National Library of Energy BETA

Sample records for room temperature solid

  1. Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor

    SciTech Connect (OSTI)

    Yu, Ming-Ru; Suyambrakasam, Gobalakrishnan; Wu, Ren-Jang; Department of Nanotechnology, School of Interdisciplinary Courses, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629180, Tamil Nadu ; Chavali, Murthy; Department of Applied Chemistry, Providence University, 200 Chungchi Road, Shalu, Taichung Hsien 433, Taiwan, R.O.C

    2012-07-15

    Graphical abstract: Sensor response (resistance) curves of time were changed from 150 ppm to 250 ppm alcohol concentration of ZnO–CuO 1:1. The response and recovery times were measured to be 62 and 83 s, respectively. The sensing material ZnO–CuO is a high potential alcohol sensor which provides a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature. Highlights: ► The main advantages of the ethanol sensor are as followings. ► Novel materials ZnO–CuO ethanol sensor. ► The optimized ZnO–CuO hetero contact system. ► A good sensor response and room working temperature (save energy). -- Abstract: A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = R{sub air}/R{sub alcohol}) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R{sup 2} of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.

  2. Manipulation of Zeeman coherence in solids at room temperature: Ramsey interference in the coherent-population-trapping spectrum of ruby

    SciTech Connect (OSTI)

    Kolesov, Roman; Scully, Marlan O.; Kocharovskaya, Olga [Department of Physics, Texas A and M University, College Station, Texas 77843-4242 (United States)

    2006-11-15

    Coherent population trapping (CPT) in a three-level atomic medium pumped by two subsequent short optical pulses is considered under the condition of negligible population decay from the excited optical state. It is shown that the amount of atomic population transferred to the excited state by the combined action of the pulses strongly depends on the phase of the ground-state coherence excited by the first pulse at the arrival time of the second pulse. Oscillatory behavior of optical excitation efficiency on the time delay between the pulses is predicted. It is also shown that saturating optical pulses can produce population inversion in a resonantly pumped quasi-two-level system. A class of solid materials in which the predicted phenomena can be observed at room temperature is found. It includes some rare-earth and transition-metal doped dielectric crystals where Orbach relaxation between ground-state Zeeman states is suppressed: ruby, alexandrite, and several others. On the basis of the theoretical predictions, experimental observation of Ramsey fringes in CPT spectrum of ruby is reported.

  3. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...

  4. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Citation Details In-Document Search Title: Room temperature ...

  5. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Citation Details In-Document ...

  6. Room-temperature creep of tantalum tritides

    SciTech Connect (OSTI)

    Schober, T.; Trinkaus, H. )

    1990-06-15

    We report on long-term creep experiments on dilute tantalum tritides at room temperature. Significant deviations of the recorded strain rates from isotropic swelling are found above approximately 30 MPa. We attribute this room-temperature creep to a stress-induced preferential dislocation loop punching by bubbles in crystallographic directions close the stress axis. Quantitative estimates show that this mechanism can indeed account for the observed creep rates.

  7. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect (OSTI)

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  8. New Flexible Channels for Room Temperature Tunneling Field Effect...

    Office of Scientific and Technical Information (OSTI)

    New Flexible Channels for Room Temperature Tunneling Field Effect Transistors Citation Details In-Document Search Title: New Flexible Channels for Room Temperature Tunneling Field ...

  9. Atomically resolved force microscopy at room temperature

    SciTech Connect (OSTI)

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  10. Argonne scientists announce first room-temperature magnetic skyrmion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left to right: Argonne researchers Wanjun Jiang, Suzanne G.E. te Velthuis, and Axel Hoffman published a new way to make magnetic skyrmion bubbles at room temperature. Photo by...

  11. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOE Patents [OSTI]

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  12. Room temperature ferrimagnetism and ferroelectricity in strained, thin

    Office of Scientific and Technical Information (OSTI)

    films of BiFe 0.5 Mn 0.5 O 3 (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Title: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Highly strained films of BiFe0.5Mn0.5O₃ (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room

  13. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  14. High temperature solid state storage cell

    DOE Patents [OSTI]

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  15. Room temperature ferrimagnetism and ferroelectricity in strained, thin

    Office of Scientific and Technical Information (OSTI)

    films of BiFe 0.5 Mn 0.5 O 3 (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Citation Details In-Document Search Title: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Highly strained films of BiFe0.5Mn0.5O₃ (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both

  16. Time dependent deformation of metals at room temperature. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Time dependent deformation of metals at room temperature. Citation Details In-Document Search Title: Time dependent deformation of metals at room temperature. Abstract not provided. Authors: Deibler, Lisa Anne ; Boyce, Brad Lee ; Puskar, Joseph D. Publication Date: 2013-08-01 OSTI Identifier: 1107903 Report Number(s): SAND2013-7101C 470009 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: JOWOG 28 Main Meeting held September 9-12,

  17. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOE Patents [OSTI]

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  18. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  19. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  20. Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature

    SciTech Connect (OSTI)

    Liu, Yang Infante, Ingrid C.; Dkhil, Brahim; Lou, Xiaojie

    2014-02-24

    Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ΔT for the two opposite polarization orientations. This difference under a typical writing voltage of 3 V can reach over 1 K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53 K/V) with ΔT being over 4.5 K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

  1. Room temperature ferromagnetism in conducting α-(In{sub 1-x...

    Office of Scientific and Technical Information (OSTI)

    Room temperature ferromagnetism in conducting -(Insub 1-xFesub x)sub 2Osub 3 alloy films Citation Details In-Document Search Title: Room temperature ferromagnetism in ...

  2. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  3. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  4. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  5. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect (OSTI)

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  6. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  7. Room-temperature lithium metal battery closer to reality > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-temperature lithium metal battery closer to reality February 3rd, 2016 By Tom ... Rechargeable lithium metal batteries have been known for four decades to offer energy ...

  8. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect (OSTI)

    Comandar, L. C.; Patel, K. A.; Frhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50?km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  9. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  10. Microstructure evolution in Xe-irradiated UO2 at room temperature

    SciTech Connect (OSTI)

    L.F. He; J. Pakarinen; M.A. Kirk; J. Gan; A.T. Nelson; X.-M. Bai; A. El-Azab; T.R. Allen

    2014-07-01

    In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 keV Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation.

  11. High temperature thermoelectric properties of the solid-solution...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High temperature thermoelectric properties of the solid-solution zintl phase EuCd6-xZnxSb Citation Details In-Document Search Title: High temperature ...

  12. Room temperature aluminum antimonide radiation detector and methods thereof

    DOE Patents [OSTI]

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  13. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  14. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-μm transport was observed within an electron spin lifetime of 1.2 ns at room temperature when using an in-plane electric field of 1.75 kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  15. Ferromagnetism at room temperature in Cr-doped anodic titanium dioxide nanotubes

    SciTech Connect (OSTI)

    Liao, Yulong E-mail: hwzhang@uestc.edu.cn; Zhang, Huaiwu E-mail: hwzhang@uestc.edu.cn; Li, Jie; Yu, Guoliang; Zhong, Zhiyong; Bai, Feiming; Jia, Lijun; Zhang, Shihong; Zhong, Peng

    2014-05-07

    This study reports the room-temperature ferromagnetism in Cr-doped TiO{sub 2} nanotubes (NTs) synthesized via the electrochemical method followed by a novel Cr-doping process. Scanning electron microscopy and transmission electron microscopy showed that the TiO{sub 2} NTs were highly ordered with length up to 26 ?m, outer diameter about 110 nm, and inner diameter about 100 nm. X-ray diffraction results indicated there were no magnetic contaminations of metallic Cr clusters or any other phases except anatase TiO{sub 2}. The Cr-doped TiO{sub 2} NTs were further annealed in oxygen, air and argon, and room-temperature ferromagnetism was observed in all Cr-doped samples. Moreover, saturation magnetizations and coercivities of the Cr-doped under various annealing atmosphere were further analyzed, and results indicate that oxygen content played a critical role in the room-temperature ferromagnetism.

  16. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature

    SciTech Connect (OSTI)

    Lucivero, Vito Giovanni; Anielski, Pawel; Gawlik, Wojciech; Mitchell, Morgan W.

    2014-11-15

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/?(Hz) at 7.6 ?T. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 ?T to 75??T. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  17. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect (OSTI)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  18. PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Authors: Flory, J.D., Shinde, S., Lin, S., Liu, Y., Yan, H., Ghirlanda, G., and Fromme, P. Title: PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Source: J. Am. Chem. Soc. Year: 2013 Volume: 135 (18) Pages: 6985-6993 ABSTRACT: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA

  19. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  20. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  1. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  2. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect (OSTI)

    Gilbertson, Adam; Cohen, L. F.; Lambert, C. J.; Solin, S. A.

    2013-12-04

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  3. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOE Patents [OSTI]

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  4. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect (OSTI)

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  5. High temperature solid electrolyte fuel cell configurations and interconnections

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills, PA)

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  6. Room-temperature elastic constants of Sc and ScD[sub 0. 18

    SciTech Connect (OSTI)

    Leisure, R.G. ); Schwarz, R.B.; Migliori, A.; Lei, M. )

    1993-07-01

    The complete set of elastic constants for Sc and ScD[sub 0.18] has been measured at room temperature. The results show that the addition of hydrogen to this rare-earth metal has a qualitatively different effect than the addition of hydrogen to transition metals such as palladium, vanadium, niobium, and tantalum. In the case of Sc all five elastic constants increase with the addition of hydrogen. The bulk modulus for ScD[sub 0.18] is 9.5% higher than that for Sc. The Debye temperature computed from the room-temperature elastic constants is 355 K for Sc and 371 K for ScD[sub 0.18].

  7. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  8. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  9. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, S.

    1994-06-21

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  10. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  11. Novel Low Temperature Solid State Fuel Cells

    SciTech Connect (OSTI)

    Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

    2009-12-15

    We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400?C up to 800?C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800?C.

  12. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect (OSTI)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

  13. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  14. Observation of optical spin injection into Ge-based structures at room temperature

    SciTech Connect (OSTI)

    Yasutake, Yuhsuke; Hayashi, Shuhei; Fukatsu, Susumu; Yaguchi, Hiroyuki

    2013-06-17

    Non-zero spin polarization induced by optical orientation was clearly observed at room temperature in a Ge/Ge{sub 0.8}Si{sub 0.2} quantum well grown on Ge and a Ge layer grown on Si by molecular beam epitaxy, whereas it was absent in bulk Ge. This occurred because indirect-gap photoluminescence (PL), which can obscure the spin-polarization information carried by the direct-gap PL, was quenched by unintentional growth-related defects in the epitaxial layers. Such interpretation was confirmed by applying time gating that effectively removed the indirect-gap PL characterized by a slower rise time, which allowed us to demonstrate the existence of room-temperature spin polarization in bulk Ge.

  15. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  16. Research on cw electron accelerators using room-temperature rf structures: Annual report

    SciTech Connect (OSTI)

    Not Available

    1986-08-15

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits.

  17. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  18. Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Wijnheijmer, A. P.; Koenraad, P. M.; Marti, X.; Holy, V.; Cukr, M.; Novak, V.; Jungwirth, T.

    2012-03-12

    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

  19. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; Bendounan, Azzedine; Fullerton, Eric E.; Sirotti, Fausto

    2016-03-03

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less

  20. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    SciTech Connect (OSTI)

    Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2006-02-06

    The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

  1. A comparison of hydrogen and mercury embrittlement in monel at room temperature

    SciTech Connect (OSTI)

    Taylor, L.B.; Price, C.E.

