Powered by Deep Web Technologies
Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solid–solid transformation route to nanocrystalline sodalite from Al-PILC at room temperature  

Science Journals Connector (OSTI)

The present study describes a solid–solid transformation of nanocrystalline sodalite from the solid gel mixture of Al2O3-pillared montmorillonite (Al-PILC) with sodium hydroxide at room temperature (25 °C) under an ambient atmosphere. Powder X-ray diffraction (XRD) analysis confirms that the X-ray crystalline sodalite products are crystallized after 12 days, whereas infrared absorption (IR) spectra reveal that diagnostic IR absorption peaks due to single four-membered ring of sodalite framework is observed even after 1 day. Scanning electron microscopy (SEM) shows that Al-PILC is transformed into discrete nano-sized sodalite particles (?50 nm). Although the induction period, the time elapsing before nucleation, for the solid–solid transformation takes much longer (12 days), the nanocrystalline sodalite is successfully obtained at this extremely mild synthetic condition through solid–solid transformation.

Sung-Reol Lee; Man Park; Yang-Su Han; Jin-Ho Choy

2004-01-01T23:59:59.000Z

2

Room-temperature phosphorescence of hydroxyl-substituted aromatics adsorbed on solid surfaces  

SciTech Connect

Several polymer-salt mixtures were examined as solid surfaces for room-temperature phosphorescence (RTP). A variety of hydroxyl-substituted aromatic compounds were observed to give RTP when absorbed on poly(acrylic acid) (PAA)-sodium halide mixtures and filter paper. A solid-sample holding plate was used with a spectrodensitometer for solid surface luminescence detection of components on powder and filter paper adsorbents. RTP analytical data, including linear ranges of calibration curves and limits of detection for several compounds, were compared for 1% PAA-NaBr powder and filter paper.

Dalterio, R.A.; Hurtubise, R.J.

1982-02-01T23:59:59.000Z

3

Novel room temperature ferromagnetic semiconductors  

SciTech Connect

Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Gupta, Amita

2004-11-01T23:59:59.000Z

4

Determining Camera Gain in Room Temperature Cameras  

SciTech Connect

James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

Joshua Cogliati

2010-12-01T23:59:59.000Z

5

Absorber Materials at Room and Cryogenic Temperatures  

SciTech Connect

We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

2011-09-01T23:59:59.000Z

6

Room-temperature macromolecular serial crystallography using synchrotron radiation  

Science Journals Connector (OSTI)

The room-temperature structure of lysozyme is determined using 40000 individual diffraction patterns from micro-crystals flowing in liquid suspension across a synchrotron microfocus beamline.

Stellato, F.

2014-05-30T23:59:59.000Z

7

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network (OSTI)

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons… (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

8

Determination of the Acceptable Room Temperature Range for Local Cooling  

E-Print Network (OSTI)

Determination of the acceptable room temperature range is a key problem in satisfactory design of local cooling for energy savings. At the room temperatures ranging from neutral to warm, three sensitive body parts-the face, chest and back-were each...

Zhang, Y.; Zhao, R.

2006-01-01T23:59:59.000Z

9

Matchstick: a room-to-room thermal model for predicting indoor temperature from wireless sensor data  

Science Journals Connector (OSTI)

In this paper we present a room-to-room thermal model used to accurately predict temperatures in residential buildings. We evaluate the accuracy of this model with ground truth data from four occupied family homes (two in the UK and two in the US). The ... Keywords: forced air, home automation, prediction, radiators, thermal modelling, underfloor heating

Carl Ellis; Mike Hazas; James Scott

2013-04-01T23:59:59.000Z

10

Room-temperature observations of the weak localization in low-mobility graphene films  

SciTech Connect

We report room-temperature observations of the quantum conductance corrections caused by the weak localization in graphene films synthesized using solid-state-source chemical vapor deposition. Both Raman spectroscopy and Hall measurements showed strong disorder in the samples with a low mobility of ?430 cm{sup 2}/V s. The emergence of weak localization at room temperature arises from the competition between the valley-dependent scattering and the thermal dephasing in such low-quality samples, although quantum effects normally appear in the samples that have an ideal structure at cryogenic temperatures. The large disorder in our low-mobility samples unexpectedly preserved the quantum mechanical weak localization.

Han, Junhao; Wang, Shanyue; Qian, Di; Song, Fengqi, E-mail: songfengqi@nju.edu.cn, E-mail: bgwang@nju.edu.cn; Wang, Baigeng, E-mail: songfengqi@nju.edu.cn, E-mail: bgwang@nju.edu.cn; Han, Min; Zhou, Jianfeng [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wang, Xinran; Wang, Xuefeng [School of Electrical and Electronic Engineering, Nanjing University, Nanjing 210093 (China)

2013-12-07T23:59:59.000Z

11

Quantitative room-temperature mineralization of airborne formaldehyde using  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantitative room-temperature mineralization of airborne formaldehyde using Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Title Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Publication Type Journal Article Year of Publication 2011 Authors Sidheswaran, Meera A., Hugo Destaillats, Douglas P. Sullivan, Joern Larsen, and William J. Fisk Journal Applied Catalysis B - Environmental Issue 107 Pagination 34-41 Date Published 2011 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group DOI 10.1016/j.apcatb.2011.06.032 Attachment Size

12

Single-Molecule Triplet-State Photon Antibunching at Room Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecule Triplet-State Photon Antibunching at Room Temperature. Single-Molecule Triplet-State Photon Antibunching at Room Temperature. Abstract: We have demonstrated probing...

13

The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner  

E-Print Network (OSTI)

A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

2006-01-01T23:59:59.000Z

14

Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature  

Science Journals Connector (OSTI)

...VDF-TrFE-chlorofluoroethylene) [P(VDF-TrFE-CFE)] at near room temperature around...copolymerization with a bulky monomer such as CFE or CTFE (chlorotrifluoroethylene) to form...dielectric constant of P(VDF-TrFE-CFE) 59.2/33.6/7.2 mol % terpolymer...

Bret Neese; Baojin Chu; Sheng-Guo Lu; Yong Wang; E. Furman; Q. M. Zhang

2008-08-08T23:59:59.000Z

15

Room-temperature magnetoelectric multiferroic thin films and applications thereof  

DOE Patents (OSTI)

The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

Katiyar, Ram S; Kuman, Ashok; Scott, James F.

2014-08-12T23:59:59.000Z

16

Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature  

SciTech Connect

Among the hard alloys, WC alloys find wide industrial applications as tips for cutting tools and wear-resistant parts. Their intrinsic resistance to oxidation and corrosion at high temperatures also makes them desirable as a protective coating for devices at elevated temperatures. In the industrial scale of production, WC is prepared by a direct union of the elements at a temperature of 3,273 to 3,473 K. Accordingly, the high cost of preparation is a disadvantage of this process. Here, the authors report a novel technique for preparing a large amount of WC powder using a simple method. This process is based on mechanical solid-state reduction (MSSR) followed y solid-state reaction (SSR) during room-temperature ball milling (a high energy ball mill, Fritsch P6, was used at a rotation speed of 4.2 s{sup {minus}1}) of a mixture of WO{sub 3}, Mg, and C powders.

El-Eskandarany, M.S.; Omori, M.; Ishikuro, M.; Konno, T.J.; Takada, K.; Sumiyama, K.; Hirai, T.; Suzuki, K. [Tohoku Univ., Sendai (Japan)

1996-12-01T23:59:59.000Z

17

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents (OSTI)

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

Wagh, A.S.; Singh, D.

1997-07-08T23:59:59.000Z

18

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents (OSTI)

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

1997-01-01T23:59:59.000Z

19

Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature  

SciTech Connect

Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ?T for the two opposite polarization orientations. This difference under a typical writing voltage of 3?V can reach over 1?K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53?K/V) with ?T being over 4.5?K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

Liu, Yang, E-mail: liuyangphy52@gmail.com; Infante, Ingrid C.; Dkhil, Brahim, E-mail: brahim.dkhil@ecp.fr [Laboratoire Structures, Propriétés et Modélisation des Solides, UMR 8580 CNRS-Ecole Centrale Paris, Grande Voie des Vignes, Châtenay-Malabry Cedex 92295 (France); Lou, Xiaojie [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 (China)

2014-02-24T23:59:59.000Z

20

Room-temperature Formation of Hollow Cu2O Nanoparticles  

SciTech Connect

Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

2010-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Surface Combustion Microengines Based on Photocatalytic Oxidations of Hydrocarbons at Room Temperature  

Science Journals Connector (OSTI)

Surface Combustion Microengines Based on Photocatalytic Oxidations of Hydrocarbons at Room Temperature ... For instance internal combustion engines depend on an exothermic combustion of a mixture of hydrocarbon fuel or hydrogen and air, inside a sealed cylinder equipped with a movable piston.1 Once ignited using an electrical or compression heating system, the combustion products have more available energy than the original mixture, and this energy can be translated into work by driving the piston. ... One possible explanation for the lack of data is that the temperature increase of surface or suspended colloids is hard to measure due to fast heat dissipation through solid bond vibrations or solvent molecules in continuous UV radiation. ...

Ming Su; Vinayak P. Dravid

2005-09-22T23:59:59.000Z

22

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network (OSTI)

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel… (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

23

Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature  

E-Print Network (OSTI)

Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

2015-01-01T23:59:59.000Z

24

Quantum-confined single photon emission at room temperature from Silicon carbide tetrapods  

E-Print Network (OSTI)

Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) a geometry that creates a spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predict that a bound exciton should exist at the 3C 4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights towards understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.

Castelletto, Stefania; Magyar, Andrew P; Gentle, Angus; Gali, Adam; Aharonovich, Igor

2014-01-01T23:59:59.000Z

25

Room temperature triggered single-photon source in the near infrared  

E-Print Network (OSTI)

We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.

E. Wu; James Rabeau; Gérard Roger; François Treussart; Heping Zeng; Philippe Grangier; Steven Prawer; Jean-François Roch

2007-08-14T23:59:59.000Z

26

Room temperature ferromagnetism in a phthalocyanine based carbon material  

SciTech Connect

We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490?±?10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2014-02-07T23:59:59.000Z

27

Electrodrift purification of materials for room temperature radiation detectors  

DOE Patents (OSTI)

A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

1997-06-24T23:59:59.000Z

28

Electrodrift purification of materials for room temperature radiation detectors  

DOE Patents (OSTI)

A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

James, Ralph B. (5420 Lenore Ave., Livermore, Alameda County, CA 94550); Van Scyoc, III, John M. (P.O. Box 93, 65 Main St., Apt. 1, Plainfield, Cumberland County, PA 17081); Schlesinger, Tuviah E. (8 Carleton Dr., Mt. Lebanon, Allegheny County, PA 15243)

1997-06-24T23:59:59.000Z

29

Low cycle fatigue behavior of Zircaloy-2 at room temperature  

Science Journals Connector (OSTI)

Abstract Fuel cladding and pressure tubes of Zircaloy-2 in pressurized light and heavy water nuclear reactors experience plastic strain cycles due to power fluctuations in the reactor, such strain cycles cause low cycle fatigue (LCF) and could be life limiting factor for them. Factors like strain rate, strain amplitude and temperature are known to have marked influence on LCF behavior. The effect of strain rate from 10?2 to 10?4 s?1 on LCF behavior of Zircaloy-2 was studied, at different strain amplitudes between ±0.50% and ±1.25% at room temperature. Fatigue life was decreased with lowering of strain rate from 10?2 to 10?4 s?1 at all the strain amplitudes studied. While there was cyclic softening at lower strain amplitudes (??t/2 ? ±0.60%) cyclic hardening was exhibited at higher strain amplitudes (??t/2 ? ±1.00%) at all the strain rates. Further, there was secondary cyclic hardening during the later stage of cycling at all the strain amplitudes and the strain rates. Cyclic stress–strain hysteresis loops at the lowest strain rate of 10?4 s?1 were found to be heavily serrated, resulting from dynamic strain aging (DSA). There was significant effect of strain rate on dislocation substructure. The results are discussed in terms of high concentration of point defects generated during cyclic straining and their role in enhancing interaction between solutes and dislocations.

G. Sudhakar Rao; J.K. Chakravartty; Saibaba Nudurupati; G.S. Mahobia; Kausik Chattopadhyay; N.C. Santhi Srinivas; Vakil Singh

2013-01-01T23:59:59.000Z

30

Hydrogen production via carbon-assisted water electrolysis at room temperature.  

E-Print Network (OSTI)

??The objective of the work was to conduct carbon-assisted water electrolysis at room temperature with reduced energy costs for hydrogen production and to improve upon… (more)

Bollineni, Shilpa

2008-01-01T23:59:59.000Z

31

Intermediate Temperature Solid Oxide Fuel Cell Development  

SciTech Connect

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

32

14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes  

E-Print Network (OSTI)

14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes PAUL L. VOSS based on InGaAs/InP avalanche photodiodes for use at 1.55 mm wavelength. Operation at room temperature at the above wavelengths for conventional high light-level measurements with PIN or ava- lanche photodiodes

Köprülü, Kahraman Güçlü

33

Room-Temperature Synthesis Leading to Nanocrystalline Frederic Sauvage,  

E-Print Network (OSTI)

.; Laffont, L.; Leriche, J.-B.; Masquelier, C. Solid State Ionics 2006, 177, 333­341. (3) Sauvage, F.; Baudrin, E.; Gengembre, L.; Tarascon, J.-M. Solid State Ionics 2005, 176, 1869­1876. (4) Drezen, T.; Kwon. Introduction The need for energy storage gave rise to the lithium-ion battery, while the effort given

Poeppelmeier, Kenneth R.

34

Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals using Ion Implantation. Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals using Ion...

35

Room Temperature Aryl Trifluoromethylation via Copper- Mediated Oxidative Cross-Coupling  

E-Print Network (OSTI)

A method for the room temperature copper-mediated trifluoromethylation of aryl and heteroaryl boronic acids has been developed. This protocol is amenable to normal benchtop setup and reactions typically require only 1?4 ...

Buchwald, Stephen Leffler

36

Optical gain and lasing from band-engineered Ge-on-Si at room temperature  

E-Print Network (OSTI)

We present theoretical modeling and experimental results of optical gain and lasing from tensile-strained, n[superscript +] Ge-on-Si at room temperature. Compatible with silicon CMOS, these devices are ideal for large-scale ...

Liu, Jifeng

37

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network (OSTI)

on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings...

Spain, S.

1985-01-01T23:59:59.000Z

38

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network (OSTI)

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

39

Epitaxy of Nanocrystalline Silicon Carbide on Si(111) at Room Temperature  

E-Print Network (OSTI)

Epitaxy of Nanocrystalline Silicon Carbide on Si(111) at Room Temperature Roberto Verucchi carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting Si or plastics that cannot withstand high temperatures. Silicon carbide (SiC) has unique properties that make

Alfè, Dario

40

A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature  

E-Print Network (OSTI)

A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature Jia Zhang,ab Chao temperature oxygen sensor based on TiO2/graphene device was developed with an enhanced sensing performance­hole pairs in the TiO2 film and the photogenerated electrons were scavenged by graphene and percolated

Cao, Wenwu

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1986-01-01T23:59:59.000Z

42

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

1985-01-01T23:59:59.000Z

43

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1987-01-01T23:59:59.000Z

44

Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode  

SciTech Connect

In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

2014-05-19T23:59:59.000Z

45

Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures  

SciTech Connect

Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4h or 100h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750°C, using loading rates of 5 mN/s and 25 mN/s. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature (Tg). Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4h aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.

Milhans, Jacqueline; Li, Dongsheng; Khaleel, Mohammad A.; Sun, Xin; Al-Haik, Marwan; Harris, Adrian; Garmestani, Hamid

2011-04-20T23:59:59.000Z

46

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

47

Room-Temperature Multiferroic Hexagonal LuFeO3 Films  

The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics.

Wang, Wenbin; Zhao, Jun; Wang, Wenbo; Gai, Zheng; Balke, Nina; Chi, Miaofang; Lee, Ho Nyung; Tian, Wei; Zhu, Leyi; Cheng, Xuemei; Keavney, David J.; Yi, Jieyu; Ward, Thomas Z.; Snijders, Paul C.; Christen, Hans M.; Wu, Weida; Shen, Jian; Xu, Xiaoshan

2013-06-01T23:59:59.000Z

48

Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature  

SciTech Connect

We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J., E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Han, Z. [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Laboratoire Aimé Cotton, École Normale Supérieure de Cachan, CNRS, Université Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France); Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E. [Laboratoire Aimé Cotton, École Normale Supérieure de Cachan, CNRS, Université Paris Sud, bat. 505, campus d'Orsay, 91405 Orsay (France)

2014-02-24T23:59:59.000Z

49

The role of hydrogen in room-temperature ferromagnetism at graphite surfaces  

SciTech Connect

We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon {pi} states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top {approx}10 nm of the irradiated sample where the actual magnetization reaches {approx_equal} 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.

Ohldag, Hendrik

2011-08-12T23:59:59.000Z

50

Velocity of sound in solid methane near melting temperatures  

E-Print Network (OSTI)

VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

Whitehead, John Martin

2012-06-07T23:59:59.000Z

51

Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus  

DOE Patents (OSTI)

Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

Zaromb, S.

1994-06-21T23:59:59.000Z

52

Room temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel  

E-Print Network (OSTI)

water, reflecting greater occupancy of higher energy vibrational states. In pure water, hydrogen bonding state between 250K and 240K. (Tiny droplets of water have been shown to spontaneously freeze at aboutRoom temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel F

53

Optical gain from the direct gap transition of Ge-on-Si at room temperature  

E-Print Network (OSTI)

We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

Liu, Jifeng

54

Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene  

E-Print Network (OSTI)

Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene . The hot-electron photothermoelectric effect in graphene is a prom- ising detection mechanism; photoexcited, we demonstrate a graphene thermoelectric terahertz photodetector with sensi- tivity exceeding 10 V W

Murphy, Thomas E.

55

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network (OSTI)

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

56

Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals  

E-Print Network (OSTI)

Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces

Southern California, University of

57

Room Temperature Control During Season Switchover with Single Duct Variable Air Volume System Without Reheat  

E-Print Network (OSTI)

of VAV boxes to maintain room temperature at their setpoints. The thermostat action is switched from direct acting (DA) to reverse acting (RA) when the season changes from fall to winter and vice versa from winter to spring, based on the out side air...

Liu, C.; Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H.

2003-01-01T23:59:59.000Z

58

Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions  

E-Print Network (OSTI)

CONCEPTS Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions. Keywords: single-moleculedetection - single-moleculema- nipulation - laser-induced fluorescence * optical, frcquency-modulated optical ab- sorption and fluorescence excitation have been used to investi- gate

Zare, Richard N.

59

Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature  

E-Print Network (OSTI)

Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

Janyce Franc; Nazario Morgado; Raffaele Flaminio; Ronny Nawrodt; Iain Martin; Liam Cunningham; Alan Cumming; Sheila Rowan; James Hough

2009-12-01T23:59:59.000Z

60

Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions  

SciTech Connect

We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

Tang, Linlong [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China); Du, Jinglei, E-mail: dujl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Shi, Haofei, E-mail: shi@cigit.ac.cn; Wei, Dongshan; Du, Chunlei, E-mail: cldu@cigit.ac.cn [Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Novel Low Temperature Solid State Fuel Cells  

SciTech Connect

We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400?C up to 800?C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800?C.

Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

2009-12-15T23:59:59.000Z

62

Deformation of depleted uranium ? 0.78 Ti under shock compression to 11.0 GPa at room temperature  

Science Journals Connector (OSTI)

The present work on depleted uranium alloyed with 0.78% titanium by weight (i.e. U?0.8 Ti) describes the nature of deformation it undergoes when subjected to shock compression at room temperature. The principal results emerging out of the present work are: (1) The stress limits of elastic deformation are dependent on the thickness of U?0.8Ti. The stress limit decreases from over 3.0 GPa at the impact surface to 1.2 GPa at a depth of 9 mm in U?0.8 Ti; (2) The lower limit of the stress agrees with the static yield stress in U?0.8 Ti; (3) Above the elastic stress limit the deformation of U?0.8 Ti proceeds in a manner of the ideal plastic solid; and (4) The pressure derivative of Lame’s parameter of U?0.8 Ti is estimated to be 3.8.

Dattatraya P. Dandekar; Anthony G. Martin; John V. Kelley

1980-01-01T23:59:59.000Z

63

Regeneration tests of a room temperature magnetic refrigerator and heat pump  

E-Print Network (OSTI)

A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

Brown, G V

2014-01-01T23:59:59.000Z

64

Above room-temperature operation of InAs/AlGaSb superlattice quantum cascade lasers emitting at 12 {mu}m  

SciTech Connect

The authors report on above-room-temperature operation of InAs/AlGaSb quantum cascade lasers emitting at 12 {mu}m. The laser structures are grown on a n-InAs (100) substrate using solid-source molecular beam epitaxy. An InAs/AlGaSb superlattice is used as an active part and an InAs double plasmon waveguide is used for optical confinement. Results show that increased doping concentration in the injection part of the active region expands the current operation range of the devices, allowing laser operation at and above room temperature. The observed threshold current density is 4.0 kA/cm{sup 2} at 300 K; the maximum operation temperature is 340 K.

Ohtani, K.; Moriyasu, Y.; Ohnishi, H.; Ohno, H. [Laboratory for Nanoelectronics and Semiconductor Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)

2007-06-25T23:59:59.000Z

65

Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy  

E-Print Network (OSTI)

Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy B Jolla, California 92093 Received 23 July 2002; accepted 30 September 2002 Trace amounts of oxygen CoPt3 grown by vapor deposition at or slightly above room temperature. Oxygen is known to act

Hellman, Frances

66

Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells  

E-Print Network (OSTI)

Symposium on Solid Oxide Fuel Cells (SOFC-VI) ed. S. C.FOR REDUCED TEMPERATURE SOLID OXIDE FUEL CELLS Peggy Y. Hou,for low temperature solid oxide fuel cell is discussed in

Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

1999-01-01T23:59:59.000Z

67

FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids  

SciTech Connect

DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

VAJO, JOHN

2014-06-12T23:59:59.000Z

68

Observation of optical spin injection into Ge-based structures at room temperature  

SciTech Connect

Non-zero spin polarization induced by optical orientation was clearly observed at room temperature in a Ge/Ge{sub 0.8}Si{sub 0.2} quantum well grown on Ge and a Ge layer grown on Si by molecular beam epitaxy, whereas it was absent in bulk Ge. This occurred because indirect-gap photoluminescence (PL), which can obscure the spin-polarization information carried by the direct-gap PL, was quenched by unintentional growth-related defects in the epitaxial layers. Such interpretation was confirmed by applying time gating that effectively removed the indirect-gap PL characterized by a slower rise time, which allowed us to demonstrate the existence of room-temperature spin polarization in bulk Ge.

Yasutake, Yuhsuke; Hayashi, Shuhei; Fukatsu, Susumu [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan)] [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)] [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)

2013-06-17T23:59:59.000Z

69

Room temperature ferromagnetism in Mn, Ni and Co ions doped Cu{sub 2}O nanorods  

SciTech Connect

Here we report the synthesis and characterization of Cu{sub 2}O nanorods doped with Mn, Ni and Co transition metal ions and the study of their magnetic properties. Synthesis of the nanorods was carried out by the modified polyol method. Powder X-ray diffraction patterns clearly showed them to be polycrystalline single phase material. They exhibited ferromagnetic behavior at room temperature, however no such behavior was observed for the reference undoped sample, which indicated that unintentionally introduced magnetic impurities were not responsible for the observed phenomenon. Ferromagnetic behavior was found to be dependent on the dopant concentration and increased consistently with its increment in the material. The total magnetic moments contribution was calculated for the dopant concentration and was found to be insignificant to account for the observed ferromagnetism, therefore it was suggested that ferromagnetism could have conjured up from the induced magnetic moment in the defects created as cation vacancies in the material. The presence of the defects was supported by the room temperature photoluminescence study which showed that intensity of the peaks was dependent on the dopant concentration and increased consistently with it. There was strong correlation between the magnitude of the photoluminescence peak and the observed ferromagnetic property in the doped samples. -- Graphical Abstract: Room temperature ferromagnetism was observed in the Cu{sub 2}O nanorods doped with Mn, Ni and Co ions. The origin seems to be the defects of cation vacancies created by the dopant ions. Display Omitted

Ahmed, Asar [Department of Chemistry, SL-214, Southern Lab, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh (India); Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.i [Department of Chemistry, SL-214, Southern Lab, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh (India)

2010-12-15T23:59:59.000Z

70

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells ... Initial and final state geometries are found with standard geometry optimization, then a number of intermediate states are generated by interpolation of atomic positions. ... A special "metric" and a special "preconditioning" optimized for a plane-wave basis set will be introduced. ...

