Sample records for room temperature solid

  1. ECE 103 Solid State Electronics Master Exam 2012 Assume silicon, room temperature, complete ionization.

    E-Print Network [OSTI]

    Wang, Deli

    ECE 103 Solid State Electronics Master Exam 2012 Assume silicon, room temperature, complete ionization. (q=1.6×10-19 C, ox=3.9×8.85×10-14 F/cm, si=11.7×8.85×10-14 F/cm, kT/q=0.0259 V, Eg=1.12 e

  2. Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor

    E-Print Network [OSTI]

    Norman Y. Yao; Liang Jiang; Alexey V. Gorshkov; Peter C. Maurer; Geza Giedke; J. Ignacio Cirac; Mikhail D. Lukin

    2010-12-13T23:59:59.000Z

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Much progress has been made towards this goal. Indeed, quantum operations have been demonstrated on several trapped ion qubits, and other solid-state systems are approaching similar levels of control. Extending these techniques to achieve fault-tolerant operations in larger systems with more qubits remains an extremely challenging goal, in part, due to the substantial technical complexity of current implementations. Here, we propose and analyze an architecture for a scalable, solid-state quantum information processor capable of operating at or near room temperature. The architecture is applicable to realistic conditions, which include disorder and relevant decoherence mechanisms, and includes a hierarchy of control at successive length scales. Our approach is based upon recent experimental advances involving Nitrogen-Vacancy color centers in diamond and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems. Additionally, the proposed architecture may greatly alleviate the stringent constraints, currently limiting the realization of scalable quantum processors.

  3. Numerical modelling and analysis of a room temperature magnetic

    E-Print Network [OSTI]

    Numerical modelling and analysis of a room temperature magnetic refrigeration system Thomas Frank and analysis of a room temperature magnetic refrigeration system Department: Fuel Cells and Solid State-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration

  4. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  5. Solid State Electronics (ECE 103) ECE MS Comp Exam, Fall 2013 (a) Draw the energy band diagram of a piece of Si at room temperature (label the diagram) and

    E-Print Network [OSTI]

    California at San Diego, University of

    Solid State Electronics (ECE 103) ­ ECE MS Comp Exam, Fall 2013 (a) Draw the energy band diagram of a piece of Si at room temperature (label the diagram) and use the band diagram to illustrate the doping (r.t.). (b) Use band diagrams to illustrate the formation of p/n junction. (c) For a p/n+ diode, p-Si

  6. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  7. ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE

    E-Print Network [OSTI]

    Caupin, Frédéric

    ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE FR´ED´ERIC CAUPIN AND VINCENT FOURMOND on ultrasonic cavitation in freon (1,1,2-trichloro 1,2,2-trifluoro ethane). We use a high intensity 1 MHz observe the nucleation of bubbles. We describe the three different methods we use to detect cavitation

  8. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect (OSTI)

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01T23:59:59.000Z

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  9. Room temperature triplet state spectroscopy of organic semiconductors

    E-Print Network [OSTI]

    Reineke, Sebastian

    2013-01-01T23:59:59.000Z

    Organic light emitting devices and solar cells are machines that create, manipulate and destroy excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is dark with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescen...

  10. Room-Temperature Multiferroic Hexagonal LuFeO3

    SciTech Connect (OSTI)

    Cheng, Xuemei [Bryn Mawr College; Balke, Nina [ORNL; Chi, Miaofang [ORNL; Gai, Zheng [ORNL; Keavney, David [Argonne National Laboratory (ANL); Lee, Ho Nyung [ORNL; Shen, Jian [University of Tennessee, Knoxville (UTK); Snijders, Paul C [ORNL; Wang, Wenbin [ORNL; Ward, Thomas Z [ORNL; Xu, Xiaoshan [ORNL; Yi, Jieyu [ORNL; Zhu, Leyi [Argonne National Laboratory (ANL); Christen, Hans M [ORNL; Zhao, Jun [University of California, Berkeley

    2013-01-01T23:59:59.000Z

    We observed the coexistence of ferroelectricity and weak ferromagnetism at room temperature in the hexagonal phase of LuFeO3 stabilized by epitaxial thin film growth. While the ferroelectricity in hexagonal LuFeO3 can be understood as arising from its polar structure, the observation of weak ferromagnetism at room temperature is remarkable considering the frustrated triangular spin structure. An explanation of the room temperature weak ferromagnetism is proposed in terms of a subtle lattice distortion revealed by the structural characterization. The combination of ferroelectricity and weak ferromagnetism in epitaxial films at room temperature offers great potential for the application of this novel multiferroic material in next generation devices.

  11. Terahertz Room-Temperature Photonic Crystal Nanocavity Laser

    E-Print Network [OSTI]

    Dirk Englund; Hatice Altug; Ilya Fushman; Jelena Vuckovic

    2007-06-21T23:59:59.000Z

    We describe an efficient surface-passivated photonic crystal nanocavity laser, demonstrating room-temperature operation with 3-ps total pulse duration (detector response limited) and low-temperature operation with ultra-low-threshold near 9uW.

  12. Determination of the Acceptable Room Temperature Range for Local Cooling

    E-Print Network [OSTI]

    Zhang, Y.; Zhao, R.

    2006-01-01T23:59:59.000Z

    Determination of the acceptable room temperature range is a key problem in satisfactory design of local cooling for energy savings. At the room temperatures ranging from neutral to warm, three sensitive body parts-the face, chest and back-were each...

  13. Near room temperature lithographically processed metal-oxide transistors

    E-Print Network [OSTI]

    Tang, Hui, M. Eng. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    A fully lithographic process at near-room-temperature was developed for the purpose of fabricating transistors based on metal-oxide channel materials. The combination of indium tin oxide (ITO) as the source/drain electrodes, ...

  14. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvancesRockSodiumWIPPDepartmentRoom

  15. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  16. Single-Molecule Triplet-State Photon Antibunching at Room Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antibunching at Room Temperature. Abstract: We have demonstrated probing single-molecule metal-to-ligand charge transfer (MLCT) dynamics at room temperature. Using photon...

  17. Electrochemical Generation of Superoxide in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Weidner, John W.

    with an inorganic salt.7 They are directly related to more familiar high-temperature molten salts that are used by the reduction of dioxygen in imidizalium chloride-aluminum chloride molten salt. However, the resulting su and chlorides.2,3,6 Room-temperature ionic liquids RTILs are stable mixtures of an organic cation/anion salt

  18. ROOM TEMPERATURE STRENGTH DEGRADATION OF OPTICAL FIBERS

    E-Print Network [OSTI]

    Matthewson, M. John

    temperatures. 6 :4 Aging Time (s) Fig. 2. Residual strength of fiber B after aging in deionized water. Aging Time (s) Fig. 4. Data of Griffioen3 for residual strength (strain to failure) of fiber aged in water. 1) Fig. 1 . Residual strength of fiber A after aging in distilled water. io 10 i0 106 io 108 1.0 0.9 0 (0

  19. Is thermo-ionic emission at room temperature exploitable?

    E-Print Network [OSTI]

    Germano D'Abramo

    2009-05-21T23:59:59.000Z

    In this brief note we describe two devices, a sort of flat and spherical capacitor, with which one should be able to test the possibility of creating a macroscopic voltage, and thus exploitable current, out of a single thermal source at room temperature. The basic idea is trivial and it makes use of a thermo-emitting cathode with work function as low as 0.7eV. The idea is not completely new, but our approach is simpler and neat. When implemented, it should allow to assess if approaches based on thermo-ionic materials at room temperature really violate the Second Law of Thermodynamics macroscopically.

  20. The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner

    E-Print Network [OSTI]

    Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

    2006-01-01T23:59:59.000Z

    A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

  1. Room Temperature Metastability of Multilayer Graphene Oxide Films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Room Temperature Metastability of Multilayer Graphene Oxide Films Suenne Kim1 , Si Zhou2 , Yike Hu1 Centre National de la Recherche Scientifique ­ Institut N´eel, Grenoble, B.P. 166, 38042 France Graphene oxide has multiple potential applications. The chemistry of graphene oxide and its response to external

  2. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.

    1997-07-08T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  3. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

    1997-01-01T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  4. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    SciTech Connect (OSTI)

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12T23:59:59.000Z

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  5. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect (OSTI)

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18T23:59:59.000Z

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  6. Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature

    E-Print Network [OSTI]

    Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

    2015-01-01T23:59:59.000Z

    Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

  7. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    E-Print Network [OSTI]

    Ohldag, H.

    2011-01-01T23:59:59.000Z

    B, 70:235106, 2004. The role of hydrogen in room-temperatureThe role of hydrogen in room-temperature ferromagnetism atto carbon ? states, also hydrogen-mediated electronic states

  8. Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO(110) Rutile. Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO(110) Rutile. Abstract: Interest in diluted...

  9. Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals using Ion Implantation. Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals...

  10. Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO(110) Rutile. Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO(110) Rutile. Abstract: Ferromagnetic...

  11. On the room-temperature ferromagnetism of Zn1-xCrxO thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering. On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by...

  12. Semiconductor ridge microcavity source of quantum light at room temperature

    E-Print Network [OSTI]

    X. Caillet; A. Orieux; A. Lemaitre; P. Filloux; I. Favero; G. Leo; S. Ducci

    2009-10-31T23:59:59.000Z

    We experimentally demonstrate an integrated semiconductor ridge microcavity source of counterpropagating twin photons at room temperature in the telecom range. Based on parametric down conversion with a counterpropagating phase-matching, pump photons generate photon pairs with an efficiency of about 10^(-11) and a spectral linewidth of 0.3 nm for a 1mm long sample. The indistiguishability of the photons of the pair are measured via a two-photon interference experiment showing a visibility of 85%. This work opens a route towards new guided-wave semiconductor quantum devices.

  13. AW-101 entrained solids - Solubility versus temperature

    SciTech Connect (OSTI)

    GJ Lumetta; RC Lettau; GF Piepel

    2000-03-31T23:59:59.000Z

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.

  14. A dynamic macroscopic quantum oscillator at room temperature

    E-Print Network [OSTI]

    Xie, Wei; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

    2015-01-01T23:59:59.000Z

    We demonstrate a dynamic macroscopic quantum oscillator of a light--matter hybrid state in high-density plasmas created in an optically induced confining potential in a semiconductor microcavity at room temperature. One major advancement is the visualization of quantum oscillator states in a micrometer-scale optical potential at quantized energies up to 4 meV, an order of magnitude higher than that previously observed in spatially confined polariton condensates at cryogenic temperatures. Another advancement is the ability to characterize the time evolution and optical spin polarization of the quantum oscillator states directly from the consequent pulse radiation. The ability to control the macroscopic coherent state of plasma polaritons enables ultrafast multiple pulse lasing in a semiconductor microcavity.

  15. Room temperature ferromagnetism in a phthalocyanine based carbon material

    SciTech Connect (OSTI)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07T23:59:59.000Z

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490?±?10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  16. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    SciTech Connect (OSTI)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15T23:59:59.000Z

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  17. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01T23:59:59.000Z

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  18. Room-temperature 1.3 pm electroluminescence from strained Si, -,Ge,/Si quantum wells

    E-Print Network [OSTI]

    Room-temperature 1.3 pm electroluminescence from strained Si, -,Ge,/Si quantum wells Q. Mi, X. Xiao report the first room-temperature 1.3 ,um electroluminescence from strained Sir-,Ge,/Si quantum wells to that from the Sit-,GeX wells. A minimum band offset is required to have effective room

  19. Design Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Temperature

    E-Print Network [OSTI]

    Victoria, University of

    Design Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Temperature by Daniel Sean decade, active magnetic regenerative (AMR) refrigeration technology has progressed towards commercial

  20. Tailoring room temperature photoluminescence of antireflective silicon nanofacets

    SciTech Connect (OSTI)

    Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Schivalaya Marg. Bhubaneswar 751 005 (India); Kanjilal, A. [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh 201 314 (India); Sahoo, P. K. [National Institute of Science Education and Research, Bhubaneswar 751 005 (India)

    2014-09-21T23:59:59.000Z

    In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

  1. "Rapid Pattern Based Powder Sintering With Room Temperature Polymer Infiltration," Z. He, Y. Kim, M. Kokkengada and J. G. Zhou, Proceedings of the Tenth Solid Freeform Fabrication Symposium, Austin, Texas,

    E-Print Network [OSTI]

    Zhou, Jack

    of polymer materials, several kinds of infiltration materials were selected, and their main mechanical and infiltration. After a green mold or part, having desired cavity/geometry, is made through laser scanning (such should have a lower melting temperature than that of the powder material, so that the melted alloy can

  2. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24T23:59:59.000Z

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  3. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, Ralph B. (5420 Lenore Ave., Livermore, Alameda County, CA 94550); Van Scyoc, III, John M. (P.O. Box 93, 65 Main St., Apt. 1, Plainfield, Cumberland County, PA 17081); Schlesinger, Tuviah E. (8 Carleton Dr., Mt. Lebanon, Allegheny County, PA 15243)

    1997-06-24T23:59:59.000Z

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  4. Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites AKASH milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare out in a high-energy ball mill, and it involves repeated deformation, cold-welding, fractur- ing

  5. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect (OSTI)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

  6. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L [Los Alamos National Laboratory; Wetteland, Chris J [Los Alamos National Laboratory; Duncan, Wanda S [Los Alamos National Laboratory; Lakis, Rollin E [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  7. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01T23:59:59.000Z

    of simulated energy consumption can match the measured data. The simulation accuracy of room air temperature and energy consumption during the air-conditioner start-up period is not good and needs to be improved in future research. But in general...

  8. Room-temperature mid-infrared laser sensor for trace gas detection

    E-Print Network [OSTI]

    , and pipeline leak detection. Applications such as landfill emissions monitoring require measurements of gasRoom-temperature mid-infrared laser sensor for trace gas detection Thomas To¨ pfer, Konstantin P of a compact, portable, room-temperature mid-infrared gas sensor is reported. The sensor is based on continuous

  9. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1992-01-01T23:59:59.000Z

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  10. Local magnetoresistance in Fe/MgO/Si lateral spin valve at room temperature

    SciTech Connect (OSTI)

    Sasaki, Tomoyuki, E-mail: tomosasa@jp.tdk.com; Koike, Hayato; Oikawa, Tohru [Advanced Technology Development Center, TDK Corporation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Industrial Technology Center, Akita (Japan); Ando, Yuichiro; Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Shiraishi, Masashi [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2014-02-03T23:59:59.000Z

    Room temperature local magnetoresistance in two-terminal scheme is reported. By employing 1.6?nm-thick MgO tunnel barrier, spin injection efficiency is increased, resulting in large non-local magnetoresistance. The magnitude of the non-local magnetoresistance is estimated to be 0.0057 ? at room temperature. As a result, a clear rectangle signal is observed in local magnetoresistance measurement even at room temperature. We also investigate the origin of local magnetoresistance by measuring the spin accumulation voltage of each contact separately.

  11. Sum frequency generation study on the orientation of room-temperature ionic liquid at the grapheneionic liquid interface

    E-Print Network [OSTI]

    Bao, Jiming

    such as dye-sensitized solar cells and super capacitors, room-temperature ionic liquids are considered

  12. Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor Data

    E-Print Network [OSTI]

    Hazas, Mike

    that our model can predict future indoor temperature trends with a 90th percentile aggregate error between thermo- stat actuates the heating, ventilation, and air condition- ing (HVAC) infrastructure to bring and these energy approaches, a heating model could allow future temperature trends to be predicted using

  13. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes

    E-Print Network [OSTI]

    Sun, Xiaochen

    We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

  14. Research on the Temperature Control Method of an Artificial Climate Room 

    E-Print Network [OSTI]

    Jiang, Y.; Tan, W.; Wei, B.; Guo, R.

    2006-01-01T23:59:59.000Z

    An artificial climate room plays an important role in the research of an apparatus test and indoor/outdoor environment simulation. Generally, the refrigerator is used to decrease temperature to simulate outdoor environment, ...

  15. Optical gain and lasing from band-engineered Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We present theoretical modeling and experimental results of optical gain and lasing from tensile-strained, n[superscript +] Ge-on-Si at room temperature. Compatible with silicon CMOS, these devices are ideal for large-scale ...

  16. Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and

    E-Print Network [OSTI]

    Chen, Junhong

    Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and the response time. Rutile-structured tin oxide (SnO2) is an n-type semiconducting material widely used in gas

  17. Room Temperature Aryl Trifluoromethylation via Copper- Mediated Oxidative Cross-Coupling

    E-Print Network [OSTI]

    Buchwald, Stephen Leffler

    A method for the room temperature copper-mediated trifluoromethylation of aryl and heteroaryl boronic acids has been developed. This protocol is amenable to normal benchtop setup and reactions typically require only 1?4 ...

  18. Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increase of temperature. Citation: Antony J, S Pendyala, DE McCready, MH Engelhard, D Meyer, AM Sharma, and Y Qiang.2006."Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room...

  19. Research on the Temperature Control Method of an Artificial Climate Room

    E-Print Network [OSTI]

    Jiang, Y.; Tan, W.; Wei, B.; Guo, R.

    2006-01-01T23:59:59.000Z

    An artificial climate room plays an important role in the research of an apparatus test and indoor/outdoor environment simulation. Generally, the refrigerator is used to decrease temperature to simulate outdoor environment, while a heater is used...

  20. Stability limit of room air temperature of a VAV system

    SciTech Connect (OSTI)

    Matsuba, Tadahiko; Kamimura, Kazuyuki [Yamatake-Honeywell Co., Ltd., Tokyo (Japan). Building System Div.; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru [Oyama National Coll. of Technology (Japan); Murasawa, Itaru; Hashimoto, Yukihiko [Tonets Corp., Tokyo (Japan). Engineering Project Dept.

    1998-12-31T23:59:59.000Z

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  1. aerobic room temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconducting quantum interference device SQUID-temperature RT sample scanning superconduct- ing quantum interference device SQUID microscopy SSM is a very Weiss, Benjamin P....

  2. Mechanisms of Molecular Manipulation with the Scanning Tunneling Microscope at Room Temperature: Chlorobenzene=Si111-7 7

    E-Print Network [OSTI]

    Persson, Mats

    of such methods to room temperature systems is far from trivial, signifi- cant progress has been reported from the reconstructed Si111-7 7 surface at room temperature. This model system is also relevant s followed by quick cooling to 960 C and further cooling (1 C sÿ1) to room tem- perature. The STM tips

  3. Solid velocity correction schemes for a temperature transforming

    E-Print Network [OSTI]

    Zhang, Yuwen

    for a temperature transforming model (TTM) for convection controlled solid-liquid phase-change problem. Design ¼ gravitational acceleration, 9.8 m/s2 H ¼ height of the vertical wall (m) k ¼ thermal conductivity (W/(m K)) K, K T * ¼ scaled temperature, T 0 2 T0 m; K T0 c ¼ cold surface temperature, K T0 m ¼ melting (or

  4. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1986-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  5. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

    1985-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  6. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1987-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  7. Silicon single-electron quantum-dot transistor switch operating at room temperature

    E-Print Network [OSTI]

    , which showed drain current oscillations at room temperature. These oscillations are attributed current­voltage characteristic indicates that the energy level separation is about 110 meV and the silicon current (Id) as a function of the gate voltage (Vg) (I­V) was measured at different temperatures

  8. Experimental Studies of Active Temperature Control in Solid Breeder Blankets

    E-Print Network [OSTI]

    Tillack, Mark

    1 Experimental Studies of Active Temperature Control in Solid Breeder Blankets M. S. Tillack, A. R barrier regions for solid breeder blankets. In particular, particle beds have been studied because breeder blankets is thermomechanical behavior in the fusion environment. Stable and predictable

  9. Velocity of sound in solid methane near melting temperatures

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01T23:59:59.000Z

    VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

  10. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, S.

    1994-06-21T23:59:59.000Z

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  11. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19T23:59:59.000Z

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  12. Failure modes at room and elevated temperatures. Technical report

    SciTech Connect (OSTI)

    Braun, L.M.

    1995-04-01T23:59:59.000Z

    Successful development of reliable ceramic composites will depend on an understanding of matrix cracking and damage mechanisms in these materials. Therefore, the objective of the Failure Models subtask is to investigate failure and damage mechanisms in fiber reinforced ceramic composites. Issues such as how fiber coatings, the fiber/matrix interface, residual stresses, and fiber volume fraction affect frictional stresses, fiber debonding, fiber pull-out and failure modes will be examined. The effect of these microstructural parameters on matrix crack initiation, propagation and damage will also be determined. The resulting observations and measurements data will be used to develop theoretical models for damage mechanisms in fiber reinforced composites. This report presents results concerning the effect of temperature on the failure modes of continuous fiber ceramic composites performed during the last quarter of FY 1993 and FY 1994. The Raman stress measurements and calculations were performed during the last quarter of FY 1994 and the first quarter of FY 1995.

  13. Shot-noise-limited magnetometer with sub-pT sensitivity at room temperature

    E-Print Network [OSTI]

    Vito Giovanni Lucivero; Pawel Anielski; Wojciech Gawlik; Morgan W. Mitchell

    2014-11-20T23:59:59.000Z

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature $^{85}$Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of $70$ fT/$\\sqrt{\\mathrm{Hz}}$ at $7.6$ $\\mu$T. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from $5$ $\\mu$T to $75$ $\\mu$T. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  14. Room-Temperature Multiferroic Hexagonal LuFeO3 Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wenbin; Zhao, Jun; Wang, Wenbo; Gai, Zheng; Balke, Nina; Chi, Miaofang; Lee, Ho Nyung; Tian, Wei; Zhu, Leyi; Cheng, Xuemei; Keavney, David J.; Yi, Jieyu; Ward, Thomas Z.; Snijders, Paul C.; Christen, Hans M.; Wu, Weida; Shen, Jian; Xu, Xiaoshan

    2013-06-01T23:59:59.000Z

    The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics.