    1986-01-01

    Slow strain rate tensile tests were performed on annealed and cold drawn Monel 400 and Monel R405 at room temperature in air, mercury, and electrolyte hydrogen. Hydrogen and mercury caused embrittlement with the fractures having the same specific features. Crack initiation was largely intergranular but an increasing proportion of transgranular cracking occurred subsequently, especially in the presence of hydrogen and for monel R405. It is believed that the decreased cohesive strength and enhanced shear models of embrittlement apply to the intergranular and transgranular crack modes respectively.

  2. Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature

    SciTech Connect (OSTI)

    John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

    2001-04-01

    Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, O{sub 2} is eliminated first by the water-catalyzed Pu + O{sub 2} reaction and H{sub 2}O is then consumed by the Pu + H{sub 2}O reaction, producing a gas mixture of N{sub 2}, argon, and H{sub 2}. Hydrogen formed by the reaction of water and concurrent radiolysis of hydrogenous materials either reacts to form PuH{sub 2} or accumulates in the system. Accumulation of H{sub 2} is correlated with the presence of hydrogenous materials in liquid and volatile forms that are readily distributed over the plutonium surface. Areal rates of radiolytic H{sub 2} generation are determined and applied in showing that modest extents of H{sub 2} production are expected for hydrogenous solids if the contact area with plutonium is limited. The unpredictable nature of complex chemical systems is demonstrated by occurrence of the chloride-catalyzed Pu + H{sub 2}O reaction in some tests and hydride-catalyzed nitriding in another.

  3. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect (OSTI)

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 060??V in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28?mV, Fabry-Perot interference with a period of 2.35??V under nonmagnetic conditions, and a Fano effect with a period of 0.26?mV for Vg and 0.2?T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  4. Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

    SciTech Connect (OSTI)

    Rahman, Rezwanur; Ohno, Tim R.; Taylor, P. C.; Scales, John A.

    2014-05-05

    Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100350?GHz (0.10.35 THz, or 0.41?meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

  5. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    SciTech Connect (OSTI)

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure ?-iron (?Fe) during water corrosion around room temperature, hydrogen permeation experiments for an ?Fe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of ?Fe is trapped in product oxide layers to delay hydrogen uptake in ?Fe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in ?Fe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/?Fe interface could be ranged from 0.7 to 9.5 kPa around room temperature.

  6. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  7. Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.

    2015-07-06

    Gd5(SixGe1-x)4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. As a result, magnetization at a highmore » temperature of 275K decreases with the increase in the milling time.« less

  8. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect (OSTI)

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600?nm down to 60?nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  9. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect (OSTI)

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  10. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect (OSTI)

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  11. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect (OSTI)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  12. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect (OSTI)

    Wu, Yan; Ji, Lingfei Lin, Zhenyuan; Jiang, Yijian; Zhai, Tianrui

    2014-01-27

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  13. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  14. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid.

    SciTech Connect (OSTI)

    Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L.; Chemistry

    2002-09-11

    The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO{sub 3}){sub 2}-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown ether complex is created in a two-phase water-RTIL system, however, only cationic Sr-crown ether complexes are observed in the RTIL phase. This difference in the coordination complexes arises from differences in the mechanism of cation extraction between the RTIL and conventional molecular organic solvents, a finding with important implications for synthesis, catalysis, and ion separations using two-phase water-RTIL systems.

  15. Comparative study of the embrittlement of Monel 400 at room temperature by hydrogen and by mercury

    SciTech Connect (OSTI)

    Price, C.E.; Fredell, R.S.

    1986-05-01

    Slow strain rate tensile tests were performed at room temperature on Monel 400 specimens of grain sizes 35 to 500 microns, in the environments of air, mercury, and electrolytically generated hydrogen. Specimens of grain size 250 microns were tested at a range of strain rates in the three environments. It was found that cracks initiated easiest in hydrogen but propagated easiest in mercury; consequently the embrittlement was usually more severe in mercury. The embrittlement decreased with increasing strain rate, and with increasing grain size in hydrogen. Embrittlement in mercury was maximum at intermediate grain sizes. A fracture sequence of intergranular to transgranular to microvoid coalescence was common. The intergranular and transgranular fractures are interpreted in terms of the reduced cohesive stress and enhanced shear models of embrittlement, respectively. 52 references.

  16. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    SciTech Connect (OSTI)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.

  17. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  18. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect (OSTI)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  19. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times as short as 85 days. In all cases, the cracking appeared to be associated with pitting or localized general corrosion. Crack initiation at other sites, such as surface imperfections or inclusions, cannot be excluded. Cracks appear in most cases to initiate through an intergranular mode and transition to a transgranular mode.

  20. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, Solomon

    1994-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  1. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods

    DOE Patents [OSTI]

    Zaromb, Solomon

    2001-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  2. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W{sup 2+} ion in solution; the predominance of WO{sup +} appears to have resulted in a W-O-Ni complex that has not yet been fully characterized.

  3. New insights into designing metallacarborane based room temperature hydrogen storage media

    SciTech Connect (OSTI)

    Bora, Pankaj Lochan; Singh, Abhishek K.

    2013-10-28

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  4. Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well

    Office of Scientific and Technical Information (OSTI)

    lasers on InP substrate (Journal Article) | SciTech Connect Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well lasers on InP substrate Citation Details In-Document Search Title: Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well lasers on InP substrate We have demonstrated experimentally the InP-based "M"-type GaAsSb/InGaAs quantum-well (QW) laser lasing at 2.41 μm at room temperature by optical pumping. The threshold power density

  5. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect (OSTI)

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in threeterminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 ?V at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  6. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Singh, P.; Vasilow, T.R.; Richards, V.L.

    1996-05-14

    The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

  7. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.

    1996-01-01

    The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

  8. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  9. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  10. Thermodynamic Analysis Of Pure And Impurity Doped Pentaerythritol Tetranitrate Crystals Grown At Room Temperature

    SciTech Connect (OSTI)

    Pitchimani, R; Zheng, W; Simon, S; Hope-Weeks, L; Burnham, A K; Weeks, B L

    2006-05-25

    Pentaerythritol tetranitrate (PETN) powders are used to initiate other explosives. During long-term storage, changes in powder properties can cause changes in the initiation performance. Changes in the morphology and surface area of aging powders are observed due to sublimation and growth of PETN crystals through coarsening mechanisms, (e.g. Ostwald ripening, sintering, etc.). In order to alleviate the sublimation of PETN crystals under service conditions, stabilization methods such as thermal cycling and doping with certain impurities during or after the crystallization of PETN have been proposed. In this report we present our work on the effect of impurities on the morphology and activation energy of the PETN crystals. The pure and impurity doped crystals of PETN were grown from supersaturated acetone solution by solvent evaporation technique at room temperature. The difference in the morphology of the impurity-doped PETN crystal compared to pure crystal was examined by optical microscopy. The changes in the activation energies and the evaporation rates are determined by thermogravimetric (TGA) analyses. Our activation energies of evaporation agree with earlier reported enthalpies of vaporization. The morphology and activation energy of PETN crystals doped with Ca, Na, and Fe cations are similar to that for pure PETN crystal, whereas the Zn-ion-doped PETN crystals have different morphology and decreased activation energy.

  11. Calculation of room temperature conductivity and mobility in tin-based topological insulator nanoribbons

    SciTech Connect (OSTI)

    Vandenberghe, William G. Fischetti, Massimo V.

    2014-11-07

    Monolayers of tin (stannanane) functionalized with halogens have been shown to be topological insulators. Using density functional theory (DFT), we study the electronic properties and room-temperature transport of nanoribbons of iodine-functionalized stannanane showing that the overlap integral between the wavefunctions associated to edge-states at opposite ends of the ribbons decreases with increasing width of the ribbons. Obtaining the phonon spectra and the deformation potentials also from DFT, we calculate the conductivity of the ribbons using the Kubo-Greenwood formalism and show that their mobility is limited by inter-edge phonon backscattering. We show that wide stannanane ribbons have a mobility exceeding 10{sup 6} cm{sup 2}/Vs. Contrary to ordinary semiconductors, two-dimensional topological insulators exhibit a high conductivity at low charge density, decreasing with increasing carrier density. Furthermore, the conductivity of iodine-functionalized stannanane ribbons can be modulated over a range of three orders of magnitude, thus rendering this material extremely interesting for classical computing applications.

  12. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    SciTech Connect (OSTI)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.

  13. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  14. Molecular and crystal structure of n-hexyloxybenzoic anhydride at low and room temperatures

    SciTech Connect (OSTI)

    Konstantinov, I. I.; Churakov, A. V.; Kuz'mina, L. G.

    2010-09-15

    The crystal and molecular structures of n-hexyloxybenzoic anhydride, C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)-O-C(O)-C{sub 6}H{sub 4}-C{sub 6}H{sub 13}, at low (120 K) and room (296 K) temperatures have been investigated. The molecule has an asymmetric bent structure. The dihedral angle between the benzene ring planes is 48.5 deg. The aliphatic chain on one side of the molecule has a transoid orientation with respect to the 'internal' C4 atom of the closest benzene ring, whereas the aliphatic chain on the other side has a cissoid orientation with respect to the analogous C(4A) atom. The crystal packing does not exhibit any pronounced separation of the crystal space into closely packed aromatic or loosely packed aliphatic regions. No weak directional interactions are observed in the packing; this fact explains the absence of liquid-crystal properties for this compound.

  15. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    SciTech Connect (OSTI)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 5070?nm and lengths of 200250?nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  16. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INLs test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

  17. Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Matteppanavar, Shidaling; Angadi, Basavaraj; Rayaprol, Sudhindra

    2013-02-05

    The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

  18. Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature

    SciTech Connect (OSTI)

    Liu, S.H.; Qian, X.F.; Yuan, J.Y.; Yin, J.; He, R.; Zhu, Z.K

    2003-07-14

    Nanocomposite of CdSe/poly(styrene-alt-maleic anhydride) (PSM) was successfully prepared via an in situ reaction process at room temperature and ambient pressure. Transmission electron microscopy (TEM) analysis revealed that CdSe nanoparticles with a small size and narrow size distribution were obtained. The obtained nanocomposite was also characterized by FT-IR, XRD, ultraviolet-visible, and fluorescence spectroscopy.

  19. Support tube for high temperature solid electrolyte electrochemical cell

    DOE Patents [OSTI]

    Ruka, Roswell J.; Rossing, Barry R.

    1986-01-01

    Disclosed is a compound having a fluorite-like structure comprising a solid solution having the general formula [(ZrO.sub.2).sub.1-x (MO.sub.s).sub.x ].sub.1-y [(La.sub.m A.sub.1-m).sub.2-z (Mn.sub.n B.sub.1-n).sub.z O.sub.r ].sub.y where MO.sub.5 is an oxide selected from the group consisting of calcia, yttria, rare earth oxides, and mixtures thereof, x is about 0.1 to 0.3, y is about 0.005 to about 0.06, z is about 0.1 to about 1.9, A is yttrium, rare earth element, alkaline earth element, or mixture thereof, B is iron, nickel, cobalt, or mixture thereof, m is 0.3 to 1, n is 0.5 to 1, and r is 2 to 4. A porous tube made from such a composition can be coated with an electrically conducting mixed oxide electrode such as lanthanum manganite, and can be used in making high temperature electrochemical cells such as solid electrolyte fuel cells.