Timothy P. Holme; Fritz B. Prinz

2011-05-24T23:59:59.000Z

71

Room-Temperature Operation of DC Axially Discharged Fast Axial-Flow CO Laser  

Science Journals Connector (OSTI)

A compact CO laser with a DC axially discharged fast-axial flow has been operated at room temperature (270 – 300 K), achieving ~ 165 W per unit discharge length in CW mode under xenon (Xe) gas addition. A maximum power of 385 W per unit gain length (1 m) has been similarly achieved with Xe gas at 235 – 275 K. Dependence of output power on gas-flow velocity v , discharge current I dis, and gas composition is examined experimentally and theoretically explained, and dependence of oscillation lines on v is also investigated. Moreover, the effect of gas-flow velocity on gas temperature is also examined.

Yutaka Kodama; Heihachi Sato

1996-01-01T23:59:59.000Z

72

Solid state differential temperature regulator for a solar heating system  

SciTech Connect

A solid state temperature regulator is provided for a solar heating system for use in conjunction with a swimming pool, or the like. The solar swimming pool heating system includes the usual components, namely, a pump, a filter, and a collector, and in which the pump serves to circulate the water from the pool through the filter and collector and back into the pool. The system also includes additional components, namely, temperature sensors for the collector and for the circulated pool water, appropriate valves, and a solid state control circuit. The solid state control circuit responds to predetermined temperature differences sensed by the sensors to cause the pool water to be circulated through the collector so long as the collector is at a higher temperature than the circulated pool water, and which causes the circulated pool water to by-pass the collector when the temperature of the collector drops below the temperature of the circulated pool water. The control circuit also has a high temperature cut-off control which activates the valves to cause the circulated pool water to by-pass the collector when the temperature of the circulated pool water exceeds a particular threshold. The control circuit also includes a mode switch which may be actuated to reverse the action of the system, causing the pool water to be circulated through the collector when the collector temperature is lower than the pool water temperature, for example, at night following a hot day, in which the collector radiates to the black sky, whereby the collector can be used to cool the water in the pool.

Firebaugh, D.C.

1980-04-01T23:59:59.000Z

73

Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis  

SciTech Connect

One-dimensional (1D) undoped and Fe doped ZnO nanorods of average length {approx}1 {mu}m and diameter {approx}50 nm have been obtained using a microwave-assisted synthesis. The magnetization (M) and coercivity (H{sub c}) value obtained for undoped ZnO nanorods at room temperature is {approx}5x10{sup -3} emu/g and {approx}150 Oe, respectively. The Fe doped ZnO samples show significant changes in M -H loop with increasing doping concentration. Both undoped and Fe doped ZnO nanorods exhibit a Curie transition temperature (T{sub c}) above 390 K. Electron spin resonance and Moessbauer spectra indicate the presence of ferric ions. The origin of ferromagnetism in undoped ZnO nanorods is attributed to localized electron spin moments resulting from surface defects/vacancies, where as in Fe doped samples is explained by F center exchange mechanism. -- Graphical abstract: Room temperature ferromagnetism has been reported in undoped and Fe doped ZnO nanorods of average length {approx}1 {mu}m and diameter {approx}50 nm. Display Omitted Research Highlights: {yields} Microwave-assisted synthesis of undoped and Fe doped ZnO nanorods. {yields} Observation of room temperature ferromagnetism in undoped and Fe doped ZnO nanorods. {yields} Transition temperature (T{sub c}) obtained in undoped and doped samples is above 390 K. {yields} In undoped ZnO origin of ferromagnetism is explained in terms of defects/vacancies. {yields} Ferromagnetism in Fe doped ZnO is explained by F-center exchange mechanism.

Limaye, Mukta V.; Singh, Shashi B. [DST unit on Nanoscience, Department of Physics, University of Pune, Pune 411007 (India); Das, Raja; Poddar, Pankaj [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Kulkarni, Sulabha K., E-mail: s.kulkarni@iiserpune.ac.i [DST unit on Nanoscience, Indian Institute of Science Education and Research, Pune 411021 (India)

2011-02-15T23:59:59.000Z

74

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature  

E-Print Network (OSTI)

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature Simone film crystal growth of silicon carbide (SiC), a semiconductor syn- thesized to replace silicon in harsh

Alfè, Dario

75

Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals  

E-Print Network (OSTI)

time can be known so that its energy consumption can be estimated accurately. In order to verify the simulation accuracy, an actual room equipped with a gas-engine heat pump (GHP) air-conditioning system is studied by both simulation and measurement...

Wang, F.; Yoshida, H.; Matsumoto, K.

2006-01-01T23:59:59.000Z

76

An atomic clock with $1\\times 10^{-18}$ room-temperature blackbody Stark uncertainty  

E-Print Network (OSTI)

The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 \\times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1\\times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.

Beloy, K; Phillips, N B; Sherman, J A; Schioppo, M; Lehman, J; Feldman, A; Hanssen, L M; Oates, C W; Ludlow, A D

2014-01-01T23:59:59.000Z

77

Low-temperature heat capacity of solid HD  

Science Journals Connector (OSTI)

The heat capacity at the saturated vapor pressure C s has been measured for a single sample of solid HD over the temperature range 0.4 to 8 K for various concentrations of J=1 impurities of H2 and D2. The variation in J=1 concentration in the sample was due to conversion to the J=0 rotational ground state over a period of time of approximately one month. In the limit of zero J=1 concentration, C s fitted a T3 dependence characterized by a Debye temperature of 101 K. An analysis is given of the contribution to the heat capacity from electric quadrupole-quadrupole pair interactions of the J=1 impurities in the solid.

J. H. Constable; A. Q. McGee; J. R. Gaines

1975-04-15T23:59:59.000Z

78

Fluorescence of synthetic DNA's at room temperature and neutral pH  

Science Journals Connector (OSTI)

The fluorescence of two synthetic DNA's, polyd(m5C) and poly[d(I-m5C)] is demonstrated at room temperature and neutral pH. Polyd(m5C) at pH 8.0 exhibits fluorescence qualitatively the same as the mononucleotide: the quantum yield is independent of excitation energy; the emission maximum is at 2.92 ??1 (355 nm). Poly[d(I-m5C)] exhibits fluorescence resembling that of the 5-methyldeoxycytidine component with an additional feature that is probably due to weak deoxyinosine fluorescence. Neither of these synthetic DNA's exhibits spectra suggestive of exciplex formation.

James E. Gill

1971-01-01T23:59:59.000Z

79

Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses  

SciTech Connect

In this letter, an experimental study is presented to characterize a room-temperature plasma jet in atmospheric argon generated with submicrosecond voltage pulses at 4 kHz. Distinct from sinusoidally produced argon discharges that are prone to thermal runaway instabilities, the pulsed atmospheric argon plasma jet is stable and cold with an electron density 3.9 times greater than that in a comparable sinusoidal jet. Its optical emission is also much stronger. Electrical measurement suggests that the discharge event is preceded with a prebreakdown phase and its plasma stability is facilitated by the short voltage pulses.

Walsh, J. L.; Kong, M. G. [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

2007-11-26T23:59:59.000Z

80

Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency  

SciTech Connect

An InP based quantum cascade laser heterostructure emitting at 4.6 {mu}m was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 {mu}m without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation.

Bai, Y.; Slivken, S.; Darvish, S. R.; Razeghi, M. [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

2008-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature  

E-Print Network (OSTI)

We investigate the optical properties of Dibenzoterrylene (DBT) molecules in a spin-coated crystalline film of anthracence. By performing single molecule studies, we show that the dipole moments of the DBT molecules are oriented parallel to the plane of the film. Despite a film thickness of only 20 nm, we observe an exceptional photostability at room temperature and photon count rates around one million per second from a single molecule. These properties together with an emission wavelength around 800 nm make this system attractive for applications in nanophotonics and quantum optics.

C. Toninelli; K. Early; J. Bremi; A. Renn; S. Goetzinger; V. Sandoghdar

2010-02-04T23:59:59.000Z

82

Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications  

E-Print Network (OSTI)

Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.solidoxide.html, Tubular Solid Oxide Fuel Cell Technology,Oxide Films for Solid Oxide Fuel Cell Applications by Jason

Nicholas, Jason.D.

2007-01-01T23:59:59.000Z

83

Effect of Temperature on the Complexity of Solid Argon System  

E-Print Network (OSTI)

We study the measure of complexity in solid Argon(Ar) system from the time series data of kinetic energy(KE) of single Ar atoms at different equilibrated temperatures. To account the inherent multi-scale dependence of the complexity, the multi-scale entropy (MSE) of the time series of KE of individual Ar atoms are computed at different equilibrated temperatures. The MSE study reveals that the dynamics of an atom becomes more complex at higher temperatures and the result corroborates well with the variation of the pair correlation function of the atoms in the solid Ar crystal. Also, We repeat the MSE analysis for program generated Levy noise time series and for time series data obtained from the outcomes of exponential decay with noise dx(t) = -x(t) dt + sigma x dB(t)(Langevin equation). Our study establishes that the scale dependence of sample entropy for time series of KE of individual atoms in solid Ar system has similar tendency as that of Levy noise time series and the outcomes of exponential decay with n...

Giri, A; Barat, P

2014-01-01T23:59:59.000Z

84

Low-Temperature Heat Transport in Solid HD  

Science Journals Connector (OSTI)

The thermal conductivity of solid HD has been measured and compared with theory over the temperature range 4-0.2 K. Since the sample remained frozen over the entire period in which the measurements were made, the H2 and D2 impurities, as well as the other crystal defects, were assumed fixed in the lattice. However, the concentration of the J=1 orthohydrogen (o-H2) and paradeuterium impurities in the sample changed through the slow J=1 to J=0 conversion taking place in the solid. The rate of conversion and consequently the J=1 concentration was determined by measuring, as a function of time, the heat of conversion resulting from J=1 to J=0 transitions. Because of the variation in the J=1 concentration, it was possible to separate the thermal resistivity into a (J=1)-dependent part and a part independent of J=1 concentration. The resistivity resulting from phonon scattering by J=1 molecules was compared to existing theory for two-phonon Raman scattering by o-H2 molecules in a parahydrogen solid. At the lowest temperatures, the temperature dependence of this resistivity was too large to be accounted for by a two-phonon process. It is suggested that a one-phonon process is responsible for the increase in the resistivity at low temperatures. The results of a calculation are given to demonstrate the palusibility of this argument. Below 1 K, the (J=1)-independent conductivity can be adequately fitted by a T3 temperature dependence. From this dependence it was inferred that the sample was polycrystalline. Above 1 K, the (J=1)-independent conductivity is dominated by the presence of the H2 and D2 isotopic impurities. The techniques used to measure these impurity concentrations are described in detail.

J. H. Constable and J. R. Gaines

1973-10-15T23:59:59.000Z

85

Room temperature solution-processed electron transport layer for organic solar cells  

Science Journals Connector (OSTI)

Abstract We present a new recipe for a solution-processed titanium oxide (TiOx) based electron transport layer at room temperature. Due to its high chemical compatibility with all types of organic blends (semi-crystalline or amorphous) and it is good adhesion to both surfaces of glass/ITO substrate and the active layer (blend), the buffer layer is suitable for use in organic solar cell devices with conventional, inverted or multi-junction structures. The main goal of this recipe is producing with easiness an repeatable and stable precursor that will leads to titanium oxide buffer layer each time with the same quality. Since the processing of the titanium oxide layer itself does not require any initial or additional treatment before and after the coating, and can even be carried in air as well as under protective atmosphere, our room temperature solution-processed electron transport layer is highly versatile and very promising for cost effective mass production of organic solar cells.

A. Hadipour; R. Müller; P. Heremans

2013-01-01T23:59:59.000Z

86

Mechanical and microstructural characterizations of ultrafine grained Zircaloy-2 produced by room temperature rolling  

Science Journals Connector (OSTI)

Abstract The effect of deformation strain at room temperature on the microstructural and mechanical properties of Zircaloy-2 was investigated in the present work. The sample was initially heat treated at 800 °C in argon environment and quenched in mercury prior to rolling. The deformed alloys were characterized by using EBSD and TEM. It reveals the misorientation of incidental grain boundaries (IDBs) due to large plastic strain induced in the sample. The recovery of deformed alloy upon annealing leads to the formation of ultrafine and nanostructured grains in the alloy. The hardness achieved after 85% room temperature rolling (RTR) is found to be 269 HV, while the tensile strength is 679 MPa and 697 MPa in the rolling and transverse direction, respectively. The improvement in strength is due to generation of high dislocation density and ultrafine grains in the deformed alloy with 85% thickness reduction, during rolling. The deformed alloy subjected to annealing at 400 °C for 30 min sample shows increase in ductility (6% and 7.2%) in rolling and transverse direction, respectively, due to the annihilation of dislocations as evident from the TEM study.

Sunkulp Goel; R. Jayaganthan; I.V. Singh; D. Srivastava; G.K. Dey; N. Saibaba

2014-01-01T23:59:59.000Z

87

Iron-aluminum alloys having high room-temperature and method for making same  

DOE Patents (OSTI)

A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

Sikka, V.K.; McKamey, C.G.

1993-08-24T23:59:59.000Z

88

Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film  

SciTech Connect

Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10{sup ?9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

Wang, Jun, E-mail: ueoewj@gmail.com; Gou, Jun; Li, Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2014-02-15T23:59:59.000Z

89

Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide  

E-Print Network (OSTI)

Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

Pereira, LMC; Wahl, U

90

Solid/liquid lubrication of ceramics at elevated temperatures  

SciTech Connect

This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.

Erdemir, A.; Erck, R.A.; Fenske, G.R. [Argonne National Lab., IL (United States); Hong, H. [Lubrizol Corp., Wickliffe, OH (United States)

1996-04-01T23:59:59.000Z

91

Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films  

SciTech Connect

Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

2014-04-24T23:59:59.000Z

92

High-k (k=30) amorphous hafnium oxide films from high rate room temperature deposition  

SciTech Connect

Amorphous hafnium oxide (HfO{sub x}) is deposited by sputtering while achieving a very high k{approx}30. Structural characterization suggests that the high k is a consequence of a previously unreported cubiclike short range order in the amorphous HfO{sub x} (cubic k{approx}30). The films also possess a high electrical resistivity of 10{sup 14} {Omega} cm, a breakdown strength of 3 MV cm{sup -1}, and an optical gap of 6.0 eV. Deposition at room temperature and a high deposition rate ({approx}25 nm min{sup -1}) makes these high-k amorphous HfO{sub x} films highly advantageous for plastic electronics and high throughput manufacturing.

Li, Flora M.; Bayer, Bernhard C.; Hofmann, Stephan; Milne, William I.; Flewitt, Andrew J. [Department of Engineering, Electrical Engineering Division, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Dutson, James D.; Wakeham, Steve J.; Thwaites, Mike J. [Plasma Quest Ltd., Unit 1B, Rose Estate, Osborn Way, Hook, Hampshire RG27 9UT (United Kingdom)

2011-06-20T23:59:59.000Z

93

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene  

E-Print Network (OSTI)

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

2015-01-01T23:59:59.000Z

94

Ceramic stabilization of hazardous wastes: a high performance room temperature process  

SciTech Connect

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products.

Maloney, M.D.

1996-10-01T23:59:59.000Z

95

Room-temperature condensation in whispering gallery microresonators assisted by longitudinal optical phonons  

E-Print Network (OSTI)

We report condensation of hexagonal whispering gallery modes (WGM) at room temperature in ZnO microwires that embody nearly perfect polygonal whispering gallery microresonators. The condensate regime is achieved in the UV spectral range only at energies below the first longitudinal optical (LO) phonon replica of the free ZnO A-exciton transition and at non-zero wave vectors. We demonstrate that the multimodality of the WGM system and the high population of free excitons and phonons with various momenta strongly enhance the probability of an interaction of quasiparticles of the cavity exciton-photon system with LO phonons. We further examine the far-field mode pattern of lasing WGM and demonstrate their spatial coherence.

Dietrich, Christof P; Michalsky, Tom; Lange, Martin; Grundmann, Marius

2015-01-01T23:59:59.000Z

96

Portable room-temperature self-powered/active H2 sensor driven by human motion through piezoelectric screening effect  

Science Journals Connector (OSTI)

Abstract Room-temperature high H2 sensing has been realized from SnO2/ZnO nanoarray nanogenerator. Without any external electricity power source, the portable device can be self-powered under the driving of human motion, in which the piezoelectric output can actively act as both the power source and H2 sensing signal. Upon exposure to 800 ppm H2 at room temperature, the piezoelectric output voltage of the device under the same applied deformation decreases from 0.80 V (in dry air) to 0.14 V, and the sensitivity is up to 471.4. The detection limit is ~10 ppm H2, and the selectivity against H2 at room temperature is very high. The excellent room-temperature H2 sensing performance can be attributed to the coupling of the piezoelectric screening effect of ZnO nanowires and the conversion of SnO2/ZnO heterojunctions. This study can stimulate a research trend for the development of the next generation of portable room-temperature H2 sensors.

Yongming Fu; Weili Zang; Penglei Wang; Lili Xing; Xinyu Xue; Yan Zhang

2014-01-01T23:59:59.000Z

97

Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature  

Science Journals Connector (OSTI)

A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

Yayu Zhao; Xuan Lai; Ping Deng; Yuxin Nie; Yan Zhang; Lili Xing; Xinyu Xue

2014-01-01T23:59:59.000Z

98

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

99

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

100

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

2012-02-01T23:59:59.000Z

102

New insights into designing metallacarborane based room temperature hydrogen storage media  

SciTech Connect

Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

Bora, Pankaj Lochan; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2013-10-28T23:59:59.000Z

103

ROOM TEMPERATURE COMPRESSION PROPERTIES OF TWO HEATS OF UNIRRADIATED V-4Cr-4Ti  

SciTech Connect

Vanadium alloys are of interest to the Fusion program as potential first wall structural materials. The expected irradiation conditions for the first wall structural material include a range of temperatures where very high hardening caused by a high density of small, but shearable defect clusters results in a type of deformation called "localized deformation". At the onset of yield in a tensile test, a dislocation may move through a grain shearing the obstacles and clearing out a channel. Subsequent dislocations may easily pass through this channel. As the test progresses, more channels form. In the early stages of deformation, it is thought that the plastic deformation is confined to these channels. One important macroscopic result of this deformation behavior is rapid onset of necking in a tensile test and very low uniform elongation. As a means to help understand the range of stress states where localized deformation may adversely affect macroscopic ductility in vanadium alloys, compression test specimens fabricated from two heats of V-4Cr-4Ti are currently under irradiation in the High Flux Isotope Reactor (HFIR). The results of room temperature compression tests on the unirradiated control materials are presented here and compared with uniaxial tensile values from the literature.

Toloczko, Mychailo B.; Kurtz, Richard J.

2004-06-30T23:59:59.000Z

104

Structural and elastic properties of Ge after Kr-ion irradiation at room temperature  

Science Journals Connector (OSTI)

Changes in the elastic properties of Ge induced by room-temperature irradiation with 3.5-MeV Kr ions have been determined and correlated with changes in the microstructure determined by transmission electron microscopy. Elastic-shear-moduli changes were measured by Brillouin scattering, and changes in local atomic arrangement were determined by Raman scattering. Amorphization decreased the elastic shear modulus of Ge by 17%. The fractional decrease was correlated with the amorphous volume fraction with a cross section of 4.5±0.5 nm2/ion. No change was observed in the shear modulus during void formation and growth. The elastic properties of the voided material are described by the Voigt averaging. However, as the voids evolved into a fibrous spongelike microstructure, a second dramatic elastic softening occurs which we attribute to the inability of the fibrous structure to support shear stresses. Raman scattering showed that, once formed, there was no change in the structure of the amorphous material at the atomic scale during void formation and subsequent void coalescence.

R. C. Birtcher; M. H. Grimsditch; L. E. McNeil

1994-10-01T23:59:59.000Z

105

A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography  

E-Print Network (OSTI)

1mm A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism Examples of 3D images obtained 19 days 84 days0 day OUR WORK: We developed a new in vivo cryogenic cell conductivity of air ~ 0.0015 Wm-1K-1 (reduced by 28 compared to that at atmospheric pressure). Cryogenic cell

Ribes, Aurélien

106

Nanobonding for Multi-Junction Solar Cells at Room Temperature T. Yu, M. M. R. Howlader*, F. Zhang, M. Bakr  

E-Print Network (OSTI)

in windows, roofs and outside walls of new houses and buildings at the construction stage [1]. Among variousNanobonding for Multi-Junction Solar Cells at Room Temperature T. Yu, M. M. R. Howlader*, F. Zhang of the interfacial properties of Si/GaAs indicates its potential use on the fabrication of multi-junction solar cells

Howlader, Matiar R

107

Room Temperature, Intrinsic Vacancy Mediated Ferromagnetism in Cr:Ga2Se3/Si E. N. Yitamben,1,  

E-Print Network (OSTI)

Room Temperature, Intrinsic Vacancy Mediated Ferromagnetism in Cr:Ga2Se3/Si E. N. Yitamben,1, T. C of 4 µB/Cr. The intrinsic- vacancy structure of defected-zinc-blende -Ga2Se3 enables Cr incorporation, as well as strong overlap between Cr 3d states and the Se 4p states lining the intrinsic vacancy rows, ob

Olmstead, Marjorie

108

Mechanochemically synthesized nanomaterials for intermediate temperature solid oxide fuel cell membranes.  

E-Print Network (OSTI)

??[Truncated abstract] In this dissertation an investigation into the utility of mechanochemically synthesized nanopowders for intermediate temperature solid oxide fuel cell components is reported. The… (more)

Hos, James Pieter

2005-01-01T23:59:59.000Z

109

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

SciTech Connect

The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

Uday B. Pal; Srikanth Gopalan

2006-01-12T23:59:59.000Z

110

Line coupling effects in the isotropic Raman spectra of N{sub 2}: A quantum calculation at room temperature  

SciTech Connect

We present quantum calculations of the relaxation matrix for the Q branch of N{sub 2} at room temperature using a recently proposed N{sub 2}-N{sub 2} rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10?200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.

Thibault, Franck, E-mail: franck.thibault@univ-rennes1.fr [Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, Campus de Beaulieu, Bât. 11B, F-35042 Rennes (France)] [Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, Campus de Beaulieu, Bât. 11B, F-35042 Rennes (France); Boulet, Christian [Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Université Paris-Sud 11, Campus d’Orsay, Bât. 350, F-91405 Orsay (France)] [Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Université Paris-Sud 11, Campus d’Orsay, Bât. 350, F-91405 Orsay (France); Ma, Qiancheng [NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University 2880 Broadway, New York, New York 10025 (United States)] [NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics, Columbia University 2880 Broadway, New York, New York 10025 (United States)

2014-01-28T23:59:59.000Z

111

Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)  

Science Journals Connector (OSTI)

Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase low-loss room-temperature multiferroic with magnetoelectric coupling: (PbZr0.53Ti0.47O3) (1-x)- (PbFe0.5Ta0.5O3)x. The present study combines x-ray scattering magnetic and polarization hysteresis in both phases plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 ?C/cm2 which actually increases (to 40 ?C/cm2) in the high-T tetragonal phase representing an exciting new room temperature oxide multiferroic to compete with BiFeO3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known which is a great advantage for magnetoelectric devices.

Dilsom A. Sanchez; N. Ortega; Ashok Kumar; R. Roque-Malherbe; R. Polanco; J. F. Scott; Ram S. Katiyar

2011-01-01T23:59:59.000Z

112

Computer Simulation of a "Green Chemistry" Room-Temperature Ionic Solvent C. J. Margulis, H. A. Stern, and B. J. Berne*  

E-Print Network (OSTI)

Computer Simulation of a "Green Chemistry" Room-Temperature Ionic Solvent C. J. Margulis, H. A, room-temperature ionic liquids are currently being investigated as alternative solvents in industry that is clean, recyclable, and a good solvent for both organic and inorganic compounds is appealing

Berne, Bruce J.