  15. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films

    SciTech Connect (OSTI)

    Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Kalghatgi, A. T. [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Kumar, Nitesh; Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India)

    2011-10-17T23:59:59.000Z

    We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm{sup -1} in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.

  16. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  17. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart storage system in the near future. Broader context With the rapid development of renewable energy sources

  18. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  19. Physica B 372 (2006) 286289 Thermal activation in Permalloy nanorectangles at room temperature

    E-Print Network [OSTI]

    Garcia-Cervera, Carlos J.

    2006-01-01T23:59:59.000Z

    orthogonal metallized tracks (word and bit lines), which induce a magnetic field in the free layer to reverse ¼ Lx=Ly) has been analyzed assuming uniform magnetization in the sample at room temperature-exponential factor in the Arrhenius formula for each aspect ratio. That allows us to estimate the relaxation time

  20. 1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity

    E-Print Network [OSTI]

    Moritz, Werner

    , the dissociation of hydrogen molecules at the Pd gate electrode, diffusion of the atoms, and formation of a dipole and the mechanism of hydrogen detection at the Pd/oxide interface are summarized in [2]. For this sensor type in the semiconductor. The Pd/SiO2/Si-based sensor was used for hydrogen detection at room temperature, but the behavior

  1. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    E-Print Network [OSTI]

    Southern California, University of

    films that form on aluminum and aluminum alloys in air protect the surface against further oxidationMolecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations

  2. Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions

    E-Print Network [OSTI]

    Zare, Richard N.

    CONCEPTS Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions. Keywords: single-moleculedetection - single-moleculema- nipulation - laser-induced fluorescence * optical, frcquency-modulated optical ab- sorption and fluorescence excitation have been used to investi- gate

  3. Optical gain from the direct gap transition of Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

  4. Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires

    E-Print Network [OSTI]

    Wang, Deli

    Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires between pure zinc blende (ZB) NWs and wurtzite (WZ) NWs containing stacking faults and small ZB segments their growth-direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking

  5. Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays

    E-Print Network [OSTI]

    Chen, Wilfred

    Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays Joun Lee conductometric hydrogen sulfide (H2S) sensor was fabricated by AC dielectrophoretic assembly of amino acid-ppm level, the upper detection limit of 2 ppm, and a response time ofH2S was achieved

  6. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect (OSTI)

    Gilbertson, Adam; Cohen, L. F. [Blackett Laboratory, Imperial College London, SW7 2BZ (United Kingdom); Lambert, C. J. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Solin, S. A. [Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130 (United States)

    2013-12-04T23:59:59.000Z

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  7. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

    E-Print Network [OSTI]

    Murphy, Thomas E.

    Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene . The hot-electron photothermoelectric effect in graphene is a prom- ising detection mechanism; photoexcited, we demonstrate a graphene thermoelectric terahertz photodetector with sensi- tivity exceeding 10 V W

  8. Combined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling

    E-Print Network [OSTI]

    Zexian, Cao

    In the last two decades, magnetic refrigeration has been demonstrated as a very promising alternativeCombined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling Report, we report on the observation of a giant positive inverse magnetic entropy change about 28.6 J K-1

  9. Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Reid, Scott A.

    unique chemical and physical properties, including being air and moisture stable, a high solubility power with supercritical fluid CO2;9-11 (4) electrochemical reactions;12,13 and (5) as a medium for enzymatic reactions.14Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near

  10. Synthesis, characterization, and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    E-Print Network [OSTI]

    de Lima, Oscar Ferreira

    Synthesis, characterization, and magnetic properties of room-temperature nanofluid ferromagnetic characterization, and physical properties of nanofluid magnetic graphite NFMG obtained from the previously. © 2009 American Institute of Physics. doi:10.1063/1.3265945 Nanofluids can be defined as fluids

  11. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect (OSTI)

    Tang, Linlong [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China); Du, Jinglei, E-mail: dujl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Shi, Haofei, E-mail: shi@cigit.ac.cn; Wei, Dongshan; Du, Chunlei, E-mail: cldu@cigit.ac.cn [Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China)

    2014-10-15T23:59:59.000Z

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  12. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20T23:59:59.000Z

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  13. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  14. Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy

    E-Print Network [OSTI]

    Hellman, Frances

    Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy B Jolla, California 92093 Received 23 July 2002; accepted 30 September 2002 Trace amounts of oxygen CoPt3 grown by vapor deposition at or slightly above room temperature. Oxygen is known to act

  15. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    E-Print Network [OSTI]

    Brown, G V

    2014-01-01T23:59:59.000Z

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  16. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect (OSTI)

    VAJO, JOHN

    2014-06-12T23:59:59.000Z

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

  17. Coupling of PbS Quantum Dots to Photonic Crystal Cavities at Room Temperature

    E-Print Network [OSTI]

    Ilya Fushman; Dirk Englund; Jelena Vuckovic

    2005-05-14T23:59:59.000Z

    We demonstrate the coupling of PbS quantum dot emission to photonic crystal cavities at room temperature. The cavities are defined in 33% Al, AlGaAs membranes on top of oxidized AlAs. Quantum dots were dissolved in Poly-methyl-methacrylate (PMMA) and spun on top of the cavities. Quantum dot emission is shown to map out the structure resonances, and may prove to be viable sources for room temperature cavity coupled single photon generation for quantum information processing applications. These results also indicate that such commercially available quantum dots can be used for passive structure characterization. The deposition technique is versatile and allows layers with different dot densities and emission wavelengths to be re-deposited on the same chip.

  18. Observation of optical spin injection into Ge-based structures at room temperature

    SciTech Connect (OSTI)

    Yasutake, Yuhsuke; Hayashi, Shuhei; Fukatsu, Susumu [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan)] [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)] [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)

    2013-06-17T23:59:59.000Z

    Non-zero spin polarization induced by optical orientation was clearly observed at room temperature in a Ge/Ge{sub 0.8}Si{sub 0.2} quantum well grown on Ge and a Ge layer grown on Si by molecular beam epitaxy, whereas it was absent in bulk Ge. This occurred because indirect-gap photoluminescence (PL), which can obscure the spin-polarization information carried by the direct-gap PL, was quenched by unintentional growth-related defects in the epitaxial layers. Such interpretation was confirmed by applying time gating that effectively removed the indirect-gap PL characterized by a slower rise time, which allowed us to demonstrate the existence of room-temperature spin polarization in bulk Ge.

  19. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01T23:59:59.000Z

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic cooling is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.

  20. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01T23:59:59.000Z

    For the purpose of developing optimized control algorithm for room air-conditioners to ensure their energy efficiency, a short time interval (i.e., one minute) simulation of building thermal performance is necessary because the sampling time...

  1. High Temperature Mechanical Properties of Molybdenum Solid Solution Alloys

    SciTech Connect (OSTI)

    Charit, I.; Murty, K.L. [College of Engineering, North Carolina State University, Raleigh, NC 27695, (United States)

    2006-07-01T23:59:59.000Z

    Demanding material requirements for space nuclear power systems have called for the use of refractory alloys. Molybdenum alloys are such candidate materials because of their good mechanical properties at fairly high temperatures, low neutron capture cross-section, and superior resistance to the attack of liquid metals. However, conventional Mo alloys have low ductility at lower temperatures. Hence, there have been several attempts to improve their viability. One of those approaches has been to alloy Mo with various alloying additions in solid solution, most notably with rhenium (Re). In this study the high temperature deformation behavior of various Mo-X (X Re, W, Nb, Hf) alloys is reviewed. High temperature deformation data for these solid solution alloys are analyzed in the light of existing deformation theories. Alloys with both Class-M and -A type behavior are identified and thus, various mechanisms are found to operate. Sometimes data interpretation becomes difficult due to the presence of second phase particles. Results are compared with unalloyed Mo to bring out the importance of solid solution alloying. (authors)

  2. Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications

    E-Print Network [OSTI]

    Nicholas, Jason.D.

    2007-01-01T23:59:59.000Z

    Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.Tubular Solid Oxide Fuel Cell Technology, U.S. Department ofOxide Films for Solid Oxide Fuel Cell Applications by Jason

  3. On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    Reginald B. Little

    2014-03-27T23:59:59.000Z

    A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

  4. On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    Reginald B. Little

    2015-04-23T23:59:59.000Z

    A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

  5. 11-GHz direct modulation bandwidth GaAlAs window laser on semi-insulating substrate operating at room temperature

    SciTech Connect (OSTI)

    Lau, K.Y.; Bar-Chaim, N.; Ury, I.; Yariv, A.

    1984-08-15T23:59:59.000Z

    We have demonstrated a direct modulation bandwidth of up to 11 GHz in a window GaAlAs buried heterostructure laser fabricated on a semi-insulating substrate, operating at room temperature.

  6. 2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature Magnetocaloric Response of an (FeNi)ZrB Alloy

    E-Print Network [OSTI]

    McHenry, Michael E.

    a good candidate for magnetic refrigeration near room temperature with additional benefits that is non2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature of this powder was slightly higher than room temperature. The refrigerant capacity calculated for this alloy, kg

  7. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors

    SciTech Connect (OSTI)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Rosenberg, Robert; Kowalczyk, Robert; Khoshakhlagh, Arezou; Fisher, Anita; Ting, David Z.-Y.; Gunapala, Sarath D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91030 (United States)

    2014-07-14T23:59:59.000Z

    In this work, we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5??m. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77–325?K temperature range, indicating potential for room temperature operation. The current generation of nBn detectors shows an increase of operational bias with temperature, which is attributed to a shift in the Fermi energy level in the absorber. Analysis of the device performance shows that operational bias and quantum efficiency of these detectors can be further improved. The device dark current stays diffusion limited in the 150?K–325?K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities are D*(?)?=?1?×?10{sup 9} (cm Hz{sup 0.5}/W) at T?=?300?K and D*(?)?=?5?×?10{sup 9} (cm Hz{sup 0.5}/W) at T?=?250?K, which is easily achievable with a one stage TE cooler.

  8. Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature

    SciTech Connect (OSTI)

    John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

    2001-04-01T23:59:59.000Z

    Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, O{sub 2} is eliminated first by the water-catalyzed Pu + O{sub 2} reaction and H{sub 2}O is then consumed by the Pu + H{sub 2}O reaction, producing a gas mixture of N{sub 2}, argon, and H{sub 2}. Hydrogen formed by the reaction of water and concurrent radiolysis of hydrogenous materials either reacts to form PuH{sub 2} or accumulates in the system. Accumulation of H{sub 2} is correlated with the presence of hydrogenous materials in liquid and volatile forms that are readily distributed over the plutonium surface. Areal rates of radiolytic H{sub 2} generation are determined and applied in showing that modest extents of H{sub 2} production are expected for hydrogenous solids if the contact area with plutonium is limited. The unpredictable nature of complex chemical systems is demonstrated by occurrence of the chloride-catalyzed Pu + H{sub 2}O reaction in some tests and hydride-catalyzed nitriding in another.

  9. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    SciTech Connect (OSTI)

    Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2006-02-06T23:59:59.000Z

    The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

  10. Light storage in a room temperature atomic vapor based on coherent population oscillations

    E-Print Network [OSTI]

    M. -A. Maynard; F. Bretenaker; F. Goldfarb

    2014-10-21T23:59:59.000Z

    We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $\\Lambda$ system selected by polarization in metastable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $\\Lambda$ system.

  11. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

  12. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film

    SciTech Connect (OSTI)

    Wang, Jun, E-mail: ueoewj@gmail.com; Gou, Jun; Li, Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-02-15T23:59:59.000Z

    Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10{sup ?9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

  13. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24T23:59:59.000Z

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  14. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths

    E-Print Network [OSTI]

    Shakoor, A; Cardile, P; Portalupi, S L; Gerace, D; Welna, K; Boninelli, S; Franzo, G; Priolo, F; Krauss, T F; Galli, M; Faolain, L O

    2013-01-01T23:59:59.000Z

    Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({\\Delta}{\\lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects a...

  15. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect (OSTI)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China)] [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2014-02-15T23:59:59.000Z

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  16. Room temperature ferromagnetism in Co-doped amorphous carbon composites from the spin polarized semiconductor band

    SciTech Connect (OSTI)

    Hsu, H. S., E-mail: hshsu@mail.nptu.edu.tw; Chien, P. C.; Chang, Y. Y. [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Sun, S. J. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lee, C. H. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2014-08-04T23:59:59.000Z

    This study provides conclusive evidence of room temperature ferromagnetism in Co-doped amorphous carbon (a-C) composites from the spin polarized semiconductor band. These composites are constructed from discontinuous [Co(3?nm)/a-C(d{sub c} nm)]{sub 5} multilayers with d{sub c}?=?3?nm and d{sub c}?=?6?nm. Only remnant circular dichroism (CD) was observed from the d{sub c}?=?3?nm sample but not when d{sub c}?=?6?nm. In addition, the remnant CD peaks at 5.5?eV, which is comparable with the absorption peak associated with the C ?-?* gap transition. We suggest that the possible mechanism for this coupling can be considered as a magnetic proximity effect in which a ferromagnetic moment in the C medium is induced by Co/C interfaces.

  17. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect (OSTI)

    Wu, Yan; Ji, Lingfei, E-mail: ncltji@bjut.edu.cn; Lin, Zhenyuan; Jiang, Yijian [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Zhai, Tianrui [College of Applied Science, Beijing University of Technology, Beijing 100124 (China)

    2014-01-27T23:59:59.000Z

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  18. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect (OSTI)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07T23:59:59.000Z

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  19. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01T23:59:59.000Z

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  20. Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

    E-Print Network [OSTI]

    Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

    2015-01-01T23:59:59.000Z

    Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

  1. Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films

    SciTech Connect (OSTI)

    Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

    2014-04-24T23:59:59.000Z

    Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

  2. From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems

    E-Print Network [OSTI]

    Salanne, Mathieu; Seitsonen, Ari P; Madden, Paul A; Kirchner, Barbara; 10.1039/C1FD00053E

    2013-01-01T23:59:59.000Z

    An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI-AlCl 4. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl 7- in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI-AlCl4 are in good ag...

  3. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    SciTech Connect (OSTI)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16T23:59:59.000Z

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  4. CW Room Temperature Re-Buncher for the Project X Front End

    SciTech Connect (OSTI)

    Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-09T23:59:59.000Z

    At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

  5. CDZNTE ROOM-TEMPERATURE SEMICONDUCTOR GAMMA-RAY DETECTOR FOR NATIONAL-SECURITY APPLICATIONS.

    SciTech Connect (OSTI)

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; KOHMAN, K.T.; JAMES, R.B.

    2007-05-04T23:59:59.000Z

    One important mission of the Department of Energy's National Nuclear Security Administration is to develop reliable gamma-ray detectors to meet the widespread needs of users for effective techniques to detect and identify special nuclear- and radioactive-materials. Accordingly, the Nonproliferation and National Security Department at Brookhaven National Laboratory was tasked to evaluate existing technology and to develop improved room-temperature detectors based on semiconductors, such as CdZnTe (CZT). Our research covers two important areas: Improving the quality of CZT material, and exploring new CZT-based gamma-ray detectors. In this paper, we report on our recent findings from the material characterization and tests of actual CZT devices fabricated in our laboratory and from materials/detectors supplied by different commercial vendors. In particular, we emphasize the critical role of secondary phases in the current CZT material and issues in fabricating the CZT detectors, both of which affect their performance.

  6. Could light harvesting complexes exhibit non-classical effects at room temperature?

    E-Print Network [OSTI]

    Mark M. Wilde; James M. McCracken; Ari Mizel

    2009-11-05T23:59:59.000Z

    Mounting experimental and theoretical evidence suggests that coherent quantum effects play a role in the efficient transfer of an excitation from a chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein complex. However, it is conceivable that a satisfying alternate interpretation of the results is possible in terms of a classical theory. To address this possibility, we consider a class of classical theories satisfying the minimal postulates of macrorealism and frame Leggett-Garg-type tests that could rule them out. Our numerical simulations indicate that even in the presence of decoherence, several tests could exhibit the required violations of the Leggett-Garg inequality. Remarkably, some violations persist even at room temperature for our decoherence model.

  7. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    SciTech Connect (OSTI)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W., E-mail: lwtu@faculty.nsysu.edu.tw [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Huang, H. C.; Ho, N. J. [Department of Materials and Optoelectronic Science and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2014-02-10T23:59:59.000Z

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis.

  8. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Zhang, Hongwei [University of Tennessee, Knoxville (UTK); Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

    2005-01-01T23:59:59.000Z

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  9. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01T23:59:59.000Z

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

  10. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times as short as 85 days. In all cases, the cracking appeared to be associated with pitting or localized general corrosion. Crack initiation at other sites, such as surface imperfections or inclusions, cannot be excluded. Cracks appear in most cases to initiate through an intergranular mode and transition to a transgranular mode.

  11. Nanowire-based frequency-selective capacitive photodetector for resonant detection of infrared radiation at room temperature

    SciTech Connect (OSTI)

    Bandyopadhyay, Saumil, E-mail: saumilb@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2014-07-14T23:59:59.000Z

    Characteristics of a capacitive infrared photodetector that works at room temperature by registering a change in capacitance upon illumination are reported. If used in an ideal resonant inductor-resistor-capacitor circuit, it can exhibit zero dark current, zero standby power dissipation, infinite detectivity, and infinite light-to-dark contrast ratio. It is also made frequency-selective by employing semiconductor nanowires that selectively absorb photons of energies close to the nanowire's bandgap. Based on measured parameters, the normalized detectivity is estimated to be ?3?×?10{sup 7} Jones for 1.6??m IR wavelength at room temperature.

  12. Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers

    E-Print Network [OSTI]

    Zuniga-Perez, J; Hahe, R; Rashid, M J; Bouchoule, S; Brimont, C; Disseix, P; Duboz, J Y; Gommé, G; Guillet, T; Jamadi, O; Lafosse, X; Leroux, M; Leymarie, J; Li, Feng; Réveret, F; Semond, F

    2014-01-01T23:59:59.000Z

    A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN pairs and achieve cavity quality factors of several thousands with a large spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon and the cavities are completed with top dielectric Bragg reflectors. The two structures display strong-coupling and polariton lasing at room temperature and constitute an intermediate step in the way towards integrated polariton devices.

  13. From Standard Model of particle physics to room-temperature superconductivity

    E-Print Network [OSTI]

    G. E. Volovik

    2015-04-23T23:59:59.000Z

    Topological media are gapped or gapless fermionic systems, whose properties are protected by topology, and thus are robust to deformations of parameters of the system and generic. We discuss the class of gapless topological media, which contains the quantum vacuum of Standard Model in its symmetric phase, and condensed matter systems with zeroes in the energy spectrum, which form Fermi surfaces, Weyl and Dirac points, Dirac lines, Khodel-Shaginyan flat bands, etc. Some zeroes are topologically protected, being characterized by topological invariants, expressed in terms of Green's function. For stability of the others the ${\\bf p}$-space topology must be accompanied by symmetry. Vacua with Weyl points serve as a source of effective relativistic quantum fields emerging at low energy: chiral fermions, effective gauge fields and tetrad gravity emerge together in the vicinity of a Weyl point. The accompanying effects, such as chiral anomaly, electroweak baryo-production and chiral vortical effect, are expressed via the symmetry protected ${\\bf p}$-space invariants. The gapless topological media exhibit the bulk-surface and bulk-vortex correspondence: which in particular may lead to the flat band on the surface of the system or in the core of topological defects. The materials with flat band in bulk, on the surface or within the dislocations have singular density of states, which crucially influences the critical temperature of the superconducting transition in such media. While in all the known superconductors the transition temperature is exponentially suppressed as a function of the pairing interaction, in the flat band the transition temperature is proportional to the pairing interaction, and can be essentially higher. The ${\\bf p}$-space topology may give us the general recipe for search or artificial fabrication of the room-temperature superconductors.

  14. Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Matteppanavar, Shidaling; Angadi, Basavaraj [Department of Physics, JB Campus, Bangalore University, Bangalore -560056 (India); Rayaprol, Sudhindra [UGC-DAE-CSR, Mumbai Centre, BARC, Mumbai - 400085 (India)

    2013-02-05T23:59:59.000Z

    The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

  15. New insights into designing metallacarborane based room temperature hydrogen storage media

    SciTech Connect (OSTI)

    Bora, Pankaj Lochan; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2013-10-28T23:59:59.000Z

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  16. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2005-01-24T23:59:59.000Z

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  17. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2006-01-12T23:59:59.000Z

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  18. Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies, Poland 3 Departments of Aerospace & Mechanical Engineering and Materials Science, University of SouthernZnMg alloys, precipitation, Guinier-Preston zones, Equal-Channel Angular Pressing, strengthening, elongation

  19. hal-00132485,version1-21Feb2007 Liquid nitrogen to room temperature thermometry using niobium nitride thin films

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00132485,version1-21Feb2007 Liquid nitrogen to room temperature thermometry using niobium´eel, CNRS-UJF, 25 avenue des Martyrs, 38042 Grenoble, France (Dated: February 21, 2007) Niobium nitride thin, the interesting properties of niobium nitride (NbN) as well as amorphous Nb-Si have been ex- tensively used

  20. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    SciTech Connect (OSTI)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

    2014-08-25T23:59:59.000Z

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70?nm and lengths of 200–250?nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  1. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  2. Molecular and crystal structure of n-hexyloxybenzoic anhydride at low and room temperatures

    SciTech Connect (OSTI)

    Konstantinov, I. I., E-mail: konst@ips.ac.ru [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation); Churakov, A. V.; Kuz'mina, L. G. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2010-09-15T23:59:59.000Z

    The crystal and molecular structures of n-hexyloxybenzoic anhydride, C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)-O-C(O)-C{sub 6}H{sub 4}-C{sub 6}H{sub 13}, at low (120 K) and room (296 K) temperatures have been investigated. The molecule has an asymmetric bent structure. The dihedral angle between the benzene ring planes is 48.5 deg. The aliphatic chain on one side of the molecule has a transoid orientation with respect to the 'internal' C4 atom of the closest benzene ring, whereas the aliphatic chain on the other side has a cissoid orientation with respect to the analogous C(4A) atom. The crystal packing does not exhibit any pronounced separation of the crystal space into closely packed aromatic or loosely packed aliphatic regions. No weak directional interactions are observed in the packing; this fact explains the absence of liquid-crystal properties for this compound.