  20. Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO3.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kezsmarki, I.; Nagel, U.; Bordacs, S.; Fishman, Randy Scott; Lee, Jun Hee; Yi, Hee Taek; Cheong, Sang-Wook; Room, T.

    2015-09-15

    The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our findingsmore » are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.« less

  1. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, Ram S.

    2011-12-01

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr₀.₅₃Ti₀.₄₇O₃) (1-x)- (PbFe₀.₅Ta₀.₅O₃)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm², which actually increases (to 40 μC/cm²) in the high-T tetragonal phase, representingmore » an exciting new room temperature oxide multiferroic to compete with BiFeO₃. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less

  2. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemoreof the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.less

  3. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  4. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect (OSTI)

    Ctica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, Jos A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at.?% Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (?200?K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  5. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect (OSTI)

    Poulopoulos, P.; Goschew, A.; Straub, A.; Fumagalli, P.; Kapaklis, V.; Wolff, M.; Delimitis, A.; Wilhelm, F.; Rogalev, A.; Pappas, S. D.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  6. High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO2/N-2 Separation

    SciTech Connect (OSTI)

    Zhou, JS; Mok, MM; Cowan, MG; McDanel, WM; Carlisle, TK; Gin, DL; Noble, RD

    2014-12-24

    We have developed and fabricated thin-film composite (TFC) membranes with an active layer consisting of a room-temperature ionic liquid/polymerized (room-temperature ionic liquid) [i.e., (RTIL)/poly(RTIL)] composite material. The resulting membrane has a CO2 permeance of 6100 +/- 400 GPU (where 1 GPU = 10(-6) cm(3)/(cm(2) s cmHg)) and an ideal CO2/N-2 selectivity of 22 +/- 2. This represents a new membrane with state-of-the-art CO2 permeance and good CO2/N-2 selectivity. To our knowledge, this is the first example of a TFC gas separation membrane composed of an RTIL-containing active layer.

  7. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature

    SciTech Connect (OSTI)

    Wu, ZK; Lin, ZY; Li, LY; Song, B; Moon, KS; Bai, SL; Wong, CP

    2014-11-01

    Graphene based micro-supercapacitors (MSCs) have been extensively studied in recent years; however, few of them report room temperature fabricating methods for flexible MSC. Here we developed a convenient procedure based on simultaneous self-assembly and reduction of graphene oxide (GO) on Cu/Au interdigit at room temperature. The as-produced MSC shows a specific areal capacitance of 0.95 mF cm(-2) and maintains 98.3% after 11,000 cycles of charge and discharge. Extremely small relaxation time constants of 1.9 ms in aqueous electrolyte and 4.8 ms in gelled electrolyte are achieved. Also the device shows great flexibility and retains 93.5% of the capacitance after 5000 times of bending and twisting tests. (C) 2014 Elsevier Ltd. All rights reserved.

  8. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    SciTech Connect (OSTI)

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-09-27

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm{sup 2}/V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10{sup 5}. The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics.

  9. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  10. Low and Room Temperature X-ray Structures of Protein Kinase A Ternary Complexes Shed New Light on Its Activity

    SciTech Connect (OSTI)

    Fisher, Zoe; Hanson, Leif; Kovalevsky, Andrey; Langan, Paul

    2012-01-01

    Posttranslational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signaling mechanism which regulates many cellular processes. A low temperature X-ray structure of the PKA catalytic subunit (PKAc) ternary complex with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg2+ concentration of < 0.5mM revealed a single metal ion in the active site. The lack of a second metal in the low-temperature LT-PKAc-MgATP-IP20 renders the and phosphoryl groups of ATP to be very flexibile, with high thermal B-factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl for transfer to a substrate, as demonstrated by comparison of the former structure with LT-PKAc- Mg2ATP-IP20 complex. In addition to the kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. We found that at room temperature under X-ray irradiation ATP can be readily and completely hydrolyzed into ATP and a free phosphate ion in the crystals of the ternary complex LT-PKAc- Mg2ATP-IP20. The cleavage of ATP may be aided by X-ray-born free hydroxyl radicals, a very reactive chemical species, that move quickly through the crystal at room temperature. The phosphate anion is clearly visible in the electron density maps; it remains in the active site, but slides about 2 from its position in ATP toward Ala21 of IP20 that mimics the phosphorylation site. The phosphate, thus, pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of IP20 terminal residues 24 and 25. X-ray structures of PKAc in complex with non-hydrolyzable ATP analog, AMPPNP, at both room and low temperatures demonstrated no temperature effects on the conformation and position of IP20.

  11. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect (OSTI)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation, held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: Delamination of O2-electrode and bond layer on steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  12. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect (OSTI)

    Huang Yuying; Sun Fengqiang; Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe

    2011-03-15

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  13. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Liaw, Peter K.

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  14. Peculiarly strong room-temperature ferromagnetism from low Mn-doping in ZnO grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zuo Zheng; Morshed, Muhammad; Liu Jianlin; Beyermann, W. P.; Zheng Jianguo; Xin Yan

    2013-03-15

    Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO thin films grown by molecular beam epitaxy. Very low Mn doping concentration is investigated, and the measured magnetic moment is much larger than what is expected for an isolated ion based on Hund's rules. The ferromagnetic behavior evolves with Mn concentration. Both magnetic anisotropy and anomalous Hall effect confirm the intrinsic nature of ferromagnetism. While the Mn dopant plays a crucial role, another entity in the system is needed to explain the observed large magnetic moments.

  15. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect (OSTI)

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  16. Room temperature strain rate sensitivity in precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposites

    SciTech Connect (OSTI)

    Sujith, Ravindran; Kumar, Ravi

    2014-01-15

    Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ? 3.7 10{sup ?3} is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O) clusters are responsible for the limited flowability in these ceramics.

  17. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    SciTech Connect (OSTI)

    Sethulakshmi, N.; Anantharaman, M. R.; Al-Omari, I. A.; Suresh, K. G.

    2014-03-03

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300 K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J·kg{sup −1}·K{sup −1} was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300 K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300 K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62 K at 280 K.

  18. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1??10{sup 5}?L (1 L?=?1??10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that HfOH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  19. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization andmore » is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  20. Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4

    SciTech Connect (OSTI)

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.

    2015-07-06

    Gd5(SixGe1-x)4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. As a result, magnetization at a high temperature of 275K decreases with the increase in the milling time.

  1. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    SciTech Connect (OSTI)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  2. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Rossing, Barry R.; Zymboly, Gregory E.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  3. EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide...

  4. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Bates, J.L.; Marchant, D.D.

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  5. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Marchant, David D.; Bates, J. Lambert

    1984-01-01

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  6. One-step room temperature synthesis of very small ?-Fe{sub 2}O{sub 3} nanoparticles

    SciTech Connect (OSTI)

    Moscoso-Londoo, O.; Carrio, M.S.; Cosio-Castaeda, C.; Bilovol, V.; Snchez, R. Martnez; Lede, E.J.; Socolovsky, L.M.; Martnez-Garca, R.

    2013-09-01

    Graphical abstract: - Highlights: One-step synthesis of 3 nm maghemite nanoparticles is reported. Maghemite nanoparticles can be synthesized from a ferric solution. ?-Fe{sub 2}O{sub 3} NPs can be obtained if the precursor has Fe(III) in tetrahedral interstices. HR-TEM, Mssbauer, XAFS and magnetometry analysis proved the maghemite existence - Abstract: Very small maghemite nanoparticles (?3 nm) are obtained through a one-step synthesis at room temperature. The fast neutralization reaction of a ferric solution in a basic medium produces an intermediate phase, presumably two-line ferrihydrite, which in oxidizing conditions is transformed to maghemite nanoparticles. The synthesis of maghemite, as final product of the reaction, was characterized by High-Resolution Transmission Electron Microscopy (HR-TEM), X-ray Absorption Fine Structure (XAFS), Mssbauer spectroscopy, and magnetometry. The XAFS technique allowed the analysis of the crystallographic variations into maghemite nanoparticles as a result of modification in its surface/volume ratio. Mssbauer spectroscopy at low temperature (4.2 K) confirms the presence of Fe(III) in tetrahedral and octahedral interstices, in the stoichiometry corresponding to maghemite. The specific magnetization, M vs H (3 K and 300 K, up to 7 T) and temperature dependence of the magnetization (50 Oe by ZFC mode, 2 K ? T ? 300 K) indicate that maghemite nanoparticles of 3 nm are in superparamagnetic state with a blocking temperature close to 36 K.

  7. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    SciTech Connect (OSTI)

    Nakanishi, Hideyuki; Grzybowski, Bartosz A.

    2010-01-01

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield rectangular I-V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ~12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  8. Photoluminescence emission at room temperature in zinc oxide nano-columns

    SciTech Connect (OSTI)

    Rocha, L.S.R.; Deus, R.C.; Foschini, C.R.; Simes, A.Z.

    2014-02-01

    Highlights: ZnO nanoparticles were obtained by microwave-hydrothermal method. X-ray diffraction reveals a hexagonal structure. Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 C for 8 min.

  9. Short-wavelength interband cascade infrared photodetectors operating above room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lotfi, Hossein; Li, Lu; Lei, Lin; Jiang, Yuchao; Yang, Rui Q.; Klem, John F.; Johnson, Matthew B.

    2016-01-13

    High temperature operation (250–340 K) of short-wavelength interband cascade infrared photodetectors (ICIPs) with InAs/GaSb/Al0.2In0.8Sb/GaSb superlattice absorbers has been demonstrated with a 50% cutoff wavelength of 2.9 μm at 300 K. Two ICIP structures, one with two and the other with three stages, were designed and grown to explore this multiple-stage architecture. At λ = 2.1 μm, the two- and three-stage ICIPs had Johnson-noise-limited detectivities of 5.1 × 109 and 5.8 ×109 cm Hz1/2/W, respectively, at 300 K. The better device performance of the three-stage ICIP over the two-stage ICIP confirmed the advantage of more stages for this cascade architecture. Furthermore,more » an Arrhenius activation energy of 450 meV is extracted for the bulk resistance-area product, which indicates the dominance of the diffusion current at these high temperatures.« less

  10. Hydrogen incorporation induced metal-semiconductor transition in ZnO:H thin films sputtered at room temperature

    SciTech Connect (OSTI)

    Singh, Anil; Chaudhary, Sujeet; Pandya, D. K.

    2013-04-29

    The room temperature deposited ZnO:H thin films having high conductivity of 500 Ohm-Sign {sup -1} cm{sup -1} and carrier concentration reaching 1.23 Multiplication-Sign 10{sup 20} cm{sup -3} were reactively sputter deposited on glass substrates in the presence of O{sub 2} and 5% H{sub 2} in Ar. A metal-semiconductor transition at 165 K is induced by the increasing hydrogen incorporation in the films. Hydrogen forms shallow donor complex with activation energy of {approx}10-20 meV at oxygen vacancies (V{sub O}) leading to increase in carrier concentration. Hydrogen also passivates V{sub O} and V{sub Zn} causing {approx}4 times enhancement of mobility to 25.4 cm{sup 2}/V s. These films have potential for use in transparent flexible electronics.

  11. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    SciTech Connect (OSTI)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16?MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125??? cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  12. Room-temperature ferromagnetism in Co and Nb co-doped TiO{sub 2} nanoparticles

    SciTech Connect (OSTI)

    Hachisu, M.; Mori, K.; Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ichiyanagi, Y.