113

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator 510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania SUMMARY This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide fuel cell generators near Pittsburgh, Pennsylvania. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 1, 1991 EA-0510: Final Environmental Assessment High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC) August 1, 1991 EA-0510: Finding of No Significant Impact

114

Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide  

SciTech Connect

Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul

2011-07-24T23:59:59.000Z

115

Low and Room Temperature X-ray Structures of Protein Kinase A Ternary Complexes Shed New Light on Its Activity  

SciTech Connect

Posttranslational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signaling mechanism which regulates many cellular processes. A low temperature X-ray structure of the PKA catalytic subunit (PKAc) ternary complex with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg2+ concentration of < 0.5mM revealed a single metal ion in the active site. The lack of a second metal in the low-temperature LT-PKAc-MgATP-IP20 renders the and phosphoryl groups of ATP to be very flexibile, with high thermal B-factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl for transfer to a substrate, as demonstrated by comparison of the former structure with LT-PKAc- Mg2ATP-IP20 complex. In addition to the kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. We found that at room temperature under X-ray irradiation ATP can be readily and completely hydrolyzed into ATP and a free phosphate ion in the crystals of the ternary complex LT-PKAc- Mg2ATP-IP20. The cleavage of ATP may be aided by X-ray-born free hydroxyl radicals, a very reactive chemical species, that move quickly through the crystal at room temperature. The phosphate anion is clearly visible in the electron density maps; it remains in the active site, but slides about 2 from its position in ATP toward Ala21 of IP20 that mimics the phosphorylation site. The phosphate, thus, pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of IP20 terminal residues 24 and 25. X-ray structures of PKAc in complex with non-hydrolyzable ATP analog, AMPPNP, at both room and low temperatures demonstrated no temperature effects on the conformation and position of IP20.

Fisher, Zoe [Los Alamos National Laboratory (LANL); Hanson, Leif [University of Toledo, Toledo, OH; Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Langan, Paul [ORNL

2012-01-01T23:59:59.000Z

116

Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond  

E-Print Network (OSTI)

The nitrogen-vacancy defect center (NV center) is a promising candidate for quantum information processing due to the possibility of coherent manipulation of individual spins in the absence of the cryogenic requirement. We report a room-temperature implementation of the Deutsch-Jozsa algorithm by encoding both a qubit and an auxiliary state in the electron spin of a single NV center. By thus exploiting the specific S=1 character of the spin system, we demonstrate how even scarce quantum resources can be used for test-bed experiments on the way towards a large-scale quantum computing architecture.

Fazhan Shi; Xing Rong; Nanyang Xu; Ya Wang; Jie Wu; Bo Chong; Xinhua Peng; Juliane Kniepert; Rolf-Simon Schoenfeld; Wolfgang Harneit; Mang Feng; Jiangfeng Du

2010-02-12T23:59:59.000Z

117

Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature  

SciTech Connect

Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Barros, Raquel [Departamento de Ciencia dos Materiais, CENIMAT/I3N, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Materiais Avancados, INNOVNANO, SA, 7600-095 Aljustrel (Portugal); Park, Sang-Hee Ko; Hwang, Chi-Sun [Electronic and Telecommunications Research Institute, 138 Gajeongro, Yuseong-gu, Daejeon, 305-700 (Korea, Republic of)

2010-05-10T23:59:59.000Z

118

Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy  

SciTech Connect

Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.

Zuo Zheng; Morshed, Muhammad; Liu Jianlin [Quantum Structures Laboratory, Department of Electrical Engineering, University of California at Riverside, Riverside, California 92521 (United States); Beyermann, W. P. [Department of Physics and Astronomy, University of California at Riverside, Riverside, California 92521 (United States); Zheng Jianguo [Laboratory for Electron and X-ray Instrumentation, California Institute for Telecommunications and Information Technology, University of California Irvine, Irvine, California 92697 (United States); Xin Yan [NHMFL, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310-3706 (United States)

2013-03-15T23:59:59.000Z

119

Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C-band  

E-Print Network (OSTI)

We report on the control of the spontaneous emission dynamics from InAsP self-assembled quantum dots emitting in the telecommunications C-band and weakly coupled to the mode of a double heterostructure cavity etched on a suspended InP membrane at room temperature. The quality factor of the cavity mode is 44x10^3 with an ultra-low modal volume of the order of 1.2 lambda/n)^3, inducing an enhancement of the spontaneous emission rate of up a factor of 2.8 at 300 K.

Richard Hostein; Rémy Braive; Matthieu Larqué; Ko-Hsin Lee; Anne Talneau; Luc Le Gratiet; Isabelle Robert-Philip; Isabelle Sagnes; Alexios Beveratos

2009-03-25T23:59:59.000Z

120

Room temperature strain rate sensitivity in precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposites  

SciTech Connect

Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ? 3.7 × 10{sup ?3} is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O) clusters are responsible for the limited flowability in these ceramics.

Sujith, Ravindran; Kumar, Ravi, E-mail: nvrk@iitm.ac.in [Materials Processing Section, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India. (India)] [Materials Processing Section, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India. (India)

2014-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Room temperature electron transport properties of single C{sub 60} studied using scanning tunneling microscope and reak junctions.  

SciTech Connect

We report the measurements of the electron transport of an individual C{sub 60} molecule through the combination of two experimental efforts. The nanometer-sized junctions were fabricated using electromigration combined with electron beam lithography and shadow effect evaporation. We performed the scanning tunneling microscopy/spectroscopy measurements of dispersed C{sub 60} molecules which were deposited on a highly ordered pyrolytic graphite substrate. The single electron tunneling through a single C{sub 60} molecule due to the Coulomb blockage effect is observed at room temperature.

Cheng, R.; Carvell, J.; Fradin, F. Y.; Indiana Univ.-Purdue Univ. at Indianapolis

2010-09-15T23:59:59.000Z

122

Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization  

E-Print Network (OSTI)

A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C–H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

Cheung, Chi Wai

123

Room-temperature high radio-frequency source power effects on silicon nitride films deposited by using a plasma-enhanced chemical vapor deposition  

Science Journals Connector (OSTI)

Silicon nitride films were deposited at room temperature using a plasma-enhanced chemical vapor deposition system. In this study, the effects of radio frequency (RF) source power ranging from 200 W to ... charact...

Byungwhan Kim; Suyeon Kim

2008-10-01T23:59:59.000Z

124

C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies  

SciTech Connect

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.

GJ Lumetta; DJ Bates; JP Bramson; LP Darnell; OT Farmer III; SK Fiskum; LR Greenwood; FV Hoopes; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-05-17T23:59:59.000Z

125

Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs  

SciTech Connect

Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

Thallapally, Praveen K.; Strachan, Denis M.

2012-06-06T23:59:59.000Z

126

Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium  

SciTech Connect

We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear optical responses of this ARG system and show that the scheme is fundamentally different from those based on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced cross-phase-modulation and superluminal probe-field propagation of the system.

Hang Chao [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Centro de Fisica Teorica e Computacional, Universidade de Lisbon, Complex Interdisciplinary, Avenida Professor Gama Pinto 2, Lisbon P-1649-003 (Portugal); Huang Guoxiang [State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062 (China); Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

2010-11-15T23:59:59.000Z

127

Deformation twinning in nanocrystalline copper at room temperature and low strain rate  

E-Print Network (OSTI)

Federation Received 23 September 2003; accepted 28 November 2003 The grain-size effect on deformation,14 except at very high strain rate15,16 and/or low temperature.17 However, the grain-size effect is not so hand, it has been well known that the HP relation- ship fails in nc materials.4,5 These literature

Zhu, Yuntian T.

128

Low refractive index silicon oxide coatings at room temperature using atmospheric-pressure very high-frequency plasma  

Science Journals Connector (OSTI)

Low refractive index silicon oxide films were deposited using atmospheric-pressure He/SiH4/CO2 plasma excited by a 150-MHz very high-frequency power. Significant increase in deposition rate at room temperature could prevent the formation of dense SiO2 network, decreasing refractive index of the resulting film effectively. As a result, a silicon oxide film with the lowest refractive index, n = 1.24 at 632.8 nm, was obtained with a very high deposition rate of 235 nm/s. The reflectance and transmittance spectra showed that the low refractive index film functioned as a quarter-wave anti-reflection coating of a glass substrate.

H. Kakiuchi; H. Ohmi; Y. Yamaguchi; K. Nakamura; K. Yasutake

2010-01-01T23:59:59.000Z

129

Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature  

SciTech Connect

In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others

2013-01-28T23:59:59.000Z

130

Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um  

SciTech Connect

Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

2000-06-05T23:59:59.000Z

131

Thin film growth and characterization of Potassium-Tantalate-Niobate room temperature ferroelectric  

E-Print Network (OSTI)

is al&says present in the solution due to additiou ol &cscess solute &naterial or due ]o cooliug ol the solutiou belov' its liquidus tempera]ure. Spon], aueous uuclea], ion ac], iva]es gro&vth. 3. Sl, ep-cooled gro&vth: The gro&vth occurs at a..., cvlindrica] sl eel rod ivas iiiscrtcd which ivould serve as flic seai foi I lie alumina. crucible. An S-type (Pt. ? 10'zh Pt/Ri&) thermo& ouple inserted throuzli this rod gives Ihe temperature at the bottom of the crucible. 39 The furnace was modified...

Muntha, Nageswara Rao Venkat

1995-01-01T23:59:59.000Z

132

MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL  

SciTech Connect

AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

Uday B. Pal; Srikanth Gopalan

2004-02-15T23:59:59.000Z

133

Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature  

E-Print Network (OSTI)

Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

Alessandro Farsi; Mario Siciliani de Cumis; Francesco Marino; Francesco Marin

2011-09-21T23:59:59.000Z

134

Metalized T graphene: A reversible hydrogen storage material at room temperature  

SciTech Connect

Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7?wt. %) with an optimal adsorption energy of 0.19?eV/H{sub 2}. The adsorption/desorption of H{sub 2} at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

2014-09-21T23:59:59.000Z

135

Strong room-temperature ferromagnetism of high-quality lightly Mn-doped ZnO grown by molecular beam epitaxy  

SciTech Connect

Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO grown by molecular beam epitaxy. With a low Mn concentration of 2 Multiplication-Sign 10{sup 19} cm{sup -3}, Mn-doped ZnO films exhibited room-temperature ferromagnetism with a coercivity field larger than 200 Oe, a large saturation moment of 6 {mu}{sub B}/ion, and a large residue moment that is {approx}70% of the saturation magnetization. Isolated ions with long range carrier mediated spin-spin coupling may be responsible for the intrinsic ferromagnetism.

Zuo Zheng; Zhou Huimei; Olmedo, Mario J.; Kong Jieying; Liu Jianlin [Quantum Structures Laboratory, Department of Electrical Engineering, University of California - Riverside, Riverside, California 92521 (United States); Beyermann, Ward P. [Department of Physics and Astronomy, University of California - Riverside, Riverside, California 92521 (United States); Zheng Jianguo [Laboratory for Electron and X-ray Instrumentation, California Institute for Telecommunications and Information Technology, University of California - Irvine, Irvine, California 92697 (United States); Xin Yan [NHMFL, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310-3706 (United States)

2012-09-01T23:59:59.000Z

136

Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect  

SciTech Connect

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-09-15T23:59:59.000Z

137

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature  

E-Print Network (OSTI)

Z .Thin Solid Films 391 2001 143 148 Submicrosecond range surface heating and temperature; accepted 22 March 2001 Abstract A method for submicrosecond heating of sensor surfaces and simultaneous as well as photo thermal and scanning force microscopy measurements were performed to optimize the heating

Moritz, Werner

138

Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at  

E-Print Network (OSTI)

Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at 1.5 µm for Controllable Fo is important in a wide-variety of applications, especially in the near-infrared region where applications transfer in large, monodisperse lead sulfide quantum dots with ground-state transitions near 1.5 µm (0.8 e

Hone, James

139

CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS  

SciTech Connect

Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

2008-03-01T23:59:59.000Z

140

High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station  

SciTech Connect

This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

1995-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium  

SciTech Connect

Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460?K for Zn{sub 0.97}Al{sub 0.03}O, 463?K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503?K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

2014-03-07T23:59:59.000Z

142

Room-temperature optical absorption in the InAs/GaAs quantum-dot superlattice under an electric field  

SciTech Connect

Electroluminescence and absorption spectra of a ten-layer InAs/GaAs quantum dot (QD) superlattice built in a two-section laser with sections of equal length is experimentally studied at room temperature. The thickness of the GaAs spacer layer between InAs QD layers, determined by transmission electron microscopy, is {approx}6 nm. In contrast to tunnel-coupled QDs, QD superlattices amplify the optical polarization intensity and waveguide absorption of the TM mode in comparison with the TE mode. It is found that variations in the multimodal periodic spectrum of differential absorption of the QD superlattice structure are strongly linearly dependent on the applied electric field. Differential absorption spectra exhibit the Wannier-Stark effect in the InAs/GaAs QD superlattice, in which, in the presence of an external electric field, coupling of wave functions of miniband electron states is suppressed and a series of discrete levels called the Wannier-Stark ladder states are formed.

Sobolev, M. M., E-mail: m.sobolev@mail.ioffe.ru; Gadzhiev, I. M.; Bakshaev, I. O.; Nevedomskii, V. N.; Buyalo, M. S.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

2011-08-15T23:59:59.000Z

143

Room temperature reduction of multilayer graphene oxide film on a copper substrate: Penetration and participation of coper phase in redox reactions.  

SciTech Connect

A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.

Voylov, Dmitry N [ORNL] [ORNL; Agapov, Alexander L [ORNL] [ORNL; Sokolov, Alexei P [ORNL] [ORNL; Shulga, Y.M. [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia] [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia; Arbuzov, Artem [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia] [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia

2014-01-01T23:59:59.000Z

144

C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies  

SciTech Connect

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-01-26T23:59:59.000Z

145

News Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Room science-innovationassetsimagesicon-science.jpg News Room Your source for the latest news releases, fast facts, images and access to scores of scientists, engineers and...

146

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Removal of Carbon Dioxide from Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497 entitled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures." Disclosed in this patent is a new low-cost carbon dioxide (CO 2 ) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or

147

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

148

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon  

Science Journals Connector (OSTI)

Neutron Scattering Methodology for Absolute Measurement of Room-Temperature Hydrogen Storage Capacity and Evidence for Spillover Effect in a Pt-Doped Activated Carbon ... A neutron scattering methodology is proposed to simultaneously determine the total hydrogen adsorption, the excess hydrogen adsorption, and hydrogen gas confined in the porous sample. ... It can be combined with an in situ small-angle neutron scattering to study the hydrogen spillover effect in the kinetic adsorption process. ...

Cheng-Si Tsao; Yun Liu; Mingda Li; Yang Zhang; Juscelino B. Leao; Hua-Wen Chang; Ming-Sheng Yu; Sow-Hsin Chen

2010-04-29T23:59:59.000Z

149

Origin of room temperature d{sup 0} ferromagnetism and characteristic photoluminescence in pristine SnO{sub 2} nanowires: A correlation  

SciTech Connect

Arrays of SnO{sub 2} nanowires are fabricated by employing a wet chemical template assisted sol-gel route using ordered nanoporous anodic aluminium oxide as the host. The origin of room temperature d{sup 0} ferromagnetism in pristine polycrystalline SnO{sub 2} nanowires is investigated by correlating photoluminescence and electron paramagnetic resonance (EPR) studies. It has been found that the naturally grown structural defects of oxygen vacancies namely singly ionised oxygen vacancy (V{sub O}{sup {center_dot}}) clusters induce the characteristic photoluminescence and contribute in ferromagnetism of pristine SnO{sub 2} nanowires at room temperature. The presence of the V{sub O}{sup {center_dot}} structural defects in the pure SnO{sub 2} nanowires is also assured by the EPR spectroscopy. Present study will help understand the puzzle about the unexpected magnetic phenomenon in these undoped wide band gap oxide semiconductors. Highlights: Black-Right-Pointing-Pointer SnO{sub 2} NWs are fabricated by wet chemical AAO template assisted route. Black-Right-Pointing-Pointer SnO{sub 2} NWs exhibit d{sup 0} ferromagnetism at room temperature. Black-Right-Pointing-Pointer Origin of ferromagnetism is correlated with photoluminescence and EPR studies. Black-Right-Pointing-Pointer Oxygen vacancy clusters are attributed to boost ferromagnetism in SnO{sub 2} NWs.

Khan, Gobinda Gopal, E-mail: gobinda@bose.res.in [Department of Material Sciences, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, West Bengal (India); Ghosh, S.; Mandal, Kalyan [Department of Material Sciences, S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, West Bengal (India)

2012-02-15T23:59:59.000Z

150

MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS  

E-Print Network (OSTI)

Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim...

Lim, Wendy

2011-02-22T23:59:59.000Z

151

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures  

Science Journals Connector (OSTI)

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures ... (1-4) Although the concept of SOFCs was first reported more than one century ago,(5) major technological advances in cell materials, reactor configuration, operation mode, and balance of plant system integration and optimization were realized in the last 20–30 years only. ... The hybrid start-up process is optimized with respect to a specific setup as an example, but is of general nature and utility to similar systems. ...

Chao Su; Yubo Chen; Wei Wang; Ran Ran; Zongping Shao; João C. Diniz da Costa; Shaomin Liu

2014-05-23T23:59:59.000Z

152

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

SciTech Connect

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

153

Recent developments in high-temperature photonic crystals for energy conversion  

E-Print Network (OSTI)

After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

Rinnerbauer, Veronika

154

2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test  

SciTech Connect

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

2009-11-01T23:59:59.000Z

155

Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells  

Science Journals Connector (OSTI)

Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600?° C the interfacial polarization resistances of a porous YSB–Ag cathode is about 0.3??? cm 2 more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example the interfacial resistances of a traditional YSZ–lanthanum maganites composite cathode is about 11.4??? cm 2 at 600?° C . Impedance analysis indicated that the performance of an YSB–Ag composite cathode fired at 850?° C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB–Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600?° C .

Changrong Xia; Yuelan Zhang; Meilin Liu

2003-01-01T23:59:59.000Z

156

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

SciTech Connect

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

157

Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit  

SciTech Connect

We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 {mu}K. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to {approx}200 {mu}K. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid.

Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Skyba, P. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Institute of Experimental Physics, Watsonova 47, 04353 Kosice (Slovakia)

2006-09-07T23:59:59.000Z

158

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

159

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

160

Solid Cold - A  

NLE Websites -- All DOE Office Websites (Extended Search)

By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each? Back in the 18th century, the chemist Joseph Black discovered that different materials required different amounts of heat to raise their temperatures by equal amounts. The amount by which the temperature of a material changes as it absorbs or gives off heat can even be used to help identify the material. Among solid materials near room temperature,

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts  

SciTech Connect

Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl–KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

Cynthia Hanson; Supathorn Phongikaroon; Jill R. Scott

2014-07-01T23:59:59.000Z

162

Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow  

E-Print Network (OSTI)

of California, Berkeley, 2011 SURF Fellow Advisor: Prof. Meilin Liu Graduate Mentors: Mingfei Liu, Ben Rainwater Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCs) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

Li, Mo

163

Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications  

SciTech Connect

Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

Nicholas, Jason.D.

2007-06-30T23:59:59.000Z

164

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network (OSTI)

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

165

Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films  

SciTech Connect

Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F. [Universite de Lorraine, Institut Jean Lamour, Departement CP2S, UMR CNRS 7198, Nancy, F-54042 (France); Laffez, P. [Groupe de Recherche Electronique, Materiaux, Acoustique, Nanoscience (GREMAN), Universite Francois Rabelais de Tours, UMR CNRS 7347, IUT de Blois, 15 rue de la Chocolaterie, Blois, F-41000 (France)

2012-06-01T23:59:59.000Z

166

Spectroscopic, kinetic and dosimetric features of the radical species produced after radiodegradation of solid triclosan  

Science Journals Connector (OSTI)

In the present work, spectroscopic, kinetic and dosimetric features of the radicalic intermediates produced after gamma irradiation at room temperature of solid triclosan (2,4,4-trichloro-2-hydroxydiphenyl ether....

?lknur Ozkirim Üstünda?; Mustafa Korkmaz

2009-04-01T23:59:59.000Z

167

A profound analysis of Rb2[PH] and Cs2[PH] and the role of [PH]2? ions during temperature-induced solid–solid phase transitions  

Science Journals Connector (OSTI)

Abstract The temperature-induced solid–solid transformation of Rb2[PH] and Cs2[PH] is characterized from both experiment and theory. Neutron diffraction, IR-spectroscopy and ab-initio molecular dynamics simulations reveal an asymmetric shift of the lattice constants at 80 K. The molecular mechanism of the structural transformation as identified from IR-spectroscopy and ab-initio molecular dynamics simulations is closely connected to the orientation of the [PH]2? moieties which undergo a partial order–disorder phase transition.

M. Somer; H.G.v. Schnering; O. Hochrein; D. Zahn

2014-01-01T23:59:59.000Z

168

Effects of air annealing on CdS quantum dots thin film grown at room temperature by CBD technique intended for photosensor applications  

SciTech Connect

Graphical abstract: The effect of different intensities (40, 60 100 and 200 W) of light on CdS quantum dots thin film annealed at 350 °C indicating enhancement in (a) photo-current and (b) photosensitivity. Highlights: ? The preparation of CdS nanodot thin film at room temperature by M-CBD technique. ? Study of air annealing on prepared CdS nanodots thin film. ? The optimized annealing temperature for CdS nanodot thin film is 350 °C. ? Modified CdS thin films can be used in photosensor application. -- Abstract: CdS quantum dots thin-films have been deposited onto the glass substrate at room temperature using modified chemical bath deposition technique. The prepared thin films were further annealed in air atmosphere at 150, 250 and 350 °C for 1 h and subsequently characterized by scanning electron microscopy, ultraviolet–visible spectroscopy, electrical resistivity and I–V system. The modifications observed in morphology and opto-electrical properties of the thin films are presented.

Shaikh, Shaheed U.; Desale, Dipalee J.; Siddiqui, Farha Y.; Ghosh, Arindam; Birajadar, Ravikiran B. [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India); Ghule, Anil V. [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)] [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, M.S. (India)

2012-11-15T23:59:59.000Z

169

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

SciTech Connect

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

170

Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction  

Science Journals Connector (OSTI)

An emulsion-based serial crystallographic technology has been developed, in which single crystals are grown in nanolitre-sized droplets inside an X-ray semi-transparent microfluidic chip exploiting a negative feedback mechanism. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored in the chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals to solve the structure of glucose isomerase to 2.1 ?.

Heymann, M.

2014-08-25T23:59:59.000Z

171

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect

Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

2002-12-01T23:59:59.000Z

172

One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light  

Science Journals Connector (OSTI)

...nitric acid oxidation method (3). The first step is air oxidation of cyclohexane under high temperatures (125° to 165...Finlayson-Pitts B. J. Pitts J. N. Jr. , Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons...

Kuo Chu Hwang; Arunachalam Sagadevan

2014-12-19T23:59:59.000Z

173

A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode  

SciTech Connect

Three-dimensionally ordered macroporous cathode was fabricated for a zirconia based micro-tubular solid oxide fuel cells (SOFCs). Three different cathodes (cathode A, no pore former; cathode B, with pore former (1.5 {micro}m in diameter); cathode C, with pore former (0.8 {micro}m in diameter)) were compared to investigate how the microstructure of it affected the cell performance at various operating temperatures. Micro-sized pores were well distributed within cathode B and C. The total porosity of cathode A is 35%, while it respectively reached 42 and 50% for cathodes B and C. At the same time, the specific surface area of them was 28.8 and 52.0% larger than that of the cathode A. As a result, the peak power density of the zirconia based cell, with cathode C, was 0.25 and 0.56 W cm{sup -2} at 550 and 600 C, while the respective value was just 0.11 and 0.30 W cm{sup -2} for the cell with cathode A. Thus, optimizing microstructure of cathode should be one of the best approaches for lowering the operating temperature for SOFCs.

Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

2012-01-01T23:59:59.000Z

174

Room-Temperature Ferromagnetism in a II-VI Diluted Magnetic Semiconductor Zn1-xCrxTe  

Science Journals Connector (OSTI)

The magnetic and magneto-optical properties of a Cr-doped II-VI semiconductor ZnTe were investigated. Magnetic circular dichroism measurements showed a strong interaction between the sp carriers and localized d spins, indicating that Zn1-xCrxTe is a diluted magnetic semiconductor. The Curie temperature of the film with x=0.20 was estimated to be 300±10???K, which is the highest value ever reported for a diluted magnetic semiconductor in which sp-d interactions were confirmed. In spite of its high Curie temperature, Zn1-xCrxTe film shows semiconducting electrical transport properties.

H. Saito; V. Zayets; S. Yamagata; K. Ando

2003-05-20T23:59:59.000Z

175

Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process  

SciTech Connect

We observed a photo-switching effect in [Cu{sup II}(1,4,8,11-tetraazacyclodecane)]{sub 2}[Mo{sup IV}(CN){sub 8}]{center_dot}10H{sub 2}O by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from Mo{sup IV} to Cu{sup II}. The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 Multiplication-Sign 10{sup 1}, 6.9 Multiplication-Sign 10{sup 1}, and 1.7 Multiplication-Sign 10{sup 2} s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, k=k{sub 0}exp[-(E{sub a}+E{sub a}{sup *}{gamma}) /k{sub B}T], where k is the rate constant of relaxation, k{sub 0} is the frequency factor, E{sub a} is the activation energy, E{sub a}{sup *} is the additional activation energy due to the cooperativity, and {gamma} is the fraction of the photo-induced phase. k{sub 0}, E{sub a}, and E{sub a}{sup *} were evaluated as 1.28 Multiplication-Sign 10{sup 7}{+-} 2.6 s{sup -1}, 4002 {+-} 188 cm{sup -1}, and 546 {+-} 318 cm{sup -1}, respectively. The value of E{sub a} is much larger than that of the relaxation process for the typical light-induced spin crossover effect (E{sub a} Almost-Equal-To 1000 cm{sup -1}). Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material.

Umeta, Yoshikazu; Ozaki, Noriaki [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tokoro, Hiroko [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); NEXT, JSPS, 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472 (Japan); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

2013-04-15T23:59:59.000Z

176

On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature  

Science Journals Connector (OSTI)

Abstract FeOx/SBA-15 catalysts were prepared via impregnation and utilized for toluene removal in dielectric barrier discharge (DBD) plasma at atmospheric pressure and room temperature. Toluene removal was investigated in the environment of various mixed N2/O2 plasmas, showing that toluene removal efficiency and \\{COx\\} selectivity were greatly increased by FeOx/SBA-15 and that the organic intermediates were greatly reduced by catalysts. In pure N2 plasma, the bulk oxygen in the catalyst was involved in the toluene oxidation, and the 3%FeOx/SBA-15 catalyst showed the optimal toluene oxidation activity. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption–desorption, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and O2 temperature-programmed desorption (O2-TPD), showing that toluene oxidation was closely related to the highly dispersed nature of iron on the SBA-15 surface, the reduction temperature of Fe2+ and the oxygen adsorption ability of the catalyst. The pathways of toluene decomposition in the combination of FeOx/SBA-15 with a non-thermal plasma (NTP) system were proposed based on the identified intermediates.

Meijuan Lu; Rong Huang; Junliang Wu; Mingli Fu; Limin Chen; Daiqi Ye

2015-01-01T23:59:59.000Z

177

Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass  

SciTech Connect

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-12-01T23:59:59.000Z

178

Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation  

SciTech Connect

Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

2010-02-01T23:59:59.000Z

179

Soldering with solid state and diode lasers: Energy coupling, temperature rise, process window  

Science Journals Connector (OSTI)

The increasing number of electrical contacts in automobiles in combination with more complex and miniaturized components leads to higher requirements for the joining technologies. In that context laser soldering represents an interesting alternative to conventional techniques. So far solid state lasers[Nd:yttrium–aluminum–garnet(YAG)] and CO 2 lasers have been successfully applied in industrial production. Recently the development of high power diode lasers has offered a new laser source for soldering with technological advantages. Absorptivity of laser radiation on metals generally increases with shorter wavelength and consequently diode lasers may lead to a higher process efficiency compared to Nd:YAG lasers. The absorptivity of copper alloys with different surface conditions has been measured at 808 nm (diode) and 1064 nm (Nd:YAG). When heating up the solder joint the intensity distribution of the different laser spots becomes important too. This effect is demonstrated by means of process modeling and temperature measurements for a typical joint geometry. For the case of soldering strip-to-strip joints the effects of the different energy absorption on the process are pointed out.

M. Brandner; G. Seibold; C. Chang; F. Dausinger; H. Hügel

2000-01-01T23:59:59.000Z

180

High Peak-to-Valley Current Ratio GaAs/InGaAs/InAs Double Stepped Quantum Well Resonant Interband Tunneling Diodes at Room Temperature  

Science Journals Connector (OSTI)

A high ratio of the peak current density to the valley current density of current-voltage characteristic is accomplished for the double stepped quantum well resonant interband tunneling diode (DSQW RITD). Results for good quantum confinement effect and long drift layer with deep quantum well GaAs/In0.59Ga0.41As/InAs DSQW RITD that has a lower valley current density of about 0.98 A/cm2 and a higher peak-to-valley current ratio (PVCR) reached 622 at room temperature than conventionally designed double quantum well resonant interband tunneling diodes (DQW RITDs) are presented. This PVCR value is also the highest value than those of the other resonant tunneling diodes.

Chih-Chin Yang; Kuang-Chih Huang; Yan-Kuin Su

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Room-temperature operation of an InGaAsP double-heterostructure laser emitting at 1. 55. mu. m on a Si substrate  

SciTech Connect

The room-temperature operations of an InGaAsP double-heterostructure (DH) laser emitting at 1.55 {mu}m on a Si substrate is reported. A pulsed threshold current as low as 46 mA has been measured for a ridge waveguide laser with a 4 {mu}m strip width and a 200 {mu}m cavity length. This successful laser operation is due to the high crystalline quality of the DH structure with full width at half maximum of x-ray rocking curves as low as 110 arcsec grown on a Si substrate by the organometallic vapor phase epitaxy/vapor mixing epitaxy hybrid method. A correlation between the optical property of an InGaAsP DH and its crystalline quality is also discussed.

Sugo, M.; Mori, H.; Tachikawa, M.; Itoh, Y.; Yamamoto, M. (NTT Opto-electronics Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01 (Japan))

1990-08-06T23:59:59.000Z

182

A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance  

SciTech Connect

A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

2013-10-15T23:59:59.000Z

183

Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells  

SciTech Connect

Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

Shaowu Zha; Meilin Liu

2005-03-23T23:59:59.000Z

184

Influence of magnetic field on dielectric susceptibility of amorphous solids at ultra low temperature.  

E-Print Network (OSTI)

??The dielectric response of some amorphous solids below 100 mK is known to be sensitive to an applied magnetic field. This work presents new experimental… (more)

Stanford University, Dept. of Physics

2010-01-01T23:59:59.000Z

185

Neutron scattering study of the excitation spectrum of solid helium at ultra-low temperatures  

Science Journals Connector (OSTI)

There has been a resurgence of interest in the properties of solid helium due to the recent discovery of non-classical rotational inertia (NCRI) in solid 4He by Chan and coworkers below 200 mK which they have int...

Elizabeth Blackburn; John Goodkind; Sunil K. Sinha; Collin Broholm; John Copley…

2008-10-01T23:59:59.000Z

186

Theinfluence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation  

SciTech Connect

The molecular-scale dynamic properties of the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or [C4mim+ ][Tf2N ], confined in hierarchical microporous mesoporous carbon, were investigated using neutron spin echo (NSE) and molecular dynamics (MD) simulations. Both NSE and MD reveal pronounced slowing of the overall collective dynamics, including the presence of an immobilized fraction of RTIL at the pore wall, on the time scales of these approaches. A fraction of the dynamics, corresponding to RTIL inside 0.75 nm micropores located along the mesopore surfaces, are faster than those of RTIL in direct contact with the walls of 5.8 nm and 7.8 nm cylindrical mesopores. This behavior is ascribed to the near-surface confined-ion density fluctuations resulting from the ion ion and ion wall interactions between the micropores and mesopores as well as their confinement geometries. Strong micropore RTIL interactions result in less-coordinated RTIL within the micropores than in the bulk fluid. Increasing temperature from 296 K to 353 K reduces the immobilized RTIL fraction and results in nearly an order of magnitude increase in the RTIL dynamics. The observed interfacial phenomena underscore the importance of tailoring the surface properties of porous carbons to achieve desirable electrolyte dynamic behavior, since this impacts the performance in applications such as electrical energy storage devices.

Banuelos, Jose Leo [ORNL; Feng, Guang [ORNL; Fulvio, Pasquale F [ORNL; Li, Song [Vanderbilt University, Nashville; Rother, Gernot [ORNL; Arend, Nikolas [ORNL; Faraone, Antonio [National Institute of Standards and Technology (NIST); Dai, Sheng [ORNL; Cummings, Peter T [ORNL; Wesolowski, David J [ORNL

2014-01-01T23:59:59.000Z

187

Evaluation by room?temperature electroreflectance of the 77 K dark?storage time of bulk mercury cadmium telluride measured on metal?insulator semiconductor devices  

Science Journals Connector (OSTI)

We have studied a set of 14 very carefully characterized samples by spectroscopicellipsometry electrolyte electroreflectance (EER) and other measurements and have measured the 77 K storage time ? of metal?insulator semiconductor (MIS)devices built on these samples. The measured storage times ranged from 6.8 to 130.8 ?s. Only the results of the EER measurements showed a correlation with the measured values of ?. We interpret our EER results in terms of a two?phase model consisting of bulk plus very thin highly defectuous regions possibly associated with subgrain boundaries. The observed correlation between the values of the incremental linewidth ?? of the thin defectuous regions and the values of the charge?storage lifetimes ? of the MISdevices is excellent and capable of predicting the values of ?. Furthermore the exact form of the observed correlation is shown to follow immediately from a simple physical model.Correlations between the values of ? and those of other parameters measured by EER were also observed. They suggest a possible simple physical picture for the primary origin of dark current in these devices. This is the first predictive quantitative correlation ever observed between the results of room?temperature optical characterizations of semiconductor materials and the low?temperature electrical performance of devices built on those materials.

Paul M. Raccah; James W. Garland; De Yang; Hisham Abad; Roger L. Strong; Matthew C. McNeill

1989-01-01T23:59:59.000Z

188

Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature  

SciTech Connect

We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.

Chen, D. Y., E-mail: cdy7659@126.com [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China); Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Sun, Y.; He, Y. J. [Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Xu, L.; Xu, J. [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China)

2014-01-28T23:59:59.000Z

189

High spin polarization at room temperature in Ge-substituted Fe{sub 3}O{sub 4} epitaxial thin film grown under high oxygen pressure  

SciTech Connect

Epitaxial thin films of room-temperature ferrimagnetic (Fe,Ge){sub 3}O{sub 4} were fabricated using pulsed laser deposition. Films with a single-phase spinel structure were grown under high oxygen pressures (0.01–0.6?Pa). The carrier transport across (Fe,Ge){sub 3}O{sub 4}/Nb:SrTiO{sub 3} interface was studied to estimate the spin polarization of (Fe, Ge){sub 3}O{sub 4}. Current–voltage curves of Fe{sub 2.8}Ge{sub 0.2}O{sub 4}/Nb:SrTiO{sub 3} junction showed rectifying behavior even at 300?K whereas Fe{sub 3}O{sub 4}/Nb:SrTiO{sub 3} junction showed ohmic behavior. Calculations based on a model for a Schottky contact with a ferromagnetic component yielded a spin polarization of 0.50 at 300?K for Fe{sub 2.8}Ge{sub 0.2}O{sub 4}, indicating its potential as a promising spin injector.

Seki, Munetoshi, E-mail: m-seki@ee.t.u-tokyo.ac.jp; Takahashi, Masanao; Ohshima, Toshiyuki; Yamahara, Hiroyasu; Tabata, Hitoshi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2013-11-18T23:59:59.000Z

190

UHV high-resolution electron microscopy and chemical analysis of room-temperature Au deposition on Si(001)-2×1  

Science Journals Connector (OSTI)

Investigations of Au on Si(001) have suggested that room-temperature deposition of Au on a clean Si surface results in an interfacial reaction and the formation of a gold-silicide. However, these investigations typically lack direct information about the surface morphology or the exact structure at the interface. Utilizing the capabilities of a surface chemical analysis system attached to a Hitachi UHV H-9000 microscope, a layer plus island growth mode has been observed by high-resolution electron microscopy showing multiply twinned small particles on the surface. The presence of small particles for various coverages has been correlated with the shifts seen in the Si 2p and Au 4f binding energies as well as the peak splitting in the Si LVV Auger transition. Our chemical data are consistent with observed shifts in the binding energies of small metal clusters deposited on various substrates, and with the published data for this surface. In addition, the results are consistent with our previous studies of Ag on Si(001), and indicate the growth morphology plays a crucial role in understanding spectroscopic information as well as its correlation to the structure and chemical state of the interface and surface morphology.

E. Landree, D. Grozea, C. Collazo-Davila, and L. D. Marks

1997-03-15T23:59:59.000Z

191

Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements  

SciTech Connect

Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

Treger, Mikhail; Noyan, I. C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States); Witt, Christian [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States)] [GlobalFoundries, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States)] [IBM, T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Rosenberg, Robert [State University of New York, the University at Albany, Albany, NY 12203 (United States)] [State University of New York, the University at Albany, Albany, NY 12203 (United States); Eisenbraun, Eric [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)] [College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203 (United States)

2013-06-07T23:59:59.000Z

192

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

193

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

SciTech Connect

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

194

Electrochemical properties of all solid state Li/S battery  

SciTech Connect

All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup ?1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup ?1}-sulfur after 10 cycles.

Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing; Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kang, Yongku [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Wang, Guoxiu [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of) [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

2012-10-15T23:59:59.000Z

195

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

196

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

197

Recoil tritium reaction in rare gas-ethane solid mixtures at ultralow temperature  

SciTech Connect

Recoil T atom reactions have been studied in Ar (or Kr or Xe)-C/sub 2/H/sub 6/-D/sub 2/D/sub 6/ mixtures at 11-20 and 77 K. The relative yields of hydrogen (HT + DT) increase with a decrease of ethane concentration, while those of ethane (C/sub 2/H/sub 5/T + C/sub 2/D/sub 5/T) decrease complementarily. The results indicate that hydrogen is formed by both hot and thermal T atoms, while ethane is formed only by the hot T atoms. The thermal T atoms abstract hydrogen from ethane by quantum mechanical tunneling even at 11-20 K as well as 77 K. The H/D abstraction isotope effect for the thermal T atom reaction with C/sub 2/H/sub 6/ and C/sub 2/D/sub 6/ was measured at 0.2 mol % ethane in rare gas solid. The isotope effects in Ar are 1.0 at 77 K and 3.9 at 18 K, whereas those in Xe are 4.4 at 77 K and 1.0 at 20 K. The isotope effects in Kr are 1.9 at 77 K and 1.1 at 11 K. The average energy loss of hot T atoms in rare gas solid was estimated and compared with that in the gas phase.

Lee, K.P.; Ito, Y.; Fujitani, Y.; Miyazaki, T.; Fueki, K.; Aratono, Y.; Saeki, M.; Tachikawa, E.

1986-10-09T23:59:59.000Z

198

A high-pressure and high-temperature gas-loading system for the study of conventional to real industrial sized samples in catalysed gas/solid and liquid/solid reactions  

Science Journals Connector (OSTI)

A high-pressure-high-temperature gas-loading system has been developed for combined in situ high-energy X-ray diffraction and mass spectrometry investigations during catalysed gas/solid or liquid/solid reactions. The benefits of such a system are the combination of different gases, the flexibility of the cell design, the rotation of the cell, and the temperature, pressure and gas-flow ranges accessible. This opens up new opportunities for studying catalysts or compounds not just from a fundamental point of view but also for industrial applications, in both cases in operando conditions.

Andrieux, J.

2014-01-18T23:59:59.000Z

199

A radiant flow reactor for high?temperature reactivity studies of pulverized solids  

Science Journals Connector (OSTI)

Our radiant two?phase flow reactor presents several new possibilities for high?temperature reactivity studies. Most importantly the thermal histories of the suspension and entrainment gas can be independently regulated over wide ranges. At low suspension loadings outlet temperatures can differ by hundreds of degrees and gas temperatures are low enough to inhibit hydrocarbon cracking chemistry so primary products are quenched as soon as they are expelled. With coal suspensions tars were generated with the highest H/C ratio and lowest proton aromaticity ever reported. Alternatively particles and gas can be heated at similar rates to promote secondary chemistry by increasing particle loading. Simply by regulating the furnace temperature arbitrary extents of conversion of coal tar into soot were observed for fixed total mass loss. Under both circumstances heat fluxes are comparable to those in large furnaces so relevant heating rates and reaction times are accessible. Suspensions remain optically thin even for the highest loadings of technological interest because they are only 1 cm wide. Consequently the macroscopic behavior remains firmly connected to single?particle phenomena. Mass and elemental closures are rarely breached by more than 5% in individual runs so interpretations are not subject to inordinate scatter in the data. The reactor is also well suited for combustion studies as demonstrated by extents of carbon and nitrogen burnout from 50% to 100% for various gas?stream oxygen levels.

John C. Chen; Stephen Niksa

1992-01-01T23:59:59.000Z

200

SYNGAS PRODUCTION VIA HIGH-TEMPERATURE CO-ELECTROLYSIS OF STEAM AND CARBON DIOXIDE IN A SOLID-OXIDE STACK  

SciTech Connect

This paper presents results of recent experiments conducted at the INL studying coelectrolysis of steam and carbon dioxide in a 10-cell high-temperature solid-oxide electrolysis stack. Coelectrolysis is complicated by the fact that the reverse shift reaction occurs concurrently with the electrolytic reduction reactions. All reactions must be properly accounted for when evaluating results. Electrochemical performance of the stack was evaluated over a range of temperatures, compositions, and flow rates. The apparatus used for these tests is heavily instrumented, with precision mass-flow controllers, on-line dewpoint and CO2 sensors, and numerous pressure and temperature measurement stations. It also includes a gas chromatograph for analyzing outlet gas compositions. Comparisons of measured compositions to predictions obtained from a chemical equilibrium co-electrolysis model are presented, along with corresponding polarization curves. Results indicate excellent agreement between predicted and measured outlet compositions. Coelectrolysis significantly increases the yield of syngas over the reverse water gas shift reaction equilibrium composition. The process appears to be a promising technique for large-scale syngas production.

Carl M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An analog analysis of transient heat flow in solids with temperature-dependent thermal properties  

E-Print Network (OSTI)

) used a nonlinear material known as Metrosil to simulate the nonlinear variations of thermal properties for combined conductive and radiant heat transfer. Since that time, Friedmann (8) has used nonlinear resistances in conjunction with an electronic... at end of this thesis. K = thermal conductivity of heat conducting media, and K and S are functions of the temperature t. Since the formation of these equations, solutions of transient heat flow problems involving materials in which the thermal...

Lee, Dwain Edward

2012-06-07T23:59:59.000Z

202

High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells  

SciTech Connect

InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

Kim, Jung-Hyun [ORNL; Young Nam, Kim [University of Texas, Austin; Bi, Zhonghe [ORNL; Manthiram, Arumugam [University of Texas, Austin; Paranthaman, Mariappan Parans [ORNL; Huq, Ashfia [ORNL

2011-01-01T23:59:59.000Z

203

CONFERENCE ROOMS CONFERENCE ROOMS FOR RESERVATION  

E-Print Network (OSTI)

CONFERENCE M0700 BASEMENT CONFERENCE ROOMS CONFERENCE M0720 HRCMEB CONFERENCE M0390 CONFERENCE ROOMS FOR RESERVATION INFORMAL MEETING SPACE TBRC CLASSROOM SPACE #12;CONFERENCE H1210 CONFERENCE H1320 HRC MEB INFORMAL MEETING SPACE CONFERENCE ROOMS FOR RESERVATION TBRC LOUNGE C1068 LOUNGE C1050 LOUNGE

204

Energy performance of air distribution systems part II: room air stratification full scale testing  

E-Print Network (OSTI)

control), one that resets supply plenum pressure set point from room temperatureControl strategy (CAV/VAV/open loop) Room setpoint Room supply air temperaturecontrol mode; i.e. , uncontrolled at a given entering airflow and supply temperature.

Webster, Tom; Lukaschek, Wolfgang; Dickeroff, Darryl; Bauman, Fred

2007-01-01T23:59:59.000Z

205

Computational fluid dynamics model development on transport phenomena coupling with reactions in intermediate temperature solid oxide fuel cells  

Science Journals Connector (OSTI)

A 3D model is developed to describe an anode-supported planar solid oxide fuel cell (SOFC) by ANSYS/Fluent evaluating reactions including methane steam reforming (MSR)/water-gas shift (WGSR) reactions in thick anode layer and H2-O2/CO-O2 electrochemical reactions in anode active layer coupled with heat mass species momentum and ion/electron charges transport processes in SOFC. The predicted results indicate that electron/ion exchange appears in the very thin region in active layers (0.018?mm in anode and 0.01?mm in cathode) based on three phase boundary operating temperature and concentration of reactants (mainly H2). Active polarization happening in active layers dominates over concentration and ohmic losses. High gradient of current density exists near interface between electrode and solid conductor due to the block by gas channel. It is also found the reaction rates of MSR and WGSR along main flow direction and cell thickness direction decrease due to low concentration of fuel (CH4) caused by mass consumption. With increasing operating temperature from 978?K to 1088?K the current density and the reaction rate of MSR are increased by 10.8% and 5.4% respectively. While ion current density is 52.9% higher than in standard case and H2 is consumed by 5.1% more when ion conductivity is doubled. CO-O2 has been considered in charge transfer reaction in anode active layer and it is found that the current density and species distributions are not sensitive but WGSR reaction will be forced backwards to supply more CO for CO-O2 electrochemical reaction.

Chao Yang; Guogang Yang; Danting Yue; Jinliang Yuan; Bengt Sunden

2013-01-01T23:59:59.000Z

206

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect

Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

Anil V. Virkar

2002-03-26T23:59:59.000Z

207

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents (OSTI)

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

208

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

209

Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol  

E-Print Network (OSTI)

X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

Marina Kveder; Dalibor Merunka; Milan Joki?; Boris Rakvin

2010-08-24T23:59:59.000Z

210

Developing TiAIN Coatings for Intermediate Temperature-Solid Oxide Fuel Cell Interconnect Applications  

SciTech Connect

TiN-type coatings have potential to be used as SOFC interconnect coatings SOFC because of their low resistance and high temperature stability. In this research, various (Ti,Al)N coatings were deposited on stainless steels by filtered-arc method. ASR and XRD tests were conducted on these coatings, and SEM/EDAX analysis were conducted after ASR and XRD tests. SEM/EDAX analyses show that (Ti,Al)N remains stable at temperature up to 700°C. It is also indicated that Al has beneficial effect on the stability of TiN type coatings. At 900°C, (Ti-30Al)N is fully oxidized and some of (Ti-50Al)N coating still remains as nitride. The analyses on cross-sectional samples show that these coatings are effective barrier to the Cr migration. In summary, (Ti.Al)N coatings are good candidates for the SOFC interconnect applications at 700°C. The future directions of this research are to improve the stability of these coatings by alloy-doping and to develop multi-layer coatings.

Liu, X. (West Virginia University); Johnson, C.D.; Li, C. (West Virginia University); Xu, J. (West Virginia University); Cross, C.

2007-02-01T23:59:59.000Z

211

Mathematics Help Room  

E-Print Network (OSTI)

Link to Help Room Schedule. The Mathematics Help Room is available to help you with your 100 and 200 level Algebra, Algebra/Trigonometry, or Calculus ...