  3. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles

    SciTech Connect (OSTI)

    Lucas, Marcel [Los Alamos National Laboratory; Macdonald, Brian A [Los Alamos National Laboratory; Wagner, Gregory L [Los Alamos National Laboratory; Joyce, Steven A [Los Alamos National Laboratory; Rector, Kirk D [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Lignocellulosic biomass represents a potentially sustainable source of liquid fuels and commodity chemicals. It could satisfy the energy needs for transportation and electricity generation, while contributing substantially to carbon sequestration and limiting the accumulation of greenhouse gases in the atmosphere. Potential feedstocks are abundant and include crops, agricultural wastes, forest products, grasses, and algae. Among those feedstocks, wood is mainly constituted of three components: cellulose, hemicellulose, and lignin. The conversion process of lignocellulosic biomass typically consists of three steps: (1) pretreatment; (2) hydrolysis of cellulose and hemicellulose into fermentable sugars; and (3) fermentation of the sugars into liquid fuels (ethanol) and other commodity chemicals. The pretreatment step is necessary due to the complex structure of the plant cell wall and the chemical resistance of lignin. Most current pretreatments are energy-intensive and/or polluting. So it is imperative to develop new pretreatments that are economically viable and environmentally friendly. Recently, ionic liquids have attracted considerable interest, due to their ability to dissolve biopolymers, such as cellulose, lignin, native switchgrass, and others. Ionic liquids are also considered green solvents, since they have been successfully recycled at high yields for further use with limited efficiency loss. Also, a few microbial cellulases remain active at high ionic liquid concentration. However, all studies on the dissolution of wood in ionic liquids have been conducted so far at high temperatures, typically above 90 C. Development of alternative pretreatments at room temperature is desirable to eliminate the additional energy cost. In this study, thin sections of poplar wood were swollen at room temperature by a 3 h ionic liquid (1-ethyl-3-methylimidazolium acetate or EMIMAc) pretreatment. The pretreated sample was then exposed to an aqueous suspension of nanoparticles that resulted in the sample contraction and the deposition of nanoparticles onto the surface and embedded into the cell wall. To date, both silver and gold particles ranging in size from 40-100 nm have been incorporated into wood. Penetration of gold nanoparticles of 100 nm diameter in the cell walls was best confirmed by near-infrared confocal Raman microscopy, since the deposition of gold nanoparticles induces a significant enhancement of the Raman signal from the wood in their close proximity, an enhancement attributed to the surface-enhanced Raman effect (SERS). After rinsing with water, scanning electron microscopy (SEM) and Raman images of the same areas show that most nanoparticles remained on the pretreated sample. Raman images at different depths reveal that a significant number of nanoparticles were incorporated into the wood sample, at depths up to 4 {micro}m, or 40 times the diameter of the nanoparticles. Control experiments on an untreated wood sample resulted in the deposition of nanoparticles only at the surface and most nanoparticles were removed upon rinsing. This particle incorporation process enables the development of new pretreatments, since the nanoparticles have a high surface-to-volume ratio and could be chemically functionalized. Other potential applications for the incorporated nanoparticles include isotope tracing, catalysis, imaging agents, drug-delivery systems, energy-storage devices, and chemical sensors.

  4. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, Ram S.

    2011-01-01T23:59:59.000Z

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr?.??Ti?.??O?) (1-x)- (PbFe?.?Ta?.?O?)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 ?C/cm², which actually increases (to 40 ?C/cm²) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO?. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.

  5. The 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, U.S.A, 11-15 May 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    The 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines of Design of Experiments (DOE) method in magnetic refrigeration (MR) understanding and optimization and magnetocaloric effect (MCE). 1. INTRODUCTION Room temperature magnetic refrigeration has been shown

  6. Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Singha, R. K.; Manna, S.; Das, S.; Dhar, A.; Ray, S. K. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2010-06-07T23:59:59.000Z

    We report on the observation of intraband near infrared (approx3.1 mum) and mid infrared (approx6.2 mum) photocurrent response at room temperature using Ge/Si self-assembled quantum dots grown by molecular beam epitaxy. Due to the bimodal size distribution and SiGe intermixing, distinguishable photoluminescence transitions are observed at 10 K, below and above the optical band gap of bulk Ge. The observed redshift in photocurrent with increasing temperature has been explained by the excitonic electric field originated due to infrared excitation at low temperatures. A good correlation between the spectral photocurrent response and photoluminescence of the quantum dots has been established.

  7. Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide

    SciTech Connect (OSTI)

    Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul

    2011-07-24T23:59:59.000Z

    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

  8. Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room-Temperature

    E-Print Network [OSTI]

    He, Zhong

    Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room for Charge Collecting Signals . . . . 22 2.2.2 Optimal Filter for Transient signals . . . . . . . . . 26 2 . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Maxwell . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 The Signal Induction

  9. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect (OSTI)

    Manohar Sohal

    2009-05-01T23:59:59.000Z

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  10. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect (OSTI)

    Poulopoulos, P., E-mail: poulop@upatras.gr [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Materials Science Department, University of Patras, 26504 Patras (Greece); Goschew, A.; Straub, A.; Fumagalli, P. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Kapaklis, V.; Wolff, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P.220, 38043 Grenoble (France); Pappas, S. D. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2014-03-17T23:59:59.000Z

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4?×?10{sup ?9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8?nm thick and EuS layers are 2–4?nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  11. hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature.

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature. J in NMR pacs 03.67.-a: Quantum information pacs 67.57.Lm: Spin dynamics Abstract Nuclear spin interference in a static mag- netic field B0 4.7 T. For a homogeneity of B0 of the order of B0/B0 = 2 · 10-8 , the nuclear

  12. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays

    SciTech Connect (OSTI)

    Cui, J.B.; Gibson, U.J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000 (United States)

    2005-09-26T23:59:59.000Z

    Cobalt and nickel doped ZnO nanowire arrays were synthesized by an electrochemical process at a temperature of 90 deg. C. Energy dispersive x-ray spectroscopy and x-ray diffraction show that the dopants are incorporated into the wurtzite-structure ZnO. Anisotropic ferromagnetism with an easy direction of magnetization either perpendicular or parallel to the wire axis, depending on the wire geometry and density, was observed in 1.7% Co and 2.2% Ni-doped ZnO nanowires at room temperature. The anisotropic magnetism was explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanowires.

  13. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10T23:59:59.000Z

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  14. Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature

    E-Print Network [OSTI]

    Howlader, Matiar R

    ], spark welding [3], explosive bonding [4], and diffusion bonding [5,6]. However, the processing such as diffusion bonding [5,6], friction welding [7e11], vacuum roll bonding [12] and hot roll bonding [13Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room

  15. Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts

    E-Print Network [OSTI]

    Sidheswaran, Meera A.

    2012-01-01T23:59:59.000Z

    in VOC abatement. Applied Catalysis B-Environmental. 61:calcination temperature. Applied Catalysis B- Environmental.ambient temperature. Applied Catalysis B-Environmental. 81:

  16. EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

  17. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment

    E-Print Network [OSTI]

    Haiyan Li; Shengfu Mei; Lei Wang; Yunxia Gao; Jing Liu

    2013-09-04T23:59:59.000Z

    In this article, the fluid dynamics of room temperature liquid metal (RTLM) droplet impacting onto a pool of the same liquid in ambient air was investigated. A series of experiments were conducted in order to disclose the influence of the oxidation effect on the impact dynamics. The droplet shape and impact phenomenology were recorded with the aid of a high-speed digital camera. The impact energy stored in the splash structures was estimated via a theoretical model and several morphological parameters obtained from instantaneous images of the splash. It was observed that the droplet shape and the splashing morphology of RTLM were drastically different from those of water, so was the impact dynamics between room temperature LM pool and high temperature LM pool. The energy analysis disclosed that the height of the jet is highly sensitive to the viscosity of the fluid, which is subjected to the oxidation effect and temperature effect simultaneously, and thus perfectly explained the phenomena. These basic findings are important for the application of RTLM in a series of newly emerging technologies such as liquid metal based spray cooling, ink-jet printed electronics, interface material painting and coating, metallurgy, and 3D packages, etc.

  18. IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 8, AUGUST 2008 867 On the Source of Jitter in a Room-Temperature

    E-Print Network [OSTI]

    Mohseni, Hooman

    IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 8, AUGUST 2008 867 On the Source of Jitter in a Room infrared photon detector was studied by exploring the relation between lateral charge transfer and jitter. The jitter of the device was measured to be 15 ps at room temperature. The jitter was almost independent

  19. C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies

    SciTech Connect (OSTI)

    GJ Lumetta; DJ Bates; JP Bramson; LP Darnell; OT Farmer III; SK Fiskum; LR Greenwood; FV Hoopes; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-05-17T23:59:59.000Z

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.

  20. The yield of Amorphous Solids Under Stress Control at Low Temperatures

    E-Print Network [OSTI]

    Valery Ilyin; Itamar Procaccia; Carmel Shor; Murari Singh

    2015-04-21T23:59:59.000Z

    The yield of amorphous solids like metallic glasses under external stress was discussed asserting that it is related to the glass transition by increasing temperature, or that it can be understood using statistical theories of various sorts. Here we study the approach to stress-controlled yield and argue that neither assertions can be supported, at least at low temperatures. The yield of amorphous solids at low temperatures is a highly structured phenomenon, characterized by a specific series of mechanical instabilities, and having no similarity at all to fluidization by increased temperature, real or fictive. The series of instabilities followed by stress controlled yield at low but finite temperature protocols can be predicted by analyzing athermal quasi-static strain controlled protocols, making the latter highly relevant for the deep understanding of the mechanical properties of amorphous solids.

  1. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01T23:59:59.000Z

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1?×?10{sup 5}?L (1 L?=?1?×?10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that Hf–OH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  2. Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C–H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

  3. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect (OSTI)

    Huang Yuying [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Sun Fengqiang, E-mail: fengqiangsun@yahoo.c [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in GuangDong Universities, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2011-03-15T23:59:59.000Z

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  4. Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region

    SciTech Connect (OSTI)

    Kryzhanovskaya, N. V., E-mail: kryj@mail.ioffe.ru; Zhukov, A. E.; Nadtochy, A. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Moiseev, E. I. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Kulagina, M. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Savelev, A. V.; Arakcheeva, E. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Lipovskii, A. A. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Zubov, F. I. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Kapsalis, A.; Mesaritakis, C.; Syvridis, D. [University of Athens (Greece)] [University of Athens (Greece); Mintairov, A. [University of Notre Dame (United States)] [University of Notre Dame (United States); Livshits, D. [Innolume GmbH (Germany)] [Innolume GmbH (Germany)

    2013-10-15T23:59:59.000Z

    Microring cavities (diameter D = 2.7-7 {mu}m) with an active region based on InAs/InGaAs quantum dots are fabricated and their characteristics are studied by the microphotoluminescence method and near-field optical microscopy. A value of 22 000 is obtained for the Q factor of a microring cavity with the diameter D = 6 {mu}m. Lasing up to room temperature is obtained in an optically pumped ring microlaser with a diameter of D = 2.7 {mu}m.

  5. Strong Room-temperature Negative Transconductance In An Axial Si/Ge Hetero-nanowire Tunneling Field-effect Transistor

    SciTech Connect (OSTI)

    Zhang, Peng; Le, Son T.; Hou, Xiaoxiao; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, Samuel T.

    2014-08-11T23:59:59.000Z

    We report on room-temperature negative transconductance (NTC) in axial Si/Ge hetero-nanowire tunneling field-effect transistors (TFETs). The NTC produces a current peak-to-valley ratio > 45, a high value for a Si-based device. We characterize the NTC characteristics over a range of gate VG and drain VD voltages, finding that NTC persists down to VD = –50 mV. The physical mechanism responsible for the NTC is the VG-induced depletion in the p-Ge section that eventually reduces the maximum electric field that triggers the tunneling ID, as confirmed via three-dimensional TCAD simulations.

  6. Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm

    E-Print Network [OSTI]

    Penghui Cao; Xi Lin; Harold S. Park

    2014-05-12T23:59:59.000Z

    A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simulations follow distinctly different energetic pathways during the applied shear deformation at low temperatures and experimental strain rates, which implies that extrapolation of the governing deformation mechanisms from MD strain rates to experimental may not be valid.

  7. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Marchant, David D. (Richland, WA); Bates, J. Lambert (Richland, WA)

    1984-01-01T23:59:59.000Z

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  8. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Awan, Saif Ullah, E-mail: saifullah@comsats.edu.pk, E-mail: ullahphy@gmail.com [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Hasanain, S. K. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Anjum, D. H. [Advanced Nanofabrication, Imaging and Characterization Core Lab (ANIC), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23599-6900 (Saudi Arabia); Awan, M. S. [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Shah, Saqlain A. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-10-28T23:59:59.000Z

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn{sub 1?y}Li{sub y}O(0.00?y?0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4?×?10{sup 17}/cc to 7.3?×?10{sup 17}/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5?kV/cm (0.11 ?C/cm{sup 2}) and 2.8?kV/cm (0.15 ?C/cm{sup 2}) for y?=?0.08 and y?=?0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ?5.3?×?10{sup 17}/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  9. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    SciTech Connect (OSTI)

    Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-03-03T23:59:59.000Z

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300?K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5?J·kg{sup ?1}·K{sup ?1} was observed near 300?K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300?K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300?K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62?K at 280?K.

  10. Solid Nitrogen at Extreme Conditions of High Pressure and Temperature

    SciTech Connect (OSTI)

    Goncharov, A; Gregoryanz, E

    2004-04-05T23:59:59.000Z

    We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

  11. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03T23:59:59.000Z

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  12. Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow

    E-Print Network [OSTI]

    Li, Mo

    Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCsNovel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

  13. Thin film growth and characterization of Potassium-Tantalate-Niobate room temperature ferroelectric

    E-Print Network [OSTI]

    Muntha, Nageswara Rao Venkat

    1995-01-01T23:59:59.000Z

    the perovskite compounds KNbO3 and KTaO3. The Curie temperature of KTN can be varied by a4justing x i.e.., the composition of niobium. In the vicinity of the ferroto-paraelectric phase transition, high dielectric permittivities, large pyroelectric as well...

  14. Selective-area room temperature visible photoluminescence from SiC/Si heterostructures

    E-Print Network [OSTI]

    Steckl, Andrew J.

    shown8 to produce monocrystalline thin films, while minimizing the high temperature exposure. The Sic mismatch, heteroepitaxial growth of Sic films on Si has been achieved by several groups?-' In addition, SicSi. For example, polycrystalline Sic deposited on Si after it is rendered porous has been utilized9

  15. MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Uday B. Pal; Srikanth Gopalan

    2004-02-15T23:59:59.000Z

    AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

  16. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15T23:59:59.000Z

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  17. Photoluminescence in the Ca{sub x}Sr{sub 1-x}WO{sub 4} system at room temperature

    SciTech Connect (OSTI)

    Porto, S.L. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Longo, E. [CMDMC/LIEC, Instituto de Quimica, UNESP-Araraquara, Rua Prof. Francisco Degni s/n, Araraquara, SP, CEP 14800-900 (Brazil); Pizani, P.S.; Boschi, T.M. [Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, Rodovia Washington Luiz km 235, SP, CEP 13565-905 (Brazil); Simoes, L.G.P. [Centro Multidisciplinar de Desenvolvimento de Materiais Ceramicos (LIEC/DQ), Universidade Federal de Sao Carlos, Rodovia Washington Luiz km 235, Sao Carlos, SP, CEP 13565-905 (Brazil); Lima, S.J.G. [Laboratorio de Solidificacao Rapida, Departamento de Tecnologia Mecanica (LSR/DTM/CT), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Ferreira, J.M. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); COAMA, Area de Meio Ambiente, Centro Federal de Educacao Tecnologica da Paraiba, Av. 1o de Maio 720, Jaguaribe, Joao Pessoa, PB, CEP 58015-430 (Brazil); Soledade, L.E.B.; Espinoza, J.W.M.; Cassia-Santos, M.R.; Maurera, M.A.M.A. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Paskocimas, C.A. [Departamento de Engenharia Mecanica, Universidade Federal do Rio Grande do Norte, Natal, RN, CEP 59072-970 (Brazil); Santos, I.M.G. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil)], E-mail: ieda@quimica.ufpb.br; Souza, A.G. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil)

    2008-08-15T23:59:59.000Z

    In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the Ca{sub x}Sr{sub 1-x}WO{sub 4} (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 deg. C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 deg. C, which is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO{sub 4} and SrWO{sub 4}. - Graphical abstract: The structural and room temperature photoluminescence of Ca{sub x}Sr{sub 1-x}WO4 synthesized by a soft chemical method was studied. The most intense PL emission was obtained for the sample calcined at 600 deg. C, that is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}.

  18. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S., E-mail: sspsm2@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Chatterjee, S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700 098 (India)

    2014-09-15T23:59:59.000Z

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?J·kg{sup ?1}·K{sup ?1} for 0–50 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  19. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    SciTech Connect (OSTI)

    Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

    2010-01-01T23:59:59.000Z

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I?V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ?12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  20. 640 CEREAL CHEMISTRY Quick Fiber Process: Effect of Mash Temperature, Dry Solids,

    E-Print Network [OSTI]

    640 CEREAL CHEMISTRY Quick Fiber Process: Effect of Mash Temperature, Dry Solids, and Residual Germ on using ethanol in alternative fuels. Be- sides being the clean alternative to MTBE in the gasoline market, use of ethanol saves the consumers from 2 to 5¢/gal of gasoline purchased (Renewable Fuels Association

  1. Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature

    SciTech Connect (OSTI)

    Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

    2007-10-15T23:59:59.000Z

    The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

  2. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    E-Print Network [OSTI]

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01T23:59:59.000Z

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  3. Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature

    E-Print Network [OSTI]

    Alessandro Farsi; Mario Siciliani de Cumis; Francesco Marino; Francesco Marin

    2011-09-21T23:59:59.000Z

    Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

  4. Room temperature organic exciton-polariton flow exploiting high-speed, high-Q propagating modes

    E-Print Network [OSTI]

    Lerario, Giovanni; Cannavale, Alessandro; Mangione, Federica; Gambino, Salvatore; Dominici, Lorenzo; De Giorgi, Milena; Gigli, Giuseppe; Sanvitto, Daniele

    2015-01-01T23:59:59.000Z

    Exciton-polaritons, bosonic quasi-particles formed by the interaction of light and matter, have shown a plethora of exciting phenomena that have been chiefly restricted to inorganic semiconductors and low temperature operation. Only recently, polariton condensation and non-linear effects have been demonstrated with polymers and organic molecules, making these systems suited for a realistic new generation of all-optical devices. However, polariton propagation in the plane of the device, essential for on-chip integration, is still limited by the very strong dissipation inherent to present organic microcavities. Here, we demonstrate strong-coupling of organic excitons with a Bloch surface wave (Q $\\approx$ 3000) which sustains polariton propagation for distances longer than 300 $\\mu$m and polariton lifetimes of about 1 ps, a record value in organic devices. The group velocity of the polariton mode is found to be $\\approx$ 50% the speed of light, about two order of magnitude higher than in any planar microcavity.

  5. Metalized T graphene: A reversible hydrogen storage material at room temperature

    SciTech Connect (OSTI)

    Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-09-21T23:59:59.000Z

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H?. The adsorption/desorption of H? at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  6. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOE Patents [OSTI]

    Sirwardane, Ranjani V. (Morgantown, WV)

    2005-06-21T23:59:59.000Z

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  7. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect (OSTI)

    Sirwardane, Ranjani V.

    2005-06-21T23:59:59.000Z

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  8. C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

    SciTech Connect (OSTI)

    GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-01-26T23:59:59.000Z

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  9. Core-shell multi-quantum wells in ZnO / ZnMgO nanowires with high optical efficiency at room temperature

    E-Print Network [OSTI]

    Thierry, Robin; Jouneau, Pierre-Henri; Ferret, Pierre; Feuillet, Guy; 10.1088/0957-4484/23/8/085705

    2013-01-01T23:59:59.000Z

    Nanowire-based light-emitting devices require multi-quantum well heterostructures with high room temperature optical efficiencies. We demonstrate that such efficiencies can be attained through the use of ZnO/Zn(1-x)MgxO core shell quantum well heterostructures grown by metal organic vapour phase epitaxy. Varying the barrier Mg concentration from x=0.15 to x=0.3 leads to the formation of misfit induced dislocations in the multi quantum wells. Correlatively, temperature dependant photoluminescence reveals that the radial well luminescence intensity decreases much less rapidly with increasing temperature for the lower Mg concentration. Indeed, about 54% of the 10K intensity is retained at room temperature with x=0.15, against 2% with x=0.30. Those results open the way to the realization of high optical efficiency nanowire-based light emitting diodes.