    2015-02-27

    Co- and Nb-doped TiO{sub 2} nanoparticles encapsulated with amorphous SiO{sub 2} were synthesized by our novel preparation method. An anatase TiO{sub 2} single-phase structure was confirmed using X-ray diffraction. The particle size could be controlled to be about 5 nm. The composition of these nanoparticles was investigated by X-ray fluorescence analysis. X-ray absorption near-edge structure spectra showed that the Ti{sup 4+} and Co{sup 2+} states were dominant in our prepared samples. A reduction in the coordination number was also confirmed. The dependence of the electrical conductivity on the frequency was measured by an LCR meter, and the carrier concentration was determined. The magnetization curves for the nanoparticles indicated ferromagnetic behavior at room temperature. We concluded that the ferromagnetism originated in oxygen vacancies around the transition metal ions.

  13. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    SciTech Connect (OSTI)

    CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

    2000-06-05

    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  14. Threshold of photoelectron emission from CN{sub x} films deposited at room temperature and at 500 deg. C

    SciTech Connect (OSTI)

    Sago, Genki; Li Wanyan; Goto, Keisuke; Ichikawa, Yo; Ishida, Yoshihisa; Kohiki, Shigemi

    2004-10-15

    The threshold of photoelectron emission was measured for amorphous CN{sub x} films deposited at room temperature (RT) and at 500 deg. C. The x values of the films deposited at RT and at 500 deg. C by magnetron sputtering of a graphite target in a mixed N{sub 2}/Ar gas were 0.6 and 0.3, respectively. Ratios of the sp{sup 2}- to sp{sup 3}-hybridized components of both C and N for the film deposited at 500 deg. C were larger by {approx_equal}4 times than those for the film deposited at RT. The onsets of the electron emission by photon irradiation were 5.0 and 4.7 eV for the films deposited at RT and at 500 deg. C, respectively.

  15. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    SciTech Connect (OSTI)

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  16. Low voltage tunneling magnetoresistance in CuCrO{sub 2}-based semiconductor heterojunctions at room temperature

    SciTech Connect (OSTI)

    Li, X. R.; Han, M. J.; Shan, C.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Wu, J. D.

    2014-12-14

    CuCrO{sub 2}-based heterojunction diodes with rectifying characteristics have been fabricated by combining p-type Mg-doped CuCrO{sub 2} and n-type Al-doped ZnO. It was found that the current for the heterojunction in low bias voltage region is dominated by the trap-assisted tunneling mechanism. Positive magnetoresistance (MR) effect for the heterojunction can be observed at room temperature due to the tunneling-induced antiparallel spin polarization near the heterostructure interface. The MR effect becomes enhanced with the magnetic field, and shows the maximum at a bias voltage around 0.5 V. The phenomena indicate that the CuCrO{sub 2}-based heterojunction is a promising candidate for low-power semiconductor spintronic devices.

  17. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?Jkg{sup ?1}K{sup ?1} for 050 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  18. Metalized T graphene: A reversible hydrogen storage material at room temperature

    SciTech Connect (OSTI)

    Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-09-21

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H?. The adsorption/desorption of H? at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  19. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    SciTech Connect (OSTI)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  20. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties ofmore » the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less

  1. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    SciTech Connect (OSTI)

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.

  2. Strong room-temperature ferromagnetism of high-quality lightly Mn-doped ZnO grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Zuo Zheng; Zhou Huimei; Olmedo, Mario J.; Kong Jieying; Liu Jianlin; Beyermann, Ward P.; Zheng Jianguo; Xin Yan

    2012-09-01

    Strong room-temperature ferromagnetism is demonstrated in single crystalline Mn-doped ZnO grown by molecular beam epitaxy. With a low Mn concentration of 2 Multiplication-Sign 10{sup 19} cm{sup -3}, Mn-doped ZnO films exhibited room-temperature ferromagnetism with a coercivity field larger than 200 Oe, a large saturation moment of 6 {mu}{sub B}/ion, and a large residue moment that is {approx}70% of the saturation magnetization. Isolated ions with long range carrier mediated spin-spin coupling may be responsible for the intrinsic ferromagnetism.

  3. The analysis of leakage current in MIS Au/SiO{sub 2}/n-GaAs at room temperature

    SciTech Connect (OSTI)

    Altuntas, H.; Ozcelik, S.

    2013-10-15

    The aim of this study is to determine the reverse-bias leakage current conduction mechanisms in Au/SiO{sub 2}/n-GaAs metal-insulator-semiconductor type Schottky contacts. Reverse-bias current-voltage measurements (I-V) were performed at room temperature. The using of leakage current values in SiO{sub 2} at electric fields of 1.46-3.53 MV/cm, ln(J/E) vs. {radical}E graph showed good linearity. Rom this plot, dielectric constant of SiO{sub 2} was calculated as 3.7 and this value is perfect agreement with 3.9 which is value of SiO{sub 2} dielectric constant. This indicates, Poole-Frenkel type emission mechanism is dominant in this field region. On the other hand, electric fields between 0.06-0.73 and 0.79-1.45 MV/cm, dominant leakage current mechanisms were found as ohmic type conduction and space charge limited conduction, respectively.

  4. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO{sub 2}

    SciTech Connect (OSTI)

    Dean Camper; Jason E. Bara; Douglas L. Gin; Richard D. Noble

    2008-11-05

    Solutions of room-temperature ionic liquids (RTILs) and commercially available amines were found to be effective for the capture of CO{sub 2} as carbamate salts. RTIL solutions containing 50 mol % (16% v/v) monoethanolamine (MEA) are capable of rapid and reversible capture of 1 mol of CO{sub 2} per 2 moles MEA to give an insoluble MEA-carbamate precipitate that helps to drive the capture reaction (as opposed to aqueous amine systems). Diethanolamine (DEA) can also be used in the same manner for CO{sub 2} capture in RTILs containing a pendant hydroxyl group. The captured CO{sub 2} in the resulting RTIL-carbamate salt mixtures can be readily released by either heating and/or subjecting them to reduced pressure. Using this unprecedented and industrially attractive mixing approach, the desirable properties of RTILs (i.e., nonvolatility, enhancedCO{sub 2} solubility, lower heat capacities) can be combined with the performance of amines for CO{sub 2} capture without the use of specially designed, functionalized 'task-specific' ionic liquids. By mixing RTILs with commercial amines, reactive solvents with a wide range of amine loading levels can be tailored to capture CO{sub 2} in a variety of conditions and processes. These RTIL-amine solutions behave similarly to their water-based counterparts but may offer many advantages, including increased energy efficiency, compared to current aqueous amine technologies.

  5. Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films

    SciTech Connect (OSTI)

    Cezar, A. B.; Graff, I. L. Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2014-10-28

    In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

  6. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Huiyuan; Wu, Zili; Dong, Su; Veith, Gabriel M.; Lu, Hanfeng; Zhang, Pengfei; Chai, Song -Hai; Dai, Sheng

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe–FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, themore » intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  7. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  8. Room temperature atomic layerlike deposition of ZnS on organic thin films: Role of substrate functional groups and precursors

    SciTech Connect (OSTI)

    Shi, Zhiwei; Walker, Amy V.

    2015-09-15

    The room temperature atomic layerlike deposition (ALLD) of ZnS on functionalized self-assembled monolayers (SAMs) was investigated, using diethyl zinc (DEZ) and in situ generated H{sub 2}S as reactants. Depositions on SAMs with three different terminal groups, –CH{sub 3,} –OH, and –COOH, were studied. It was found that the reaction of DEZ with the SAM terminal group is critical in determining the film growth rate. Little or no deposition is observed on –CH{sub 3} terminated SAMs because DEZ does not react with the methyl terminal group. ZnS does deposit on both –OH and –COOH terminated SAMs, but the grow rate on –COOH terminated SAMs is ∼10% lower per cycle than on –OH terminated SAMs. DEZ reacts with the hydroxyl group on –OH terminated SAMs, while on –COOH terminated SAMs it reacts with both the hydroxyl and carbonyl bonds of the terminal groups. The carbonyl reaction is found to lead to the formation of ketones rather than deposition of ZnS, lowering the growth rate on –COOH terminated SAMs. SIMS spectra show that both –OH and –COOH terminated SAMs are covered by the deposited ZnS layer after five ALLD cycles. In contrast to ZnO ALLD where the composition of the film differs for the first few layers on –COOH and –OH terminated SAMs, the deposited film composition is the same for both –COOH and –OH terminated SAMs. The deposited film is found to be Zn-rich, suggesting that the reaction of H{sub 2}S with the Zn-surface adduct may be incomplete.

  9. Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO3.

    SciTech Connect (OSTI)

    Kezsmarki, I.; Nagel, U.; Bordacs, S.; Fishman, Randy Scott; Lee, Jun Hee; Yi, Hee Taek; Cheong, Sang-Wook; Room, T.

    2015-09-15

    The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

  10. Enlarged Mn 3s splitting and room-temperature ferromagnetism in epitaxially grown oxygen doped Mn{sub 2}N{sub 0.86} films

    SciTech Connect (OSTI)

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2014-11-07

    Single-phase and oxygen doped Mn{sub 2}N{sub 0.86} thin films have been grown on MgO (111) by plasma-assisted molecular beam epitaxy. The films grow under tensile strain and, remarkably, they show ferromagnetic-like interactions at low temperature and ferromagnetic ordering agreed well with the Bloch-law T{sup 3/2} at room-temperature. We further demonstrate the enlarged Mn 3s splitting (6.46 eV) and its possible relation to the observed ferromagnetism. Our study not only provide a strategy for further theoretical work on oxygen doped manganese nitrides, but also shed promising light on utilizing its room-temperature FM property to fabricate spintronic devices.

  11. Development of high temperature solid lubricant coatings. Final report, 15 August 1997--14 August 1998

    SciTech Connect (OSTI)

    Bhattacharya, R.S.; Keller, S.

    1999-01-29

    The primary research objective of this work was to develop a solid lubricant coating that can function over a broad temperature range. The approach investigated consisted of developing adaptive lubricant coating from materials that undergo chemical change with increasing temperature by reacting together and with the environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings of cesium tungstate and tungsten sulfide. The coatings were deposited by RF sputtering and characterized by X-ray Photoelectron Spectroscopy (XPS). The results indicate that sulfur escapes from the composite coating upon exposure to temperature above 5000C in air. Thus, the desired adaptive lubricant phase, cesium oxythiotungstate could not be formed. However, cesium oxythiotungstate phase has been found to form upon annealing at high temperature in vacuum. The friction coefficients of sputtered cesium oxythiotungstate and cesium tungstate coatings have been measured.

  12. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect (OSTI)

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  13. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOE Patents [OSTI]

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  14. Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La{sub 0.8}Na{sub 0.1}MnO{sub 3}

    SciTech Connect (OSTI)

    Khlifi, M. Dhahri, E.; Hlil, E. K.