212

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents (OSTI)

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

1992-04-21T23:59:59.000Z

213

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

SciTech Connect

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

214

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

SciTech Connect

This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

Professor Anil V. Virkar

2003-05-23T23:59:59.000Z

215

Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells  

SciTech Connect

Anode-supported sold oxide fuel cells with yttria-stabilized zirconia (YSZ) electrolyte, Sr-doped LaMnO{sub 3} (LSM) + YSZ cathode, and Ni + YSZ anode were fabricated and their performance was evaluated between 650 and 800 C with humidified hydrogen as the fuel and air as the oxidant. Maximum power densities measured were {approximately} 1.8 W/cm{sup 2} at 800 C and {approximately} 0.82 W/cm{sup 2} at 650 C. Voltage (V) vs. current density (i) traces were nonlinear; V vs. i exhibited a concave-up curvature [d{sup 2}V/di{sup 2} {ge} 0] at low values of i and a convex-up curvature [d{sup 2}V/di{sup 2} {le} 0] at higher values of i, typical of many low temperature fuel cells. Analysis of concentration polarization based on transport of gaseous species through porous electrodes, in part, is used to explain nonlinear V vs. i traces. The effects of activation polarization in the Tafel limit are also included. It is shown that in anode-supported cells, the initial concave-up curvature can be due either to activation or concentration polarization, or both. By contrast, in cathode-supported cells, the initial concave-up curvature is entirely due to activation polarization. From the experimentally observed V vs. i traces for anode-supported cells, effective binary diffusivity of gaseous species on the anodic side was estimated to be between {approximately} 0.1 cm{sup 2}/s at 650 C and {approximately} 0.2 cm{sup 2}/s at 800 C. The area specific resistance of the cell (ohmic part), varied between {approximately} 0.18 {Omega} cm{sup 2} at 650 C and {approximately} 0.07 {Omega} cm{sup 2} at 800 C with an activation energy of {approximately} 65 kJ/mol.

Kim, J.W.; Virkar, A.V.; Fung, K.Z.; Mehta, K. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Materials Science and Engineering] [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Materials Science and Engineering; Singhal, S.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States)] [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1999-01-01T23:59:59.000Z

216

High-Temperature Thermoelectric Properties of the Solid–Solution Zintl Phase Eu11Cd6Sb12–xAsx (x < 3)  

SciTech Connect

Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid–solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12–xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ?3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78–0.49 W/mK for x = 0; 0.72–0.53 W/mK for x = 1; and 0.70–0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 ? V/K) but also high electrical resistivity (6.8 to 12.8 m?·cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12–xAsx are interpreted in discussion with the As site substitution.

Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J.; Snyder, G. Jeffrey; Kauzlarich, Susan M.

2014-02-11T23:59:59.000Z

217

Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide  

E-Print Network (OSTI)

conversion devices with multicomponent materials (e.g., solid oxide fuel cells, electrolyzers-Based Solid Oxide Electrochemical Cells Chunjuan Zhang,,# Yi Yu,,# Michael E. Grass,,# Catherine Dejoie spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism

Li, Weixue

218

Hillyer Meeting Room Purpose of room  

E-Print Network (OSTI)

.syr.edu/services/PDF/generalpolicy.pdf To reserve a room: http://library.syr.edu/services/space/form-findroom.php To cancel a room reservation Library (see http://library.syr.edu/about/tour/images/floor_1_med.jpg for floor map). Priority for use of Room: 1) Library-provided instruction sessions 2) Library-sponsored meetings and events 3) Non-Library

Raina, Ramesh

219

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

220

Au-mediated low-temperature solid phase epitaxial growth of a SixGe1 x alloy on Si(001)  

E-Print Network (OSTI)

a silicide or a germanide of a near noble metal e.g., Pd, Pt , obtained by the reaction of the metal- taxial growth techniques. Metal-mediated solid phase epitaxy SPE has been stud- ied in a variety or Ge is accomplished at low temperatures by using a eutectic-forming metal e.g., Au, Al, Ag, etc

Allen, Leslie H.

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions  

SciTech Connect

The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

Yu, Tang-Qing, E-mail: tangqing.yu@nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Chen, Pei-Yang; Chen, Ming [Department of Chemistry, New York University, New York, New York 10003 (United States); Samanta, Amit [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tuckerman, Mark, E-mail: mark.tuckerman@nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

2014-06-07T23:59:59.000Z

222

New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels.  

E-Print Network (OSTI)

??Unlike polymer electrolyte fuel cells, solid-oxide fuel cells (SOFCs) have the potential to use a wide variety of fuels, including hydrocarbons and gasified coal or… (more)

Yang, Lei

2011-01-01T23:59:59.000Z

223

In Situ Magnetic Field-Assisted Low Temperature Atmospheric Growth of GaN Nanowires via the Vapor–Liquid–Solid Mechanism  

Science Journals Connector (OSTI)

The magnetic field strength was controlled by varying the distance between the magnet and the substrate to ultimately have three different magnetic field strengths of ?0.25, 0.43, and 0.80 T, as measured by a Gauss meter at room temperature. ... The vertical dotted lines show three clear peaks I1, I2, and I3 (with increasing energy). ... One hundred percent magnetic alignment of nanostructures to the imposed magnetic fields was achieved by applying a low external magnetic field of 200 Oe. ...

Jun Sik Kim; Bhaskar Chandra Mohanty; Chan Su Han; Seung Jun Han; Gwang Heon Ha; Liwei Lin; Yong Soo Cho

2013-10-11T23:59:59.000Z

224

The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures  

E-Print Network (OSTI)

shaft. With the impeller in place and rotating, gas was drawn into the top port and ejected at the impeller mount. The reactor pressure was monitored via the transducer port. The transducer was a Viatran Pressure Transducer, model 103. The liquid...THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial...

Hess, Richard Kenneth

2012-06-07T23:59:59.000Z

225

Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures  

Science Journals Connector (OSTI)

The capturing process for carbon dioxide over porous solid adsorbents such as ... resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, ... as exposure time,...

P. V. Korake; A. G. Gaikwad

2011-06-01T23:59:59.000Z

226

Public Reading Room  

Office of Legacy Management (LM)

has established a Public Reading Room at 955 has established a Public Reading Room at 955 Mound Road, Miamisburg, Ohio, which contains documents and information related to Mound as required under Section 117(d) of SARA. Copies of key Mound records, including the CERCLA Administrative Record and Information Repository, are kept in the Public Reading Room. The Administrative Record and Information Repository for Mound are updated as new documents are created and an index of documents in the complete collections accompanies each update. The Public Reading Room also contains reference items consisting of technical documents, news clippings, videotapes, journal articles, annual reports, and environmental restoration and decontamination and decommissioning decisional documents. Stakeholders are

227

Common Help Room Hours  

E-Print Network (OSTI)

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16200 - MATH 205 - Nathanael Cox ...

228

Common Help Room Hours  

E-Print Network (OSTI)

Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16010 - MATH 205 - Alessandra ...

229

Demolishing Searle's Chinese Room  

E-Print Network (OSTI)

Searle's Chinese Room argument is refuted by showing that he has actually given two different versions of the room, which fail for different reasons. Hence, Searle does not achieve his stated goal of showing ``that a system could have input and output capabilities that duplicated those of a native Chinese speaker and still not understand Chinese''.

Wolfram Schmied

2004-03-08T23:59:59.000Z

230

Structural characterization of SiGe/Si single wells grown by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature  

Science Journals Connector (OSTI)

Structural properties of SiGe/Si single wells are studied by double-crystal X-ray diffraction. Four SiGe/Si single wells have been grown on Si (0 0 1) at 750°C by disilane and solid-Ge molecular beam epitaxy with varied disilane cracking temperature. Using dynamic theory, together with kinematic theory and the specific growth procedure adopted, structural parameters in the multilayer structure are determined precisely. The results are compared with those obtained from PL and XTEM as well as AES measurements. It is found that disilane adsorption is dependent on cracking temperature as well as Ge incorporation. Disilane adsorption is increased by cracking disilane while it decreased with Ge incorporation

J.P. Liu; M.Y. Kong; D.D. Huang; J.P. Li; D.Z. Sun

1998-01-01T23:59:59.000Z

231

High-temperature series expansions to fourth order with a multiple-exchange Hamiltonian for both bcc and hcp phases of solid He3  

Science Journals Connector (OSTI)

The high-temperature series expansions with a multiple-exchange Hamiltonian including the most important two, three, and four-particle exchange processes for the bcc and hcp phases of solid He3 are calculated up to fourth order in ?=1/kBT, with arbitrary magnetic field. The series for the susceptibility are derived and compared to the experimental results. For bcc He3 an excellent agreement is obtained with the third- and fourth-order Padé approximants, using the phenomenological parameters formerly published. For hcp He3, we show that the Curie-Weiss temperature ? has been underestimated for the largest molar volumes and propose more accurate fits in better agreement with earlier nuclear-magnetic-resonance estimates.

M. Roger; E. Suaudeau; M. E. R. Bernier

1987-02-01T23:59:59.000Z

232

Patch Panel Control Room  

E-Print Network (OSTI)

Patch Panel CCR-EE-092 Control Room CCR-EE-100 Control Room Optic Patch Rack CSS-EE-954 Junction (PC Fault Event) Patch Panel CCC-EE-209 Junction Area E O PC Fault Event PC Fault Event PC Fault Event CNBS-EE-358 138' Level Patch Panel CNBS-EE-389 138' Level E E E Crates 9, 19 COH1-EE-651 FCPC Crates 21

Princeton Plasma Physics Laboratory

233

A "permanent" high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen  

E-Print Network (OSTI)

This thesis explores a new design for a portable "permanent" superconducting magnet system. The design is an alternative to permanent low-temperature superconducting (LTS) magnet systems where the magnet is cooled by a ...

Haid, Benjamin J. (Benjamin John Jerome), 1974-

2001-01-01T23:59:59.000Z

234

Room temperature and productivity in office work  

E-Print Network (OSTI)

vigilance in a moving vehicle. Ergonomics 39 (1996)1,61-75.paired associate learning. Ergonomics, 21 [2] Berglund, L. ,

Seppanen, O.; Fisk, W.J.; Lei, Q.H.

2006-01-01T23:59:59.000Z

235

Room temperature and productivity in office work  

E-Print Network (OSTI)

2003. Proceedings of Healthy Buildings 2003 Conference.building, Proceedings of Healthy Buildings 2003 Conference.work. Proceedings of Healthy Buildings Conference 2003.

Seppanen, O.; Fisk, W.J.; Lei, Q.H.

2006-01-01T23:59:59.000Z

236

BaZn{sub 2}Si{sub 2}O{sub 7} and the solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0temperature seals for solid oxide fuel cells studied by high-temperature X-ray diffraction and dilatometry  

SciTech Connect

For sealing of solid oxide fuel cells, glasses from which crystalline phases with high coefficient of thermal expansion (CTE) can be crystallized are required. In this paper, a new solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0temperature X-ray diffraction (BaZn{sub 2}Si{sub 2}O{sub 7}). Sintered specimens were characterized by dilatometry. The introduction of Co{sup 2+} does not lead to a change in the space group. All compounds show a transition of a low to a high temperature modification. The attributed temperature increases from 300 °C for BaZn{sub 2}Si{sub 2}O{sub 7} to 850 °C for BaCo{sub 2}Si{sub 2}O{sub 7}. The volume expansion which runs parallel to the phase transition decreases with increasing cobalt concentration. The phase BaZn{sub 2}Si{sub 2}O{sub 7} shows the largest CTE and a steep volume effect during phase transition. For the compound BaZn{sub 0.25}Co{sub 1.75}Si{sub 2}O{sub 7} the CTE is minimum (8.6×10{sup ?6} K{sup ?1} (50–900 °C)) and increases again until for the compound BaCo{sub 2}Si{sub 2}O{sub 7} a CTE of 16.6×10{sup ?6} K{sup ?1} (50–900 °C) is reached. In the cobalt rich composition range, the CTEs are in the right range for high temperature fuel cells and can be adjusted by the composition. - Graphical abstract: The composition of the solid solution BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} strongly affects the thermal expansion. Display Omitted - Highlights: • We examined the thermal expansion of solid solutions BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0solid solutions should be suitable for solid oxide fuel cells.

Kerstan, Marita; Thieme, Christian; Grosch, Matthias; Müller, Matthias; Rüssel, Christian, E-mail: ccr@rz.uni-jena.de

2013-11-15T23:59:59.000Z

237

Solid state device for two-wire downhole temperature measurement as a function of current. Final performance technical report  

SciTech Connect

Several metals systems were reviewed for their potential to act as resistive temperature devices. Platinum metal was selected as the metal of choice. Platinum was plated onto 5 mil copper wire, and then subsequently coated with Accusol's proprietary ceramic coating. The copper was etched out in an attempt to make a pure platinum, high resistive, resistive-temperature device. The platinum plating on the wire cracked during processing, resulting in a discontinuous layer of platinum, and the element could not be formed in this way.

Anderson, Roger; Anderson, David

2002-01-15T23:59:59.000Z

238

Room temperature multiferroic properties of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}–Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} composites  

SciTech Connect

We report the crystal structure, magnetic, ferroelectric, dielectric, and magneto-dielectric properties of [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}]{sub (1?x)}[Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}]{sub x}: (x?=?0.1, 0.2, 0.3, and 0.4) composites. Rietveld refinement results of X-ray diffraction patterns confirm the formation of these composites for all x values. All the composites show well-saturated ferroelectric and ferromagnetic hysteresis (multiferroic-composite behavior) at room temperature. With increase in Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) content an increase in saturation magnetization, and decrease in saturation polarization, remanent polarization, and dielectric constant are observed. The ferroelectric phase transition temperature increases with increase in CZFO content. All of the compositions undergo second-order ferroelectric phase transitions, which can be explained by Landau-Devonshire theory. The recoverable energy density (?0.20 to 0.04?J/cm{sup 3}) and charge-curve energy density (?0.84 to 0.11?J/cm{sup 3}) decrease with increase in the CZFO content. The room-temperature magneto-dielectric measurements provide direct evidence of magneto-electric coupling via strain at room temperature.

Pradhan, Dhiren K., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Katiyar, Ram S., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Narayan Tripathy, Satya; Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India); Scott, J. F. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

2013-12-21T23:59:59.000Z

239

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Information to someone by Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Hotel Information Hilton Tampa Downtown 211 N. Tampa St. Tampa, FL 33602 A block of hotel rooms has been reserved at the Hilton Tampa at a special rate for DOE workshop attendees. The rate for a standard room is $116 per night from January 25-February 1. The room block has been extended until noon ET on Friday, January 17,

240

Electronic Reading Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Reading Room - making information about the Freedom of Information Act (FOIA) and Privacy Act process accessible to the public electronically. Electronic Reading Room - making information about the Freedom of Information Act (FOIA) and Privacy Act process accessible to the public electronically. Major Information Systems - Final Opinions - [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting opinions, as well as orders, made in the adjudication of cases within the Office of Hearings and Appeals Statements of Policy and Interpretation and Administrative Staff Manuals and Instructions - [5 USC 552 (a)(2)](B) those statements of policy and interpretation which have been adopted by the agency and are not published in the Federal Register - Directives, DOE Orders, Headquarters Orders, Secretarial Notices, Technical Standards, Forms, Delegations, Electronic Library Public Reading Facilities - making information available for public inspection and copying

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reading Room Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

FOIA Offices and Reading Rooms FOIA Offices and Reading Rooms FOIA Office Locations Our FOIA Officers are located at various sites throughout the DOE complex, each with responsibility for records located at or under the jurisdiction of the site. We recommend that you send your request directly to that specific site. This will shorten the processing time. However, if you do not know which location has responsive records, you may either call the Headquarters FOIA office at (202) 586-5955 to determine the appropriate office, or mail the request to the Headquarters FOIA office. Other records are publicly available in the facilities listed below: Headquarters U.S. Department of Energy FOIA/Privacy Act Group 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 202-586-5955 Fax: 202-586-0575

242

The Evaluation of the Mechanical Strength of Epoxy-Based Resin as a Plugging Material, and the Development of a Novel Plug and Abandon Technique Using Vitrified Solid Epoxy-Based Resin Beads  

E-Print Network (OSTI)

window in the cure process where the curing process can be suspended by quenching the partially cured liquid epoxy in water at room temperature, thereby changing the liquid epoxy into solid beads. The beads can then be pumped into the wellbore, where...

Abuelaish, Ahmed

2012-07-16T23:59:59.000Z

243

(Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells  

SciTech Connect

(Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

Young Nam, Kim [University of Texas, Austin; Kim, Jung-Hyun [ORNL; Paranthaman, Mariappan Parans [ORNL; Manthiram, Arumugam [University of Texas, Austin; Huq, Ashfia [ORNL

2012-01-01T23:59:59.000Z

244

A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells  

Science Journals Connector (OSTI)

Abstract A newly developed low-Cr containing Fe–Cr–Co alloy, named as FeCro, is evaluated as a candidate material of metallic interconnects for intermediate temperature solid oxide fuel cells (IT-SOFCs). This alloy possesses excellent oxidation resistance and adequate electrical conductivity at 750 °C in air, and shows slight Cr deposition in/around La0.72Sr0.18MnO3(LSM) electrode under a harsh accelerating condition of 400 mA cm?2 and 850 °C. The thickness of the oxide scale thermally grown at 750 °C in air for 1000 his less than 1 ?m, presenting a double-layered structure with dense (Mn, Cr)3O4 on the top of Cr2O3. The oxidation kinetics at 750 °C obeys the parabolic law with a low rate constant of1.42 × 10?15 g2 cm?4 s?1. The Cr deposition in/around the LSM electrode in the presence of the FeCro alloy is remarkably reduced, compared to the commercial Crofer 22H alloy. The measured area specific resistance (ASR) at 750 °C in air after 1000 h isothermal oxidation is 14 m? cm2. It is the unique microstructure of the formed oxide scale that significantly enhances the resistances of the FeCro alloy to oxidation and Cr volatilization.

Wenying Zhang; Dong Yan; Jie Yang; Jing Chen; Bo Chi; Jian Pu; Jian Li

2014-01-01T23:59:59.000Z

245

Peter Graham Scholarly Room (PGSC) Purpose of room  

E-Print Network (OSTI)

.syr.edu/services/PDF/generalpolicy.pdf To reserve a room: http://library.syr.edu/services/space/form-findroom.php To cancel a room reservation is on the southwest (University Avenue) perimeter of the first floor of Bird Library (see http://library.syr.edu/about/tour/images/floor_1_med.jpg for floor map). Priority for use of Room: 1) Library-provided instruction sessions 2

Raina, Ramesh

246

Dielectric Properties Of Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-PbTiO{sub 3} Solid Solution Synthesized By Solid State Reaction Route  

SciTech Connect

Phase pure (1-x)Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-x PbTiO{sub 3} ceramics near morphotrophic phase boundary (x = 0.35) are prepared by conventional solid state reaction route, by adding 2 mol.% MgO. The dielectric properties of lead indium niobate-lead titanate ceramic are studied as a function of both temperature and frequency. For this composition the dielectric constant for 100 Hz increases from 1944 at room temperature to 1510 at Curie temperature(304 deg. C). The saturation polarization, measured at room temperature, is found to be 23.9 {mu}C/cm{sup 2} for 40 kV/cm.

Ramesh, G.; Subramanian, V. [Microwave laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai-600 036 (India); Aruna, G. [Postgraduate Department of Physics, American College, Madurai-625 002 (India)

2011-07-15T23:59:59.000Z

247

Clean Room Orientation/Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

shoes Shoe covers before entering gowning room Head cover, then coverall. Boots over shoe covers. Gloves If gloves get ripped or soiled during your time in...

248

Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates  

Science Journals Connector (OSTI)

...NMR Center, Room 2301, Department of Radiology, Massachusetts General Hospital, 149...Solid State Comm 50 : 291 – 295 . Human dental extractions were kindly provided by Dr. Andrew...NMR Center, Room 2301, Department of Radiology, Massachusetts General Hospital, 149...

Yaotang Wu; David A. Chesler; Melvin J. Glimcher; Leoncio Garrido; Jinxi Wang; Hong J. Jiang; Jerome L. Ackerman

1999-01-01T23:59:59.000Z

249

Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers  

SciTech Connect

Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

He, Xiao [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States) [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Ryu, Shinsei [Department of Physics, University of Illinois at Urbana-Champaign, 1100 West Green Street, Urbana, Illinois 61801 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, 1100 West Green Street, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States) [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

2014-01-14T23:59:59.000Z

250

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Program » Solid-State Lighting » Program » Solid-State Lighting » Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: Hotel Information to someone by E-mail Share Solid-State Lighting: Hotel Information on Facebook Tweet about Solid-State Lighting: Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State Lighting: Hotel Information on Digg Find More places to share Solid-State Lighting: Hotel Information on AddThis.com... Home Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Hotel Information Wyndham Grand Pittsburgh, 600 Commonwealth Place, Pittsburgh, PA 15222 The Wyndham Grand Pittsburgh room block has expired; however,

251

Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba2Bi0.1Sc0.2Co1.7O6?x Cathode for Intermediate-Temperature Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba2Bi0.1Sc0.2Co1.7O6?x Cathode for Intermediate-Temperature Solid Oxide Fuel Cells ... Most notably, cathodic polarization treatment, for example, current discharge from BBSC, can be utilized to recover the original ORR performance. ... After evaporation of water at 120 °C, a dark purple gel was recovered. ...

Wei Zhou; Jaka Sunarso; Julius Motuzas; Fengli Liang; Zhigang Chen; Lei Ge; Shaomin Liu; Anne Julbe; Zhonghua Zhu

2011-02-28T23:59:59.000Z

252

SRNL - News Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Coveted R&D 100 Award Coveted R&D 100 Award ( PDF button Download printer-friendly, PDF version) SRNL Wins Coveted R&D 100 Award AIKEN, S.C. (Sept. 12, 2006) - Researchers at the Savannah River National Laboratory, along with team members from the Massachusetts Institute of Technology (MIT) and the Pacific Northwest National Laboratory, have been named winners of an R&D 100 Award for their invention, the MilliWave Thermal Analyzer. The R&D 100 awards, considered the "Oscars of research and development," are presented each year by R&D magazine to the 100 most technologically significant inventions of the year. The MilliWave Thermal Analyzer, developed by SRNL's Gene Daniel and Don Miller and their colleagues, uses millimeter-wave electromagnetic radiation for non-contact, real-time measurements of temperature, amount of energy emitted, and physical changes of materials under extreme temperatures or corrosive environments.

253

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

254

Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy  

SciTech Connect

We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600?°C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

Benkert, A., E-mail: andreas.benkert@kit.edu, E-mail: l.weinhardt@kit.edu [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany); Gemeinschaftslabor für Nanoanalytik, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Blum, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Meyer, F. [Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany)] [Universität Würzburg, Experimentelle Physik VII, Am Hubland, 97074 Würzburg (Germany); Wilks, R. G. [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)] [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Yang, W. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)] [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bär, M. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States) [Department of Chemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Nevada 89154-4003 (United States); Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Insitut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); and others

2014-01-15T23:59:59.000Z

255

Nuclear reactor control room construction  

DOE Patents (OSTI)

A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

Lamuro, R.C.; Orr, R.

1993-11-16T23:59:59.000Z

256

Nuclear reactor control room construction  

DOE Patents (OSTI)

A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

257

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 2, FEBRUARY 2006 433 Process and Temperature Compensation in a 7-MHz  

E-Print Network (OSTI)

and characterization of a process, temperature and supply compensation technique for a 7-MHz clock oscillator in a 0 of 2.6% (with process, temperature and supply). No trimming was performed on any of these samples and a temperature compensating network is de- veloped. The biasing circuit changes the control voltage of the dif

Ayazi, Farrokh

258

Covered Product Category: Room Air Conditioners | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Specifications website. Buying Energy-Efficient Room Air Conditioners When buying room air conditioners directly from commercial sources, choose models that are ENERGY...

259

Spin reorientation transition and near room-temperature multiferroic properties in a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}  

SciTech Connect

In this Letter, we investigate the magnetic and multiferroic properties of a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}. Due to the strong planar contribution to the anisotropy provided by Co{sup 2+} ions, this hexaferrite shows a spin reorientation transition from easy-axis to easy-cone at 302?K, which is different from the onset temperature of ferroelectric polarization, 275?K. By applying magnetic field, a remarkable drop of polarization is observed, suggesting a large magnetoelectric effect in this multiferroics. The difference between spin reorientation and ferroelectric phase transition temperature as well as the origin of magnetoelectric effect are discussed.

