Print Network 3.0 - allergy counselling room Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be obtained from the Texas Tech Certification Officer (ED, Room 106). Graduate Counseling Certificates Mental... of Education Office of Graduate Studies and Research (ED, Room...

425

A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions  

E-Print Network [OSTI]

In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

Valkov, Boris Ivanov

2014-01-01T23:59:59.000Z

426

Energy Efficiency in Small Server Rooms: Field Surveys and Findings  

SciTech Connect (OSTI)

Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 small server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.

Cheung, Iris [Hoi; Greenberg, Steve; Mahdavi, Roozbeh; Brown, Richard; Tschudi, William

2014-08-11T23:59:59.000Z

427

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

428

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

429

Packaging of solid state devices  

DOE Patents [OSTI]

A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

Glidden, Steven C.; Sanders, Howard D.

2006-01-03T23:59:59.000Z

430

Solids flow control and measurement in the PEATGAS pilot-plant program  

SciTech Connect (OSTI)

In a pilot plant gasification program, the measurement and control of major process variables such as flow, temperature, pressure, density and level are essential to develop accurate material balance and reliable scale-up data. Of these, solids mass flow metering and control usually present the most difficult application. Problems are encountered because of (a) solids characteristics, which can cause erosion and plugging; (b) measurement requirements, which are often at elevated pressures and temperatures; and (c) changes in stream characteristics, such as density, viscosity and solids concentration. This paper reviews the approaches used to measure and control solid-liquid and solid-gas mixtures and elaborates on the design, installation and operating experiences of a lockhopper dry feed system commissioned to control solids feed to the gasifier. Accurate and reliable solids flow measurement and control was achieved during the operation of the PEATGAS pilot plant. Standard instrumentation, modified to meet process requirements, was used to measure multi-component flows of solid-gas and solid-liquid mixtures. In addition, a lockhopper feed system using an innovative solids rate control and measurement technique was installed, commissioned and operated. IGT as a process developer will continue to look for new or improved instrumentation that might be better suited to measure important process variables such as the solids mass flow applications discussed herein.

Wohadlo, S.J.; Biljetina, R.; Laurens, R.M.; Bachta, R.

1982-01-01T23:59:59.000Z

431

Design and fabrication of electron energy filters for room temperature inelastic electron tunneling spectroscopy  

E-Print Network [OSTI]

Odor detection has wide range of applications in a variety of industries, including the agricultural, clinical diagnosis, pharmaceutical, cosmetics, food analysis, environmental and defense fields. Spectroscopic techniques ...

Patil, Prashant (Prashant Tarachand)

2013-01-01T23:59:59.000Z

432

Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids  

E-Print Network [OSTI]

, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Received 14, the removal and recycling of the catalytic materials become important. It is expected that using ionic liquids as ATRP media. They performed the copper(I)-mediated ATRP of methyl methacrylate (MMA) in 1-butyl-3

Wan, Xin-hua

433

Room-Temperature Z-Selective Homocoupling of alpha-Olefins by Tungsten Catalysts  

E-Print Network [OSTI]

3,5-Dimethylphenylimido complexes of tungsten can be prepared using procedures analogous to those employed for other tungsten catalysts, as can bispyrrolide species and MonoAryloxide-Pyrrolide (MAP) species. Homocouplings ...

Marinescu, Smaranda C.

434

Room-temperature quantum noise limited spectrometry and methods of the same  

DOE Patents [OSTI]

In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.

Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas

2014-08-26T23:59:59.000Z

435

Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Sidheswaran, Meera A.

2012-01-01T23:59:59.000Z

436

Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases  

E-Print Network [OSTI]

Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and ...

Zhang, Yuxi

437

Direct-gap optical gain of Ge on Si at room temperature  

E-Print Network [OSTI]

Lasers on Si are crucial components of monolithic electronicphotonic integration. Recently our theoretical analysis has shown that Ge, a pseudodirect bandgap material compatible with Si complementary metal oxide semiconductor ...

Liu, Jifeng

438

Bleaching of F-centers in sodium chloride at room temperature by electron tunneling  

E-Print Network [OSTI]

, ronhot, o- met, er f LL', ali 1161ido crvs~&1? shat have been exposed tc io1Q. cinT radia bioni snch as z "aPJi MkiLbit absorption bands in the visible and near ultraviolet, which sm attributed to "color centers" crested in the orris...'-sls by the radiation. The caLm' centew consisb of various combi- nations of pvsitiv'c and, no@at, ive ion-vacancies with electrons and electron holes i hose with which She present, work is concei'ned are shown in H. g. 1. below. The F-center is a negative ion...