    2014-05-21

    The La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide was prepared by the solid-state reaction and annealed in air. The X-ray diffraction data reveal that the sample is crystallized in a rhombohedral structure with R3{sup ¯}c space group. Magnetic study shows a second-order magnetic phase transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C} = 295 K. In addition, the magnetizations as a function of temperature and the magnetic field is used to evaluate the magnetic entropy change ΔS{sub M}. Then, we have deduced that the La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide has a large magnetocaloric effect at room temperature. Such effect is given by the maximum of the magnetic entropy change ΔS{sub Mmax} = 5.56, and by the Relative cooling power (RCP) factor which is equal to 235 under a magnetic field of 5 T. Moreover, the magnetic field dependence of the magnetic entropy change is used to determine the critical exponents β, γ, and δ which are found to be β = 0.495, γ = 1.083, and δ = 3.18. These values are consistent with the prediction of the mean field theory (β = 0.5, γ = 1, and δ = 3). Above all, the temperature dependence of electrical resistivity shows a metal–insulator transition at T{sub ρ}. The electrical resistivity decrease when we apply a magnetic field giving a magnetoresistance effect in the order of 60% at room temperature.

  15. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    SciTech Connect (OSTI)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra E-mail: vrreddy@csr.res.in; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-09-15

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  16. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  17. Room temperature photoluminescence from In{sub x}Al{sub (1?x)}N films deposited by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Mohanta, A.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 1012?nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1?x)}N were comparatively investigated for indium compositions ranging from x?=?0.092 to 0.235, including x?=?0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  18. Reading Room

    Broader source: Energy.gov [DOE]

    Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters.

  19. Grain size and texture effect on compression behavior of hot-extruded Mg-3Al-1Zn alloys at room temperature

    SciTech Connect (OSTI)

    Chang, L.L. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Y.N., E-mail: wynmm@dlut.edu.cn [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, X. [Key laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110005 (China); Qi, M. [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2009-09-15

    Hot-extruded AZ31 alloy was subjected to compression at room temperature. The influence of grain size and grain orientation on the compression behavior of the specimens was examined by optical microscopy, compression test and X-ray diffraction. Abundant twins activated during compression of extruded AZ31 magnesium alloy. The hot extruded AZ31 magnesium alloys had a higher Hall-Petch slope for compression than that for tension.

  20. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNLs advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  1. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords

  2. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  3. Room temperature ferromagnetic and ferroelectric properties of Bi{sub 1−x}Ca{sub x}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Pugazhvadivu, K. S.; Tamilarasan, K.; Balakrishnan, L.; Mohan Rao, G.

    2014-11-15

    Bi{sub 1−x}Ca{sub x}MnO{sub 3} (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 °C and 800 °C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca{sup 2+} ions into BiMnO{sub 3} films. The BCMO (x = 0.2) film grown at 400 °C shows better magnetization (M{sub sat}) and polarization (P{sub s})with the measured values of 869 emu / cc and 6.6 μ{sub C}/ cm{sup 2} respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca{sup 2+} ions substituted BMO films makes potentially interesting for spintronic device applications.

  4. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    SciTech Connect (OSTI)

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev; Senyshyn, Anatoliy

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  5. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect (OSTI)

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  6. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})

    SciTech Connect (OSTI)

    Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E.; Parsons, Gregory N.; Losego, Mark D.

    2014-06-23

    We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

  7. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    SciTech Connect (OSTI)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  8. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  9. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  10. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    SciTech Connect (OSTI)

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.

  11. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOE Patents [OSTI]

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  12. Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process

    SciTech Connect (OSTI)

    Umeta, Yoshikazu; Ozaki, Noriaki; Tokoro, Hiroko; Ohkoshi, Shin-ichi

    2013-04-15

    We observed a photo-switching effect in [Cu{sup II}(1,4,8,11-tetraazacyclodecane)]{sub 2}[Mo{sup IV}(CN){sub 8}]{center_dot}10H{sub 2}O by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from Mo{sup IV} to Cu{sup II}. The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 Multiplication-Sign 10{sup 1}, 6.9 Multiplication-Sign 10{sup 1}, and 1.7 Multiplication-Sign 10{sup 2} s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, k=k{sub 0}exp[-(E{sub a}+E{sub a}{sup *}{gamma}) /k{sub B}T], where k is the rate constant of relaxation, k{sub 0} is the frequency factor, E{sub a} is the activation energy, E{sub a}{sup *} is the additional activation energy due to the cooperativity, and {gamma} is the fraction of the photo-induced phase. k{sub 0}, E{sub a}, and E{sub a}{sup *} were evaluated as 1.28 Multiplication-Sign 10{sup 7}{+-} 2.6 s{sup -1}, 4002 {+-} 188 cm{sup -1}, and 546 {+-} 318 cm{sup -1}, respectively. The value of E{sub a} is much larger than that of the relaxation process for the typical light-induced spin crossover effect (E{sub a} Almost-Equal-To 1000 cm{sup -1}). Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material.

  13. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect (OSTI)

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  14. A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode

    SciTech Connect (OSTI)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D.

    2012-01-01

    Three-dimensionally ordered macroporous cathode was fabricated for a zirconia based micro-tubular solid oxide fuel cells (SOFCs). Three different cathodes (cathode A, no pore former; cathode B, with pore former (1.5 {micro}m in diameter); cathode C, with pore former (0.8 {micro}m in diameter)) were compared to investigate how the microstructure of it affected the cell performance at various operating temperatures. Micro-sized pores were well distributed within cathode B and C. The total porosity of cathode A is 35%, while it respectively reached 42 and 50% for cathodes B and C. At the same time, the specific surface area of them was 28.8 and 52.0% larger than that of the cathode A. As a result, the peak power density of the zirconia based cell, with cathode C, was 0.25 and 0.56 W cm{sup -2} at 550 and 600 C, while the respective value was just 0.11 and 0.30 W cm{sup -2} for the cell with cathode A. Thus, optimizing microstructure of cathode should be one of the best approaches for lowering the operating temperature for SOFCs.

  15. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    SciTech Connect (OSTI)

    Ahn, Byung Du [School of Electrical and Electronic Engineering, 50, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jin-Seong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, K. B., E-mail: kbchung@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  16. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.« less

  17. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    SciTech Connect (OSTI)

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.

  18. Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells

    SciTech Connect (OSTI)

    Shaowu Zha; Meilin Liu

    2005-03-23

    Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

  20. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /science-innovation/_assets/images/icon-science.jpg News Room Your source for the latest news releases, fast facts, images and access to scores of scientists, engineers and other experts from Los Alamos National Laboratory. News Releases» Science Briefs» Photos» Picture of the Week» Publications» Social Media» Videos» Fact Sheets» Jonathan Ward Engle Physicist wins early-career award for isotope work Jonathan Ward Engle, is among 49 winners, of the US Department of Energy's Early Career

  1. Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements

    SciTech Connect (OSTI)

    Treger, Mikhail; Noyan, I. C.; Witt, Christian; Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean; Rosenberg, Robert; Eisenbraun, Eric

    2013-06-07

    Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

  2. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    SciTech Connect (OSTI)

    Zhu, Huiyuan; Wu, Zili; Dong, Su; Veith, Gabriel M.; Lu, Hanfeng; Zhang, Pengfei; Chai, Song -Hai; Dai, Sheng

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe–FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.

  3. Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature

    SciTech Connect (OSTI)

    Chen, D. Y.; Sun, Y.; He, Y. J.; Xu, L.; Xu, J.

    2014-01-28

    We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.

  4. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  5. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    SciTech Connect (OSTI)

    Attarian Shandiz, M. Gauvin, R.

    2014-10-28

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  6. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  7. Solid-state-laser-rod holder

    DOE Patents [OSTI]

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  8. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    SciTech Connect (OSTI)

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

  9. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  10. Low Temperature Solid-State NMR Spectroscopy. A Strategy for the Direct Observation of Quadrupolar Nuclides of Biological Interest.

    SciTech Connect (OSTI)

    Ellis, Paul D.; Lipton, Andrew S.

    2007-01-01

    This review presents a self-contained summary of the experimental methods necessary to perform a low temperature solid-state NMR experiment. Specific references are made for Zn? and Mg?. However, this is not a comprehensive review of the NMR literature of these nuclides. As the review is concerned with solid-state NMR spectroscopy of quadrupolar nuclides, we limit the discussions to odd-half-integral spin systems, i.e. 3/2, 5/2, 7/2, and 9/2 spins. The reason for the limitation is due to the relative ease of observing the central transition, which is common to all of these nuclides. The review is divided into two major sections; the first dealing with experimental methods, e.g. use of low temperature, magnetization transfer, spin echo methods, and questions dealing with nonspecific binding. Following those discussions we turn to the introduction of structure into the experiment, i.e. the use triple resonance experiments to selectively introduce dipolar interactions and the use of molecular theory.

  11. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect (OSTI)

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  12. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOE Patents [OSTI]

    Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.

    1992-01-01

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

  13. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  14. High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2011-01-01

    InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

  15. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOE Patents [OSTI]

    Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.

    1992-04-21

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.

  16. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect (OSTI)

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  17. Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Li, Bin; Zhang, Jiaming; Kaspar, Tiffany C.; Shutthanandan, V.; Ewing, Rodney C.; Lian, Jie

    2013-01-01

    Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y2O3 stabilized ZrO2 (YSZ) with Gd2Zr2O7 (GZO) films, which were epitaxially grown on Al2O3 (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al2O3 [0 1 ?1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm?1 at 475 C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 C.

  18. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect (OSTI)

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  19. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  20. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  1. Room temperature magnetocaloric effect and refrigerant capacitance in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube arrays

    SciTech Connect (OSTI)

    Kumaresavanji, M. Sousa, C. T.; Pires, A.; Pereira, A. M.; Araujo, J. P.; Lopes, A. M. L.

    2014-08-25

    High aspect ratio La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube (NT) arrays have been synthesized using nitrates based sol-gel precursor by nanoporous anodized aluminum oxide template assisted method. Their phase purity and microstructures were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Magnetocaloric effect (MCE) of as prepared NTs was investigated by means of field dependence magnetization measurements. Significant magnetic entropy change, −△S{sub M} = 1.6 J/kg K, and the refrigerant capacitance, RC = 69 J/kg, were achieved near the transition temperature at 315 K for 5 T. For comparison, a bulk sample was also prepared using the same precursor solution which gives a value of −△S{sub M} = 4.2 J/kg K and a RC = 165 J/kg. Though the bulk sample exhibits higher △S{sub M} value, the NTs present an expanded temperature dependence of −△S{sub M} curves that spread over a broad temperature range and assured to be appropriate for active magnetic refrigeration. The diminutive MCE observed in manganite NTs is explained by the increased influence of surface sites of nanograins which affect the structural phase transition occurred by external magnetic field due to the coupling between magnetism and the lattice in manganese perovskites. Our report paves the way for further investigation in 1D manganite nanostructured materials towards applications in such magnetic refrigeration technology or even on hyperthermia/drug delivery.