Song, Y. Q.; Fang, Y.; Wang, L. Y.; Zhou, W. P.; Cao, Q. Q.; Wang, D. H., E-mail: wangdh@nju.edu.cn; Du, Y. W. [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-03-07T23:59:59.000Z

260

EMSL - solids  

NLE Websites -- All DOE Office Websites (Extended Search)

solids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate-...

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reading Room | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Reading Room Reading Room Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters. The FOIA requires certain kinds of documents to be made available to the public for inspection and copying. This is a requirement for agencies of the executive branch of the federal government. The documents that are required to be made available by the FOIA are: Final Opinions [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting opinions, as well as orders, made in the adjudication of cases. Office of Hearings and Appeal - FOIA Appeals Initial agency determinations in response to FOIA and Privacy Act requests may be appealed to the Office of Hearings and Appeals (OHA). Decisions of the OHA constitute the agency's final determinations on requests made under

262

Reading Room | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedom of Information Act » Reading Freedom of Information Act » Reading Room Reading Room Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters. The FOIA requires certain kinds of documents to be made available to the public for inspection and copying. This is a requirement for agencies of the executive branch of the federal government. The documents that are required to be made available by the FOIA are: Final Opinions [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting opinions, as well as orders, made in the adjudication of cases. Office of Hearings and Appeal - FOIA Appeals Initial agency determinations in response to FOIA and Privacy Act requests may be appealed to the Office of Hearings and Appeals (OHA). Decisions of

263

Separation of plutonium and americium by low-temperature fluorination  

SciTech Connect

The authors have demonstrated separation of Pu and in-grown Am using the gaseous reagent dioxygen difluoride. Aged PuF{sub 4} was fluorinated at room temperature to generate PuF{sub 6} gas, which was trapped separately and reduced to PuF{sub 4}. The reaction product contained very little Am. Unreacted solid had elevated concentrations of Am that were consistent with a material balance. Use of a gaseous reagent and product enabled remote handling during reaction and purification. This result demonstrated a simple and minimal waste alternative that may have application to a number of actinide purification problems.

Mills, T.R.; Reese, L.W.

1993-10-01T23:59:59.000Z

264

Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass  

SciTech Connect

Low-temperature (2 K{<=}T{<=}350 K) heat capacity and room-temperature shear modulus measurements ({nu}=1.4 MHz) have been performed on bulk Pd{sub 41.25}Cu{sub 41.25}P{sub 17.5} in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

Vasiliev, A. N.; Voloshok, T. N. [Department of Low Temperature Physics and Superconductivity, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Granato, A. V.; Joncich, D. M. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Greet Street, Urbana, Illinois 61801 (United States); Mitrofanov, Yu. P. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Khonik, V. A. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Research Center, Voronezh State University, Universitetskaya Sq. 1, 394006 Voronezh (Russian Federation)

2009-11-01T23:59:59.000Z

265

Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Room Air Conditioners July 1, 2012 - 5:35pm Addthis A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A window air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. What does this mean for me? Room air conditioners are less expensive and disruptive to install than central air conditioning systems. Room air conditioners can be a cost-effective alternative to central air conditioning systems. How does it work? Room air conditioners work by cooling one part of your home. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though

266

Classified Reading Room Instructions/Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Classified Reading Room Instructions/Guidelines Classified Reading Room Instructions/Guidelines * Reading Room Points of Contact: Milesha Grier, (202) 586-8210, milesha.gier@nnsa.doe.gov Reading Room Location: DOE Forrestal Building, 1000 Independence Ave., Washington, D.C. Room 4A-045, 4 th Floor, "A" Corridor, Behind Glass Doors, dial 6-8210 Reading Room Availability: By Appointment - Reading Room will be available until RFP Closes except (12/5/11 thru 12/16/11, December 23, January 2, 2012 and January 16, 2012). Reading Room Hours: Morning, 9:00 a.m. - 11:30 a.m.; and Afternoon 1:00 p.m. - 3:30 p.m. Reading Room Will Accommodate: Up to 5-6 people * All personnel must: a. submit a formal Intent to Bid IAW Section L of the RFP, via email to: SEB1@doeal.gov

267

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

268

Media Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Media Room | National Nuclear Security Administration Media Room | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Media Room Home > Media Room Media Room NNSA's Office of Congressional, Intergovernmental, and Public Affairs regularly updates the web site with current press releases, newsletters,

269

DOE Solar Decathlon: Press Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Room Press Room The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The first Solar Decathlon was held in 2002; the competition has since occurred every two years in 2005, 2007, 2009, and 2011. The last event was held at the National Mall's West Potomac Park in Washington, D.C., Sept. 23-Oct. 2, 2011. Solar Decathlon 2013 takes place Oct. 3-13, 2013, at Orange County Great Park in Irvine, California. Open to the public free of charge, the Solar Decathlon gives visitors the

270

News Room | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Room News Room In a 3D structure of the protein, the binding site is shown in pink, representing a potential drug target. The green molecule shows binding of an antibiotic to the protein. Click to enlarge. Image courtesy of Wladek Minor. Newly ID'd protein provides target for antibiotic-resistant hospital bacterium Full Story » Researchers have made inroads into tackling a bacterium that plagues hospitals and is highly resistant to most antibiotics. Andrey Elagin (left), postdoctoral scholar at the Enrico Fermi Institute at the University of Chicago, and Matthew Wetstein, the Grainger Postdoctoral Fellow at the Enrico Fermi Institute at the University of Chicago, adjust the optics in the Large Area Picosecond Photodetector testing facility. The facility uses extremely short laser pulses to precisely measure the time resolution of the photodetectors. Click to enlarge.

271

NETL: NewsRoom - Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsRoom NewsRoom Multimedia Now you can download videos to your computer by right clicking the "download" link and selecting the "Save target as" option. It is suggested that mac users use this link. Carbon Cycle Animation Carbon Cycle Animation - 2012 Animation that depicts the carbon cycle as it relates to nature, land use, and energy production. Movie Icon Windows Media Video (WMV-5.7MB) [ view | download ] Earth Day Animation Earth Day Animation - 2011 A compilation of three Earth Day animations that demonstrate being green around your home, office, and community Movie Icon Windows Media Video (WMV-16MB) [ view | download ] Interview with Anthony Cugini Interview with Anthony Cugini - 2011 Interview at the International Pittsburgh Coal Conference with Dr. Cugini regarding Carbon Capture Utilization and Storage technologies.

272

Energy Integration Visualization Room (Fact Sheet)  

SciTech Connect

This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

Not Available

2012-08-01T23:59:59.000Z

273

High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 1: Occurrence of the corrosive ash forming elements in a fluidised bed boiler co-firing solid recovered fuel  

Science Journals Connector (OSTI)

In waste fired boilers high temperature corrosion has often been attributed to zinc and lead chlorides. In addition, bromine induced high temperature corrosion has been earlier observed in a bubbling fluidised bed (BFB) boiler co-firing solid recovered fuel (SRF) with bark and wastewater sludge. In Part 1 of this work a measurement campaign was undertaken to determine the occurrence of Cl, Br, Zn and Pb in the fuel, in the combustion gases as well as in the deposits on the boiler waterwalls. It was observed that Cl, Br, Zn and Pb originate to a large extent from the SRF, they are vaporised in the furnace, and may form waterwall deposits. This, complemented by fluctuations between oxidising and reducing atmosphere resulted in rapid corrosion of the waterwall tubes. Concentrations of Cl, Br, Zn and Pb in the fuel, in the furnace vapours and in the deposits are reported in this work. As there is lack of published data on the bromine induced high temperature corrosion, laboratory scale corrosion tests were carried out to determine the relative corrosiveness of chlorine and bromine and these results will be reported in Part 2 of this work. Furthermore, the forms of Cl, Br, Zn and Pb in the combustion gases as well as in the waterwall deposits were estimated by means of thermodynamic equilibrium modelling and these results will also be discussed in Part 2.

P. Vainikka; D. Bankiewicz; A. Frantsi; J. Silvennoinen; J. Hannula; P. Yrjas; M. Hupa

2011-01-01T23:59:59.000Z

274

Open Data: the elephant in the room?  

E-Print Network (OSTI)

Journal of the European Association for Health Information and Libraries (November 2008) vol.4(4) pp.4-6 Open Data: the elephant in the room?(*) Peter Morgan Cambridge University Medical... elephant in the room ... is an English idiom for an obvious truth that is being ignored or goes unaddressed. It is based on the idea that an elephant in a room would be impossible to overlook; thus, people in the room who pretend the elephant...

Morgan, Peter

275

Library Reserved Room Policy All Meeting Spaces  

E-Print Network (OSTI)

Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

Mather, Patrick T.

276

Reading Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reading Room | National Nuclear Security Administration Reading Room | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Reading Room Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract > Reading Room

277

The New Mexico State University motion room  

Science Journals Connector (OSTI)

This article describes the construction and operation of a totally enclosed motion room capable of carrying four students. The room is used for studying motion in a rotating frame. The rotation rate can be varied from 0 to above 20 rpm. Unique features of this motion room are the 60?in. searchlight frame used for the mount and electrical connections and the two cattle watering troughs used for the motion room proper. The room built a number of years ago has not previously been described in the literature.

Harold A. Daw

1990-01-01T23:59:59.000Z

278

Last Updated 8/12/2013 Page 1 of 2 Meeting Room 2 Meeting Room 3 Meeting Room 4 Meeting Room 5 Meeting Room 6  

E-Print Network (OSTI)

Cities Light Rail Monitoring Bioretention and Rainwater Harvesting Systems Urban Trees as a LID Source Meeting Room 6 8:00 a.m.-12:00 noon Intro to LID Rainwater Harvesting 1:00-5:00 p.m. Advances in Design for CSO Communities LID Research Panel Urban Trees and Stormwater Management LID Education Approaches

Minnesota, University of

279

Public Reading Room: Environmental Documents, Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Environmental documents and reports are available online. Hard copies are available at the Laboratory's Public Reading Room in Pojoaque, New Mexico. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Public Reading Room: Environmental Documents, Reports Online Annual Environmental Report Electronic Public Reading Room (EPRR) Plans, Procedures A listing of procedures available in the EPRR Hard copy Public Reading Room 94 Cities of Gold Road Pojoaque, NM Vie Screen reader users: click here for plain HTML Go to Google Maps Home 94 cities of gold Road, Pojoaque, NM Loading... Map Sat Ter Did you mean a different:

280

FOIA Reading Room - privacy act  

NLE Websites -- All DOE Office Websites (Extended Search)

Reading Room - pricacy act Reading Room - pricacy act CH Frequently Requested Documents Under FOIA Administrative Electronic FOIA Form Privacy Act Advisory (Microsoft Word(tm) document) DOE-CH Government Purchase Card Cardholders: December 2012 CH Organizational Chart: Current Version Policies and Procedures - Office of Science (including Chicago Office) Office of Hearings and Appeals Decisions Department of Justice Cases and Legal Documents Department of Energy Directives DOE Office of Inspector General Reports Responses Under FOIA FY10 Management and Operating Contracts "FY2012 Laboratory Performance Report Cards" The following management and operating prime contracts under the jurisdiction of DOE-CH have been renewed and posted for your convenience. Modifications that change, delete, or add language to any portion of these contracts (referred to as "M" Mods) will be posted as expeditiously as possible after execution. It is at the discretion of the Contractors whether or not they include modifications that change the amount obligated by the Government. Ames Laboratory - Contract No. No.DE-AC02-07CH11358

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ccsd00003793, Room temperature Peierls distortion in small diameter nanotubes  

E-Print Network (OSTI)

nanotubes D. Conn#19;etable, 1 G.-M. Rignanese, 2, 3 J.-C. Charlier, 2, 3 and X. Blase 1 1 Laboratoire de structure and electron-phonon coupling in small 4- #23; A diameter nanotubes. We show that both the C(5 the diameter decreases. These results question the origin of superconductivity in small diameter nanotubes

282

Ge-on-Si laser operating at room temperature  

E-Print Network (OSTI)

Monolithic lasers on Si are ideal for high-volume and large-scale electronic–photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide ...

Liu, Jifeng

283

Microscopic Transport in Mixtures of Room Temperature Ionic Liquids...  

NLE Websites -- All DOE Office Websites (Extended Search)

andor storage of carbon dioxide. For these applications in addition to CO 2 sorption properties, also transport properties of the mixtures of CO 2 and ILs are of high...

284

Numerical modelling and analysis of a room temperature magnetic  

E-Print Network (OSTI)

are separated by channels of a heat transfer fluid. The time-dependent model solves the momentum and continuity equations of the flow of the heat transfer fluid and the coupled energy equations of the heat transfer and it was concluded that the model has energy conservation and that the solution is independent of the chosen grid

285

Generating Ultrafast Inhomogeneous Strain in Room-Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions A Layered Nanostructure Held Together By DNA Science Highlights Archives: 2014 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 |...

286

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly… (more)

Hussain, Mohammed Mujtaba

2008-01-01T23:59:59.000Z

287

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell.  

E-Print Network (OSTI)

??Solid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600 °C to 1000 °C and employ solid… (more)

Aman, Amjad

2012-01-01T23:59:59.000Z

288

Temperature effect on recol tritium ractions in solid alkanes at 20 to 300 K. Comparison of recoil T atoms with H (D) atoms in. gamma. radiolysis  

SciTech Connect

Hydrogen atom abstraction by recoil T atoms in neopentane and decane-d/sub 22/ has been studied at 20, 77, 195, and 300 K by means of ESR spectroscopy and radiogas chromatography. The results are compared with the reaction of H (or D) atoms produced by ..gamma.. radiolysis. When the experiments are conducted at 77 K, the reaction or recoil tritium atoms in the neo-C/sub 5/H/sub 12/-i-C/sub 4/H/sub 9/D (2 mol %) and n-C/sub 10/D/sub 22/-n-C/sub 10/H/sub 22/ (10 mol %) mixtures do not parallel those of H and D atoms generated by ..gamma.. irradiation, whereas the results at other temperatures below and above 77 K (20, 195, and 300 K) are more nealy comparable. The different results at 77 K are attributed to the ability of H and D atoms but not T atoms to diffuse and react with i-C/sub 4/H/sub 9/D (or n-C/sub 10/H/sub 22/) solute molecules. The failure of the thermal diffusion of the T atoms at 77 K is explained by a model in which nearly all of the recoil T atoms react either by hot reaction or have a high probability of reacting with a fragment near the end of the path and only a few percent of them diffuse into the bulk matrix.

Aratono, Y. (Japan Atomic Energy Research Institute, Ibaraki); Tachikawa, E.; Miyazaki, T.; Kawai, Y.; Fueki, K.

1982-01-21T23:59:59.000Z

289

Preparation and orientation of solid  

Science Journals Connector (OSTI)

We have prepared solid 3He crystals under constant volume conditions and characterized them by neutron diffraction and transmission. The ultimate aim of the work was the preparation of samples suitable for neutron diffraction investigations of the antiferromagnetic nuclear ordering of solid 3He below 1 mK. We describe results from different sample cells, and we have derived the relevant design parameters with respect to (a) the neutron signal and background requirements, (b) the requirements of experiments at ultra-low temperature and (c) the mechanical properties for work at high pressure. The techniques of the 3He crystal growth at pressure between 4 and 6 MPa and at low temperature are described, together with a strategy for the crystal orientation and background reduction. As a result, large 3He single crystals of good quality were obtained. With such samples, neutron experiments on magnetic order in solid 3He at ultra-low temperature shift to the experimentally feasible regime.

V Boiko; S Matas; K Siemensmeyer

2008-01-01T23:59:59.000Z

290

NEPA Reading Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reading Room | National Nuclear Security Administration Reading Room | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NEPA Reading Room Home > About Us > Our Operations > NNSA Office of General Counsel > National Environmental Policy Act (NEPA) > NEPA Reading Room NEPA Reading Room Welcome to the National Nuclear Security Administration's NEPA Reading

291

Performance Analysis and Development Strategies for Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Solid oxide fuel cells (SOFC) are of great interest for a diverse range of applications. Within the past 10 years, an increase in power density by one order of magnitude, a lowering of the operating temperature by 200 K, and degradation rates lowered by a factor of 10 have been achieved on the cell and stack level. However, there is still room for further enhancement of the overall performance by suitably tailoring the cell components on a micro- and nanostructural level. The efficiency of the electrochemically active single cell is characterized by the linear ohmic losses within the electrolyte and by nonlinear polarization losses at the electrode-electrolyte interfaces. Both depend on material composition and operation conditions (temperature and time, fuel utilisation and gas composition). The area-specific resistance (ASR) is considered as the figure of merit for overall performance. ASR values of anode supported cells (ASC) were determined by means of impedance spectroscopy and subsequently separated into ohmic losses (mainly electrolyte) and nonlinear polarisation losses resulting from gas diffusion and activation polarization in the cathode and anode. The efficiencies of ASCs will be discussed for various material combinations in the temperature range of technological interest (between 550 °C and 850 °C).

E Ivers-Tiffée; A Leonide; A Weber

2011-01-01T23:59:59.000Z

292

A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy  

SciTech Connect

Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

2014-01-01T23:59:59.000Z

293

NSTX Synchronization System Block Diagram Control Room  

E-Print Network (OSTI)

NSTX Synchronization System Block Diagram Clock Rack Control Room Junction Area MG FCPCRF Cage Test Cell West Patch Rack Test Cell East Patch Rack Darm Patch Rack CAMAC Crate CAMAC Crate CAMAC Crate' Level, and RF Balcony O 1,230 ft. 1.88 µsec Optic Rack 100 Control Room E 100 ft. .15µsec O 525 ft. .8

Princeton Plasma Physics Laboratory

294

UTEPBioinformaticsProgram Bell Hall, Room 138  

E-Print Network (OSTI)

UTEPBioinformaticsProgram Bell Hall, Room 138 The University of Texas at El Paso El Paso, TX 79968:www.bioinformatics.utep.edu UTEPBioinformatics BellHall,Room138 TheUniversityofTexasatElPaso 500W.UniversityAvenue ElPaso,TX79968 and Student Fitness Center with its two swimming pools underline the University's commitment to provide

Fuentes, Olac

295

Electrical Characterization of an RF Glow Discharge at Room Pressure  

SciTech Connect

A non-thermal atmospheric-like plasma source able to operate at room temperature represents, by its physical nature, a considerable potential for biological applications, given its highly accurate action and extremely controllable penetration on the surface of biological tissue. As we start up a research line into this technology, we report the electrical characterization of a room pressure plasma discharge by means of a coupling network model. The discharge is produced by a 13.56MHz commercial generator. As it is impossible to measure directly its state variables (voltage and current intensity) due to the considerable perturbation created by introducing a low impedance at the system output, then an indirect estimation of such variables is achieved from experimental diagnostics at the input, so to validate the proposed electrical model.

Perez-Martinez, J. A.; Piedad-Beneitez, A. de la [Instituto Tecnologico de Toluca, AP 890, Toluca (Mexico); Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R. [Instituto Nacional de Investigaciones Nucleares, AP 18-1027, 11801, Mexico D.F. (Mexico); Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O. [Instituto Tecnologico de Toluca, AP 890, Toluca (Mexico); Instituto Nacional de Investigaciones Nucleares, AP 18-1027, 11801, Mexico D.F. (Mexico)

2006-12-04T23:59:59.000Z

296

DOE-ID FOIA Reading Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Reading Room Reading Room READING ROOM Eectronic Freedom of Information Act, E-FOIA RECORDS UNDER THE E-FOIA The Electronic Freedom of Information Act Amendments of 1996 addresses the issues and procedural aspects of FOIA administration. The amendment: defines the term "record" as including "any information that would be an agency record subject to the requirements of the FOIA when maintained by an agency in any format, including an electronic format; addresses the form or format in which a requested record is disclosed providing the record is readily reproducible by the agency in the requestor's desired form or format; directs Federal agencies to maintain both conventional reading rooms and electronic reading rooms to meet FOIA responsibilities.

297

Los Alamos test-room results  

SciTech Connect

Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

McFarland, R.D.; Balcomb, J.D.

1982-01-01T23:59:59.000Z

298

Temperature effects on the electronic conductivity of single-walled carbon nanotubes  

E-Print Network (OSTI)

The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

Mascaro, Mark Daniel

2007-01-01T23:59:59.000Z

299

Cryogenic radiometry: the problem of hydrogen condensation in detectors operated at temperatures below 4 K  

Science Journals Connector (OSTI)

Cryogenic radiometers employing a detector at liquid helium temperatures have demonstrated a much improved accuracy over those operating at room temperature. It is recommended that...

Quinn, T J; Martin, J E

1991-01-01T23:59:59.000Z

300

Metallic Materials in Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC). Recently, a new type of FeC...

V. Shemet; J. Piron-Abellan; W.J. Quadakkers…

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High-pressure EXAFS measurements of solid and liquid Kr  

Science Journals Connector (OSTI)

X-ray-absorption measurements of liquid and solid krypton at room temperature in the pressure range 0.1–30 GPa have been performed using the dispersive setup and diamond-anvil cells as a pressure device. The evolution of the near-edge structures as a function of pressure, including the first intense resonance, has been interpreted using multiple-scattering calculations. It is shown that the near-edge structures are reproduced taking into account two-body and three-body terms associated with the first-neighbor atoms. Extended x-ray-absorption fine-structure (EXAFS) spectra have been analyzed in the framework a multiple-scattering data-analysis approach taking proper account of the atomic background including the [1s4p], [1s3d], and [1s3p] double-electron excitation channels. Isobaric Monte Carlo (MC) computer simulations based on empirical pair potentials, as proposed by Barker (K2) and Aziz (HFD-B), have been performed to make a quantitative comparison of theoretical and experimental local structural details of condensed krypton at high pressures. From the analysis of EXAFS data we were able to obtain simultaneous information on average distance, width, and asymmetry of the first-neighbor distribution, as a function of pressure. These parameters yield a unique insight on the potential function because they are affected by both minimum position and curvature of the effective pair potential. The trend of the first-neighbor distribution as a function of pressure is in quantitative agreement with the HFD-B potential at moderate pressures, deviations are found at higher pressures where EXAFS spectra are very sensitive to the hard-core repulsive part of the potential. The weak EXAFS signal of liquid krypton at room temperature and 0.75 GPa has been found in accord with the results of the MC simulations within the noise of the measurement. © 1996 The American Physical Society.

A. Di Cicco; A. Filipponi; J. P. Itié; A. Polian

1996-10-01T23:59:59.000Z

302

Sorption of organic gases in residential rooms  

NLE Websites -- All DOE Office Websites (Extended Search)

residential rooms residential rooms Title Sorption of organic gases in residential rooms Publication Type Journal Article LBNL Report Number LBNL-59303 Year of Publication 2007 Authors Singer, Brett C., Alfred T. Hodgson, Toshifumi Hotchi, Katherine Y. Ming, Richard G. Sextro, Emily E. Wood, and Nancy J. Brown Journal Atmospheric Environment Volume 41 Start Page Chapter Pagination 3251-3265 Keywords adsorption, hazardous air pollutants, nerve agents, sink effect, volatile organic compounds Abstract Experiments were conducted to characterize organic gas sorption in residential rooms studied ''as-is'' with furnishings and material surfaces unaltered and in a furnished chamber designed to simulate a residential room. Results are presented for 10 rooms (five bedrooms, two bathrooms, a home office, and two multi-function spaces) and the chamber. Exposed materials were characterized and areas quantified. A mixture of volatile organic compounds (VOCs) was rapidly volatilized within each room as it was closed and sealed for a 5-h Adsorb phase; this was followed by 30-min Flush and 2-h closed-room Desorb phases. Included were alkane, aromatic, and oxygenated VOCs representing a range of ambient and indoor air pollutants. Three organophosphorus compounds served as surrogates for Sarin-like nerve agents. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at a surface sink and potentially a second, embedded sink. The 3-parameter sink-diffusion model provided acceptable fits for most compounds and the 4-parameter two-sink model provided acceptable fits for the others. Initial adsorption rates and sorptive partitioning increased with decreasing vapor pressure for the alkanes, aromatics and oxygenated VOCs. Best-fit sorption parameters obtained from experimental data from the chamber produced best-fit sorption parameters similar to those obtained from the residential rooms

303

Optimizing human performance in the advanced CANDU control room  

SciTech Connect

Human performance in existing Canada deuterium uranium (CANDU) nuclear power plants has been considerably enhanced by the extensive use of computers for automatic plant control and operator interface functions. This includes a number of relatively advanced functions such as alarm conditioning, trip setpoint conditioning, signal checks and intercomparisons, special-purpose information displays, and computerized safety system testing. The CANDU supervisory control philosophy has been quite successful and well received by CANDU operators and has provided a solid foundation to build upon. Optimization of human performance in the advanced CANDU control room is being achieved by systematic integration of human factors and computer technology in an intensive Canadian program of research, design, and development.