Carroll, Herbert Burnett

1967-01-01T23:59:59.000Z

439

MC-CAM Publications "Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries"  

E-Print Network [OSTI]

­Acceptor Low Band Gap Polymers" Weibin Cui and Fred Wudl Macromolecules, 46 (18): 7232-7238 (2013). DOI Link "A

Bigelow, Stephen

440

Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals  

E-Print Network [OSTI]

99.997 %), 1-dodecanethiol (1-DDT, > 98 %), anhydrous 1,2Then, 0.03 g of dried 1-DDT was mixed with 1.5 mL of a 10stirring, and the 1-DDT/TOP-Te solution was immediately

Polking, Mark J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Displacement currents in semiconductor quantum dots embedded dielectric media: A method for room temperature photon detection  

E-Print Network [OSTI]

13 In photovoltaic detectors, interpenetrating networks of polymer and Qds communicate with two electrodes and photo- conductive photon detectors have been made from QD blended conducting polymers.11 by deri- vation of a current by an external voltage via movement of carriers across the polymer medium

Matsik, Steven G.

442

Origin of room temperature ferromagnetic moment in Rh-rich Rh/Fe multilayer thin films  

E-Print Network [OSTI]

films of FeRh was done by electron beam melting on amorphous substrates3 but the low extent of ordering

Laughlin, David E.

443

Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature  

E-Print Network [OSTI]

oxide systems.11­13 Briefly, reverse micelles are water-in-oil emulsions in which the water. This ``excess'' of diamagnetic Zn can thus contribute to the overall decrease in magnetism. Further, this model

McHenry, Michael E.

444

Electrochemical study of the properties of indium in room temperature chloroaluminate molten salts  

SciTech Connect (OSTI)

The electrochemistry of indium was studied with voltammetry and chronoamperometry at glassy carbon, tungsten, and nickel electrodes in the basic and acidic aluminum chloride-1,2-dimethyl-3-propylimidazolium chloride molten salt at 27 C. In the basic melt, In(III) is complexed as [InCl{sub 5}]{sup 2{minus}}, which could be reduced to indium metal through a three-electron reduction process. The electrodeposition of indium on glassy carbon and tungsten electrodes involves progressive three-dimensional nucleation on a finite number of active sites with diffusion-controlled growth of the nuclei. The electrodeposition of indium metal on a nickel electrode entails progressive three-dimensional nucleation on a large number of active sites. The formal potentials of the In(III)/In couple in the 44.4 to 55.6 and 49.0 to 51.0 mole percent (m/o) melts are {minus}1.096 and {minus}1.009 V, respectively, vs. Al(III)Al in the 66.7 to 33.3 m/o.

Liu, J.S.Y.; Sun, I.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemistry

1997-01-01T23:59:59.000Z

445

Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature  

SciTech Connect (OSTI)

Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 1251000?Torr and fixed plasma input DC power of 6?kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mssbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Das, A. K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

2014-10-28T23:59:59.000Z

446

Ultrafast infrared studies of chemical reaction dynamics in room-temperature liquids  

E-Print Network [OSTI]

ultrafast pulses ..analyses of the ultrafast pulses. (a) A spectral analysis ofExperimentally, an ultrafast UV pulse dissociates a photo

Yang, H.

2011-01-01T23:59:59.000Z

447

Enhanced Room-Temperature Formability in High-Strength Aluminum Alloys through Pulse-Pressure Forming  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

448

Room Temperature Ring-Opening Metathesis of Pyridines by a Transient TitC Linkage  

E-Print Network [OSTI]

), a reaction in which N-heterocycles present in petroleum or coal-based liquids are catalytically converted

Baik, Mu-Hyun

449

Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room Temperature...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engelhard D Meyer AM Sharma Y Qiang Capabilities: Spectroscopy and Diffraction NMR and EPR Facility: Radiochemistry Annex Science Theme: Energy Materials & Processes Biosystem...

450

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents [OSTI]

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

451

Room Temperature Control During Season Switchover with Single Duct Variable Air Volume System Without Reheat  

E-Print Network [OSTI]

is energized in summer mode or de-energized in winter mode, the output of the PRV is 20psi or 15 psi, respectively. AHU#7 AHU#9 AHU#8 AHU#10 W E AHU#6 AHU#4 AHU #2 AHU#5 AHU#3 S Figure 3. Typical Floor Plan of the 1st through the 4th Floors where...

Liu, C.; Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H.

2003-01-01T23:59:59.000Z

452

Ultrafast infrared studies of chemical reaction dynamics in room-temperature liquids  

E-Print Network [OSTI]

for acetonitrile MD simulation ..0VE for the eN stretch of acetonitrile and benzonitrile.shows the results for acetonitrile. The directions of the

Yang, H.