  2. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  3. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO{sub 3}/H{sub 2}O{sub 2} solution at room temperature

    SciTech Connect (OSTI)

    Bai, Fan; State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 ; Li, Meicheng; Su Zhou Institute, North China Electric Power University, Suzhou 215123 ; Song, Dandan; Yu, Hang; Jiang, Bing; Li, Yingfeng

    2012-12-15

    One-step synthesis of lightly doped porous silicon nanowire arrays was achieved by etching the silicon wafer in HF/AgNO{sub 3}/H{sub 2}O{sub 2} solution at room temperature. The lightly doped porous silicon nanowires (pNWs) have circular nanopores on the sidewall, which can emit strong green fluorescence. The surface morphologies of these nanowires could be controlled by simply adjusting the concentration of H{sub 2}O{sub 2}, which influences the distribution of silver nanoparticles (Ag NPs) along the nanowire axis. A mechanism based on Ag NPs-induced lateral etching of nanowires was proposed to explain the formation of pNWs. The controllable and widely applicable synthesis of pNWs will open their potential application to nanoscale photoluminescence devices. - Graphical abstract: The one-step synthesis of porous silicon nanowire arrays is achieved by chemical etching of the lightly doped p-type Si (100) wafer at room temperature. These nanowires exhibit strong green photoluminescence. SEM, TEM, HRTEM and photoluminescence images of pNWs. The scale bars of SEM, TEM HRTEM and photoluminescence are 10 {mu}m, 20 nm, 10 nm, and 1 {mu}m, respectively. Highlights: Black-Right-Pointing-Pointer Simple one-step synthesis of lightly doped porous silicon nanowire arrays is achieved at RT. Black-Right-Pointing-Pointer Etching process and mechanism are illustrated with etching model from a novel standpoint. Black-Right-Pointing-Pointer As-prepared porous silicon nanowire emits strong green fluorescence, proving unique property.

  4. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    SciTech Connect (OSTI)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

  5. Press Room | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of North Carolina at Chapel Hill have developed a novel electrolyte for use in solid-state lithium batteries that overcomes many of the problems that plague other solid...

  6. Solid Cold - C

    Office of Scientific and Technical Information (OSTI)

    How rarely depends on what the temperature is. Suppose our small object is one atom in a solid, and the larger object is all the rest of the solid. Under ordinary conditions, our ...

  7. Room Temperature Ferrimagnetism and Ferroelectricity in Strained...

    Office of Scientific and Technical Information (OSTI)

    ... M. Nikolaenko, V. A. Khokhlov, Low Temp. Phys. 2012, 38, 413. 22 D. S. Rana, I. Kawayama, K. Takahashi, K. R. Mavani, H. Murakami, M. Tonouchi, T. Yanagida, H. Tanaka, T. Kawai, ...

  8. Room Temperature Ferrimagnetism and Ferroelectricity in Strained...

    Office of Scientific and Technical Information (OSTI)

    and Ferroelectricity in Strained, Thin Films of BiFe0.5Mn0.5O3 Eun-Mi Choi,* Thomas Fix, Ahmed Kursumovic, ChristyJ. Kinane, Dario Arena, Suman-Lata Sahonta, Zhenxing Bi, ...

  9. REE Sorption Study for Media #1 and Media #2 in Brine #1 and #2 at different Liquid to Solid Ratio's at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-27

    This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.

  10. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong Chu, Junhao; Deng, Hongmei

    2014-09-15

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.10.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagneticantiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  11. Clean room wiping cloths

    SciTech Connect (OSTI)

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  12. CEBAF Control Room Renovation

    SciTech Connect (OSTI)

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  13. CEBAF Control Room Renovation

    SciTech Connect (OSTI)

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  14. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  15. Reading Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reading Room Reading Room Welcome to the Freedom of Information Act (FOIA) Electronic Reading Room for the Department of Energy at Headquarters. The FOIA requires certain kinds of documents to be made available to the public for inspection and copying. This is a requirement for agencies of the executive branch of the federal government. The documents that are required to be made available by the FOIA are: Final Opinions [5 USC 552 (a)(2)](A) final opinions, including concurring and dissenting

  16. Public Reading Room | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room Welcome to the U.S. Department of Energy Public Reading Room. In the Reading Room, you will find a host of technical and non-technical reports about Jefferson Lab and its operations. These reports include the lab's performance report card, environmental impact studies and more. Paper copies of these documents may be read at Jefferson Lab's Public Reading Area, located in CEBAF Center (Building 12), 12000 Jefferson Ave., Newport News, VA 23606. The reading area is located in

  17. Reading Room | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Reading Rooms, Government Information Department Zimmerman Library University of New Mexico Albuquerque, New Mexico 87131-0001 Contact: Dan Barkley Phone: 505-277-7180 Email:...

  18. Measurements and computations of room airflow with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.; Hu, Y.; Yang, X.

    1999-07-01

    This paper presents a set of detailed experimental data of room airflow with displacement ventilation. These data were obtained from a new environmental test facility. The measurements were conducted for three typical room configurations: a small office, a large office with partitions, and a classroom. The distributions of air velocity, air velocity fluctuation, and air temperature were measured by omnidirectional hot-sphere anemometers, and contaminant concentrations were measured by tracer gas at 54 points in the rooms. Smoke was used to observe airflow. The data also include the wall surface temperature distribution, air supply parameters, and the age of air at several locations in the rooms. A computational fluid dynamics (CFD) program with the Re-Normalization Group (RNG) {kappa}-{epsilon} model was also used to predict the indoor airflow. The agreement between the computed results and measured data of air temperature and velocity is good. However, some discrepancies exist in the computed and measured concentrations and velocity fluctuation.

  19. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells

    SciTech Connect (OSTI)

    Young Nam, Kim; Kim, Jung-Hyun; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Huq, Ashfia

    2012-01-01

    (Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

  20. Solids irradiator

    DOE Patents [OSTI]

    Morris, Marvin E.; Pierce, Jim D.; Whitfield, Willis J.

    1979-01-01

    A novel facility for irradiation of solids embodying pathogens wherein solids are conveyed through an irradiation chamber in individual containers of an endless conveyor.

  1. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  2. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect (OSTI)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the room-within-a-room system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.

  3. ELECTRON IRRADIATION OF SOLIDS

    DOE Patents [OSTI]

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  4. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  5. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  6. Public Reading Room: Environmental Documents, Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Environmental documents and reports are available online. Hard copies...

  7. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    SciTech Connect (OSTI)

    Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang; Li, Yunchao; Guo, Bingkun; Chen, Jihua; Veith, Gabriel M; Hensley, Dale K; Paranthaman, Mariappan Parans; Goodenough, John B; Dai, Sheng

    2015-01-01

    The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.

  8. Enhanced room temperature magnetoresistance in p−La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/SrTiO{sub 3}/n−Si heterostructure: A possible spintronics application

    SciTech Connect (OSTI)

    Giri, S. K. Panda, J. Hazra, S. K. Das, P. T. Nath, T. K.

    2014-04-24

    An experimental study of p−La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/SrTiO{sub 3}/n−Si heterostructure in which La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and Si are separated by a thin interfacial SrTiO{sub 3} (STO) layer with typical thickness ∼ 15 nm, has been in situ fabricated with the pulsed laser deposition technique. The junction exhibits good rectifying diode like behavior over the temperature range of 10 - 300 K. The heterostructure also exhibits metal-oxide-semiconductor like behavior with all type of possible current flow mechanisms through the heterojunction. The junction magnetoresistance (JMR) (∼ 30% at 300 K) properties of p-LCMO/STO/n-Si heterostructure have been studied over the temperature range of 100-300 K. The JMR is positive and strongly depends on temperature at an applied forward bias voltage of 3 V. The relation between JMR and external magnetic field is found to be Δρ/ρ≈ α H{sup β} type, having both α and β temperature dependent. We attribute the emergence of positive JMR to the quantum mechanical tunneling transport mechanism across the heterojunction.

  9. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  10. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  11. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. A room air conditioner is one solution to cooling part of a house. | Photo courtesy of ©iStockphoto/kschulze. Room or window air conditioners cool rooms rather than the entire home or business. If they provide cooling only where they're needed, room air conditioners are less expensive to operate than central units, even though their

  12. Solid Cold - A

    Office of Scientific and Technical Information (OSTI)

    Celebrating Einstein "Solid Cold" By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each?

  13. 230 s room-temperature storage time and 1.14 eV hole localization energy in In{sub 0.5}Ga{sub 0.5}As quantum dots on a GaAs interlayer in GaP with an AlP barrier

    SciTech Connect (OSTI)

    Bonato, Leo Sala, Elisa M.; Stracke, Gernot; Nowozin, Tobias; Strittmatter, André; Ajour, Mohammed Nasser; Daqrouq, Khaled; Bimberg, Dieter

    2015-01-26

    A GaP n{sup +}p-diode containing In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) and an AlP barrier is characterized electrically, together with two reference samples: a simple n{sup +}p-diode and an n{sup +}p-diode with AlP barrier. Localization energy, capture cross-section, and storage time for holes in the QDs are determined using deep-level transient spectroscopy. The localization energy is 1.14(±0.04) eV, yielding a storage time at room temperature of 230(±60) s, which marks an improvement of 2 orders of magnitude compared to the former record value in QDs. Alternative material systems are proposed for still higher localization energies and longer storage times.

  14. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room The University of Chicago, the Marine Biological Laboratory (MBL), and the U.S. Department of Energy's Argonne National Laboratory announced today a new partnership called The Microbiome Center that will combine the three institutions' efforts to understand the identity and function of microbes across environments. New Microbiome Center to combine UChicago, Marine Biological Laboratory and Argonne expertise Full Story » The University of Chicago, the Marine Biological Laboratory

  15. IN SITU INVESTIGATION OF THE PASSIVATION OF ALLOY C22 AND OF THE PASSIVE FILMS FORMED ON ALLOY C22 IN ACIDIC ELECTROLYTES AT ROOM TEMPERATURE AND AT 90 DEGREES C

    SciTech Connect (OSTI)

    M. Miyagusuku, S. Harrington, and T. M. Devine

    2006-03-11

    The passive films formed on Alloy C22 in several acidic solutions were investigated by a combination of five in situ techniques: cyclic polarization, electrochemical impedance spectroscopy, Mott-Schottky analyses, electrochemical quartz crystal microbalance measurements, and surface enhanced Raman spectroscopy. Similar tests were conducted on unalloyed samples of nickel, chromium and molybdenum, which are the main alloying elements of Alloy C22. The results of the tests conducted on nickel, chromium, and molybdenum helped to determine the roles of these elements in the passivation of Alloy C22. In general, the corrosion resistance of C22 was superior to that of unalloyed chromium. Although chromium is an important component of the passive film on Alloy C22, the other elements figure prominently in the corrosion resistance of C22 in acidic solutions. The passivity of Alloy C22 was detrimentally affected by increasing concentrations of hydrogen ions, chloride ions, and increasing temperature. The results of this study provide understanding of the resistance/susceptibility of Alloy C22 to corrosion by the aggressive solutions that can develop inside pits and crevices.

  16. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.01.2??m due to increased charge carrier's localization

    SciTech Connect (OSTI)

    Kryzhkov, D. I. Yablonsky, A. N.; Morozov, S. V.; Aleshkin, V. Ya.; Krasilnik, Z. F.; Zvonkov, B. N.; Vikhrova, O. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2??m) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiative recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.

  17. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet...

    Energy Savers [EERE]

    Passive Room-to-Room Air Transfer Fresno, California PROJECT INFORMATION Construction: ... houses with no means of providing conditioned air to bedrooms except via open doors. ...

  18. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  19. Carbon War Room | Open Energy Information

    Open Energy Info (EERE)

    War Room Jump to: navigation, search Name: Carbon War Room Place: Washington, DC Number of Employees: 1-10 Website: www.carbonwarroom.com Coordinates: 38.8951118, -77.0363658...