Pauksens, J. (Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada)); Lupton, L.R. (Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada))

1992-01-01T23:59:59.000Z

304

Solid–Solid Interactions on Active Adsorbents  

Science Journals Connector (OSTI)

... on the different grades of alumina provide a measure of the relative activities of such adsorbents. When the solid-solid adsorption processes were essentially complete, the absorbance maxima were virtually ...

PHILIP ANTHONY; HARRY ZEITLIN

1960-09-10T23:59:59.000Z

305

Room for increased ambitions? Governing breakthrough research  

E-Print Network (OSTI)

Room for increased ambitions? Governing breakthrough research in Norway 1990 ­ 2013 Report expectations rather than creative energy. In addition, we see the need for a streamlining of the very broad

Løw, Erik

306

Golden Reading Room: FINAL Environmental Impact Statements  

Energy.gov (U.S. Department of Energy (DOE))

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

307

Golden Reading Room: FOIA Frequently Requested Documents  

Office of Energy Efficiency and Renewable Energy (EERE)

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

308

Golden Reading Room: Other NREL Documents  

Energy.gov (U.S. Department of Energy (DOE))

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

309

Data Room - Facilities - Radiation Effects Facility / Cyclotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation effects beam - line. Cable passage to beam line. In addition to a 18 port bnc patch panel connecting the data room and beam line area, there are also a series of...

310

Golden Reading Room: Other NEPA Documents  

Office of Energy Efficiency and Renewable Energy (EERE)

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

311

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

312

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

313

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

314

The Advanced Photon Source main control room  

SciTech Connect

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

315

Training Room Equipment Instructions Projector and TV Display  

E-Print Network (OSTI)

Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

Crawford, T. Daniel

316

LED Light Fixture Project FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis  

E-Print Network (OSTI)

LED Light Fixture Project ­ FC1 Director's Conference Room: Life Cycle Cost and Break-even Analysis sources. One of the emerging lighting technologies that facilities organizations are looking at are LEDs. A light-emitting diode (LED) is a solid-state lighting source that switches on instantly, is readily

Johnston, Daniel

317

Interfacial material for solid oxide fuel cell  

DOE Patents (OSTI)

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

318

Heating of a testing room by use of a hydrogen-fueled catalytic heater  

Science Journals Connector (OSTI)

Space heating experiments were carried out using flameless (catalytic) combustion of hydrogen with atmospheric oxygen on Pt and oxide catalyst pads. The heating rate required for warming of a testing room was calculated and material balance equations for oxygen depletion and steam production were derived. The following parameters have been investigated: 1. (a) change of the oxygen and water vapour contents in the testing room in comparison with the calculated values, 2. (b) the established thermal regime in the testing room is discussed in comparison with conventional heating. The following conclusions are drawn: 1. (1) The hydrogen combustion can be adjusted to produce the desired temperature level, 2. li(2) in order to maintain the oxygen concentration at the comfort level, the free ventilation in the room should be supplemented by short, periodic, forced ventilation, 3. (3) the comfort limits of humidity require the condensation of the surplus water vapour by using a suitable device.

J. Mercea; E. Grecu; T. Fodor

1981-01-01T23:59:59.000Z

319

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

320

John S. Wright Forestry Center Room Sizes, Capacities, and Rates  

E-Print Network (OSTI)

Appendix 1 John S. Wright Forestry Center Room Sizes, Capacities, and Rates Room College the Wright Center contact: Marlene Mann, Administrative Assistant Forestry and Natural Resources Voice: 765

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mn solid solutions in self-assembled Ge/Si (001) quantum dot heterostructures  

SciTech Connect

Heteroepitaxial Ge{sub 0.98}Mn{sub 0.02} quantum dots (QDs) on Si (001) were grown by molecular beam epitaxy. The standard Ge wetting layer-hut-dome-superdome sequence was observed, with no indicators of second phase formation in the surface morphology. We show that Mn forms a dilute solid solution in the Ge quantum dot layer, and a significant fraction of the Mn partitions into a sparse array of buried, Mn-enriched silicide precipitates directly underneath a fraction of the Ge superdomes. The magnetic response from the ultra-thin film indicates the absence of robust room temperature ferromagnetism, perhaps due to anomalous intermixing of Si into the Ge quantum dots.

Kassim, J.; Nolph, C.; Reinke, P.; Floro, J. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Jamet, M. [Institut Nanosciences et Cryogenie/SP2M, CEA-UJF, F-38054 Grenoble (France)

2012-12-10T23:59:59.000Z

322

Solid oxide electrochemical reactor science.  

SciTech Connect

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

323

Comparison of Microbial Contamination Levels Among Hospital Operating Rooms and Industrial Clean Rooms  

Science Journals Connector (OSTI)

...8 6.9-9.0 Corridor outside clean room A................ 6.7 6.5-7.0 Factory area adjacent to cleanroom A............ 16.01 13.0-24.1 Clean Room B Site A..................... 1.0 0...

Martin S. Favero; John R. Puleo; James H. Marshall; Gordon S. Oxborrow

1968-03-01T23:59:59.000Z

324

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System  

E-Print Network (OSTI)

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

Whitehouse, Kamin

325

Carbon War Room | Open Energy Information  

Open Energy Info (EERE)

War Room War Room Jump to: navigation, search Name Carbon War Room Place Washington, DC Number of employees 1-10 Website http://www.carbonwarroom.com/ Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8951118,"lon":-77.0363658,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications  

SciTech Connect

We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

2012-05-02T23:59:59.000Z

327

Room Q data report: Test borehole data from April 1989 through November 1991  

SciTech Connect

Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.

Jensen, A.L. [Sandia National Labs., Albuquerque, NM (United States); Howard, C.L. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Peterson, T.P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-03-01T23:59:59.000Z

328

Temperature Dependent Neutron Scattering Sections for Polyethylene  

E-Print Network (OSTI)

This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

Roger E. Hill; C. -Y. Liu

2003-09-05T23:59:59.000Z

329

Forensic Entomology & Taphonomy Smith Hall Room 125  

E-Print Network (OSTI)

ENTM 295T Forensic Entomology & Taphonomy Smith Hall Room 125 Monday 8:30 ­ 11:20 a.m. Fall and on the postmortem fate of human remains. Ralph Williams, Ph.D. D-ABFE Professor of Entomology Entomology, Smith B9

Ginzel, Matthew

330

Covered Product Category: Room Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

331

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

332

Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell  

SciTech Connect

Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

2009-07-15T23:59:59.000Z

333

Spectroscopic study of the ? phase of solid oxygen  

Science Journals Connector (OSTI)

The infrared spectrum of the ? phase of solid oxygen has been studied between room temperature and 20 K as a function of pressure up to 63 GPa. Besides the strong absorption in the fundamental O2 vibron mode and the broad doublet in the overtone region, another peak is detected in the far infrared region. The analysis of the overtone bands allows the determination of the density of states of the O2 vibron region which consists of two separated energy regions, including one the infrared and the other the Raman bands observed in the 1500–1650?cm-1 range. This result, consistent with the analysis of the other Raman and infrared bands at lower frequency, is interpreted on the basis of a crystal composed by a molecular unit formed by four oxygen atoms. This hypothesis explains the strong infrared absorption which is in contrast with the model of a crystal composed by diatomic oxygen molecules. Very thin crystalline slabs (measure the intensity of the strong infrared absorption at 1500–1550?cm-1. The measurement of the Raman spectrum as a function of the incident power and of the laser excitation frequency shows how the intensity and the frequency of the Raman lines are affected by the experimental conditions. Finally, a simple chain model provides indirect proof of our assignment of the low-frequency infrared mode and allows to rule out an association in polymeric units formed by more than four atoms even at pressures close to the insulator-metal transition.

Federico A. Gorelli; Lorenzo Ulivi; Mario Santoro; Roberto Bini

2001-02-20T23:59:59.000Z

334

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

335

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

336

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

337

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

338

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

339

The room noise criteria (RNC) metric.  

Science Journals Connector (OSTI)

The recent ANSI S12.2:2008 room noise criteria contains both a survey and an engineering method to specify room noise criteria. The methods use A?weighting and extended NC respectively. A new metric titled like the standard room noise criteria (RNC) is included as a diagnostic tool. It is based on human hearing and more correctly assesses low?frequency sound. In particular it is sensitive to the standard deviation to random noise and/or low?frequency surging in the 16–125 Hz octave bands such as the sound that can be produced by HVAC systems or other devices. It provides a bridge between the NC and RC criteria by correctly predicting the need for the less stringent (at low frequencies) NC criteria when the HVAC system is well designed (no surging moderate standard deviation) and also correctly predicting the more stringent (at low frequencies) RC criteria when the HVAC system noise has a large standard deviation and/or surging.

2009-01-01T23:59:59.000Z

340

Subdue solids in towers  

SciTech Connect

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

342

Laser sheet light flow visualization for evaluating room air flowsfrom Registers  

SciTech Connect

Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

Walker, Iain S.; Claret, Valerie; Smith, Brian

2006-04-01T23:59:59.000Z

343

Release of DRAFT RFP Headquarters Reading Room Instructions/Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Release of DRAFT RFP Release of DRAFT RFP Headquarters Reading Room Instructions/Guidelines 1. Reading Room Points of Contact: 7/21 - 8/8, Mike Baehre, (202) 586-6575 8/9 - Close of Draft RFP, John Bernier, (202) 586-6416 Reading Room Availability: By Appointment - Reading Room will be available until DRAFT RFP Closes. Reading Room Hours: Morning, 9:00 a.m. - 11:30 a.m.; and Afternoon 1:00 p.m. - 3:30 p.m. Reading Room Will Accommodate: Up to 5-6 people 2. All personnel must: a. Sign-in b. Identify their Company or Firm they work for or are affiliated c. Indicate if they have a "Q" clearance 3. Personnel must stay in the Reading Room to view documents. The "A" corridor is inside a classified area and all visitors to the Reading Room must be escorted at all times.

344

Federal Energy Management Program: Covered Product Category: Room Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioners to someone by E-mail Room Air Conditioners to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Google Bookmark Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Delicious Rank Federal Energy Management Program: Covered Product Category: Room Air Conditioners on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Room Air Conditioners on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process

345

Hanford workers begin cleaning out historic McCluskey Room  

Energy.gov (U.S. Department of Energy (DOE))

Workers have entered one of the most hazardous rooms at the Hanford Site in Washington state to begin final cleanup of a room that became known to workers over the years by the name of a worker...

346

Five ENERGY STAR Room Air Conditioners Fail Testing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five ENERGY STAR Room Air Conditioners Fail Testing Five ENERGY STAR Room Air Conditioners Fail Testing August 22, 2011 - 2:00pm Addthis The U.S. Department of Energy's Office of...

347

HELP ROOMS AND PRIVATE TUTORING The following list of private tutors and departmental help rooms is intended as a resource for Columbia  

E-Print Network (OSTI)

1 HELP ROOMS AND PRIVATE TUTORING The following list of private tutors and departmental help rooms is intended as a resource for Columbia students seeking extra academic help. This is all publicly available://www.columbia.edu/cu/chemistry/undergrad/tutors/index.html Help Room Schedule (Help Room Schedule (Help Room Schedule (Help Room Schedule (Spring 2013Spring 2013

Hone, James

348

Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing  

SciTech Connect

We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenological model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

2008-12-01T23:59:59.000Z

349

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high

350

A Furnace Temperature Regulator  

Science Journals Connector (OSTI)

Synopsis.—By making the heating coil of an electric furnace one arm of a wheatstone bridge, and combining this with a galvanometer regulator, thus keeping constant the resistance of the coil, we can, regardless of variations in the current supply, and with no attention, maintain constant the temperature of furnaces not too directly influenced by the temperature of the room, or where the surrounding air is kept constant. The power available in this regulator is relatively very great indeed; nothing has to be inserted within the furnace cavity, and the lag is practically nothing; the regulator is often almost at its best under conditions most unfavorable to other regulators. It has held a small furnace constant to 0.1° for hours at temperatures from 500° to 1400°.

Walter P. White and Leason H. Adams.

1919-07-01T23:59:59.000Z

351

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

352

Tribological Characterization of Carbon Based Solid Lubricants  

E-Print Network (OSTI)

lubrication modes. ..................... 10 Figure 5. Typical Stribeck Curve [22]. ..................................................................... 11 Figure 6. This figure illustrates the lamellar structure of graphite. ........................... 13... or low pressures, and high and low operating speeds. For purposes of this research, the extreme conditions will refer to high temperatures, and low pressures. The most common types of solid lubricants encompass four materials: graphite, molybdenum...

Sanchez, Carlos Joel

2012-10-19T23:59:59.000Z

353

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network (OSTI)

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

354

Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL  

E-Print Network (OSTI)

Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l;Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics High temperature (~700 ­ 800 of SOFCDevelopment of SOFC TTechnologyechnology Fuel Reforming and System DesignFuel Reforming and System Design

355

Delivery system for molten salt oxidation of solid waste  

DOE Patents (OSTI)

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

356

E-Print Network 3.0 - automated in-tube solid-phase Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for: automated in-tube solid-phase Page: << < 1 2 3 4 5 > >> 1 Date Student Topic Advisor 082211 Introduction Summary: 3111 Indika Galpothdeniya Temperature-Response...

357

HgCdTe superlattices for solid-state cryogenic refrigeration  

E-Print Network (OSTI)

for solid-state cryogenic refrigeration Daryoosh Vashaee a?merit ?ZT max ? 3? at cryogenic temperatures. Calculationstemperature, 1–6 for cryogenic refrigeration the situation

Vashaee, D; Shakouri, A

2006-01-01T23:59:59.000Z

358

Thermal Stress Analysis of LCA-based Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??This research characterizes the thermal stress resulting from temperature gradients in hybrid solid oxide fuel cells that are processed using a novel oxide powder slurry… (more)

LeMasters, Jason Augustine

2004-01-01T23:59:59.000Z

359

Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte  

Science Journals Connector (OSTI)

Efforts to improve water electrolysis technology are being made using three promising ... ) development of solid polymer electrolyte (SPE) water electrolysers, (b) increasing the operating temperature of alkaline...

P. W. T. Lu; S. Srinivasan

1979-05-01T23:59:59.000Z

360

SAMPLE RESULTS FROM MCU SOLIDS OUTAGE  

SciTech Connect

Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

2014-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The P-V-T equation of state of D2O ice VI determined by neutron powder diffraction in the range 0 < P < 2.6 GPa and 120 < T < 330 K, and the isothermal equation of state of D2O ice VII from 2 to 7 GPa at room temperature  

Science Journals Connector (OSTI)

Ice VI is an important rock-forming mineral phase in icy planetary bodies; the pressure and temperature dependence of its density have been measured using powder neutron diffraction, throughout the high-pressure stability field, to obtain an accurate equation of state parameterization. These data are used to derive other thermodynamic quantities of use in planetary modelling.

Fortes, A.D.

2012-05-16T23:59:59.000Z

362

NETL: NewsRoom - LabNotes  

NLE Websites -- All DOE Office Websites (Extended Search)

LabNotes LabNotes NewsRoom LabNotes January 2014 Chemical Looping 101: The Basics NETL's Chemical Looping Research Facilities Oxygen Carriers in Chemical Looping Combustion Chemical Looping Modeling and Simulation Research at NETL December 2013 Foamed Cement Can Seal Tricky Oil and Gas Wells November 2013 High-Performance Rechargeable Batteries May Help Keep the Lights On Rocks Demystified in Geomechanical Properties Lab October 2013 NETL's Morgantown Supercomputer Sets a High Bar for Energy Efficiency September 2013 NETL's Energy Data Exchange (EDX): Providing Access to Quality Energy Data Sorbents Capturing CO2 Will Make Power Plants Cleaner August 2013 Collaborative Technology Demonstrates Potential in Diabetes Testing Quantifying Uncertainty in Computer Model Predictions

363

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

364

Solid–Liquid–Vapor Equilibrium Models for Cryogenic Biogas Upgrading  

Science Journals Connector (OSTI)

In cryogenic upgrading processes involving dry ice formation, accurate predictions of solid–liquid, solid–vapor, and solid–liquid–vapor equilibria are fundamental for a correct design of the heat exchanger surface in order to achieve the desired biomethane purity. ... Moreover, the liquefied biogas production process, particularly interesting for cryogenic upgrading processes due to the low temperature of the obtained biomethane, requires an accurate knowledge of carbon dioxide solubility in liquid methane to avoid solid deposition. ... For some applications demanding a high energy content gas, namely vehicle fuels and injection in the natural gas grid, the biogas has to be upgraded into biomethane. ...

Mauro Riva; Marco Campestrini; Joseph Toubassy; Denis Clodic; Paolo Stringari

2014-10-13T23:59:59.000Z

365

Solid State Communications, Vol. 74, No. 4, pp. 281-284, 1990. Printed in Great Britain.  

E-Print Network (OSTI)

Department of Chemistry, Stanford University, Stanford, CA, 94305, USA (Received 15 November 1989 by V sublimation flakes at room temperature. The laser excitation wavelength was tuned to the singlet exciton band

Fayer, Michael D.

366

Solid state cavity QED : practical applications of strong coupling of light and matter  

E-Print Network (OSTI)

J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire ...

Tischler, Jonathan Randall, 1977-

2007-01-01T23:59:59.000Z

367

In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM  

E-Print Network (OSTI)

In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM A. Faes1. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cell - Fundamentals, Design, Denmark antonin.faes@epfl.ch Keywords: In situ ETEM, nickel oxide, reduction, RedOx, SOFC Solid Oxide Fuel

Dunin-Borkowski, Rafal E.

368

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network (OSTI)

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

369

Solid Cold - C  

Office of Scientific and Technical Information (OSTI)

C. Temperature and energy Most basically, temperature is related to energy flow. If you have two things at different temperatures, and you put them together so that heat can flow...

370

Solid Waste Rules (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

371

Solid Waste Management (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

372

Golden Reading Room: FOIA Requester Service Centers and Public...  

Office of Environmental Management (EM)

FOIA Requester Service Centers and Public Liaisons Golden Reading Room: FOIA Requester Service Centers and Public Liaisons U.S. Department of Energy http:energy.govmanagement...

373

Integrated Temperature and Humidity Control: A Unique Approach  

E-Print Network (OSTI)

as in Singapore. The results presented herein are from one of these sites, consisting of two adjacent unoccupied guest rooms in a hotel, each equipped with chilled- water fan coil units. The two, virtually identical adja- cent rooms were selected primarily... for comparing the operation and performance of the ITHC with that of a dry-bulb temperature controller (DBTC) under the exact same conditions (solar, outdoor temperature and humidity, internal loads, etc.). To obtain com- parative results, the fan coil unit...

Shah, D. J.

2000-01-01T23:59:59.000Z

374

Study of cold nuclear fusion with electrolysis at low-temperature range  

Science Journals Connector (OSTI)

We carried out an electrolysis by changing the temperature from ?80°C to room temperature in order to create a dynamic condition in the electrode. No neutron emission was observed from the palladium and the ti...

Y. Nakamitsu; M. Chiba; K. Fukushima; T. Hirose; K. Kubo; M. Fujii…

1994-01-01T23:59:59.000Z

375

An analysis of the impact of datacenter temperature on energy efficiency  

E-Print Network (OSTI)

The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

Lee, Heechang

2012-01-01T23:59:59.000Z

376

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl…

2012-01-01T23:59:59.000Z

377

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl; Dr. Claudia Kirsten…

2013-01-01T23:59:59.000Z

378

Solids Accumulation Scouting Studies  

SciTech Connect

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

379

Solid Cold - F  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Progress in science F. Progress in science Aside from what it tells us about the thermodynamics of solids, this analysis by Einstein illustrates some important things about the way scientific progress is made. For one, it serves as a typical example of how discoveries about one phenomenon often help us understand others that had no obvious relation to it earlier. In this case, newly discovered properties of light suggested significant facts about solids-and about whether or not solids were made of atoms. Einstein thus found another significant relation between thermodynamics and optics besides the ones already known earlier. Another point this work illustrates is that progress doesn't always require understanding everything at once. It turned out that solids do act like

380

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermodynamic modeling for organic solid precipitation  

SciTech Connect

A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

Chung, T.H.

1992-12-01T23:59:59.000Z

382

Architectures for individual and stacked micro single chamber solid oxide fuel cells  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that convert various fuel sources directly into electrical energy at temperatures ranging from 600°C to 1000°C. These high temperatures could potentially ...

Crumlin, Ethan J

2007-01-01T23:59:59.000Z

383

Sandia National Laboratories: High-Pressure and High-Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECClimateCarbon CaptureHigh-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies High-Pressure and High-Temperature Neutron...

384

Exploring former interaction qualities for tomorrow's control room design  

E-Print Network (OSTI)

.g. in power plants or industrial production plants. One essential task in operating control rooms consists by virtual control elements that are operated through desktop computers. However this kind of interaction between power and reality as stated by Jacob et al. (2008): While digitization gave control rooms more

Reiterer, Harald

385

Aerodynamics simulation of operating rooms N. El Gharbi*  

E-Print Network (OSTI)

Aerodynamics simulation of operating rooms N. El Gharbi* A. Benzaoui*R. Bennacer** * Faculty. Keywords: Operating room, aerodynamics simulation, turbulent model, comfort, Airflow, Indoor air quality distribution scheme. To ensure these optimal conditions, a study of the aerodynamics flow in a conditioned

Paris-Sud XI, Université de

386

Building Energy Software Tools Directory: Room Air Conditioner Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioner Cost Estimator Room Air Conditioner Cost Estimator Screen capture of Room Air Conditioner Cost Estimator The cost estimator compares high-efficiency room air conditioners to standard equipment in terms of life cycle cost. It provides an alternative to complicated building simulation models, while offering more precision than simplified estimating tools that are commonly available. The cost estimator assists decision-making regarding the purchase or replacement of room air conditioning equipment, by estimating a product�s lifetime energy cost savings at various efficiency levels. Screen Shots Keywords air conditioner, life-cycle cost, energy performance, residential buildings, energy savings Validation/Testing Internal reviews at Pacific Northwest National Laboratory.

387

ENERGY STAR Qualified Room Air Conditioners | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioners Room Air Conditioners Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Room Air Conditioners Dataset Summary Description Room Air Conditioners that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {"Room Air Conditioners","Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification}

388

Generator configuration for solid oxide fuel cells  

DOE Patents (OSTI)

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

389

Temperature controlled high voltage regulator  

DOE Patents (OSTI)

A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

2004-04-20T23:59:59.000Z

390

Pressure &Pressure & TemperatureTemperature  

E-Print Network (OSTI)

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

391

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

392

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

393

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

394

Highly temperature insensitive quantum cascade lasers  

SciTech Connect

An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 {mu}m.

Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Selcuk, E.; Slivken, S.; Razeghi, M. [Department of Electrical Engineering and Computer Science, Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208 (United States)

2010-12-20T23:59:59.000Z

395

Japan still solid market  

Science Journals Connector (OSTI)

Japan still solid market ... Japan will continue to present a number of chemical marketing opportunities for U.S. companies, according to a study made for the U.S. Embassy in Tokyo. ... The share of imports of synthetic rubber in Japan's net supply has been dropping steadily since 1962, corresponding to rapidly rising local capacity. ...

1967-01-02T23:59:59.000Z

396

Thermionic converter temperature controller  

SciTech Connect

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

2001-04-24T23:59:59.000Z

397

Thermionic Converter Temperature Controller  

SciTech Connect

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

1999-08-23T23:59:59.000Z

398

Abstract A196: Characterization of stability and biological activity of the cancer gene therapy biologic SNS01 following storage at ambient and freezing temperatures  

Science Journals Connector (OSTI)

...ambient and freezing temperatures Catherine Taylor 1...Zhongda Liu 1 Zhong Sun 1 Richard Dondero 2...monitoring changes in size distribution, polydispersity...as 48 hours at room temperature with no significant...relatively stable at room temperature and was also found...