  10. Properties of molecular solids and fluids at high pressure and temperatures

    SciTech Connect (OSTI)

    Etters, R.D.

    1992-03-01T23:59:59.000Z

    This renewal request for DOE grant DE-FG02-86ER45238, is dedicated to providing a complete thermodynamic profile of solids fluids, and fluid mixtures, over a wide range of temperatures and pressures. We are partially motivated by technological interest in detonation, combustion, superhard high pressure materials, and high temperature superconductors, which are important components of interest of various DOE laboratories. Our work on fluids and solids, composed of simple molecules, involves the determination of structures, phase transitions, pressure-volume relations, phonon, vibron, and libron modes of excitation, sound velocities, specific heats, thermal expansion, virial coefficients, sublimation energies, and orientational translational, and magnetic correlations. We hope that the study of these systems under extreme thermodynamic conditions will lead to exotic new materials of value, as well as enhanced fundamental understanding.

  11. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01T23:59:59.000Z

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  12. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect (OSTI)

    Jiang, Xikai [ORNL] [ORNL; Huang, Jingsong [ORNL] [ORNL; Zhao, Hui [University of Nevada, Las Vegas] [University of Nevada, Las Vegas; Sumpter, Bobby G [ORNL] [ORNL; Qiao, Rui [Clemson University] [Clemson University

    2014-01-01T23:59:59.000Z

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  13. Electrical characterization of H{sub 2}S adsorption on hexagonal WO{sub 3} nanowire at room temperature

    SciTech Connect (OSTI)

    Liu, Binquan; Tang, Dongsheng, E-mail: dstang@hunnu.edu.cn; Zhou, Yong; Yin, Yanling; Peng, Yuehua; Zhou, Weichang; Qin, Zhu'ai; Zhang, Yong [Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China)

    2014-10-28T23:59:59.000Z

    We have characterized the electrical transport properties of Au/WO{sub 3} nanowire/Au devices in ambient air and gaseous H{sub 2}S to investigate the adsorption kinetics of H{sub 2}S molecules on the surface of WO{sub 3} nanowire at room temperature. The WO{sub 3} nanowire devices exhibit increasing linear conductance and electrical hysteresis in H{sub 2}S. Furthermore, the contact type between Au electrode and WO{sub 3} nanowire can be converted from original ohmic/Schottky to Schottky/ohmic after being exposed to H{sub 2}S. These results suggest that adsorbed H{sub 2}S molecules are oxidized by holes to form hydrogen ions and S atoms, which will result in formation of hydrogen tungsten bronze and desorption of previously chemically adsorbed H{sub 2}O molecules. Adsorbed H{sub 2}S molecules can also oxidize previously adsorbed and ionized oxygen, which will release the electrons from the ionized oxygen and then weaken upward band bending at the surface of WO{sub 3} nanowire.

  14. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect (OSTI)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16T23:59:59.000Z

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  15. Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films

    SciTech Connect (OSTI)

    Cezar, A. B. [Instituto Federal do Paraná (IFPR), Campus Paranaguá (Brazil); Graff, I. L., E-mail: graff@fisica.ufpr.br; Varalda, J.; Schreiner, W. H.; Mosca, D. H. [Departamento de Física, Universidade Federal do Paraná (UFPR), Curitiba (Brazil)

    2014-10-28T23:59:59.000Z

    In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

  16. Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La{sub 0.8}Na{sub 0.1}MnO{sub 3}

    SciTech Connect (OSTI)

    Khlifi, M., E-mail: khlifimouadh3000@yahoo.fr; Dhahri, E. [Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, B.P. 802, Université de Sfax, Sfax 3018 (Tunisia); Hlil, E. K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-05-21T23:59:59.000Z

    The La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide was prepared by the solid-state reaction and annealed in air. The X-ray diffraction data reveal that the sample is crystallized in a rhombohedral structure with R3{sup ¯}c space group. Magnetic study shows a second-order magnetic phase transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C}?=?295?K. In addition, the magnetizations as a function of temperature and the magnetic field is used to evaluate the magnetic entropy change ?S{sub M}. Then, we have deduced that the La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide has a large magnetocaloric effect at room temperature. Such effect is given by the maximum of the magnetic entropy change ?S{sub Mmax}?=?5.56, and by the Relative cooling power (RCP) factor which is equal to 235 under a magnetic field of 5?T. Moreover, the magnetic field dependence of the magnetic entropy change is used to determine the critical exponents ?, ?, and ? which are found to be ??=?0.495, ??=?1.083, and ??=?3.18. These values are consistent with the prediction of the mean field theory (??=?0.5, ??=?1, and ??=?3). Above all, the temperature dependence of electrical resistivity shows a metal–insulator transition at T{sub ?}. The electrical resistivity decrease when we apply a magnetic field giving a magnetoresistance effect in the order of 60% at room temperature.

  17. An alternative solid-state method to prepare pyrochlore-free KTaO{sub 3} at low temperature

    SciTech Connect (OSTI)

    Su Tingting [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); Jiang Heng, E-mail: hjiang78@hotmail.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); Gong Hong [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

    2011-09-15T23:59:59.000Z

    Perovskite-type KTaO{sub 3} powder was synthesized by an alternative solid-state method at low temperature. Stoichiometric ammonium tantalum hydroxide, K{sub 2}C{sub 2}O{sub 4} and KF were mixed in water and then dried at room temperature. The crude product was formed by calcining the dried mixture at different temperatures. Pyrochlore-free KTaO{sub 3} powder was successfully synthesized after treating the crude product with water. KF plays an important role to inhibit the formation of pyrochlore K{sub 2}Ta{sub 2}O{sub 6} during the calcination process of ammonium tantalum hydroxide/K{sub 2}C{sub 2}O{sub 4}/KF mixture. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, UV-vis diffuse reflectance (UV-vis) spectroscopy and thermogravimetric (TG) analysis were used to characterize the precursor compound and as-prepared samples. XRD results show that pyrochlore-free KTaO{sub 3} powder can be obtained at 600 deg. C. SEM results reveal that the as-prepared products are agglomerated and each of the agglomerations consists of many small grains with 10-30 nm in diameter. - Graphical abstract: Pyrochlore-free KTaO{sub 3} powder was prepared at 600 deg. C using tantalum hydroxide/K{sub 2}C{sub 2}O{sub 4}/KF raw materials. Pyrochlore K{sub 2}Ta{sub 2}O{sub 6} and perovskite KTaO{sub 3} coexist at 600 deg. C using tantalum hydroxide/K{sub 2}C{sub 2}O{sub 4} raw materials. Highlights: > In-situ degradation of TaO{sub x}(OH){sub 5-x}(NH{sub 4}){sub x}, K{sub 2}C{sub 2}O{sub 4} and KF promotes the reaction. > Synthesis of KTaO{sub 3} displayed a two-step reaction path with the intermediate formation of K{sub 2}TaO{sub 3}F. > Formation of intermediate K{sub 2}TaO{sub 3}F benefits to prepare pyrochlore-free KTaO{sub 3} at low temperature. > Pyrochlore-free KTaO{sub 3} is prepared at 600 deg. C, which is the lowest temperature reported so far by hard chemistry method. > Synthetic method is a facile, rapid, low price and environment friendly route.

  18. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    SciTech Connect (OSTI)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab; Rawat, R. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, S. M. [Ceramic Laboratory, LMDDD, RRCAT, Indore 452013 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201303 (India)

    2014-09-15T23:59:59.000Z

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x?=?0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x?=?5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x???10% and for x?=?5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x?=?5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  19. Recent developments in high-temperature photonic crystals for energy conversion

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

  20. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS 

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical ...

  1. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim...

  2. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-03-31T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

  3. Room temperature magnetoresistance in CoFeB/SrTiO{sub 3}/CoFeB magnetic tunnel junctions deposited by ion beam sputtering

    SciTech Connect (OSTI)

    Hassen, E. M. J. [CEA, LETI, MINATEC Campus, Grenoble (France); SPINTEC (UMR 8191 CEA-CNRS-UJF), CEA-INAC, 38054 Grenoble Cedex (France); Viala, B.; Cyrille, M. C.; Cartier, M.; Redon, O. [CEA, LETI, MINATEC Campus, Grenoble (France); Lima, P. [SPTS, Process Technology Systems, Ringland Way, Newport (United Kingdom); Belhadji, B.; Yang, H. X.; Chshiev, M. [SPINTEC (UMR 8191 CEA-CNRS-UJF), CEA-INAC, 38054 Grenoble Cedex (France); Velev, J. [Department of Physics, University of Puerto Rico, San Juan 00931 (Puerto Rico)

    2012-04-01T23:59:59.000Z

    Room temperature transport properties are reported in polycrystalline SrTiO{sub 3}-based magnetic tunnel junctions deposited by ion beam sputtering. The junctions comprise CoFeB electrodes and the SrTiO{sub 3} barrier with thickness varied between 0.9 and 1.9 nm. Resistance area product values between 3 {Omega}.{mu}m{sup 2} and 22 k{Omega}.{mu}m{sup 2} have been measured with a tunnel magnetoresistance ratio ranging from 3.1 to 13% at room temperature. At low barrier thickness (1.2 nm), ferromagnetic coupling between electrodes is observed, indicating the presence of defects in the structure. A post-oxidation step was found to improve transport properties at lower barrier thickness.

  4. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect (OSTI)

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01T23:59:59.000Z

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  5. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01T23:59:59.000Z

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  6. Room-temperature cw operation of InGaAsP/InGaP lasers at 727 nm grown on GaAs substrates by liquid phase epitaxy

    SciTech Connect (OSTI)

    Wakao, K.; Nishi, H.; Kusunoki, T.; Isozumi, S.; Ohsaka, S.

    1984-06-01T23:59:59.000Z

    InGaAsP/InGaP lasers emitting at 724--727 nm have been fabricated on GaAs substrates using liquid phase epitaxy. The threshold current is reduced to 8 kA/cm/sup 2/ by thinning the active layer. Room-temperature cw operation is achieved for the first time in the lasing wavelength range below 760 nm in this quaternary system.

  7. Room-temperature-grown rare-earth-doped GaN luminescent thin films D. S. Lee and A. J. Steckla)

    E-Print Network [OSTI]

    Steckl, Andrew J.

    efforts to achieve this goal with GaN growth on oxide films or on glass substrates3­6 being a main focus: 50­100 °C. GaN films were grown on p-type 111 Si substrate by MBE with a Ga elemental sourceRoom-temperature-grown rare-earth-doped GaN luminescent thin films D. S. Lee and A. J. Steckla

  8. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    SciTech Connect (OSTI)

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde [Advanced Materials Processing and Analysis Center (AMPAC) and Mechanical Materials Aerospace Engineering (MMAE) Department, Engineering 381, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States); National Aeronautics and Space Administration (NASA), John F. Kennedy Space Center, Kennedy Space Center (KSC), Florida 32899 (United States)

    2005-03-01T23:59:59.000Z

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  9. 2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

    2009-11-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

  10. High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory

    SciTech Connect (OSTI)

    Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

    2009-11-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

  11. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

    1997-01-01T23:59:59.000Z

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  12. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11T23:59:59.000Z

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  13. Room-temperature mid-infrared “M”-type GaAsSb/InGaAs quantum well lasers on InP substrate

    SciTech Connect (OSTI)

    Chang, Chia-Hao; Li, Zong-Lin; Pan, Chien-Hung; Lu, Hong-Ting; Lee, Chien-Ping; Lin, Sheng-Di, E-mail: sdlin@mail.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-02-14T23:59:59.000Z

    We have demonstrated experimentally the InP-based “M”-type GaAsSb/InGaAs quantum-well (QW) laser lasing at 2.41??m at room temperature by optical pumping. The threshold power density per QW and extracted internal loss were about 234?W/cm{sup 2} and 20.5?cm{sup ?1}, respectively. The temperature-dependent photoluminescence (PL) and lasing spectra revealed interesting characteristics for this type of lasers. Two distinct regions in the temperature dependent threshold behavior were observed and the transition temperature was found to coincide with the cross over point of the PL and lasing emission peaks. The current-voltage characteristic of “M”-type QW laser was superior to the inverse “W”-type one due to its thinner barrier for holes. Further improvement of the “M”-type QW structure could lead to a cost-effective mid-infrared light source.

  14. Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique

    E-Print Network [OSTI]

    Reid, Scott A.

    Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

  15. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Nicholas, Jason.D.

    2007-06-30T23:59:59.000Z

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  16. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect (OSTI)

    Bimal Kad

    2011-12-31T23:59:59.000Z

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

  17. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect (OSTI)

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01T23:59:59.000Z

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  18. Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F. [Universite de Lorraine, Institut Jean Lamour, Departement CP2S, UMR CNRS 7198, Nancy, F-54042 (France); Laffez, P. [Groupe de Recherche Electronique, Materiaux, Acoustique, Nanoscience (GREMAN), Universite Francois Rabelais de Tours, UMR CNRS 7347, IUT de Blois, 15 rue de la Chocolaterie, Blois, F-41000 (France)

    2012-06-01T23:59:59.000Z

    Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

  19. Experimental studies in solid state and low temperature physics. Final report for 1966-1980

    SciTech Connect (OSTI)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1980-06-01T23:59:59.000Z

    Experimental and theoretical investigations have been carried out in a broad area of low temperature and solid state physics which includes superconductivity, theory of quantum crystals (through 1973), magnetism in metals, and liquid helium. The work in superconductivity has involved investigations of the Josephson effect, studies of the pair-field susceptibility of superconductors and investigations of the thermodynamics of the superconducting phase transition. The competition between the metal-nonmetal transition and superconductivity has also been studied in random metal-rare gas systems. In the area of magnetism, magnetically ordered materials and dilute magnetic alloys have been investigated. Enhanced hyperfine nuclear magnetic ordering was discovered in PrCu/sub 6/ at about 2.5 mK. The research on liquid /sup 4/He and /sup 3/He//sup 4/He mixtures has been directed at the quantum aspects of superfluid flow and rotation, the critical behavior near the lambda transition and the properties of the tricritical point. The theoretical program (through 1973) encompassed a broad spectrum of research on the properties of quantum liquids and solids with particular emphasis on crystalline /sup 3/He.

  20. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOE Patents [OSTI]

    Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

    2004-12-14T23:59:59.000Z

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  1. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

    2002-12-01T23:59:59.000Z

    Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

  2. Room temperature ferromagnetic and ferroelectric properties of Bi{sub 1?x}Ca{sub x}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Pugazhvadivu, K. S.; Tamilarasan, K., E-mail: dr.k.tamilarasan@gmail.com [Thin Film Laboratory, Department of Physics, Kongu Engineering College, Perundurai - 638 052 (India); Balakrishnan, L. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India); Mohan Rao, G. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore - 560 012 (India)

    2014-11-15T23:59:59.000Z

    Bi{sub 1?x}Ca{sub x}MnO{sub 3} (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 °C and 800 °C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca{sup 2+} ions into BiMnO{sub 3} films. The BCMO (x = 0.2) film grown at 400 °C shows better magnetization (M{sub sat}) and polarization (P{sub s})with the measured values of 869 emu / cc and 6.6 ?{sub C}/ cm{sup 2} respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca{sup 2+} ions substituted BMO films makes potentially interesting for spintronic device applications.

  3. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2000-10-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

  4. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})

    SciTech Connect (OSTI)

    Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Parsons, Gregory N.; Losego, Mark D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-06-23T23:59:59.000Z

    We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

  5. Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection laser on (110) Si substrate at room temperature

    SciTech Connect (OSTI)

    Chen, H.Z.; Ghaffari, A.; Wang, H.; Morkoc, H.; Yariv, A.

    1987-10-01T23:59:59.000Z

    Room-temperature continuous-wave operation of large-area (120 ..mu..m x 980 ..mu..m) GaAs/AlGaAs graded-refractive-index separate-confinement heterostructure lasers on (100)Si substrates has been obtained. Minimum threshold-current densities of 214 A/cm/sup 2/ (1900-..mu..m cavity length), maximum slope efficiencies of about 0.8 W/A (600-..mu..m cavity length), and optical power in excess of 270 mW/facet (900-..mu..m cavity length) have been observed under pulsed conditions.

  6. Efficient room temperature aqueous Sb2S3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies

    E-Print Network [OSTI]

    Gödel, Karl C.; Choi, Yong Chan; Roose, Bart; Sadhanala, Aditya; Snaith, Henry J.; Seok, Sang Il; Steiner, Ullrich; Pathak, Sandeep K.

    2015-04-14T23:59:59.000Z

    . Steiner and S. K. Pathak, Chem. Commun., 2015, DOI: 10.1039/C5CC01966D. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies† Karl C. Go¨del,a Yong Chan Choi,b Bart Roose,ac Aditya Sadhanala... -gu, Sungkyunkwan University, Suwon 440-746, Republic of Korea. Further, the material has been used to improve the stability of methyl-ammonium lead iodide perovskite solar cells.5 Antimony sulfide synthesis typically involves deposition in aqueous and non...

  7. Luminescence thermometry below room temperature via up-conversion emission of Y{sub 2}O{sub 3}:Yb{sup 3+},Er{sup 3+} nanophosphors

    SciTech Connect (OSTI)

    Lojpur, V.; Nikoli?, G.; Drami?anin, M. D., E-mail: dramican@vinca.rs [Vin?a Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia)

    2014-05-28T23:59:59.000Z

    This study explores potential of Er{sup 3+}-Yb{sup 3+} doped phosphors for up-conversion luminescence thermometry in the temperature range from 10?K to 300?K. Yttrium oxide nanopowder doped with trivalent ytterbium and erbium ions (Y{sub 1.97}Yb{sub 0.02}Er{sub 0.01}O{sub 3}) was prepared by hydrothermal synthesis as an example. The intensity ratios of up-conversion emissions from thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} show strong temperature dependence (in the range 150?K–300?K) with much higher relative sensitivity than those reported for thermometry above room temperature with Er{sup 3+}-Yb{sup 3+} based up-conversion materials. The maximal value of relative sensitivity is 5.28%K{sup ?1} at 150?K, with temperature resolution ranging from 0.81?K to 0.06?K. In addition, the intensity ratios of emission from thermally non-coupled Er{sup 3+} levels ({sup 2}H{sub 9/2} and {sup 4}F{sub 9/2}) and from {sup 4}S{sub 3/2} also show temperature dependence that can be approximated with an exponential function. With these up-conversion emission ratios, it is possible measure temperature in the range of 10?K to 300?K with excellent sensitivity and resolution.

  8. Studies on the room temperature growth of nanoanatase phase TiO{sub 2} thin films by pulsed dc magnetron with oxygen as sputter gas

    SciTech Connect (OSTI)

    Karuppasamy, A.; Subrahmanyam, A. [Semiconductor Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-03-15T23:59:59.000Z

    The anatase phase titanium dioxide (TiO{sub 2}) thin films were deposited at room temperature by pulsed dc magnetron sputtering using pure oxygen as sputter gas. The structural, optical, electrical, and electrochromic properties of the films have been studied as a function of oxygen pressure in the chamber. The x-ray diffraction results indicate that the films grown above 4.5x10{sup -2} mbar are nanocrystalline (grain size of 28-43 nm) with anatase phase. The films deposited at the chamber pressure of 7.2x10{sup -2} mbar are found to be highly crystalline with a direct optical band gap of 3.40 eV, refractive index of 2.54 (at {lambda}=400 nm), and work function of 4.77 eV (determined by the Kelvin probe measurements). From the optical emission spectra of the plasma and transport of ions in matter calculations, we find that the crystallization of TiO{sub 2} at room temperature is due to the impingement of electrons and ions on the growing films. Particularly, the negative oxygen ions reflected from the target by 'negative ion effects' and the enhanced density of TiO, TiO{sup +}, TiO{sub 2}{sup +}, and O{sup 2+} particles in the plasma are found to improve the crystallization even at a relatively low temperature. From an application point of view, the film grown at 7.2x10{sup -2} mbar was studied for its electrochromic properties by protonic intercalation. It showed good electrochromic behavior with an optical modulation of {approx}45%, coloration efficiency of 14.7 cm{sup 2} C{sup -1}, and switching time (t{sub c}) of 50 s for a 2x2 cm{sup 2} device at {lambda}=633 nm.

  9. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

    2013-10-15T23:59:59.000Z

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

  10. Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ishikawa, M.; Ohba, Y.; Sugawara, H.; Yamamoto, M.; Nakanisi, T.

    1986-01-20T23:59:59.000Z

    Room-temperature cw operation for InGaP/InGaAlP double heterostructure (DH) laser diodes on GaAs substrates was achieved for the first time. The DH wafers were grown by low-pressure metalorganic chemical vapor deposition using methyl metalorganics. A lasing wavelength of 679 nm and a threshold current of 109 mA at 24C were obtained for an inner stripe structure laser diode with a 250- m-long and 7- m stripe geometry. The laser operated at up to 51C. The characteristic temperature T0 was 87 K at around room temperature. The lowest threshold current density, 5.0 kA/cmS, was obtained with a 20- m stripe width laser diode under room-temperature pulsed operation.