  20. Public Reading Room: Environmental Documents, Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Room: Environmental Documents, Reports Public Reading Room: Environmental Documents, Reports Environmental documents and reports are available online. Hard copies are available at the Laboratory's Public Reading Room in Pojoaque, New Mexico. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Public Reading Room: Environmental Documents, Reports Online Annual Environmental Report Electronic Public Reading

  1. High temperature thermoelectric properties of the solid-solution zintl phase Eu₁₁Cd6-xZnxSb₁₂

    SciTech Connect (OSTI)

    Kazem, Nasrin; Hurtado, Antonio; Sui, Fan; Ohno, Saneyuki; Zevalkink, Alexandra; Snyder, Jeffrey G.; Kauzlarich, Susan M.

    2015-08-24

    Solid-solution Zintl compounds with the formulaEu₁₁Cd6-xZnxSb₁₂ have been synthesized from the elements as single crystals using a tin flux according to the stoichiometry Eu:Cd:Zn:Sb:Sn of 11:6–xp:xp:12:30 with xp = 0, 1, 2, 3, 4, 5, and 6, where xp is the preparative amount of Zn employed in the reaction. The crystal structures and the compositions were established by single-crystal as well as powder X-ray diffraction and wavelength-dispersive X-ray analysis measurements. The title solid-solution Zintl compounds crystallize isostructurally in the centrosymmetric monoclinic space group C 2/m (No. 12, Z = 2) as the Sr₁₁Cd₆Sb₁₂ structure type (Pearson symbol mC58). There is a miscibility gap at 3 ≤ xp ≤ 4 where the major product crystallizes in a disordered structure related to the Ca₉Mn₄Bi₉ structure type; otherwise, for all other compositions, the Sr₁₁Cd₆Sb₁₂ structure is the majority phase. Eu₁₁Cd₆Sb₁₂ shows lower lattice thermal conductivity relative to Eu₁₁Zn₆Sb₁₂ consistent with its higher mean atomic weight, and as anticipated, the solid-solution samples of Eu₁₁Cd6–xZnxSb₁₂ have effectively reduced lattice thermal conductivities relative to the end member compounds. Eu₁₁̣̣₀(1)Cd₄̣̣₅(2)Zn₁̣̣₅(2)Sb₁₂̣̣₀(1) exhibits the highest zT value of >0.5 at around 800 K which is twice as large as the end member compounds.

  2. New Flexible Channels for Room Temperature Tunneling Field Effect...

    Office of Scientific and Technical Information (OSTI)

    Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system ...

  3. Giant room-temperature spin caloritronics in spin-semiconducting...

    Office of Scientific and Technical Information (OSTI)

    B Additional Journal Information: Journal Volume: 90; Journal Issue: 12; Journal ID: ISSN 1098-0121 Publisher: American Physical Society Sponsoring Org: USDOE Country of...

  4. Efficient room-temperature source of polarized single photons

    DOE Patents [OSTI]

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  5. Method of Production of Pure Hydrogen Near Room Temperature From...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Method of Production of Pure...

  6. Argonne scientists announce first room-temperature magnetic skyrmion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bubbles | Argonne National Laboratory From left to right: M. Benjamin Jungfleisch, Wei Zhang, Suzanne G. E. te Velthuis, Axel Hoffmann, Wanjun Jiang, and John E. Pearson. Photo by Mark Lopez/Argonne National Laboratory. (Click image to view larger.) From left to right: M. Benjamin Jungfleisch, Wei Zhang, Suzanne G. E. te Velthuis, Axel Hoffmann, Wanjun Jiang, and John E. Pearson. Photo by Mark Lopez/Argonne National Laboratory. (Click image to view larger.) Argonne scientists announce first

  7. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

  8. Simple and low-temperature preparation of Co{sub 3}O{sub 4} sphere-like nanoparticles via solid-state thermolysis of the [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3} complex

    SciTech Connect (OSTI)

    Farhadi, Saeid; Pourzare, Kolsoum

    2012-06-15

    Highlights: ? [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3} precursor was used for synthesizing pure Co{sub 3}O{sub 4} nanocrystals. ? Co{sub 3}O{sub 4} nanocrystals were synthesized at low temperature of 200 C. ? Co{sub 3}O{sub 4} nanocrystals show a weak ferromagnetic behavior at room temperature. ? This simple method is low-cost and suitable for high-scale production of Co{sub 3}O{sub 4}. -- Abstract: In this work, spinel-type Co{sub 3}O{sub 4} spherical nanoparticles were easily prepared via decomposition of the hexamminecobalt(III) nitrate complex, [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3}, at low temperature (200 C). The product was characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UVvis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BrunauerEmmettTeller (BET) specific surface area measurement and magnetic measurements. The results confirmed that pure single-phase Co{sub 3}O{sub 4} nanoparticles with weak ferromagnetic behavior were obtained by this method. TEM images showed that the Co{sub 3}O{sub 4} nanoparticles are sphere-like with an average diameter size of around 15 nm. The optical spectrum indicated two direct band gaps at 2.15 and 3.56 eV which are blue-shifted relative to reported values for the bulk sample. Using this fast and simple method, Co{sub 3}O{sub 4} nanoparticles can be produced without expensive and toxic solvents or complicated equipment.

  9. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  10. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  11. Bioenergy 2015 Press Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Room Bioenergy 2015 Press Room This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news. Event Overview The U.S. Department of Energy's Bioenergy Technologies Office (BETO) will host its eighth annual conference-Bioenergy 2015: Opportunities in a Changing Energy Landscape. Co-hosted with the Clean Energy Research and Education Foundation, this year's conference

  12. Laboratory's Electronic Public Reading room training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Electronic Public Reading Room Training Laboratory's Electronic Public Reading room training WHEN: Oct 14, 2015 4:00 PM - 6:00 PM WHERE: J. Robert Oppenheimer Study Center, Room JRO 1&2 West Jemez Road at Casa Grande CATEGORY: Community Environment INTERNAL: Calendar Login Event Description The Department of Energy (DOE) and the Los Alamos National Security, LLC (LANS), are holding training on the contents and use of the Los Alamos National Laboratory (LANL) Electronic Public

  13. Electronic FOIA Reading Room - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freedom of Information and Privacy Act DOE Headquarters FOIA Web Page A Citizen's Guide to the FOIA and Privacy Act Making a Privacy Act Request Freedom of Information Act, 5 U.S.C. Freedom of Information Act Regulations Privacy Act Regulations DOE Public Reading Room PNNL Technical Library Electronic FOIA Reading Room FOIA EDocuments Freedom of Information Act & Privacy Act Contacts Records Previously Disclosed Helpful Links FOIA Home FOIA Portal Electronic FOIA Reading Room Email Email

  14. NEPA Reading Room | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NEPA Reading Room Welcome to the National Nuclear Security Administration's NEPA Reading Room. This site serves as a focal point for NNSA NEPA implementation and contains information about past and current NNSA NEPA actions as well as other resources for NEPA practitioners and members of the public. Welcome to the National Nuclear Security Administration's NEPA Reading Room. This site serves as a focal point for NNSA NEPA implementation and contains information about past and current NNSA NEPA

  15. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  16. SolidEnergy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy

  17. Covered Product Category: Room Air Conditioners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This calculator allows the user to input a location, cooling capacity of the room air conditioners, efficiency (i.e., EER) and rate for electricity. The output section ...

  18. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  19. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  20. Los Alamos test-room results

    SciTech Connect (OSTI)

    McFarland, R.D.; Balcomb, J.D.

    1982-01-01

    Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

  1. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect (OSTI)

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  2. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  3. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  4. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably well developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.

  5. OMEGA Control Room - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Room - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE ...

  6. TA1 Room Layout with Newport Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCALE: 12" X 12" N S E W 22.50° JUPITER LASER FACILITY TA1 ROOM TA1 CHAMBER WEST BEAM CABLE COVER VISAR VIDMAR C O N T R O L R A C K

  7. The selection of turbulence models for prediction of room airflow

    SciTech Connect (OSTI)

    Nielsen, P.V.

    1998-10-01

    The airflow in buildings involves a combination of many different flow elements. It is, therefore, difficult to find an adequate, all-round turbulence model covering all aspects. Consequently, it is appropriate and economical to choose turbulence models according to the situation that is to be predicted. This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation for room dimensions and velocity level also is discussed. A {kappa}-{epsilon} model expanded by damping functions is used to improve the prediction of the flow in a room ventilated by displacement ventilation. The damping functions especially take into account the turbulence level and the vertical temperature gradient. Low Reynolds number models (LNR models) are used to improve the prediction of evaporation-controlled emissions from building material, which is shown by an example. Finally, large eddy simulation (LES) of room airflow is discussed and demonstrated.

  8. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect (OSTI)

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  9. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  10. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  11. Tool Improves Electricity Demand Predictions to Make More Room...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 - ...

  12. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  13. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  14. High-Temperature Thermoelectric Properties of the Solid-Solution Zintl Phase Eu11Cd6Sb12-xAsx (x < 3)

    SciTech Connect (OSTI)

    Kazem, Nasrin; Xie, Weiwei; Ohno, Saneyuki; Zevalkink, Alexandra; Miller, Gordon J.; Snyder, G. Jeffrey; Kauzlarich, Susan M.

    2014-02-20

    Zintl phases are compounds that have shown promise for thermoelectric applications. The title solid–solution Zintl compounds were prepared from the elements as single crystals using a tin flux for compositions x = 0, 1, 2, and 3. Eu11Cd6Sb12–xAsx (x < 3) crystallize isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for x exceeding ~3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single-crystal X-ray diffraction indicates that As does not randomly substitute for Sb in the structure but is site specific for each composition. The amount of As determined by structural refinement was verified by electron microprobe analysis. Electronic structures and energies calculated for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric unit. In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, whereas substitution at the other five pnicogen sites remains semimetallic with a pseudo gap. Thermoelectric properties of these compounds were measured on hot-pressed, fully densified pellets. Samples show exceptionally low lattice thermal conductivities from room temperature to 775 K: 0.78–0.49 W/mK for x = 0; 0.72–0.53 W/mK for x = 1; and 0.70–0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (from +118 to 153 μ V/K) but also high electrical resistivity (6.8 to 12.8 mΩ·cm). The value of zT reaches 0.23 at 774 K. The properties of Eu11Cd6Sb12–xAsx are interpreted in discussion with the As site substitution.

  15. A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy

    SciTech Connect (OSTI)

    Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

    2014-01-01

    Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

  16. Biochemical transformation of solid carbonaceous material

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  17. Method of remotely constructing a room

    DOE Patents [OSTI]

    Michie, J.D.; De Hart, R.C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  18. Method of Remotely Constructing a Room

    DOE Patents [OSTI]

    Michie, J. D.; De Hart, R. C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  19. Control room habitability system review models

    SciTech Connect (OSTI)

    Gilpin, H. )

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs.

  20. DOE-ID FOIA Reading Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reading Room READING ROOM Eectronic Freedom of Information Act, E-FOIA RECORDS UNDER THE E-FOIA The Electronic Freedom of Information Act Amendments of 1996 addresses the issues and procedural aspects of FOIA administration. The amendment: defines the term "record" as including "any information that would be an agency record subject to the requirements of the FOIA when maintained by an agency in any format, including an electronic format; addresses the form or format in which a

  1. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  2. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Covered Product Category: Room Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  4. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect (OSTI)

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  5. Interfacial material for solid oxide fuel cell

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  6. SolidShperal

    Energy Science and Technology Software Center (OSTI)

    2013-12-22

    SolidSpheral is an extension of the Spheral open source meshless hydrodynamics method. SolidSpheral adds the capability to model solid materials using analytic equations of state, and a simple damage model to allow for the modeled materials to undergo dynamic damage evolution. SolidSpheral is a distributed parallel code employing MPI for the parallel framework.