Catherine Taylor; Bin Ye; Zhongda Liu; Zhong Sun; Richard Dondero; Bruce Galton; John Lust; Kathleen Donovan; and John Thompson

2009-12-01T23:59:59.000Z

399

SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS  

SciTech Connect

The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

Duff, M; Keisha Martin, K; S Crump, S

2007-03-23T23:59:59.000Z

400

Covered Product Category: Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Covered Product Category: Room Air Conditioners October 7, 2013 - 10:40am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Demonstration of Intelligent Control and Fan Improvements in Computer Room  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Intelligent Control and Fan Improvements in Computer Room Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Title Demonstration of Intelligent Control and Fan Improvements in Computer Room Air Handlers Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-6007E Year of Publication 2012 Authors Coles, Henry C., Steve E. Greenberg, and Corrine Vita Document Number LBNL-6007E Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords air distribution, building technology and urban systems department, computer room air handler, crah control, data center, data center crah, ec fan, ecm, ecm fan, fan speed control, high tech and industrial systems group, plug fan, variable frequency drive, vfd, wireless control Abstract

402

Covered Product Category: Room Air Conditioners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Room Air Conditioners Room Air Conditioners Covered Product Category: Room Air Conditioners October 7, 2013 - 10:40am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

403

MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA  

NLE Websites -- All DOE Office Websites (Extended Search)

MODELING MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui Simulation Research Group, Building Technologies Department Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA ABSTRACT This paper describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings" library. The model can be used as a single room or to compose a multizone building model. We discuss how the model is de- composed into submodels for the individual heat transfer phenomena. We also discuss the main physical assumptions. The room model can be parameterized to use di↵erent modeling assump- tions, leading to linear or non-linear di↵erential algebraic systems of equations. We present nu- merical experiments that show

404

WIPP Reaches Milestone „ First Disposal Room Filled  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP Reaches Milestone - First Disposal Room Filled CARLSBAD, N.M., September 4, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that Room 7 of Panel 1 at the Waste Isolation Pilot Plant (WIPP), the first underground room used for disposal operations, has been filled to capacity with transuranic waste. The milestone was reached at about 3:30 p.m. on August 24, as Waste Handling personnel emplaced a shipment of waste from the Idaho National Engineering and Environmental Laboratory. On August 25, Underground Operations personnel completed installation of a chain link mesh barrier and cloth drape across the entrance to the room to officially declare the area "closed." The first shipment of waste, which came

405

Dorm Room Idea Now Revolutionizing Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dorm Room Idea Now Revolutionizing Energy Dorm Room Idea Now Revolutionizing Energy Dorm Room Idea Now Revolutionizing Energy April 16, 2010 - 11:07am Addthis Joshua DeLung What does this project do? Princeton Power Systems is currently installing a 200-kW solar array and advanced battery system on company grounds to provide clean power to its building and to showcase advancements in renewable energy technology to businesses, municipalities and utilities that may be curious about renewable energy projects. While many college students might spend their time playing Ultimate Frisbee or enjoying the nightlife, Darren Hammell and several other Princeton University classmates transformed an idea fostered in a dorm room into one of the fastest-growing businesses in the energy industry, creating jobs and

406

Virtual Reading Room prior to 2000 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

prior to 2000 | National Nuclear Security prior to 2000 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Virtual Reading Room prior to 2000 Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Virtual Reading Room prior to 2000 Virtual Reading Room prior to 2000 Printer-friendly version Printer-friendly version

407

Golden Reading Room: FINAL Environmental Assessments (EAs) and FONSIs  

Energy.gov (U.S. Department of Energy (DOE))

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

408

Grid Support for Collaborative Control Room in Fusion Science  

Science Journals Connector (OSTI)

The National Fusion Collaboratory project seeks to enable fusion scientists to exploit Grid capabilities in support of experimental science. To this end we are exploring the concept of a collaborative control room that harnesses Grid and collaborative ...

K. Keahey; M. E. Papka; Q. Peng; D. Schissel; G. Abla; T. Araki; J. Burruss; E. Feibush; P. Lane; S. Klasky; T. Leggett; D. Mccune; L. Randerson

2005-10-01T23:59:59.000Z

409

Golden Reading Room: Office of Acquisition Documents, Small Purchases  

Energy.gov (U.S. Department of Energy (DOE))

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

410

FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman  

E-Print Network (OSTI)

AUDITORY MODELLING FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman #12;Auditory modelling Promoties, in het openbaar te verdedigen op donderdag 15 september 2011 om 10:00 uur door Jasper VAN DORP

411

Golden Reading Room: NREL Environmental and NEPA Documents  

Energy.gov (U.S. Department of Energy (DOE))

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

412

Modeling control room crews for accident sequence analysis  

E-Print Network (OSTI)

This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

Huang, Y. (Yuhao)

1991-01-01T23:59:59.000Z

413

Golden Reading Room: FOIA Proactive Disclosures and Contracts  

Office of Energy Efficiency and Renewable Energy (EERE)

Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of...

414

Effects of foamed plastic insulation on severity of room fires  

Science Journals Connector (OSTI)

The results of a series of full scale room burn experiments with foamed plastic insulation in two walls indicate that the severity ... appear to be increased by the addition of foamed plastic insulation.

K. K. Choi

1986-02-01T23:59:59.000Z

415

Clean Room Challenge: Nanoscientist Quiz 1 | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscientist Quiz 1 Clean Room Challenge: Nanoscientist Quiz 1 Ron Olson 2011.03.23 Hello everybody As you know, I have been sharing with you a series of videos discussing the...

416

Virtual Reading Room after to 2000 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

after to 2000 | National Nuclear Security after to 2000 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Virtual Reading Room after to 2000 Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Virtual Reading Room after to 2000 Virtual Reading Room after to 2000 Printer-friendly version Printer-friendly version

417

Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement  

SciTech Connect

Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil [Analytical Spectroscopy Lab, Department of Chemistry, Hanyang University, Seoul, 133-791 (Korea, Republic of)

2010-08-06T23:59:59.000Z

418

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network (OSTI)

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

419

An Analysis of Efficiency Improvements in Room Air Conditioner  

E-Print Network (OSTI)

NAECA NATIONAL APPLIANCE ENERGY CONSERVATION ACT NBS NATIONAL BUREAU OF STANDARDS NECPA NATIONAL ENERGY CONSERVATION POLICY ACT NTU NUMBER OF TRANSFER UNITS OEM ORIGINAL EQUIPMENT MANUFACTURER ORNL OAK RIDGE NATIONAL LABORATORY RAC ROOM AIR CONDITIONER.... There are two public domain models that we have considered using for this analysis: the Oak Ridge National Laboratory (ORNL) heat pump model [1] and the Arthur D. Little (ADL) room air conditioner model [2]. The ORNL model was completed in 1981. Although...

O'Neal, D. L.; Penson, S. B.

1988-01-01T23:59:59.000Z

420

ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia  

E-Print Network (OSTI)

ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for Reax temperature, leading to applications as oxygen sensors and as membranes for high temperature solid oxide fuel

Goddard III, William A.

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

422

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

423

Using a Research Simulator for Validating Control Room Modernization Concepts  

SciTech Connect

The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

2012-05-01T23:59:59.000Z

424

Coexistence of superfluid and solid helium in aerogel  

SciTech Connect

The results of recent neutron scattering studies of solid helium in silica aerogel are discussed. Previously I.V. Kalinin et al., Pis'ma Zh. Eksp. Teor. Fiz. 87 (1), 743 (2008) [JETP Lett. 87 (1), 645 (2008)], we detected the existence of a superfluid phase in solid helium at a temperature below 0.6 K and a pressure of 51 bar, although, according to the phase diagram, helium should be in the solid state under these conditions. This work is a continuation of the above studies whose main goal was to examine the detected phenomenon and to establish basic parameters of the existence of a superfluid phase. We have determined the temperature of the superfluid transition from solid to superfluid helium, T{sub C} = 1.3 K, by analyzing experimental data. The superfluid phase excitation parameters (lifetime, intensity, and energy) have a temperature dependence similar to that of bulk helium. The superfluid phase coexists with the solid phase in the entire measured temperature range from T = 0.05 K to T{sub C} and is a nonequilibrium one and disappears at T{sub C}.

Kalinin, I. V. [Institute for Physics and Power Engineering (Russian Federation); Kats, E. I.; Koza, M. [Institut Laue-Langevin (France); Lauter, V. V. [Oak Ridge National Laboratory (United States); Lauter, H. [Institut Laue-Langevin (France); Puchkov, A. V., E-mail: puchkov@ippe.r [Institute for Physics and Power Engineering (Russian Federation)

2010-08-15T23:59:59.000Z

425

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

426

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

427

P:\\Room Numbering Standard\\MSU Room Number Standard 2012.doc 3/12/2012 Page 1 MSU Room Numbering Standard  

E-Print Network (OSTI)

and other spaces in university facilities. Numbering standards ensure continuity within the buildings is a customized standard that: · Accommodates a logical flow and pedestrian movement through buildings Numbering Standard. Minor renovations or additions to an existing building may continue to use existing room

Maxwell, Bruce D.

428

E-Print Network 3.0 - allergy counselling room Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

be obtained from the Texas Tech Certification Officer (ED, Room 106). Graduate Counseling Certificates Mental... of Education Office of Graduate Studies and Research (ED, Room...

429

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network (OSTI)

chapter we discuss market, energy consumption and technologyeffective Room AC energy efficiency market transformation42 Chapter 3 Room AC Market and Energy Consumption

Shah, Nihar

2014-01-01T23:59:59.000Z

430

3 ThInK Space (301) iSci Faculty Work Room (306)  

E-Print Network (OSTI)

(B109-10) Silent Study Room (B115) McMaster Social Innovation Lab (B117/A) Group Study Rooms ­ Book

Haykin, Simon

431

E-Print Network 3.0 - audiometric test rooms Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

test rooms Search Powered by Explorit Topic List Advanced Search Sample search results for: audiometric test rooms Page: << < 1 2 3 4 5 > >> 1 PHYSICAL PLANT HEARING CONSERVATION...

432

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

433

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

434

Control of Computer Room Air Conditioning using IT Equipment Sensors  

E-Print Network (OSTI)

8 Figure 5 Server rack Inlet Air Temperature (8 Figure 6 Server-rack Leaving Air Temperature (Rack .

Bell, Geoffrey C.

2010-01-01T23:59:59.000Z

435

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

436

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

437

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

Joseph F. Pierre

2006-08-21T23:59:59.000Z

438

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

Joseph Pierre

2007-09-30T23:59:59.000Z

439

SAMARIUM-BASED INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS.  

E-Print Network (OSTI)

??The development of electrochemical converters (i.e. fuel cells) has attracted research interest during the last decades due to an increasing concern on the depletion of… (more)

Guzman Montanez, Felipe

2005-01-01T23:59:59.000Z

440

8E-17 fractional laser frequency instability with a long room-temperature cavity  

E-Print Network (OSTI)

We present a laser system based on a 48 cm long optical glass resonator. The large size requires a sophisticated thermal control and optimized mounting design. A self balancing mounting was essential to reliably reach sensitivities to acceleration of below $\\Delta \

Häfner, Sebastian; Grebing, Christian; Vogt, Stefan; Legero, Thomas; Merimaa, Mikko; Lisdat, Christian; Sterr, Uwe

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids  

E-Print Network (OSTI)

liq- uids have been considered and used as a new generation of green solvents for a number of or solvents, a much smaller amount of the catalyst was used. After a relatively easy removal of the polymer Chemistry, Vol. 41, 143­151 (2003) © 2002 Wiley Periodicals, Inc. 143 #12;tion solvents will make

Wan, Xin-hua

442

Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids  

E-Print Network (OSTI)

, and virtually no vapor pressure. Because of these properties, they can serve as a "green" recyclable alternative to the volatile organic compounds that are traditionally used as industrial solvents.1-4 In fact, RTIL have been successfully used in many applications, including replacing traditional organic solvents in (1) organic

Reid, Scott A.

443

Fast 62–92 % yield preparation of amino acid dithiocarbamates in green solvent at room temperature  

Science Journals Connector (OSTI)

Dithiocarbamate and their derivatives are of importance in medicinal chemistry due to their biological activities, in agriculture as fungicides and in organic synthesis as versatile synthetic intermediates. Green

Najmedin Azizi; Mahboobe Marimi

2013-12-01T23:59:59.000Z

444

Measurement by Room Temperature Phosphorescence of Polynuclear Aromatic Containing Hydrocarbon Fuels that Permeate Glove Materials  

Science Journals Connector (OSTI)

......technique provided a simple, cost effective, and very sensitive means for measuring breakthrough times and permeation rates of the class of potentially carcinogenic PNA in liquid fuels derived from crude petroleum, oil shale, and coal....

R.B. Gammage; T. Vo-Dinh; D.A. White

1986-12-01T23:59:59.000Z

445

Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection  

DOE Patents (OSTI)

A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

2009-08-11T23:59:59.000Z

446

Room temperature and cryogenic Yb:YAG thin disk laser : single crystal and ceramic.  

E-Print Network (OSTI)

??The focus of this dissertation is to design, optimize and build an efficient high power multi kilowatt thin-disk laser system. We improve the thin-disk beam… (more)

Vretenar, Natasa

2012-01-01T23:59:59.000Z

447

Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Sidheswaran, Meera A.

2012-01-01T23:59:59.000Z

448

Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases  

E-Print Network (OSTI)

Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and ...

Zhang, Yuxi

449

Energy savings from extended air temperature setpoints and reductions in room air mixing  

E-Print Network (OSTI)

annual energy use intensity (EUI) changes caused by movingfixed at 21.5ºC. Similarly, the EUI changes from moving theso that the predicted annual EUI values include both effects

Hoyt, Tyler; Lee, Kwang Ho; Zhang, Hui; Arens, Edward; Webster, Tom

2005-01-01T23:59:59.000Z

450

Direct-gap optical gain of Ge on Si at room temperature  

E-Print Network (OSTI)

Lasers on Si are crucial components of monolithic electronic–photonic integration. Recently our theoretical analysis has shown that Ge, a pseudodirect bandgap material compatible with Si complementary metal oxide semiconductor ...

Liu, Jifeng

451

Part 1: Protein Dynamics Folded protein at physiologic or room temperature samples wide range of  

E-Print Network (OSTI)

protein molecule is likely to differ significantly from average structure - folded protein is an ensemble(unfolded state) 2 Aside 1: What disordered states are relevant to understand protein folding? compact denatured Protein Motions within Folded State Ensemble high energy costs of deformations of bond lengths, angles

Chan, Hue Sun

452

Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature  

E-Print Network (OSTI)

recent insights into energy storage and loss mechanisms in nanoelectromechanical systems (NEMS). Con applications [4, 5] in recent years is a direct conse- quence of their high resonance frequencies as well capacitance. We demonstrate that this modulation alters the response of a connected microwave cavity which can

Ludwig-Maximilians-Universität, München

453

Room-temperature quantum noise limited spectrometry and methods of the same  

DOE Patents (OSTI)

In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.

Stevens, Charles G; Tringe, Joseph W

2014-12-02T23:59:59.000Z

454

Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage  

Science Journals Connector (OSTI)

The adsorption of molecular hydrogen on boron nitride nanotubes is studied with the use of the pseudopotential density functional method. The binding energy and distance of adsorbed hydrogen is particularly calculated. It is found that the binding energy of hydrogen on boron nitride nanotubes is increased by as much as 40% compared to that on carbon nanotubes, which is attributed to heteropolar bonding in boron nitride. The effect of substitutional doping and structural defects on hydrogen adsorption is also studied and we find a substantial enhancement of the binding energy from that on perfect boron nitride. The current study demonstrates a pathway to the finding of proper media that can hold hydrogen at ambient conditions through physisorption.

Seung-Hoon Jhi and Young-Kyun Kwon

2004-06-22T23:59:59.000Z

455

Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts  

E-Print Network (OSTI)

dish. A 47mm-diameter HVAC filter media specimen was mountedon a typical HVAC particle filter, removed formaldehyde withconditioning (HVAC) particle filter with a thin tackifier

Sidheswaran, Meera A.

2012-01-01T23:59:59.000Z

456

Room Temperature Ring-Opening Metathesis of Pyridines by a Transient TitC Linkage  

E-Print Network (OSTI)

), a reaction in which N-heterocycles present in petroleum or coal-based liquids are catalytically converted

Baik, Mu-Hyun

457

Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engelhard D Meyer AM Sharma Y Qiang Capabilities: Spectroscopy and Diffraction NMR and EPR Facility: Radiochemistry Annex Science Theme: Energy Materials & Processes Biosystem...

458

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity  

E-Print Network (OSTI)

is with the Institut fur Chemie, Humboldt-Universitt zu Berlin, 12489 Berlin, Germany (e-mail: Werner.Moritz@rz.hu-berlin.de; http://www. chemie.hu-berlin.de/wmoritz/index.html). J. Szeponik is with the BST Bio Sensor Technologie

Moritz, Werner

459

LATTICE STRAIN AND TEXTURE EVOLUTION DURING ROOM-TEMPERATURE DEFORMATION IN ZIRCALOY-2.  

E-Print Network (OSTI)

??Zircaloy-2 and its sister alloy, Zircaloy-4, have extensive applications in the nuclear industry as core components in heavy water reactors and fuel cladding in both… (more)

Xu, FENG

2008-01-01T23:59:59.000Z

460

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents (OSTI)

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "room temperature solid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Enhanced Room-Temperature Formability in High-Strength Aluminum Alloys through Pulse-Pressure Forming  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

462

COMPUTATIONAL MODELING OF CATHODIC LIMITATIONS ON LOCALIZED CORROSION OF WETTED SS 316L, AT ROOM TEMPERATURE  

SciTech Connect

The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{sub p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.

F. Cui; F.J. Presuel-Moreno; R.G. Kelly

2005-10-13T23:59:59.000Z

463

Room-temperature quantum noise limited spectrometry and methods of the same  

DOE Patents (OSTI)

In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.

Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas

2014-08-26T23:59:59.000Z

464

PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems is still a great challenge....

465

Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization  

E-Print Network (OSTI)

photoionization efficiency (PIE) data were acquired as thebeam. In this first study, PIE data are taken over a limitedthe source is reached before PIE curves are measured. The

Chambreau, Steven D.

2010-01-01T23:59:59.000Z

466

Pilot Study: Measurement of Room Illuminance to Assess Automatic Brightness  

NLE Websites -- All DOE Office Websites (Extended Search)

Study: Measurement of Room Illuminance to Assess Automatic Brightness Study: Measurement of Room Illuminance to Assess Automatic Brightness Control in Televisions Title Pilot Study: Measurement of Room Illuminance to Assess Automatic Brightness Control in Televisions Publication Type Conference Proceedings Year of Publication 2012 Authors Greenblatt, Jeffery B., Mia Forbes Pirie, Louis-Benoit Desroches, Sally M. Donovan, Clancy Donnelly, Craig Billingsley, and Chris Calwell Pagination 13 Date Published August 12 Conference Location Berkeley Abstract Automatic brightness control (ABC) is an increasingly common feature found in newtelevisions (TVs) and computer monitors. ABC is intended to adjust TV screen brightness(luminance) according to the ambient light level (room illuminance). When implementedcorrectly, this can both reduce energy consumption and improve viewing quality. The currentENERGY STAR test procedure provides for a more favorable energy use rating for TVs withABC, by measuring power consumption at two light levels (0 and 300 lux) and reporting aweighted-average energy use. However, this and other studies suggest that these levels are notrepresentative of actual TV viewing conditions.As there were currently only limited data available concerning room illuminance, weundertook a small pilot study in 2011 to begin to answer two key questions: 1. To what extent doroom illuminance levels vary depending on the location of measurement (e.g., center of theroom, on the couch, or at the TV)? 2. What room illuminance conditions are prevalent whenpeople watch TV?We measured room illuminance in the homes of nine volunteers in California andColorado to begin addressing the above two questions. Although the study had the usualdrawbacks of a pilot (limited sample size, time duration, etc.), it has, nonetheless, yielded usefulresults. The study shows definitively that there is large variability between measurements madeat different locations in the room and, therefore, that location of room illuminance measurementsis critical. Moreover, the majority (over 75%) of TV viewing occurred at illuminance levels ofless than 50 lux (though measurements of up to several hundred lux were also recorded), a resultthat was consistent with subsequent larger-scale studies. This type of information can helpdetermine how ABC-enabled TVs should be tested to best represent actual viewing conditions.

467

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

468

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

469

Design and optimization of solid thermal energy storage modules for solar thermal power plant applications  

Science Journals Connector (OSTI)

Abstract Solid sensible heat storage is an attractive option for high-temperature storage applications in terms of investment and maintenance costs. Typical solid thermal energy storage systems use a heat transfer fluid to exchange heat as the fluid flows through a tubular heat exchanger embedded in the solid storage material. The modified lumped capacitance method is used with an effective heat transfer coefficient in a simplified analysis of the heat transfer in solid thermal energy storage systems for a solid cylindrical heat storage unit. The analytical solution was found using the Laplace transform method. The solution was then used to develop an optimization method for designing solid storage modules which uses the system requirements (released energy and fluid outlet temperature) as the constraint conditions and the storage module cost as the objective function for the optimization. Optimized results are then given for many kinds of system configurations.

Yongfang Jian; Quentin Falcoz; Pierre Neveu; Fengwu Bai; Yan Wang; Zhifeng Wang

2015-01-01T23:59:59.000Z

470

Solid Cold - E  

Office of Scientific and Technical Information (OSTI)

worked as well as it did, even though it took no account of the yet-to-be-discovered energy quanta. For all but the lower temperatures, the quantum hypothesis leads to...

471

Integrated intelligent systems in advanced reactor control rooms  

SciTech Connect

An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

Beckmeyer, R.R.

1989-01-01T23:59:59.000Z

472

Solid fuel volatilization to produce synthesis gas  

DOE Patents (OSTI)

A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

2014-07-29T23:59:59.000Z

473

Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids  

SciTech Connect

Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

B. Olinger

2005-04-15T23:59:59.000Z

474

Measuring Evaporation Rates of Metal Compounds from Solid Samples  

Science Journals Connector (OSTI)

A thermogravimeter (TGA, Mettler-Toledo TGA/SDTA851e) was connected to an inductively coupled plasma optical emission spectrometer (ICP-OES, Varian Liberty 110) using a condensation interface (CI), which transforms gaseous high-boiling-temperature substances into solid (or liquid) aerosols. ... This project was financially supported as GRS-058/00 by Gebert Rüf Foundation. ...

Christian Ludwig; Jörg Wochele; Urs Jörimann

2007-03-01T23:59:59.000Z

475

Deuteron spin-lattice relaxation for HD in solid argon  

Science Journals Connector (OSTI)

Measurements, using 55-MHz deuteron magnetic resonance (DMR), are reported of deuteron spin-lattice relaxation times for HD in solid argon at concentrations of 300–1100 ppm over the temperature range of 10–70 K. The relaxation times increase rapidly, from 10 to 4000 sec, as the temperature is reduced and are independent of the sample’s para-D2 concentration. Comparisons of deuteron spin-lattice relaxation times for HD in solid argon are made with previously reported relaxation times for solid HD–n-D2 mixtures and for ortho-H2 and para-D2 in solid argon. The very different relaxation behavior for HD can be understood because it is an asymmetric molecule. The lack of exchange symmetry results in an increasing probability of the molecule being in a J=0 rotational state as the temperature is reduced. Nuclear spin-lattice relaxation in HD arises from phonon-induced ?mJ transitions for those molecules in the J=1 states. A theory is presented to calculate the nuclear spin-lattice relaxation rate (1/T1) in terms of a molecular decay rate (?) that arises from ?mJ or ?J transitions. The decay rate ? as a function of temperature is determined from the relaxation data. It is found that the asymmetric rotor HD molecules have a coupling to the lattice phonons that is much stronger than for ortho-H2 and para-D2.

Joseph Ganem; Peter A. Fedders; R. E. Norberg

1993-02-01T23:59:59.000Z

476

Astronomy in room 309 with Professor David Cohen  

E-Print Network (OSTI)

Astronomy in room 309 with Professor David Cohen March 1, 2006 The Moon You can see the moon up these out on your computer, with your parents - Information and pictures about the moon and astronomy: http://www.calculatorcat.com/moon_phases/moon_phases.phtml http://antwrp.gsfc.nasa.gov/apod/astropix.html (Astronomy Picture of the Day ­ check out their "search

Cohen, David