  11. Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells

    SciTech Connect (OSTI)

    Shaowu Zha; Meilin Liu

    2005-03-23T23:59:59.000Z

    Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

  12. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect (OSTI)

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon [School of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); LC/OLED Research Team, LCD R and D Center, LCD Business, Samsung Electronics Co. Ltd., Yongin, Gyeonggi-Do 449-711 (Korea, Republic of); Process Development Team, LCD R and D Center, LCD Business, Samsung Electronics Co. Ltd., Yongin, Gyeonggi-Do 449-711 (Korea, Republic of)

    2007-09-03T23:59:59.000Z

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  13. Low-threshold (--600 A/cm/sup 2/ at room temperature) GaAs/AlGaAs lasers on Si (100)

    SciTech Connect (OSTI)

    Chen, H.Z.; Ghaffari, A.; Wang, H.; Morkoc, H.; Yariv, A.

    1987-10-26T23:59:59.000Z

    Low-threshold graded-refractive-index GaAs/AlGaAs laser structures were grown on Si (100) by molecular beam epitaxy and tested at room temperature under a probe station. Broad area devices having widths of 110--120 ..mu..m and cavity lengths of --500--1210 ..mu..m exhibited threshold current densities as low as 600 A/cm/sup 2/ and total slope efficiencies of as high as 0.75 W/A. The thresholds fell in the range of 600--1000 A/cm/sup 2/ in three different wafers, and it is assumed that the quality of the facets accounts for most of the spread in results.

  14. One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler-Volmer and Symmetric Marcus-Hush theories using microdisc electrodes

    E-Print Network [OSTI]

    Tanner, Eden E L; Barnes, Edward O; Compton, Richard G

    2015-01-01T23:59:59.000Z

    The voltammetry for the reduction of oxygen at a microdisc electrode is reported in two room temperature ionic liquids: 1-butyl-1-methylpyyrolidinium bis(trifluoromethylsulfonyl) imide ([Bmpyrr][NTf2]) and trihexyltetradecylphosphonium bis9trifluoromethylsulfonyl) imide ([P14,6,6,6][NTf2]) at 298 K. Simulated voltammograms using Butler-Volmer theory and Symmetric Marcus-Hush (SMH) theory were compared with experimental data. Butler-Volmer theory consistently provided experimental parameters with a higher level of certainty than SMH theory. A value of solvent reorganisation energy for oxygen reduction in ionic liquids was inferred for the first time as 0.4-0.5 eV, which is attributable to inner-sphere reorganisation with a negligible contribution from solvent reorganisation. The developed Butler-Volmer and Symmetric Marcus-Hush programs are also used to theoretically study the possibility of kinetically limited steady state currents, and to establish an approximate equivalence relationship between microdisc el...

  15. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers

    SciTech Connect (OSTI)

    Wei, Wei; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 66, Beijing 100876 (China); Liu, Yange, E-mail: ygliu@nankai.edu.cn; Wang, Zhi [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

    2014-06-02T23:59:59.000Z

    Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers are proposed and demonstrated. The nanowires are axially excited by evanescent wave outside a microfiber with a diameter about 10??m via a ns-pulse laser. The lasing emission with a low effective threshold less than 90 nJ is achieved at 868.62?nm along with a linewidth of ?1.8?nm. Moreover, multiple lasing lines in a wavelength range from 852.56?nm to 882.48?nm are observed. The mechanism of diverse lasing wavelengths is revealed. Furthermore, the proposed GaAs/AlGaAs nanowire laser has advantages such as simple structure, easy to operate, and controllable lasing wavelength, tending to be practical in optical communications and integrated photonic circuits.

  16. Observation of room temperature optical absorption in InP/GaAs type-II ultrathin quantum wells and quantum dots

    SciTech Connect (OSTI)

    Singh, S. D., E-mail: devsh@rrcat.gov.in; Porwal, S.; Mondal, Puspen; Srivastava, A. K.; Mukherjee, C.; Dixit, V. K.; Sharma, T. K.; Oak, S. M. [Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2014-06-14T23:59:59.000Z

    Room temperature optical absorption process is observed in ultrathin quantum wells (QWs) and quantum dots (QDs) of InP/GaAs type-II band alignment system using surface photovoltage spectroscopy technique, where no measurable photoluminescence signal is available. Clear signature of absorption edge in the sub band gap region of GaAs barrier layer is observed for the ultrathin QWs and QDs, which red shifts with the amount of deposited InP material. Movement of photogenerated holes towards the sample surface is proposed to be the main mechanism for the generation of surface photovoltage in type-II ultrathin QWs and QDs. QDs of smaller size are found to be free from the dislocations as confirmed by the high resolution transmission electron microscopy images.

  17. Measurement of bitumen viscosity in the room-temperature drop experiment: student education, public outreach and modern science in one

    E-Print Network [OSTI]

    A. T. Widdicombe; P. Ravindrarajah; A. Sapelkin; A. E. Phillips; D. Dunstan; M. T. Dove; V. V. Brazhkin; K. Trachenko

    2014-03-21T23:59:59.000Z

    Slow flow of the viscous liquid is a thought-provoking experiment that challenges students, academics and public to think about some fundamental questions in modern science. In the Queensland demonstration, the world-longest running experiment earning the Ig Nobel prize, one drop of pitch takes about 10 years to fall, leading to problems of actually observing the drops. Here, we describe our recent demonstration of slowly-flowing bitumen where appreciable flow is observed on the time scale of months. The experiment is free from dissipative heating effects and has the potential to improve the accuracy of measurement. Bitumen viscosity was calculated by undergraduate students during the summer project. The worldwide access to the running experiment is provided by webcams uploading the images to a dedicated website, enhancing student education experience and promotion of science. This demonstration serves as an attractive student education exercise and stimulates the discussion of fundamental concepts and hotly debated ideas in modern physics research: difference between solids and liquids, the nature of liquid-glass transition, emergence of long time scales in a physical process, and the conflict between human intuition and physical reality.

  18. Synthesis and crystallographic study of Pb-Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions

    SciTech Connect (OSTI)

    Zhu Kongjun, E-mail: kjzhu@nuaa.edu.cn [Aeronautical Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi-shi 780-8520 (Japan); Shimanouchi, Rie [Department of Material Science, Faculty of Science, Kochi University, Kochi-shi, 780-8520 (Japan); Onda, Ayumu; Kajiyoshi, Koji [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi-shi 780-8520 (Japan); Qiu Jinhao [Aeronautical Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2009-06-03T23:59:59.000Z

    The solid solutions in the system of Pb and Sr hydroxyapatite, Sr{sub 10-x}Pb{sub x}HAp (x = 0-10), were successfully synthesized by high-temperature mixing method (HTMM) at 160 deg. C for 12 h under hydrothermal conditions. The samples were characterized by X-ray diffraction, chemical analysis and electron microscopic observation, and the site of the metal ions in the solid solutions was analyzed with the Rietveld method. The lattice constants, both a and c, of the solid solutions varied linearly with Pb content. It was found that Pb ions in the solid solutions preferentially occupied the M(2) site in the apatite structure. HTMM gives Sr-Pb HAp solid solutions much better crystallization. However, due to the formation of intermediate compound of Pb{sub 3}O{sub 2}(OH){sub 2} in the Pb(NO{sub 3}){sub 2}.4H{sub 2}O solution before mixing with (NH{sub 4}){sub 2}HPO{sub 4} solution at 160 deg. C, HTMM causes the decrease of crystallization of the samples with high Pb content.

  19. Properties of molecular solids and fluids at high pressure and temperatures. Progress report, July 1, 1989--July 1, 1992

    SciTech Connect (OSTI)

    Etters, R.D.

    1992-03-01T23:59:59.000Z

    This renewal request for DOE grant DE-FG02-86ER45238, is dedicated to providing a complete thermodynamic profile of solids fluids, and fluid mixtures, over a wide range of temperatures and pressures. We are partially motivated by technological interest in detonation, combustion, superhard high pressure materials, and high temperature superconductors, which are important components of interest of various DOE laboratories. Our work on fluids and solids, composed of simple molecules, involves the determination of structures, phase transitions, pressure-volume relations, phonon, vibron, and libron modes of excitation, sound velocities, specific heats, thermal expansion, virial coefficients, sublimation energies, and orientational translational, and magnetic correlations. We hope that the study of these systems under extreme thermodynamic conditions will lead to exotic new materials of value, as well as enhanced fundamental understanding.

  20. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    SciTech Connect (OSTI)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R. [Department of Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-28T23:59:59.000Z

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  1. Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane

    SciTech Connect (OSTI)

    Pyati, R.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-02-01T23:59:59.000Z

    This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

  2. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  3. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  4. High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    combustors Lydie Le Forestier a,*, Guy Libourel b,c a ISTO, UMR 6113 CNRS-Université d'Orléans, Polytech, a destruction of pathogenic agents and a possible recovery of energy. Whatever MSW combustor used, combustion of MSW produces two kinds of solid residues: (i) bottom ashes recovered from the primary combustor

  5. The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures

    E-Print Network [OSTI]

    Hess, Richard Kenneth

    1985-01-01T23:59:59.000Z

    THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1985 Major Subject: Chemical Engineering THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES...

  6. High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid-state NMR study

    E-Print Network [OSTI]

    Bluemel, Janet

    High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid 2014 Keywords: Steam-treatment of PBI, PEEK, PEKK Solid-state NMR Water and D2O uptake polymers a b with D2O steam at temperatures of 150 and 315 C. All samples are studied by TGA, IR, 13 C CP/MAS, 1 H

  7. Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature

    SciTech Connect (OSTI)

    Chen, D. Y., E-mail: cdy7659@126.com [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China); Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Sun, Y.; He, Y. J. [Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Xu, L.; Xu, J. [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China)

    2014-01-28T23:59:59.000Z

    We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.

  8. High spin polarization at room temperature in Ge-substituted Fe{sub 3}O{sub 4} epitaxial thin film grown under high oxygen pressure

    SciTech Connect (OSTI)

    Seki, Munetoshi, E-mail: m-seki@ee.t.u-tokyo.ac.jp; Takahashi, Masanao; Ohshima, Toshiyuki; Yamahara, Hiroyasu; Tabata, Hitoshi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-11-18T23:59:59.000Z

    Epitaxial thin films of room-temperature ferrimagnetic (Fe,Ge){sub 3}O{sub 4} were fabricated using pulsed laser deposition. Films with a single-phase spinel structure were grown under high oxygen pressures (0.01–0.6?Pa). The carrier transport across (Fe,Ge){sub 3}O{sub 4}/Nb:SrTiO{sub 3} interface was studied to estimate the spin polarization of (Fe, Ge){sub 3}O{sub 4}. Current–voltage curves of Fe{sub 2.8}Ge{sub 0.2}O{sub 4}/Nb:SrTiO{sub 3} junction showed rectifying behavior even at 300?K whereas Fe{sub 3}O{sub 4}/Nb:SrTiO{sub 3} junction showed ohmic behavior. Calculations based on a model for a Schottky contact with a ferromagnetic component yielded a spin polarization of 0.50 at 300?K for Fe{sub 2.8}Ge{sub 0.2}O{sub 4}, indicating its potential as a promising spin injector.

  9. Magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations and tunnel magnetoresistance effect at room temperature

    SciTech Connect (OSTI)

    Nagahama, Taro, E-mail: nagahama@eng.hokudai.ac.jp; Matsuda, Yuya; Tate, Kazuya; Kawai, Tomohiro; Takahashi, Nozomi; Hiratani, Shungo; Watanabe, Yusuke; Yanase, Takashi; Shimada, Toshihiro [Graduate School of Engineering, Hokkaido University, Kita13 Nishi8, Kitak-ku, Sapporo 060-8628 (Japan)

    2014-09-08T23:59:59.000Z

    Fe{sub 3}O{sub 4} is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe{sub 3}O{sub 4} electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe{sub 3}O{sub 4}(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe{sub 3}O{sub 4} (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe{sub 3}O{sub 4}(110) electrodes and obtained a TMR effect of ?12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe{sub 3}O{sub 4} predicted from band calculations.

  10. Novel room temperature ferromagnetic semiconductors

    E-Print Network [OSTI]

    Gupta, Amita

    2004-01-01T23:59:59.000Z

    Spin Related Phenomena in Semiconductors, (27-28 Jan 1997,FERROMAGNETIC SEMICONDUCTORS Amita Gupta Stockholm, Junedata are processed by semiconductor chips, and stored in the

  11. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  12. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases NewsRoom

  13. Development of intermediate temperature planar solid oxide fuel cells. Annual report, September 1992-1993

    SciTech Connect (OSTI)

    Nasrallah, M.M.; Anderson, H.U.; Huebner, W.

    1993-10-01T23:59:59.000Z

    Dense, uniform thin films (0.5 - 0.2 micrometer) of LSCF, YSZ and LSM were deposited on dense or porous substrates at temperatures not exceeding 600 C. Cathode/electrolyte interaction studies revealed the formation of reaction products at the interface. The presence of a CSO buffer layer eliminated the interactions and decreased the interfacial resistance appreciably. Both LSCF and YCF systems have been evaluated and are considered potential cathode materials at reduced temperatures. They are chemically and structurally stable over a wide range of temperature and oxygen activity, they exhibit mixed conductivity and their thermal expansion coefficient can be made to match that of YSZ. Blocking electrode experiments revealed that the partial ionic conductivity of LSCF is comparable to that of YSZ. Single cells based on planar thin film design will be fabricated and tested.

  14. High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun [ORNL; Young Nam, Kim [University of Texas, Austin; Bi, Zhonghe [ORNL; Manthiram, Arumugam [University of Texas, Austin; Paranthaman, Mariappan Parans [ORNL; Huq, Ashfia [ORNL

    2011-01-01T23:59:59.000Z

    InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

  15. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  16. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2002-03-26T23:59:59.000Z

    Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

  17. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOE Patents [OSTI]

    Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

  18. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2001-06-21T23:59:59.000Z

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  19. Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol

    E-Print Network [OSTI]

    Marina Kveder; Dalibor Merunka; Milan Joki?; Boris Rakvin

    2010-08-24T23:59:59.000Z

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

  20. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOE Patents [OSTI]

    Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

    1992-04-21T23:59:59.000Z

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

  1. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect (OSTI)

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26T23:59:59.000Z

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  2. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Shaowu Zha; Luis Aguilar; Meilin Liu

    2003-12-01T23:59:59.000Z

    Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

  3. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Professor Anil V. Virkar

    2003-05-23T23:59:59.000Z

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

  4. High-Temperature Thermoelectric Properties of the Solid–Solution Zintl Phase Eu11Cd6Sb12–xAsx (x < 3)

    SciTech Connect (OSTI)

    Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J; Snyder, G Jeffrey; Kauzlarich, Susan M

    2014-02-11T23:59:59.000Z

    Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid–solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12–xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ?3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78–0.49 W/mK for x = 0; 0.72–0.53 W/mK for x = 1; and 0.70–0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 ? V/K) but also high electrical resistivity (6.8 to 12.8 m?·cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12–xAsx are interpreted in discussion with the As site substitution.

  5. Temperature dependence of the elastic constants of solid and liquid Cd0.96Zn0.04Te obtained by laser ultrasound

    E-Print Network [OSTI]

    Wadley, Haydn

    infrared focal plane array IRFPA sensors.1­3 As the size of imaging detectors continues to increase, a need a complete evaluation of the temperature dependent single crystal elastic stiffness constants C11 , C12 , C44 for the solid and the adiabatic bulk modulus (KS) for the liquid. In addition, evaluation of the thermoelastic

  6. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2001-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  7. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect (OSTI)

    Yu, Tang-Qing, E-mail: tangqing.yu@nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Chen, Pei-Yang; Chen, Ming [Department of Chemistry, New York University, New York, New York 10003 (United States); Samanta, Amit [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tuckerman, Mark, E-mail: mark.tuckerman@nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2014-06-07T23:59:59.000Z

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  8. Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.

    2013-08-15T23:59:59.000Z

    A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800°C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750°C and 0.8 volts was 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.

  9. High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid-State NMR Study

    E-Print Network [OSTI]

    Bluemel, Janet

    1 High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid Supplementary Information Figure S1. TGA of melt-molded PBI after stirring in H2O at RT and steam-treatment with H2O at 150 °C and 315 °C. Figure S2. TGA of melt-molded PEEK after stirring in D2O at RT and steam

  10. Room to grow | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room to grow Room to grow Released: June 26, 2012 New lithium ion battery strategy offers more energy, longer life cycle In situ transmission electron microscopy at EMSL was used...

  11. Variable-temperature solid-state NMR studies of iron(II) and iron(III) complexes

    E-Print Network [OSTI]

    Shepard, Patricia Arlene

    1989-01-01T23:59:59.000Z

    the first communication reporting the use of C CP/MAS NMR to observe paramagnetic solids directly. Zust as shift reagents had been used in solution-state NMR, selected paramagnetic lanthanide acetates exhibited paramagnetic shifts in the solid state... of the Fe(III) chloride salt yields the w-oxo-bis[porphine- iron(III)] dimer where the two iron centers are bridged via an oxygen. The synthesis, characterization and crystal structure of the metallo-porphyrin dimer w-oxo-bis[tetra- phenylporphineiron...

  12. Room temperature magnetocaloric effect and refrigerant capacitance in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube arrays

    SciTech Connect (OSTI)

    Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Sousa, C. T.; Pires, A.; Pereira, A. M.; Araujo, J. P. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Porto (Portugal); Lopes, A. M. L. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Porto (Portugal); CFNUL, University of Lisbon, Lisbon (Portugal)

    2014-08-25T23:59:59.000Z

    High aspect ratio La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube (NT) arrays have been synthesized using nitrates based sol-gel precursor by nanoporous anodized aluminum oxide template assisted method. Their phase purity and microstructures were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Magnetocaloric effect (MCE) of as prepared NTs was investigated by means of field dependence magnetization measurements. Significant magnetic entropy change, ??S{sub M}?=?1.6?J/kg K, and the refrigerant capacitance, RC?=?69?J/kg, were achieved near the transition temperature at 315?K for 5?T. For comparison, a bulk sample was also prepared using the same precursor solution which gives a value of ??S{sub M}?=?4.2?J/kg K and a RC?=?165?J/kg. Though the bulk sample exhibits higher ?S{sub M} value, the NTs present an expanded temperature dependence of ??S{sub M} curves that spread over a broad temperature range and assured to be appropriate for active magnetic refrigeration. The diminutive MCE observed in manganite NTs is explained by the increased influence of surface sites of nanograins which affect the structural phase transition occurred by external magnetic field due to the coupling between magnetism and the lattice in manganese perovskites. Our report paves the way for further investigation in 1D manganite nanostructured materials towards applications in such magnetic refrigeration technology or even on hyperthermia/drug delivery.

  13. Solid Flame: Fundamentals and

    E-Print Network [OSTI]

    Mukasyan, Alexander

    ;Self-propagating High-temperature Synthesis (SHS) Or Combustion Synthesis TECHNOLOGY FOR MATERIAL (solid) ignition front propagation cooling The Phenomenon of Wave Localization for Solid State Self-propagating) 1.0000 Temperature (K) 2744 Gas products amount (mol) 6.00E-15 Products heat capacity (J/K) 74

  14. A "permanent" high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen

    E-Print Network [OSTI]

    Haid, Benjamin J. (Benjamin John Jerome), 1974-

    2001-01-01T23:59:59.000Z

    This thesis explores a new design for a portable "permanent" superconducting magnet system. The design is an alternative to permanent low-temperature superconducting (LTS) magnet systems where the magnet is cooled by a ...

  15. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect (OSTI)

    Boley, A. C. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Morris, M. A. [Center for Meteorite Studies, Arizona State University, P.O. Box 876004, Tempe, AZ 88287-6004 (United States); Desch, S. J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

    2013-10-20T23:59:59.000Z

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ?few× 10{sup –8} L{sub ?}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  16. BaZn{sub 2}Si{sub 2}O{sub 7} and the solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0temperature seals for solid oxide fuel cells studied by high-temperature X-ray diffraction and dilatometry

    SciTech Connect (OSTI)

    Kerstan, Marita; Thieme, Christian; Grosch, Matthias; Müller, Matthias; Rüssel, Christian, E-mail: ccr@rz.uni-jena.de

    2013-11-15T23:59:59.000Z

    For sealing of solid oxide fuel cells, glasses from which crystalline phases with high coefficient of thermal expansion (CTE) can be crystallized are required. In this paper, a new solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0temperature X-ray diffraction (BaZn{sub 2}Si{sub 2}O{sub 7}). Sintered specimens were characterized by dilatometry. The introduction of Co{sup 2+} does not lead to a change in the space group. All compounds show a transition of a low to a high temperature modification. The attributed temperature increases from 300 °C for BaZn{sub 2}Si{sub 2}O{sub 7} to 850 °C for BaCo{sub 2}Si{sub 2}O{sub 7}. The volume expansion which runs parallel to the phase transition decreases with increasing cobalt concentration. The phase BaZn{sub 2}Si{sub 2}O{sub 7} shows the largest CTE and a steep volume effect during phase transition. For the compound BaZn{sub 0.25}Co{sub 1.75}Si{sub 2}O{sub 7} the CTE is minimum (8.6×10{sup ?6} K{sup ?1} (50–900 °C)) and increases again until for the compound BaCo{sub 2}Si{sub 2}O{sub 7} a CTE of 16.6×10{sup ?6} K{sup ?1} (50–900 °C) is reached. In the cobalt rich composition range, the CTEs are in the right range for high temperature fuel cells and can be adjusted by the composition. - Graphical abstract: The composition of the solid solution BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} strongly affects the thermal expansion. Display Omitted - Highlights: • We examined the thermal expansion of solid solutions BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0solid solutions should be suitable for solid oxide fuel cells.