2011-01-01T23:59:59.000Z

453

8E-17 fractional laser frequency instability with a long room-temperature cavity  

E-Print Network [OSTI]

We present a laser system based on a 48 cm long optical glass resonator. The large size requires a sophisticated thermal control and optimized mounting design. A self balancing mounting was essential to reliably reach sensitivities to acceleration of below $\\Delta \

Hfner, Sebastian; Grebing, Christian; Vogt, Stefan; Legero, Thomas; Merimaa, Mikko; Lisdat, Christian; Sterr, Uwe

2015-01-01T23:59:59.000Z

454

Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles PageDeposition for Potential Marine

455

Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO(110) Rutile.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: Sulfur K-edgeDepartment|

456

Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room Temperature. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000TechnologyTune ITFerrin| EMSLTi-Doped

457

Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object Damage 3 B.Catalysts. | EMSL

458

ANL/APS/TB-19 A Finite Element Analysis of Room Temperature Silicon Crystals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 . Wiggler9 A

459

Method of Production of Pure Hydrogen Near Room Temperature From Ultra High  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portal Biomass andForCapacity Hydride

460

PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingTools Software and Tools ChosServices »

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Strong Room-temperature Negative Transconductance In An Axial Si/Ge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutronStrategic Plan TheDepartmentHetero-nanowire Tunneling

462

Single-Molecule Triplet-State Photon Antibunching at Room Temperature. |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethodSimwYpes(tm)SingleB.

463

81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids  

SciTech Connect (OSTI)

This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

Robin D. Rogers

2004-12-09T23:59:59.000Z

464

Room-temperature quantum noise limited spectrometry and methods of the same  

DOE Patents [OSTI]

In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.

Stevens, Charles G; Tringe, Joseph W

2014-12-02T23:59:59.000Z

465

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect (OSTI)

This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

Joseph Pierre

2007-09-30T23:59:59.000Z

466

Replacement of the Advanced Test Reactor control room  

SciTech Connect (OSTI)

The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab.

Durney, J.L.; Klingler, W.B. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-01-01T23:59:59.000Z

467

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

468

Solid state optical microscope  

DOE Patents [OSTI]

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

469

Solid state oxygen sensor  

DOE Patents [OSTI]

Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

470

Integrated intelligent systems in advanced reactor control rooms  

SciTech Connect (OSTI)

An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

Beckmeyer, R.R.

1989-01-01T23:59:59.000Z

471

Loca study for a helium-cooled solid breeder design for ITER  

SciTech Connect (OSTI)

The analysis of thermal processes after a loss-of-coolant accident (LOCA) in a solid breeder blanket is important because of the first wall and solid breeder maximum allowable temperature constraints. The objective is to design for a LOCA so that following a LOCA, the maximum solid breeder and structure temperatures are less than the limit beyond which irreversible damage is done, which would lead to loss of investment. The temporal temperature profiles for the solid breeder and first wall regions of a helium-cooled solid breeder design for ITER were calculated based on afterheat values for adiabatic and non-adiabatic conditions and the results are presented in this paper. It is found that, for this design, even when excluding radiation to the cooled inboard, a LOCA can be recommended by energy removal through a flowing purge with a reasonable flow rate.

Gorbis, Z.R.; Raffray, A.R.; Fujimura, K.; Jun, I.; Abdou, M.A.

1989-03-01T23:59:59.000Z

472

Solid fuel volatilization to produce synthesis gas  

DOE Patents [OSTI]

A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

2014-07-29T23:59:59.000Z

473

Thermal control of solid breeder blankets  

SciTech Connect (OSTI)

An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

1991-12-31T23:59:59.000Z

474

Thermal control of solid breeder blankets  

SciTech Connect (OSTI)

An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

1991-01-01T23:59:59.000Z

475

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

476

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

477

Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors  

E-Print Network [OSTI]

-quality metallic samples increases linearly with the number of uncompensated local moments on Mn-Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport...

Jungwirth, T.; Wang, KY; Masek, J.; Edmonds, KW; Konig, J.; Sinova, Jairo; Polini, M.; Goncharuk, NA; MacDonald, AH; Sawicki, M.; Rushforth, AW; Campion, RP; Zhao, LX; Foxon, CT; Gallagher, BL.

2005-01-01T23:59:59.000Z

478

JOURNAL OF MATERIALS SCIENCE 34 (1999) 637 644 Cell nucleation in solid-state polymeric foams  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 34 (1999) 637­ 644 Cell nucleation in solid-state polymeric foams-mail: holl@u.washington.edu The mechanism for nucleation phenomenon in solid-state microcellular foams. The nucleation phenomenon is thermally activated at the effective glass transition temperature of the gas

Kumar, Vipin

479

Science Career & Cooperative Education Burke Science Building Room 127  

E-Print Network [OSTI]

Science Career & Cooperative Education Burke Science Building Room 127 www.science event. Visit the SCCE website to find event dates and details: www.science.mcmaster.ca/scce Attend a Co visit: www.science.mcmaster.ca/scce Enroll in SCIENCE 2C00 to learn the skills for career success

Hitchcock, Adam P.

480

Model-Based Commissioning for Filters in Room Air Conditioners  

E-Print Network [OSTI]

This paper proposes a model that can estimate filter resistance. Two sorts of value are used as inputs to estimate filter resistance. One is the power consumed by the fan in the indoor unit and the other is the thermal performance. For the room air...

Wang, F.; Yoshida, H.; Kitagawa, H.; Matsumoto, K.; Goto, K.

2004-01-01T23:59:59.000Z