  17. Research on Thermal Properties in a Phase Change Wallboard Room Based on Air Conditioning Cold Storage

    E-Print Network [OSTI]

    Feng, G.; Li, W.; Chen, X.

    2006-01-01T23:59:59.000Z

    After comparing the thermal performance parameters of an ordinary wall room to a phase change wall (PCW) room, we learn that phase change wallboard affects the fluctuation of temperature in air-conditioning room in the summer. We built a PCW room...

  18. Unusual oxidation states give reversible room temperature magnetocaloric effect on perovskite-related oxides SrFe{sub 0.5}Co{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Yin, C.; Liu, Q.; Decourt, R.; Pollet, M.; Gaudin, E. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Toulemonde, O., E-mail: toulemon@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France)

    2011-12-15T23:59:59.000Z

    The magnetic properties and the magnetocaloric effect are presented for the perovskite-related oxide SrFe{sub 0.5}Co{sub 0.5}O{sub 3} prepared using electrochemical oxidation. SrFe{sub 0.5}Co{sub 0.5}O{sub 3} exhibits a second order paramagnetic-ferromagnetic transition close to room temperature (T{sub C}=330 K). The maximal magnetic entropy change {Delta}S{sub M}{sup Max} , the maximal adiabatic temperature change {Delta}T{sub ad} and the refrigerant capacity are found to be equal to respectively 4.0 J/kgK, 1.8 K and 258 J/kg while raising the B-field change from 0 to 5 T. - Graphical Abstract: Moderate but reversible magnetocaloric properties are associated with the 2nd order paramagnetic to ferromagnetic phase transition exhibited at 330 K. A metal-like behavior is seen for the first time on the ferromagnetic regime. Highlights: Black-Right-Pointing-Pointer Both Fe{sup 4+} and Co{sup 4+} are stabilized on perovskite-related phase SrFe{sub 0.5}Co{sub 0.5}O{sub 3} using electrochemical oxidation. Black-Right-Pointing-Pointer Its crystallographic structure is cubic. Black-Right-Pointing-Pointer SrFe{sub 0.5}Co{sub 0.5}O{sub 3} is metal-like/ferromagnetic below 330 K Black-Right-Pointing-Pointer SrFe{sub 0.5}Co{sub 0.5}O{sub 3} exhibits magnetocaloric properties associated with the sharp paramagnetic to ferromagnetic phase transition.

  19. High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    E-Print Network [OSTI]

    Boley, A C; Desch, S J

    2013-01-01T23:59:59.000Z

    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

  20. Probing attosecond electron dynamics at solid surfaces | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing attosecond electron dynamics at solid surfaces Wednesday, May 13, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Jrg Osterwalder, Department of Physics,...

  1. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  2. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency. Current photocathodes degrade because cesium, the alkali material, leaves the emitting surface over the lifetime of the device. The RTDP, on the other hand,...

  3. Room temperature and productivity in office work

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.; Lei, Q.H.

    2006-01-01T23:59:59.000Z

    vigilance in a moving vehicle. Ergonomics 39 (1996)1,61-75.paired associate learning. Ergonomics, 21 [2] Berglund, L. ,

  4. Room temperature and productivity in office work

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.; Lei, Q.H.

    2006-01-01T23:59:59.000Z

    University of Technology Laboratory of Heating, VentilatingUniversity of Technology, Laboratory of Heating, Ventilating

  5. Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface

    E-Print Network [OSTI]

    Bhardwaj, Rajneesh; Attinger, Daniel

    2010-01-01T23:59:59.000Z

    The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid-liquid interface, with a time and space resolution of 100 {\\mu}s and 20 {\\mu}m, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid-gas boundary. For cases involving evaporation, the diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. High-speed visualizations are performed to provide matching parameters for the wetting model used in the simulations. Numerical and experimental results are compar...

  6. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2014-09-15T23:59:59.000Z

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.1–0.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  7. Research on Cool Storage Time of a Phase Change Wallboard Room in the Summer 

    E-Print Network [OSTI]

    Feng, G.; Liang, R.; Li, G.

    2006-01-01T23:59:59.000Z

    Through testing and analysis of the parameters of the indoor thermal property in a phase change wallboard room and an ordinary room, the effects of using phase change wallboards on indoor temperature in summer and with air ...

  8. Room temperature multiferroic properties of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}–Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} composites

    SciTech Connect (OSTI)

    Pradhan, Dhiren K., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Katiyar, Ram S., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Narayan Tripathy, Satya; Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India); Scott, J. F. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

    2013-12-21T23:59:59.000Z

    We report the crystal structure, magnetic, ferroelectric, dielectric, and magneto-dielectric properties of [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}]{sub (1?x)}[Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}]{sub x}: (x?=?0.1, 0.2, 0.3, and 0.4) composites. Rietveld refinement results of X-ray diffraction patterns confirm the formation of these composites for all x values. All the composites show well-saturated ferroelectric and ferromagnetic hysteresis (multiferroic-composite behavior) at room temperature. With increase in Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) content an increase in saturation magnetization, and decrease in saturation polarization, remanent polarization, and dielectric constant are observed. The ferroelectric phase transition temperature increases with increase in CZFO content. All of the compositions undergo second-order ferroelectric phase transitions, which can be explained by Landau-Devonshire theory. The recoverable energy density (?0.20 to 0.04?J/cm{sup 3}) and charge-curve energy density (?0.84 to 0.11?J/cm{sup 3}) decrease with increase in the CZFO content. The room-temperature magneto-dielectric measurements provide direct evidence of magneto-electric coupling via strain at room temperature.

  9. Adsorption of acetonitrile (CH{sub 3}CN) on Si(111)-7x7 at room temperature studied by synchrotron radiation core-level spectroscopies and excited-state density functional theory calculations

    SciTech Connect (OSTI)

    Bournel, F.; Carniato, S.; Dufour, G.; Gallet, J.-J.; Ilakovac, V.; Rangan, S.; Rochet, F.; Sirotti, F. [Laboratoire de Chimie Physique Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Boite Postale 48, 91192 Gif sur Yvette Cedex (France)

    2006-03-15T23:59:59.000Z

    The room temperature adsorption of acetonitrile (CH{sub 3}-C{identical_to}N) on Si(111)-7x7 is examined by synchrotron radiation N 1s x-ray photoemission and x-ray absorption spectroscopies. The experimental spectroscopic data point to multiple adsorption geometries. Candidate structures are optimized using density functional theory (DFT), the surface being simulated by silicon clusters encompassing one (adjacent) adatom-rest atom pair. This is followed by the DFT calculation of electron transition energies and cross sections. The comparison of theoretical spectra with experimental ones indicates that the molecule is adsorbed on the surface under two forms, a nondissociated geometry (an sp{sup 2}-hybridized CN) and a dissociated one (leading to a pendent sp-hybridized CN). In the nondissociative mode, the molecule bridges an adatom-rest atom pair. For bridge-type models, the discussion of the core-excited state calculations is focussed on the so-called silicon-molecule mixed-state transitions that strongly depend on the breaking or not of the adatom backbonds and on the attachment of the nitrogen end either to the adatom or to the rest atom. Concerning the dissociated state, the CH bond cleavage leads to a cyanomethyl (Si-CH{sub 2}-CN) plus a silicon monohydride, which accounts for the spectroscopic evidence of a free C{identical_to}N group (we do not find at 300 K any spectroscopic evidence for a C{identical_to}N group datively bonded to a silicon atom via its nitrogen lone pair). Therefore the reaction products of acetonitrile on Si(111)-7x7 are similar to those detected on the Si(001)-2x1 surface at the same temperature, despite the marked differences in the reconstruction of those two surfaces, especially the distance between adjacent silicon broken bonds. In that respect, we discuss how adatom backbond breaking in the course of adsorption may explain why both surface orientations react the same way with acetonitrile.

  10. MS Exam, Fall 2012, Solid State Electronic Devices (ECE 230A-B) 1. III-V compound semiconductor GaAs has two families of cleavage planes (110) and

    E-Print Network [OSTI]

    Wang, Deli

    MS Exam, Fall 2012, Solid State Electronic Devices (ECE 230A-B) ECE230A: 1. III-V compound of GaAs crystal. 1 #12;MS Exam, Fall 2012, Solid State Electronic Devices (ECE 230A-B) ECE 230B: Assume silicon, room temperature, complete ionization. 1. For an abrupt n+-p diode in Si, the n+ doping is 1020

  11. Study on Influencing Factors of Night Ventilation in Office Rooms

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01T23:59:59.000Z

    A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort are simulated using Airpak software. Some main influencing factors of night ventilation in office rooms...

  12. Cs{sub 4}P{sub 2}Se{sub 10}: A new compound discovered with the application of solid-state and high temperature NMR

    SciTech Connect (OSTI)

    Gave, Matthew A.; Canlas, Christian G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Chung, In [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Iyer, Ratnasabapathy G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu; Weliky, David P. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: weliky@chemistry.msu.edu

    2007-10-15T23:59:59.000Z

    The new compound Cs{sub 4}P{sub 2}Se{sub 10} was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. {sup 31}P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of -52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs{sub 4}P{sub 2}Se{sub 10} has the triclinic space group P-1 with a=7.3587(11) A, b=7.4546(11) A, c=10.1420(15) A, {alpha}=85.938(2){sup o}, {beta}=88.055(2){sup o}, and {gamma}=85.609(2){sup o} and contains the [P{sub 2}Se{sub 10}]{sup 4-} anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe{sub 4}) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs{sub 4}P{sub 2}Se{sub 10} was recovered upon annealing. The static {sup 31}P NMR spectrum at 350 deg. C contained a single peak with a -35 ppm chemical shift and a {approx}7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature. - Graphical abstract: The new compound Cs{sub 4}P{sub 2}Se{sub 10} was discovered following a high-temperature in situ synthesis in the NMR spectrometer and the structure was determined by single-crystal X-ray diffraction. It contains the new [P{sub 2}Se{sub 10}]{sup 4-} anion.

  13. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  14. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells

    SciTech Connect (OSTI)

    Young Nam, Kim [University of Texas, Austin; Kim, Jung-Hyun [ORNL; Paranthaman, Mariappan Parans [ORNL; Manthiram, Arumugam [University of Texas, Austin; Huq, Ashfia [ORNL

    2012-01-01T23:59:59.000Z

    (Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

  15. Room Policies Printing Options

    E-Print Network [OSTI]

    , please return them to the desk for new ones. Saving the stuff you write on the Whiteboard 1. Make the room as bright as you can for best contrast 2. Hit the "Save to Web" button on the gray wall box 3, they are incorrect. #12;2. Click on your image to enlarge it. Click on the image to get the `save' option. Save

  16. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  17. State-of-the-Art and Outlook: Thermal Properties of Phase Change Wallboard Rooms

    E-Print Network [OSTI]

    Feng, G.; Liang, R.; Li, G.

    2006-01-01T23:59:59.000Z

    technology and the thermal characteristic- analyzing method commonly applied in building envelopes, proposes future research methods for phase change material wall rooms, and lays a solid foundation for the research of the heat transfer mechanism and thermal...

  18. Solid polymer electrolytes for rechargeable batteries

    SciTech Connect (OSTI)

    Narang, S.C.; Macdonald, D.D.

    1990-11-01T23:59:59.000Z

    SRI International has synthesized novel solid polymer electrolytes for high energy density, rechargeable lithium batteries. We have systematically replaced the oxygens in PEO with sulfur to reduce the strong hard-acid hard-base interaction, while retaining the favorable helical conformation of the polymer backbone. The best polymer electrolyte produced so far is suitable for a medium power battery. In another effort, we have synthesized single ion conducting polymer electrolytes based on polyethyleneimine, polyphosphazene, and polysiloxane backbones. The single ion conducting polymer electrolytes will allow greater depth of charge and discharge by preventing dc polarization. The best conductivity so far with single ion conductors is 1.0 {times} 10{sup {minus}3} Scm{sup {minus}1} at room temperature. Further optimization of electrical and mechanical properties will allow the use of these polymer electrolytes in the fabrication of rechargeable lithium batteries. 8 tabs.

  19. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    SciTech Connect (OSTI)

    Zhang, Jinshui [ORNL; Bai, Ying [ORNL; Sun, Xiao-Guang [ORNL; Li, Yunchao [ORNL; Guo, Bingkun [ORNL; Chen, Jihua [ORNL; Veith, Gabriel M [ORNL; Hensley, Dale K [ORNL; Paranthaman, Mariappan Parans [ORNL; Goodenough, John B [University of Texas at Austin; Dai, Sheng [ORNL

    2015-01-01T23:59:59.000Z

    The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.

  20. HELIUM, SOLID 1 Helium, Solid

    E-Print Network [OSTI]

    Glyde, Henry R.

    HELIUM, SOLID 1 Helium, Solid Henry R. Glyde Introduction Helium was first solidified at the famous focused on the melting curve, the specific heat, and the thermal conductivity of solid helium as a test criterion of melting does not hold in solid helium. This pioneering work up to 1957 is elegantly

  1. High characteristics temperature of strain-compensated 1.3 {micro}m InAsP/InGaP/InP multi-quantum well lasers grown by all solid source molecular beam epitaxy

    SciTech Connect (OSTI)

    Savolainen, P.; Toivonen, M.; Salokatve, A. [Tampere Univ. of Technology (Finland). Dept. of Physics; Asonen, H. [Tutcore Ltd., Tampere (Finland); Murison, R. [EG and G Optoelectronics Canada, Vaudreuil, Quebec (Canada)

    1996-12-31T23:59:59.000Z

    The present lasers have very good characteristic temperature values for the threshold current. In order to maintain such performance in cw mode, one should either use narrow waveguide (buried) type of laser structure or reduce the number of QWs. If the number of QW`s is reduced, total gain decreases and this should be compensated by increasing the optical confinement factor. In this paper the authors have demonstrated the suitability of InAsP/InGaP strain-compensated system for high temperature lasers emitting 1.3 {micro}m and the potential of all solid source molecular beam epitaxy for growth of optoelectronic devices.

  2. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  3. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28T23:59:59.000Z

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  4. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  5. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  6. Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy

    SciTech Connect (OSTI)

    Benkert, A., E-mail: andreas.benkert@kit.edu, E-mail: l.weinhardt@kit.edu [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany); Gemeinschaftslabor für Nanoanalytik, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Blum, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Meyer, F. [Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany)] [Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany); Wilks, R. G. [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)] [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Yang, W. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)] [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bär, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Insitut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); and others

    2014-01-15T23:59:59.000Z

    We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600?°C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

  7. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    SciTech Connect (OSTI)

    Fleming, P.G., E-mail: Peter.Fleming@ucc.ie [Department of Chemistry, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland); Holmes, J.D. [Department of Chemistry, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); CRANN, Trinity College Dublin, Dublin (Ireland); Otway, D.J. [Department of Chemistry, University College Cork, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); Morris, M.A. [Department of Chemistry, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); CRANN, Trinity College Dublin, Dublin (Ireland)

    2011-09-15T23:59:59.000Z

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La{sub 2}O{sub 3} phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La{sub 1-x}Ce{sub x}(OH){sub 3} is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La{sub 1-y}Ce{sub y}O{sub 2} only implies a mixed solid solution. Highlights: > Mol% of prepared Ce-La oxides did not follow that of reactant mol%. > Complex reaction pathway found to be dependent on metal solution concentrations. > At certain concentrations core shell particles were found to form. > A reaction model was produced based on cationic solubility. > Report lanthana solubility higher than previously reported in CeO{sub 2}.

  8. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  9. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16T23:59:59.000Z

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  10. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  11. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect (OSTI)

    Southards, W.T.; Blude, J.D.; Dickinson, J.A. [and others

    1997-06-01T23:59:59.000Z

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  12. Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack with CFD and Experimental Results

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; G. L. Hawkes

    2005-11-01T23:59:59.000Z

    A one-dimensional model has been developed to predict the thermal and electrochemical behavior of a high-temperature steam electrolysis stack. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet gas flow rates, current density, cell active area, and external heat loss or gain. The model includes a temperature-dependent area-specific resistance (ASR) that accounts for the significant increase in electrolyte ionic conductivity that occurs with increasing temperature. Model predictions are shown to compare favorably with results obtained from a fully 3-D computational fluid dynamics model. The one-dimensional model was also employed to demonstrate the expected trends in electrolyzer performance over a range of operating conditions including isothermal, adiabatic, constant steam utilization, constant flow rate, and the effects of operating temperature.

  13. W.-C. Li, Y. Lin, B. Kim, Z. Ren, and C. T.-C. Nguyen, "Quality factor enhancement in micromechanical resonators at cryogenic temperatures," the Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (Transducers'09), Denver, Colorado, June 21-25, 2

    E-Print Network [OSTI]

    Nguyen, Clark T.-C.

    a ~2.5Ã? increase in Q over the room temperature value, equivalent to a nearly 10-dB improvement factor, loss, os- cillator, filter, RF MEMS, wireless communications. INTRODUCTION On-chip vibrating resonators with CMOS sustaining transistor circuits have been demonstrated with phase noise marks commen

  14. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03T23:59:59.000Z

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

  15. Demonstration of Entanglement-Enhanced Phase Estimation in Solid

    E-Print Network [OSTI]

    Gang-Qin Liu; Yu-Ran Zhang; Yan-Chun Chang; Jie-Dong Yue; Heng Fan; Xin-Yu Pan

    2015-04-08T23:59:59.000Z

    Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here, we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal ${}^{13}$C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.

  16. High-Temperature Steam-Treatment of PBI, PEKK, and a PEKK-PBI Blend: A Solid-State NMR and IR Spectroscopic Study

    E-Print Network [OSTI]

    Bluemel, Janet

    that demand superior mechanical strength, corrosion resistance, and retention of dimensional and physical a desire for improved tribological performance. One response to these demands has come forward temperatures and wear properties when compared with the PAEK analogs examined to date. The retention

  17. Building Name Room Support By

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Building Name Room Technology Classroom? Technology Support By: Phone Number: Contact Name: Agricultural Sciences Building G29 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G31 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G101 Standard iDC 304-293-2832 n/a Agricultural

  18. Master Clock in Laser Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Master Clock in Laser Room Master clock MITEQ MN XTO-02-81.6-G-T-20P SN 180585 1 2 3 4 To YAG SYSTEM CLOCK To YAG SYSTEM C 975 81.6 MHz To MEZZ SPARE J17 J15 Multiplier...

  19. Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l;Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics High temperature (~700 ­ 800

  20. The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650{degree}C

    SciTech Connect (OSTI)

    DellaCorte, C.

    1996-05-01T23:59:59.000Z

    The effect of counterface selection on the tribological performance of a Ag/BaF{sub 2}-CaF{sub 2} containing composite coating is studied. Ceramic (Al{sub 2}O{sub 3}) and metal (Inconel X-750) pins are slid against PS300 (a metal bonded chrome oxide coating with Ag and BaF{sub 2}/CaF{sub 2} lubricant additives) in a pin-on-disk tribometer at 25, 500 and 650 C. Compared to the ceramic counterface, the metal counterface generally exhibited lower friction and wear at 25 C but higher friction and wear at 650 C. Friction coefficients, for example, for the Al{sub 2}O{sub 3}/PS300 combination at 25 C were 0.64 compared to 0.23 for the Inconel/PS300 sliding couple. At 650 C the ranking was reversed. The Al{sub 2}O{sub 3}/PS300 combination gave a friction coefficient of 0.19 while the friction for the metal counterface increased slightly to about 0.3. Based upon these tribological results and other information found in the literature, it appears that the performance of each counterface/PS300 combination is affected by the ability of the solid lubricant additives to form an adequate transfer film. The effects of surface wettability and tribological compatibility are discussed in relation to the observed tribological results.

  1. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA)

    1993-06-15T23:59:59.000Z

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  2. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  3. The Live Room : transducing resonant architectures

    E-Print Network [OSTI]

    Bain, Mark, 1966-

    1998-01-01T23:59:59.000Z

    The Live Room is a temporary site specific installation presented in building N 51, room 117 on the MIT campus on May 7, 1998 and concluded on June 10, 1998. Using small acoustic intensifying equipment which mount directly ...

  4. Temperature Sensor Data Michael W. Bigrigg

    E-Print Network [OSTI]

    Sadeh, Norman M.

    in the room. Sensor networks can be used to identify larger trends in temperature which could be used to report energy usage, HVAC problems, computer failures based on high temperatures, and fire evacuation

  5. Solid-state source of atomic oxygen for low-temperature oxidation processes: Application to pulsed laser deposition of TiO{sub 2}:N films

    SciTech Connect (OSTI)

    Ojima, Daiki; Chiba, Tetsuya; Shima, Kazunari; Hiramatsu, Hidenori; Hosono, Hideo; Hayashi, Katsuro [Materials and Structures Laboratory, Tokyo Institute of Technology, R3-34, Nagatsuta 4259, Yokohama 226-8503 (Japan)

    2012-02-15T23:59:59.000Z

    An atomic oxygen (AO) source has been redesigned to coordinate with a pulsed laser deposition system and used to grow nitrogen-doped TiO{sub 2} films by deposition of TiN and simultaneous irradiation of the substrate with AO. The AO source uses an incandescently heated thin tube of zirconia as an oxygen permeation media to generate pure AO of low kinetic energy. The emission flux is calibrated using a silver-coated quartz crystal microbalance. The thin shape of the probe and transverse emission geometry of this emission device allow the emission area to be positioned close to the substrate surface, enhancing the irradiation flux at the substrate. AO irradiation is crucial for formation of TiO{sub 2} phases via oxidation of the deposited TiN laser plume, and is effective for decrease of the substrate temperature for crystallization of anatase phase to as low as around 200 deg. C.

  6. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... of thermostat, and the relationship between room temperature set point and return air temperature. The Role Of Thermostat Traditional pneumatic thermostat is a proportional (P) type controller. It senses the space temperature changes and produces...

  7. Library Reserved Room Policy All Meeting Spaces

    E-Print Network [OSTI]

    Mather, Patrick T.

    Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

  8. Multisurface Interaction in the WILD Room

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Multisurface Interaction in the WILD Room Michel Beaudouin-Lafon, Stéphane Huot, Mathieu University Abstract The WILD room (wall-sized interaction with large datasets) serves as a testbed. (2012), "Multisurface Interaction in the WILD Room", IEEE Computer, vol 45, nº 4, pp. 48-56. DOI

  9. Electronic Docket Room (e-Docket Room) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying YourElectronic Docket Room

  10. Last Updated 8/12/2013 Page 1 of 2 Meeting Room 2 Meeting Room 3 Meeting Room 4 Meeting Room 5 Meeting Room 6

    E-Print Network [OSTI]

    Minnesota, University of

    Meeting Room 6 8:00 a.m.-12:00 noon Intro to LID Rainwater Harvesting 1:00-5:00 p.m. Advances in Design Strategies for Achieving Water Quality Goals Publications and Approaches for Mainstreaming LID LID Modeling Cities Light Rail Monitoring Bioretention and Rainwater Harvesting Systems Urban Trees as a LID Source

  11. Room-Temperature Synthesis Leading to Nanocrystalline Frederic Sauvage,

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    . Introduction The need for energy storage gave rise to the lithium-ion battery, while the effort given electrode in Li- ion batteries, despite a very low intrinsic electronic conductivity of ca. 10-9 S

  12. Evaluation of Station Post Porcelain Insulators with Room Temperature

    E-Print Network [OSTI]

    research on challenges facing the electric power industry and educating the next generation of power&E for their assistance in this project. PSERC is a National Science Foundation Industry/University Cooperative Research were artificially contaminated with different levels of contamination ranging from light to very heavy

  13. Strong Room-temperature Negative Transconductance In An Axial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Si-based device. We characterize the NTC characteristics over a range of gate VG and drain VD voltages, finding that NTC persists down to VD –50 mV. The physical...

  14. Aqueous, Room Temperature Electrochemical Deposition of Compact Si Films

    E-Print Network [OSTI]

    Suni, Ian Ivar

    . For all Si deposi- tion experiments, the Al sample was rotated at 850 rpm with a rotat- ing disc electrode scanning electron microscope (FESEM), following Au=Pd sputtering. X-ray diffraction measure- ments were

  15. Efficient room-temperature source of polarized single photons

    DOE Patents [OSTI]

    Lukishova, Svetlana G. (Honeoye Falls, NY); Boyd, Robert W. (Rochester, NY); Stroud, Carlos R. (Rochester, NY)

    2007-08-07T23:59:59.000Z

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  16. Ge-on-Si laser operating at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    Monolithic lasers on Si are ideal for high-volume and large-scale electronic–photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide ...

  17. Fast diffusion in a room temperature ionic liquid confined in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1(a) , E. Mamontov 1 , S. Dai 2 , X. Wang 2(b) , P. F. Fulvio 2 and D. J. Wesolowski 2 1 Neutron Scattering Science Division, Oak Ridge National Laboratory - Oak Ridge, TN 37831,...

  18. The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature

    E-Print Network [OSTI]

    Brezinski, Mark E.

    2012-01-01T23:59:59.000Z

    The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within ...

  19. Generating Ultrafast Inhomogeneous Strain in Room-Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Force to Influence Cell Survival X-ray Topography of Threading Dislocations in Aluminum Nitride New Materials for Capturing Carbon Dioxide from Combustion Gases Building...

  20. A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy

    SciTech Connect (OSTI)

    Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

    2014-01-01T23:59:59.000Z

    Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

  1. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01T23:59:59.000Z

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  2. Temperature effects on the electronic conductivity of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Mascaro, Mark Daniel

    2007-01-01T23:59:59.000Z

    The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

  3. Synthesis, structures and properties of new hybrid solids containing ruthenium complexes and polyoxometalates

    SciTech Connect (OSTI)

    Yan Bangbo, E-mail: bangbo.yan@wku.edu [Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101 (United States); Hodsdon, Samantha A.; Li Yanfen; Carmichael, Christopher N.; Cao Yan; Pan Weiping [Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2011-12-15T23:59:59.000Z

    Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy){sub 3}]{sub 2}[H{sub 2}W{sub 12}O{sub 40}]{center_dot}8H{sub 2}O (1), the [Ru(bpy){sub 3}]{sup 2+} (bpy=2,2 Prime -bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H{sub 2}W{sub 12}O{sub 40}]{sup 6-} linked through {l_brace}KO{sub 7}{r_brace} and {l_brace}NaO{sub 6}{r_brace} polyhedra, while in K{sub 6}[Ru(pzc){sub 3}]{sub 2}[SiW{sub 12}O{sub 40}] Bullet 12H{sub 2}O (2), the [Ru(pzc){sub 3}]{sup -} (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW{sub 12}O{sub 40}]{sup 4-} clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion Midline-Horizontal-Ellipsis {pi} interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature. - Graphical abstract: Two three-dimensional framework solids are constructed from polyoxoanions and ruthenium-organic complexes through noncovalent interactions. Highlights: Black-Right-Pointing-Triangle Ru complexes form hybrid solids with polyoxometalates. Black-Right-Pointing-Triangle Anion Midline-Horizontal-Ellipsis {pi} interaction between polyoxometalates and metal complexes was observed. Black-Right-Pointing-Triangle Noncovalent interactions play an important role in the assembly of solids. Black-Right-Pointing-Triangle The hybrid solid shows luminescence properties.

  4. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect (OSTI)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01T23:59:59.000Z

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters, graphic recorders, digital displays and counters, light indicators, visual and audio alarms, and cathode-ray tubes.

  5. Utrecht University's High Potential Programme Making Room

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Utrecht University's High Potential Programme Making Room for Talent 2 #12;Making Room for Talent Utrecht University has a worldwide reputation for excellence in research across a broad range. This is why in 2003 Utrecht University created the High Potential Programme, an incentive scheme which gives

  6. Also Known As (Room or Building)

    E-Print Network [OSTI]

    Mottram, Nigel

    Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

  7. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01T23:59:59.000Z

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  8. Los Alamos test-room results

    SciTech Connect (OSTI)

    McFarland, R.D.; Balcomb, J.D.

    1982-01-01T23:59:59.000Z

    Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

  9. Solid-Liquid Interfacial Premelting

    E-Print Network [OSTI]

    Yang, Yang; Asta, Mark; Laird, Brian Bostian

    2013-02-28T23:59:59.000Z

    liquid-liquid miscibility gap, negligible solubility of Pb in the Al solid phase, and a large melting point separa- tion (600 K for Pb and 933 K for Al). We have previously reported results from MD simulations on this system at 625 K, a temperature just... undergoes a roughening transition about 100 K below the melting point of Al. Simulation details.—In our simulations of the Al-Pb solid-liquid interface, we employ a classical many-body potential developed by Landa et al. [42] to model the inter- atomic...

  10. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  11. Analysis of Energy Saving in a Clean Room Air-conditioning System

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    temperature field, small supply air temperature difference, large airflow, but no reheater. As the design airflow rate of air conditioning system for cleaning mainly considered to meet the need of the cleanliness class, its air exchange rate was much... above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  12. Interfacial material for solid oxide fuel cell

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  13. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  14. Mn solid solutions in self-assembled Ge/Si (001) quantum dot heterostructures

    SciTech Connect (OSTI)

    Kassim, J.; Nolph, C.; Reinke, P.; Floro, J. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Jamet, M. [Institut Nanosciences et Cryogenie/SP2M, CEA-UJF, F-38054 Grenoble (France)

    2012-12-10T23:59:59.000Z

    Heteroepitaxial Ge{sub 0.98}Mn{sub 0.02} quantum dots (QDs) on Si (001) were grown by molecular beam epitaxy. The standard Ge wetting layer-hut-dome-superdome sequence was observed, with no indicators of second phase formation in the surface morphology. We show that Mn forms a dilute solid solution in the Ge quantum dot layer, and a significant fraction of the Mn partitions into a sparse array of buried, Mn-enriched silicide precipitates directly underneath a fraction of the Ge superdomes. The magnetic response from the ultra-thin film indicates the absence of robust room temperature ferromagnetism, perhaps due to anomalous intermixing of Si into the Ge quantum dots.

  15. High-Temperature Falling-Particle Receiver

    Broader source: Energy.gov (indexed) [DOE]

    temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

  16. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect (OSTI)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30T23:59:59.000Z

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  17. Refreshments will be served For more information contact Kim Coleman at kcole@wustl.edu

    E-Print Network [OSTI]

    Subramanian, Venkat

    and solid poly- mers, proteins, asphaltenes, and Room Temperature Ionic Liquids as well as numerical

  18. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  19. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  20. Environmental color for pediatric patient room design

    E-Print Network [OSTI]

    Park, Jin Gyu

    2009-05-15T23:59:59.000Z

    Color has a large impact on our psychological and physiological responses. This study examines the value of color as a component in a healing environment for pediatric patient rooms by measuring color preferences among healthy children, pediatric...

  1. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01T23:59:59.000Z

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  2. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01T23:59:59.000Z

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  3. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01T23:59:59.000Z

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  4. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    SciTech Connect (OSTI)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02T23:59:59.000Z

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  5. Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Duan, Y [NETL; Sorescu, D C [NETL; Luebke, D [NETL; Li, B Y; Zhang, K; King, D

    2013-05-16T23:59:59.000Z

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  6. Temperature Dependent Neutron Scattering Sections for Polyethylene

    E-Print Network [OSTI]

    Roger E. Hill; C. -Y. Liu

    2003-09-05T23:59:59.000Z

    This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

  7. Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

    2008-08-01T23:59:59.000Z

    Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

  8. Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2009-07-15T23:59:59.000Z

    Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  9. Analysis of Energy Saving in a Clean Room Air-conditioning System 

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  10. Thermal Inertia: Towards An Energy Conservation Room Management System (Technical report)

    E-Print Network [OSTI]

    Wang, Dan

    increasing attention to energy conservation around the world. The heating and air-conditioning systems-dissipated cool or heated air and conserve energy. We develop a green room management system with three main expenses of the heating or air-conditioning devices. Second, we build an energy-temperature correlation

  11. Demonstration of Entanglement-Enhanced Phase Estimation in Solid

    E-Print Network [OSTI]

    Gang-Qin Liu; Yu-Ran Zhang; Yan-Chun Chang; Jie-Dong Yue; Heng Fan; Xin-Yu Pan

    2014-08-03T23:59:59.000Z

    Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here, we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy (NV) centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: a NV centre electron spin and a proximal ${}^{13}$C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent a more generalized and elemental demonstration of enhancement of quantum metrology against classical procedure, which fully exploits the quantum nature of the system and probes.

  12. RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System

    E-Print Network [OSTI]

    Whitehouse, Kamin

    RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

  13. A New Control Room for SLAC Accelerators

    SciTech Connect (OSTI)

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04T23:59:59.000Z

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  14. Energy conservation standards for room air conditioners

    SciTech Connect (OSTI)

    Rosenquist, G.J. [Lawrence Berkeley National Lab., CA (United States)

    1998-12-31T23:59:59.000Z

    The National Appliance Energy Conservation Act (NAECA) of 1987 established minimum energy-efficiency standards for room air conditioners, which became effective on January 1, 1990. The 1990 minimum energy-efficiency ratios (EER) range from 8.0 to 9.0 (Btu/h)/W (2.34 to 2.64 W/W). As required by NAECA, the Department of Energy (DOE) must also consider amending the room air conditioner standards that went into effect in 1990. As a result, the DOE issued a Notice of Proposed Rulemaking (NOPR) in March 1994 proposing new energy-efficiency standards for several products including room air conditioners. DOE received an extensive number of comments in response to the updated standards that were proposed. A reanalysis was conducted incorporating these comments, resulting in revised estimates of the cost and efficiency increases for more efficient room air conditioner designs. This paper describes the cost-efficiency analysis of design options carried out in support of DOE`s effort to revise the energy-efficiency standards that were proposed for room air conditioners in March 1994. The analysis shows that for the most popular classes of room air conditioners (classes without reverse cycle, with louvered sides, and with capacities ranging from less than 5000 to 20,000 Btu/h [1758 to 5860 W]) EERs of approximately 10.0 (Btu/h)/W (2.93 W/W) can be achieved by incorporating commonly used technologies, such as high-efficiency rotary compressors, grooved refrigerant tubing, slit-type fins, subcoolers, and permanent split capacitor fan motors. Even greater increases in efficiency can be realized with brushless permanent magnet fan motors, enlarged heat exchanger coils, and variable-speed compressors.

  15. News Room | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases NewsRoomRoom

  16. Operation Manual for the TA Instruments TGA Q-500: Temperature Range: Room Temperature 1000C

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Sample Weight: 10 mg ­ 1 g Platinum Sample Pans are supplied by the lab. 1. If the TGA Q-500 experimental by EQUILIBRATE at 60°C. This will cool the furnace down without collecting data. The instrument is set to cool

  17. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01T23:59:59.000Z

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  18. Tetraphenylborate Solids Stability Tests

    SciTech Connect (OSTI)

    Walker, D.D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

    1997-12-19T23:59:59.000Z

    Tetraphenylborate solids provide a potentially large source of benzene in the slurries produced in the In-Tank Precipitation process. The stability of the solids is an important consideration in the safety analysis of the process and we desire an understanding of the factors that influence the rate of conversion of the solids to benzene.

  19. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01T23:59:59.000Z

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  20. Macquarie University Design Standards ROOM DATA SHEETS

    E-Print Network [OSTI]

    Wang, Yan

    ALARM Thermal Smoke POWER GPO's Dedicated GPO 3 phase Oven UPS AUDIOVISUAL OUTLETS Outlets Video projector Induction loop #12;Macquarie University Design Standards Section S ANNEXURE 9 ROOM DATA SHEETS) Conference chair Coffee table Blinds Modular table Microwave Oven Curtains Conference table Refrigerator

  1. Registrar's Office Room 130, 6299 South Street

    E-Print Network [OSTI]

    Brownstone, Rob

    Registrar's Office Room 130, 6299 South Street Henry Hicks Academic Administration Bldg PO Box, Visa, MasterCard, American Express or debit in person. Please do not send cash in the mail or enclose Integrated Science Program Skills Transcript (for courses completed between September 1998 and April 2005

  2. Einstein Room Reservations Rules and Regulations

    E-Print Network [OSTI]

    Yates, Andrew

    Einstein Room Reservations Rules and Regulations Before Reservation: Requests are not confirmed Activities, Joan Junger, (718) 430-2105 or student.activities@einstein.yu.edu. A meeting or conversation in accordance to Albert Einstein College of Medicine's Alcohol Policy. Before your request is confirmed you must

  3. Covered Product Category: Room Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  4. Texas Union Pizza Order Form ROOM RESERVED ______________________________________________________

    E-Print Network [OSTI]

    Jefferys, William

    : ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ Pick-up All orders are to be picked up at the Texas Union Hospitality Center desk in the south end West#12;#12;Texas Union Pizza Order Form ROOM RESERVED with the Texas Union Policies and Procedures. I understand that I will be held responsible for any debts incurred

  5. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  6. ROOM AIR CONDITIONER WALL MOUNTED type

    E-Print Network [OSTI]

    Kleinfeld, David

    SPLIT TYPE ROOM AIR CONDITIONER WALL MOUNTED type Reciprocating Compressor Models Indoor unit.6 - 11.4 ----- MOISTURE REMOVAL ( / hr) 2.0 1.8 2.7 2.7 4.3 3 AIR CIRCULATION - Hi (m / hr) 800 800 1

  7. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01T23:59:59.000Z

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  8. INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    chilled water cooling coil, and supply fan. The fan is aspecify the VAV box cooling design supply air temperature (the underfloor supply plenum (thereby, reducing room cooling

  9. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24T23:59:59.000Z

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  10. Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning

    E-Print Network [OSTI]

    Liu, D.; Tang, G.; Zhao, F.

    2006-01-01T23:59:59.000Z

    Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The radiator heating room...

  11. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  12. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, T.R.

    1990-04-17T23:59:59.000Z

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  13. Local public document room directory. Revision 7

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This directory (NUREG/BR-0088, Revision 7) lists local public document rooms (LPDRs) for commercial nuclear power plants with operating or possession-only licenses or under construction, plus the LPDRs for potential high-level radioactive waste repository sites, gaseous diffusion plants, certain fuel cycle facilities, certain low-level waste disposal facilities, and any temporary LPDRs established for the duration of licensing proceedings. In some instances, the LPDR libraries maintain document collections for more than one licensed facility. The library staff members listed are the persons most familiar with the LPDR collections. Reference librarians in the NRC Headquarters Public Document Room (PDR) are also available to assist the public in locating NRC documents.

  14. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  15. Tribological Characterization of Carbon Based Solid Lubricants 

    E-Print Network [OSTI]

    Sanchez, Carlos Joel

    2012-10-19T23:59:59.000Z

    lubrication modes. ..................... 10 Figure 5. Typical Stribeck Curve [22]. ..................................................................... 11 Figure 6. This figure illustrates the lamellar structure of graphite. ........................... 13... or low pressures, and high and low operating speeds. For purposes of this research, the extreme conditions will refer to high temperatures, and low pressures. The most common types of solid lubricants encompass four materials: graphite, molybdenum...

  16. POLYMERIC MICROCOMBUSTORS FOR SOLID-PHASE CONDUCTIVE FUELS

    E-Print Network [OSTI]

    combustor for the ignition and reaction of solid conductive fuels. Solid fuels can he made conductive, the hum rate of fuel in the overall combustor can he decoupled from the chemical reaction rate by changing igniter volume density; the combustor housing can be made of a low-temperature, low-cost mate

  17. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01T23:59:59.000Z

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  18. Solid-state infrared photoacoustic spectra of group 6B metal mixed carbonyl-t-butylisocyanide complexes, M(CO)[sub 6[minus]n](CN[sup t]Bu)[sub n](M = Cr, Mo, W; n = 1-3)

    SciTech Connect (OSTI)

    Li, Hongqi; Butler, I.S. (McGill Univ., Montreal, Quebec (Canada))

    1993-02-01T23:59:59.000Z

    Solid-state mid- and near-IR photoacoustic (PA) spectra have been measured at room temperature for the group 6B metal(0) mixed carbonyl-t-butylisocryanide complexes M(CO)[sub 6[minus]n](CN[sup t]Bu)[sub n] (M = Cr, Mo, W; n= 1-3). Vibrational assignments are proposed for many of the observed bands. The PA spectra in the near-IR region (4600-3600 cm[sup [minus]1]), where the binary v(CN) and v(CO) overtones and combinations absorb, are useful spectral fingerprints for these organometallic complexes. 20 refs., 3 figs., 3 tabs.

  19. Release of DRAFT RFP Headquarters Reading Room Instructions/Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release of DRAFT RFP Headquarters Reading Room InstructionsGuidelines 1. Reading Room Points of Contact: 721 - 88, Mike Baehre, (202) 586-6575 89 - Close of Draft RFP, John...

  20. A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH

    E-Print Network [OSTI]

    A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH ATTACHED WALL JETS By WEIXIU KONGQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS

  1. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  2. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  3. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  4. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  5. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  6. Dissertation Room Application Form Cecil H. Green Library

    E-Print Network [OSTI]

    Quake, Stephen R.

    Dissertation Room Application Form Cecil H. Green Library Name address: E-mail: sul-privileges@stanford.edu Campus Mail: Access Services, Attn. ­Dissertation Rooms, Green Library, 6063 Fax number: (650) 723-3992 U.S. Mail: Access Services, Attn. Dissertation Rooms

  7. 2012-2013 Housing Lottery & Room Selection Information

    E-Print Network [OSTI]

    Rusu, Adrian

    2012-2013 Housing Lottery & Room Selection Information Residential Learning & University Housing Room Selection Profile Deadline to Apply for 2012-2013 Housing Lottery Room Selection Begins March 9th housing for 2012-2013 must apply online: www.rowan.edu/rluh/roomselection Due to high demand

  8. Observation of Kerr nonlinearity inObservation of Kerr nonlinearity in micromicro--cavities at room temperaturecavities at room temperature

    E-Print Network [OSTI]

    phenomenanonlinear phenomena nn High quality factorHigh quality factor (Q)(Q) and smalland small mode volumesmode 2 2 xC Vn n QQP P P eff pumpeff pump total probepump probe probe = sfthermal µ 52/1 == s n R DD

  9. SAMPLE RESULTS FROM MCU SOLIDS OUTAGE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

  10. Solid state cavity QED : practical applications of strong coupling of light and matter

    E-Print Network [OSTI]

    Tischler, Jonathan Randall, 1977-

    2007-01-01T23:59:59.000Z

    J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire ...

  11. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  12. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  13. Inelastic x-ray scattering study of supercooled liquid and solid silicon.

    SciTech Connect (OSTI)

    Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

    2006-01-01T23:59:59.000Z

    Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

  14. MEAN TEMPERATURE RISE IN A TARGET Keith Symon LS-99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by formula (8), which is therefore conservative. The thermal conductivity of tungsten at room temperature is 0.5 calsec cm degC, and about half that at 2000C. The...

  15. Design and Construction of a Low Temperature Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Chen, Chi

    2010-10-12T23:59:59.000Z

    A low temperature scanning tunneling microscope (LTSTM) was built that we could use in an ultra high vacuum (UHV) system. The scanning tunneling microscope (STM) was tested on an existing 3He cryostat and calibrated at room, liquid nitrogen...

  16. Media Room | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologies | BlandineMediaMedia Room

  17. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c eRooftop UnitRooftopRoom

  18. Carbon War Room | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S ACarbonWar Room Jump to:

  19. NEPA Reading Room | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEESReading Room |

  20. An analysis of the impact of datacenter temperature on energy efficiency

    E-Print Network [OSTI]

    Lee, Heechang

    2012-01-01T23:59:59.000Z

    The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

  1. In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM A. Faes1, Denmark antonin.faes@epfl.ch Keywords: In situ ETEM, nickel oxide, reduction, RedOx, SOFC Solid Oxide Fuel. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cell - Fundamentals, Design

  2. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  3. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  4. Electrochemical and Solid-State Letters, 9 ?6 ? A261-A264 ?2006? 1099-0062/2006/9?6?/A261/4/$20.00 © The Electrochemical Society Alcohol Fuel Cells at Optimal Temperatures

    E-Print Network [OSTI]

    Tetsuya Uda; A Dane A. Boysen; B Calum R. I. Chisholm; Sossina M. Haile Z

    High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH 2PO 4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al 2O 3 methanol steam-reforming catalyst. The temperature of operation, ?250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm 2, respectively. The high power output ?305 mW/cm 2 ? obtained from reformate fuel containing 1 % CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures.

  5. Solid State Division progress report, September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  6. Architectures for individual and stacked micro single chamber solid oxide fuel cells

    E-Print Network [OSTI]

    Crumlin, Ethan J

    2007-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that convert various fuel sources directly into electrical energy at temperatures ranging from 600°C to 1000°C. These high temperatures could potentially ...

  7. Structural investigations on Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0 < x ? 2); High temperature ferromagnetism and enhanced low temperature anti-ferromagnetism

    SciTech Connect (OSTI)

    Singh, Harishchandra; Sinha, A. K., E-mail: anil@rrcat.gov.in, E-mail: hng@rrcat.gov.in; Ghosh, Haranath, E-mail: anil@rrcat.gov.in, E-mail: hng@rrcat.gov.in; Singh, M. N. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore—452013 (India); Rajput, Parasmani [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai—400085 (India); Prajapat, C. L.; Singh, M. R.; Ravikumar, G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai—400085 (India)

    2014-08-21T23:59:59.000Z

    In the quest of materials with high temperature ferromagnetism and low temperature anti-ferromagnetism, we prepare Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0?solid solutions. Room temperature structural investigations on these solid solutions as a function of Mn concentration using Synchrotron X-ray diffraction (SXRD) and X-ray absorption near edge structure measurements in corroboration with magnetism are presented. Phase diagram obtained from Rietveld Refinement on SXRD data as a function of Mn concentration indicates doping disproportionate mixing of both monoclinic (C2/c) and rhombohedral (R 3{sup ¯}) structure for x?

  8. Thermal and electrical stabilities of solid nitrogen (SN2) cooled YBCO coated conductors for HTS magnet applications

    E-Print Network [OSTI]

    Song, J. B.

    Recently, a cooling system using a solid cryogen such as solid nitrogen (SN2), was introduced for high temperature superconducting (HTS) magnet applications. In order to apply the SN2 cooling system successfully to HTS ...

  9. A holistic investigation of complexity sources in nuclear power plant control rooms

    E-Print Network [OSTI]

    Sasangohar, Farzan

    2011-01-01T23:59:59.000Z

    The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

  10. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  11. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  12. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  13. Thermodynamic modeling for organic solid precipitation

    SciTech Connect (OSTI)

    Chung, T.H.

    1992-12-01T23:59:59.000Z

    A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

  14. How the Number and Placement of Sensors Controlling Room Air Distribution Systems Affect Energy Use and Comfort

    E-Print Network [OSTI]

    Wang, D.; Arens, E.; Webster, T.; Shi, M.

    2002-01-01T23:59:59.000Z

    , ISRACVE, ASHRAE, 1993 Li, Y., M. Sandberg, and L. Fuchs. ?Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modeling.? Indoor Air, 1992. Vol. 2, pp. 225-243. Linden, P.F., G.F. Lane-Serff,, and D...

  15. Solids Accumulation Scouting Studies

    SciTech Connect (OSTI)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26T23:59:59.000Z

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

  16. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  17. Solid model design simplification

    SciTech Connect (OSTI)

    Ames, A.L.; Rivera, J.J.; Webb, A.J.; Hensinger, D.M.

    1997-12-01T23:59:59.000Z

    This paper documents an investigation of approaches to improving the quality of Pro/Engineer-created solid model data for use by downstream applications. The investigation identified a number of sources of problems caused by deficiencies in Pro/Engineer`s geometric engine, and developed prototype software capable of detecting many of these problems and guiding users towards simplified, useable models. The prototype software was tested using Sandia production solid models, and provided significant leverage in attacking the simplification problem.

  18. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01T23:59:59.000Z

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  19. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12T23:59:59.000Z

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  20. Raman and absorption spectrophotometric studies of selected lanthanide, californium-doped lanthanide, and actinide trihalides in the solid state

    SciTech Connect (OSTI)

    Wilmarth, W.R.

    1988-03-01T23:59:59.000Z

    The solid-state absorption spectra of Cf(III) ions as a dopant in lanthanide trihalide hosts (LnCl/sub 3/: Ln = Ce, Sm, and Y; LnBr/sub 3/: Ln = Ce, Sm, Tb, and Y; LnI/sub 3/: Ln = Ce and Y) have been recorded. The spectra of Cf(III) have been correlated with the various crystal structures. The phonon Raman spectra and solid-state absorption spectra of PmF/sub 3/, PmCl/sub 3/, PmBr/sub 3/, and two crystal modifications of PmI/sub 3/ have been recorded. Symmetry assignments have been made for the Raman-active bands for these trihalides and also the sesquioxide. The room-temperature absorption spectra have been correlated to crystal field effects. The symmetry assignments of the Raman-active phonon modes have been made based on polarized Raman spectra from single crystals of YF/sub 3/-type orthorhombic TbF/sub 3/ and PuBr/sub 3/-type orthorhombic NdBr/sub 3/. Raman spectra of other isostructural lanthanide compounds have been recorded and compared. Symmetry assignments for these compounds have been made by analogy to the single-crystal assignments. Raman spectra have been obtained and catalogued for a number of actinide compounds. Symmetry assignments have been made for the observed Raman-active phonon bands in this work based on the assignments made for isostructural lanthanide compounds. 29 figs., 22 tabs.

  1. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest

    SciTech Connect (OSTI)

    Richard, L.; Helgeson, H.C. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics] [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1998-12-01T23:59:59.000Z

    To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25 C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for {approximately}360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25 C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17{alpha}(H)- and 17{beta}(H)-hopanes, 5{alpha}(H),14{alpha}(H)-, 5{beta}(H),14{alpha}(H)-, 5{alpha}(H),14{beta}(H)-, and 5{beta}(H),14{beta}(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms. Calculations of this kind permit comprehensive thermodynamic description of the chemical evolution of organic matter with increasing depth in sedimentary basins.

  2. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect (OSTI)

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Pradeep, T., E-mail: pradeep@iitm.ac.in [DST Unit of Nanoscience (DST UNS), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Kephart, Luke; Walker, Jeff; Kuchta, Kevin; Martin, Dave; Wei, Jian [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)] [Extrel CMS, LLC, 575 Epsilon Drive, Pittsburgh, Pennsylvania 15238 (United States)

    2014-01-15T23:59:59.000Z

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition in view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.

  3. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

    1989-04-11T23:59:59.000Z

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  4. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23T23:59:59.000Z

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  5. Fabricating the Solid Core Heatpipe Reactor

    SciTech Connect (OSTI)

    Ring, Peter J.; Sayre, Edwin D. [Advanced Methods and Materials, Inc., 1190 Mountain View-Alviso Road, Suite P, Sunnyvale, CA 94089 (United States); Houts, Mike [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

  6. Generator configuration for solid oxide fuel cells

    DOE Patents [OSTI]

    Reichner, Philip (Plum Boro, PA)

    1989-01-01T23:59:59.000Z

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  7. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Cheung, Hoi Ying Iris

    2014-01-01T23:59:59.000Z

    Heating, Ventilation and Air Conditioning Power Distributionlike a packaged air conditioning unit) for your server room(Refrigerating and Air-Conditioning Engineers’ (ASHRAE)

  8. Solid Target Options S. Childress

    E-Print Network [OSTI]

    McDonald, Kirk

    power is higher than for existing solid target designs - but not by a large factor. · NuMI graphite beam power) · High beam power solid targets frequently use higher z materials for increased yield plusSolid Target Options NuFACT'00 S. Childress Solid Target Options · The choice of a primary beam

  9. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20T23:59:59.000Z

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  10. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... understand how this reset scheme responds to building load change, thus resulting in supply air temperature reset, it is helpful to explain the role of thermostat. In the following section, we explain the way how the thermostat works, the type...

  11. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which seat x 1 Toilet roll holder x 1 INVENTORY FOR SHACKLETON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

  12. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR MASON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

  13. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which holder x 1 INVENTORY FOR TENNIS COURT BLOCK NO: FLAT NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

  14. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR ELGAR COURT FLAT NO: BLOCK NO: ROOM NO: NAME

  15. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which rail x 1 INVENTORY FOR MAPLE BANK FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

  16. Housing & Residential Services Room and Board Rates 20112012

    E-Print Network [OSTI]

    Heller, Barbara

    Housing & Residential Services Room and Board Rates 2011­2012 Campus housing offers a variety, please view the Housing & Residential Services website at: housing.iit.edu. McCormick Student Village to participate in the Residential 5 meal plan. Winter Break is included in MSV, Gunsaulus Hall and SSV. DAS room

  17. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19T23:59:59.000Z

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  18. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12T23:59:59.000Z

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  19. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect (OSTI)

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23T23:59:59.000Z

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  20. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    SciTech Connect (OSTI)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27T23:59:59.000Z

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup ?6} S cm{sup ?1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup ?1}, carbonyl (-C=O) at 1750–1650 cm{sup ?1} and ether (-C-O-C-) at 1150–1000 cm{sup ?1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  1. Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium/Copper Interlayers

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium-phase bonded using copper/niobium/copper interlayers have been investigated at both room and elevated, with failure primarily at the alumina/niobium interfaces. At room temperature, cyclic fatigue-crack propagation

  2. Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals 

    E-Print Network [OSTI]

    Vasquez, Yolanda

    2009-05-15T23:59:59.000Z

    the rate of reaction between two solids; however, the high temperatures required to overcome the diffusion barrier limit the products accessible to the most thermodynamically stable phases. In this work, nano-scale solids such as alloys and intermetallics...

  3. ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia

    E-Print Network [OSTI]

    Goddard III, William A.

    through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion temperature, leading to applications as oxygen sensors and as membranes for high temperature solid oxide fuel

  4. Thermionic Converter Temperature Controller

    SciTech Connect (OSTI)

    Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

    1999-08-23T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  5. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  6. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01T23:59:59.000Z

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  7. Methane conversion by solid electrolyte membranes. Final report, January 1, 1989-August 31, 1993

    SciTech Connect (OSTI)

    Sammells, A.F.; Schwartz, M.; Cook, R.L.; White, J.H.

    1994-03-01T23:59:59.000Z

    The research sought to develop correlations underlying highly conductive solid electrolytes and employ more conductive electrolytes in laboratory fuel cells which operate at temperatures several hundreds of degrees below the 1000 C temperatures used in current solid oxide fuel cells (SOFCs). The goal of the research was to improve the reliability and cost of planar SOFCs through the use of electrolytes that could function under relatively mild temperatures.

  8. Naked Clusters of 56 Tin Atoms in the Solid State Svilen Bobev and Slavi C. Sevov*

    E-Print Network [OSTI]

    reaction of the elements at high temperature. The surfaces of Na (ingot, Alfa, 99.9%, sealed under Ar containers that were sealed by arc-welding. These containers were in turn jacketed in silica ampules for 48 h and cooled to room temperature with a rate of 5 °C/h. (Ba has the highest melting point at 725

  9. Helium-cooled solid breeder blanket for ITER

    SciTech Connect (OSTI)

    Raffray, A.R.; Abdou, M.A.; Chou, P.; Gorbis, Z.; Tillack, M.; Watanabe, Y.; Ying, A.

    1989-03-01T23:59:59.000Z

    This paper summarizes the latest results of a design study of a helium-cooled solid breeder blanket for ITER. Attractive features of this design include the following: (1) There is a significant design margin since only part of the allowable solid breeder temperature window needs to be used. (2) There is an expanding data base available from solid breeder experiments carried out internationally. (3) The solid breeder can be designed to operate at high reactor-relevant temperature, while the helium is kept at moderate temperature and pressure for safety and reliability. In addition, since helium is a gas, it can be run so as to optimize the structure temperature and accommodate long term power variation without incurring any substantial pressure penalty. (4) The use of helium, an inert gas minimizing any chemical reaction and corrosion, in combination with a low activation solid breeder, is a safety advantage. An extensive list of the blanket operating parameters is provided and key factors are discussed.

  10. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  11. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  12. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  13. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  14. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  15. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  16. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2012-01-01T23:59:59.000Z

    AND SOLID ELECTROLYTE DEGRADATION Lutgard C. De Jonghe TWO-AND SOLID ELECTROLYTE DEGRADATION Lutgard C. De JongheAND SOLID ELECTROLYTE DEGRADATION Lutgard C. De Jonghe

  17. Thermomechanical room and canister region benchmark analyses between STEALTH-WI and SPECTROM-32: Draft final report

    SciTech Connect (OSTI)

    Dial, B.W.; Maxwell, D.E.; Yee, G.

    1987-12-01T23:59:59.000Z

    This report documents the benchmarking of the two-dimensional waste isolation version of STEALTH (designated STEALTH-WI) against the thermomechanical performance assessment calculations performed by RE/SPEC using SPECTROM-32. An axisymmetric, canister-scale (very-near-field) analysis was performed to compute the peak stress exerted by the salt on the waste package. A plane strain, room-scale (near-field) analysis was also performed to predict disposal room roof-to-floor closure and the temperatures at key locations in the vicinity of the disposal room. Comparisons between the STEALTH and SPECTROM-32 results showed that the temperature predictions agreed to within 5/degree/C, peak canister stresses better than 10%, and the average roof-to-floor closures within 30%. The stress and displacement differences were attributed to differences in the treatment of plasticity in the constitutive laws for salt employed in STEALTH and SPECTROM-32. The temperature differences were due to minor differences in the thermal models employed in STEALTH and SPECTROM- 41, the thermal analysis code which supplies temperatures for SPECTROM-32. 9 refs., 21 figs., 6 tabs.

  18. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30T23:59:59.000Z

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  19. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  20. Long cycle life solid-state solid polymer electrolyte cells

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-02-02T23:59:59.000Z

    This patent describes a rechargeable solid-state lithium conducting solid polymer electrolyte electrochemical cell comprising: a lithium intercalation compound negative electrode selected from the group consisting of: MoO/sub 2/; RuO/sub 2/; WO; OsO/sub 2/; IrO/sub 2/; and Mo1/2V1/2O/sub 2/; a lithium ion conducting solid polymer electrolyte comprising a lithium ion conducting supporting electrolyte complexed with a solid polymer contacting the negative electrode on one side; and a lithium intercalation compound positive electrode contacting the opposite side of the solid polymer electrolyte.

  1. Staff Radiation Doses in a Real-Time Display Inside the Angiography Room

    SciTech Connect (OSTI)

    Sanchez, Roberto, E-mail: rmsanchez.hcsc@salud.madrid.org; Vano, E.; Fernandez, J. M. [Hospital Clinico San Carlos, Medical Physics Department (Spain); Gallego, J. J. [Universidad Complutense de Madrid, Radiology Department (Spain)

    2010-12-15T23:59:59.000Z

    MethodsThe evaluation of a new occupational Dose Aware System (DAS) showing staff radiation doses in real time has been carried out in several angiography rooms in our hospital. The system uses electronic solid-state detectors with high-capacity memory storage. Every second, it archives the dose and dose rate measured and is wirelessly linked to a base-station screen mounted close to the diagnostic monitors. An easy transfer of the values to a data sheet permits further analysis of the scatter dose profile measured during the procedure, compares it with patient doses, and seeks to find the most effective actions to reduce operator exposure to radiation.ResultsThe cumulative occupational doses measured per procedure (shoulder-over lead apron) ranged from 0.6 to 350 {mu}Sv when the ceiling-suspended screen was used, and DSA (Digital Subtraction Acquisition) runs were acquired while the personnel left the angiography room. When the suspended screen was not used and radiologists remained inside the angiography room during DSA acquisitions, the dose rates registered at the operator's position reached up to 1-5 mSv/h during fluoroscopy and 12-235 mSv/h during DSA acquisitions. In such case, the cumulative scatter dose could be more than 3 mSv per procedure.ConclusionReal-time display of doses to staff members warns interventionists whenever the scatter dose rates are too high or the radiation protection tools are not being properly used, providing an opportunity to improve personal protection accordingly.

  2. A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions

    E-Print Network [OSTI]

    Valkov, Boris Ivanov

    2014-01-01T23:59:59.000Z

    In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

  3. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  4. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24T23:59:59.000Z

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  5. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01T23:59:59.000Z

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  6. A few rooms on campus are available for students to use,

    E-Print Network [OSTI]

    Escher, Christine

    . Frosted glass walls let light into the room while keeping the space private. Foot baths are located in public bathrooms near the multifath room. A curtain in the middle of the room creates a separate space

  7. Prediction of Room Air Diffusion for Reduced Diffuser Flow Rates

    E-Print Network [OSTI]

    Gangisetti, Kavita

    2011-02-22T23:59:59.000Z

    With the ever-increasing availability of high performance computing facilities, numerical simulation through Computational Fluid Dynamics (CFD) is increasingly used to predict the room air distribution. CFD is becoming an important design...

  8. Modeling control room crews for accident sequence analysis

    E-Print Network [OSTI]

    Huang, Y. (Yuhao)

    1991-01-01T23:59:59.000Z

    This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

  9. Student Employment Office 883 Broadway Street, Room 102

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    1 STUDENT EMPLOYMENT HANDBOOK 2011-2012 Student Employment Office 883 Broadway Street, Room 102://www.uml.edu/financialaid #12;2 Table of Contents Introduction to the Student Employment Programs .....................................................4 The Basics of On-Campus Employment

  10. Financial Aid and Student Records Student Wing, Room 119

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Financial Aid and Student Records Student Wing, Room 119 PO Box 6000 Binghamton, New York 13902 or spring semester. · Any student wishing to drop all summer or winter classes is not required to complete

  11. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03T23:59:59.000Z

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  12. Solids flow control and measurement in the PEATGAS pilot-plant program

    SciTech Connect (OSTI)

    Wohadlo, S.J.; Biljetina, R.; Laurens, R.M.; Bachta, R.

    1982-01-01T23:59:59.000Z

    In a pilot plant gasification program, the measurement and control of major process variables such as flow, temperature, pressure, density and level are essential to develop accurate material balance and reliable scale-up data. Of these, solids mass flow metering and control usually present the most difficult application. Problems are encountered because of (a) solids characteristics, which can cause erosion and plugging; (b) measurement requirements, which are often at elevated pressures and temperatures; and (c) changes in stream characteristics, such as density, viscosity and solids concentration. This paper reviews the approaches used to measure and control solid-liquid and solid-gas mixtures and elaborates on the design, installation and operating experiences of a lockhopper dry feed system commissioned to control solids feed to the gasifier. Accurate and reliable solids flow measurement and control was achieved during the operation of the PEATGAS pilot plant. Standard instrumentation, modified to meet process requirements, was used to measure multi-component flows of solid-gas and solid-liquid mixtures. In addition, a lockhopper feed system using an innovative solids rate control and measurement technique was installed, commissioned and operated. IGT as a process developer will continue to look for new or improved instrumentation that might be better suited to measure important process variables such as the solids mass flow applications discussed herein.

  13. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    Efficiency of Room Air Conditioners in India: OpportunitiesStar Labeled room Air Conditioners. ” Ministry of Power (of Superefficient Room Air Conditioners,” Lawrence Berkeley

  14. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01T23:59:59.000Z

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  15. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30T23:59:59.000Z

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  16. High temperature thermoelectric properties of the solid-solution zintl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledgeHighHigh

  17. Loca study for a helium-cooled solid breeder design for ITER

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Fujimura, K.; Jun, I.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The analysis of thermal processes after a loss-of-coolant accident (LOCA) in a solid breeder blanket is important because of the first wall and solid breeder maximum allowable temperature constraints. The objective is to design for a LOCA so that following a LOCA, the maximum solid breeder and structure temperatures are less than the limit beyond which irreversible damage is done, which would lead to loss of investment. The temporal temperature profiles for the solid breeder and first wall regions of a helium-cooled solid breeder design for ITER were calculated based on afterheat values for adiabatic and non-adiabatic conditions and the results are presented in this paper. It is found that, for this design, even when excluding radiation to the cooled inboard, a LOCA can be recommended by energy removal through a flowing purge with a reasonable flow rate.

  18. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15T23:59:59.000Z

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  19. Thermal control of solid breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-12-31T23:59:59.000Z

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  20. Thermal control of solid breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

    1991-01-01T23:59:59.000Z

    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.