  7. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  8. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  9. Local public document room directory. Revision 7

    SciTech Connect (OSTI)

    1998-04-01

    This directory (NUREG/BR-0088, Revision 7) lists local public document rooms (LPDRs) for commercial nuclear power plants with operating or possession-only licenses or under construction, plus the LPDRs for potential high-level radioactive waste repository sites, gaseous diffusion plants, certain fuel cycle facilities, certain low-level waste disposal facilities, and any temporary LPDRs established for the duration of licensing proceedings. In some instances, the LPDR libraries maintain document collections for more than one licensed facility. The library staff members listed are the persons most familiar with the LPDR collections. Reference librarians in the NRC Headquarters Public Document Room (PDR) are also available to assist the public in locating NRC documents.

  10. Mass spectrometric helium analysis of solid and gas samples from cold-fusion type experiments

    SciTech Connect (OSTI)

    Oliver, B.M.

    1995-12-01

    A custom mass spectrometer system, operating in static mode, has been used to measure helium in both solid and gas samples front cold-fusion type experiments. The mass spectrometer is a 2-in. Radius, 60{degrees}, permanent angle magnet instrument with a single electron-multiplier collecting. Depending on the absolute levels of helium expected, the analysis are conducted by isotope dilution or by measuring absolute collector values. Solid samples are vaporized to ensure complete helium release. Prior to analysis, the fraction of sample gas to be analyzed is exposed to a series of physical and chemical getters, including room temperature Zr-Al alloy (SAES type 101) and liquid-nitrogen cooled activated charcoal. This is done to remove active gases and hydrogen isotopes which could interfere with the helium determinations. Generally, the analysis protocol is to analyze an equal or greater number of {open_quotes}controls{close_quotes} along with the samples to accurately characterize system background and reproducibility. Absolute sensitivity for the system is approximately 1 x 10{sup 9} atoms. Absolute accuracy is 1% or better for helium levels > 10{sup 11} atoms. With few exceptions, helium analysis of solid samples front cold fusion type experiments have yielded no excess helium above usual system background. A few samples have shown helium levels in the low 10{sup 9} atom range, and some gas samples have shown {sup 4}He levels up to several hundred ppm.

  11. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  12. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H.; Erickson, Arnold W.

    1999-01-01

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  13. Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Duan, Y; Sorescu, D C; Luebke, D; Li, B Y; Zhang, K; King, D

    2013-05-16

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  14. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  15. proposed designs for surface and subsurface information rooms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buried Room and Information Center located in middle of the berm Isometric view of the a subsurface room magnets could be used to alert would be intruders Information Center...

  16. Project Reach Completes Photographic Work in Room 7, Panel 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographic Work in Room 7, Panel 7 Photographic work in support of the Accident Investigation Board (AIB) has been completed in Room 7 Panel 7, the location of the February ...

  17. Certification of DOE Reading Rooms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification of DOE Reading Rooms Certification of DOE Reading Rooms Certification of DOE Reading Rooms by Ingrid Kolb, Chief FOIA Officer, October, 17, 2008. PDF icon Certification_of_DOE_Reading_Rooms.pdf More Documents & Publications Memorandum from Secretary Moniz on the Freedom of Information Act (FOIA) Before the Subcommittee on National Parks - Senate Committee on Energy and Natural Resources DRAFT 2012 DOE Project Management Workshop Agenda

  18. Structure and magnetic interactions in the solid solution Ba{sub 3?x}Sr{sub x}Cr{sub 2}O{sub 8}

    SciTech Connect (OSTI)

    Grundmann, Henrik; Schilling, Andreas; Marjerrison, Casey A.; Dabkowska, Hanna A.; Gaulin, Bruce D.

    2013-09-01

    Highlights: We describe for the first time the preparation of single- and polycrystalline members of the solid solution Ba{sub 3?x}Sr{sub x}Cr{sub 2}O{sub 8}. We report on the structural changes in the solid solution at room temperature depending on the stoichiometry. We describe the peculiar change of the magnetic behavior in the solid solution with the stoichiometry. - Abstract: Solid solutions of the magnetic insulators Ba{sub 3}Cr{sub 2}O{sub 8} and Sr{sub 3}Cr{sub 2}O{sub 8} (Ba{sub 3?x}Sr{sub x}Cr{sub 2}O{sub 8}) have been prepared in polycrystalline form for the first time. Single crystalline material was obtained using a mirror image floating zone technique. X-ray diffraction data taken at room temperature indicate that the space group of Ba{sub 3?x}Sr{sub x}Cr{sub 2}O{sub 8} remains unchanged for all values of x, while the cell parameters depend on the chemical composition, as expected. Magnetization data, measured from 300 K down to 2 K, suggest that the interaction constant J{sub d} within the Cr{sup 5+} dimers varies in a peculiar way as a function of x, starting at J{sub d} = 25 K for x = 0, then first slightly dropping to J{sub d} = 18 K for x ? 0.75, before reaching J{sub d} = 62 K for x = 3.

  19. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  20. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  1. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  2. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  3. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  4. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  5. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model of a room in which whole-field supply air mixing maps of two vertical planes were measured using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent dye was used to simulate the supply airflow; and the resulting concentrations within the water filled model show how the supply air mixes with the room air and are an analog for temperature (for thermal loads) or fresh air (for ventilation). In addition to performing experiments over a range of flow rates, we also changed register locations and examined the effects for both heating and cooling operation by changing the water density (simulating air density changes due to temperature changes) using dissolved salt.

  6. Global Failure Criteria for Positive/Electrolyte/Negative Structure of Planar Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

    2009-07-15

    Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

  7. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  8. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  9. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    SciTech Connect (OSTI)

    Le Blanc, Katya Lee; Oxstrand, Johanna Helene; Joe, Jeffrey Clark

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  10. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  11. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  12. Gasification of carbonaceous solids

    DOE Patents [OSTI]

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  13. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1985-01-01

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.

  14. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  15. Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeSolid-State Lighting Permalink ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting Energy, Energy Efficiency, Materials Science, Partnership, Research & ...

  16. 3 MW Solid Rotating Target Design

    SciTech Connect (OSTI)

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  17. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cree, Inc. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "John Edmond, Director of Advanced Opto Electronics Technology, Cree, Inc." and footage of a man in a showcase room. John Edmond: We should care as a country about creating jobs, and solid-state

  18. Golden Reading Room: Office of Acquisition Documents, Better...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information ...

  19. Golden Reading Room: Office of Acquisition Documents, Sole of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information ...

  20. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  1. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  2. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  3. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect (OSTI)

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  4. Golden Reading Room: Office of Acquisition Documents, Small Purchases |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small Purchases Golden Reading Room: Office of Acquisition Documents, Small Purchases Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Small Purchases

  5. SAMPLE RESULTS FROM MCU SOLIDS OUTAGE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

  6. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm Citation Details In-Document Search Title: Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4

  7. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  8. Solid Cold - D

    Office of Scientific and Technical Information (OSTI)

    D. Einstein's solution illustrated The problem with 19th-century atomic theory was the ... to the absolute temperature, as earlier theory implied, though if the temperature were ...

  9. Solids Accumulation Scouting Studies

    SciTech Connect (OSTI)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

  10. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  11. Solid state switch

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  12. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  13. WIPP Reaches Milestone „ First Disposal Room Filled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Reaches Milestone - First Disposal Room Filled CARLSBAD, N.M., September 4, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that Room 7 of Panel 1 at the Waste Isolation Pilot Plant (WIPP), the first underground room used for disposal operations, has been filled to capacity with transuranic waste. The milestone was reached at about 3:30 p.m. on August 24, as Waste Handling personnel emplaced a shipment of waste from the Idaho National Engineering and

  14. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect (OSTI)

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  15. Solid State Division progress report, September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  16. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  17. Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal

    SciTech Connect (OSTI)

    Chandran, Senthilkumar; Jagan, R.; Paulraj, Rajesh; Ramasamy, P.

    2015-10-15

    Metal-organic bis(hydrogenmaleate)-Co(II) tetrahydrate single crystals have been grown by slow evaporation solution growth technique at room temperature. The crystal structure and the unit cell parameters were analyzed from the X-ray diffraction studies. Single-crystal X-ray diffraction analyses reveal that the grown crystal belongs to triclinic system with the space group P-1. Functional groups in bis(hydrogenmaleate)-Co(II) tetrahydrate were identified by Fourier transform infrared spectral analysis. The peak observed at 663 cm{sup −1} is assigned to the (Co–O) stretching vibrations. The optical transmission of the crystal was studied by UV–vis–NIR spectral analysis. The photoluminescence emission studies were carried out for the title compound in a wide wavelength range between 350 nm and 550 nm at 303 K. Mechanical strength was tested by Vickers microhardness test. The laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm. At various frequencies and temperatures the dielectric behavior of the material was investigated. Solid state parameters such as plasma energy, Penn gap, Fermi energy and electronic polarizability were evaluated. Photoconductivity measurements were carried out for the grown crystal in the presence of DC electric field at room temperature. Thermal stability and decomposition of the crystal were studied by TG–DTA. The weight loss of the title compound occurs in different steps. - Graphical abstract: Molecular structure of the bis(hydrogenmaleate)-Co(II) tetrahydrate drawn at 40% ellipsoid probability level. - Highlights: • Bis(hydrogenmaleate)-Co(II) tetrahydrate single crystal is grown by slow evaporation method. • Structural and optical properties were discussed. • The title complex crystal is thermally stable up to 91 °C. • Plasma energy, Fermi energy and electronic polarizability are evaluated. • It exhibits positive photoconductivity.

  18. OMEGA EP Control Room - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Room - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE ...

  19. Golden Reading Room: FOIA Requester Service Centers and Public Liaisons |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOIA Requester Service Centers and Public Liaisons Golden Reading Room: FOIA Requester Service Centers and Public Liaisons U.S. Department of Energy http://energy.gov/management/foia-contacts

  20. Five ENERGY STAR Room Air Conditioners Fail Testing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Enforcement announced today that DOE testing has identified five Friedrich room air conditioners that do not meet the ENERGY STAR Program’s energy...

  1. Second Panel of Disposal Rooms Completed in WIPP Underground

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Panel of Disposal Rooms Completed in WIPP Underground CARLSBAD, N.M., October 13, ... Crews working in two shifts completed mining Panel 2 weeks ahead of schedule and under ...

  2. Golden Field Office Reading Room | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Operations » Golden Field Office » Golden Field Office Reading Room Golden Field Office Reading Room The Golden Field Office was designated a Department of Energy (DOE) field office in December 1992 to support the development and commercialization of renewable energy and energy-efficient technologies. As a field office within DOE's Energy Efficiency and Renewable Energy Office, Golden's mission is to award grants and manage contracts for clean energy projects, facilitate research and

  3. Golden Reading Room: Environmental Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessments Golden Reading Room: Environmental Assessments Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DOCUMENTS AVAILABLE FOR DOWNLOAD January 11, 2016 EA-2020: Draft Environmental Assessment Energy Efficiency Standards for New Federal Low-Rise

  4. Golden Reading Room: FINAL Environmental Impact Statements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FINAL Environmental Impact Statements Golden Reading Room: FINAL Environmental Impact Statements Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Final Environmental Impact Statement for the Proposed Abengoa Biorefinery Project, Hugoton, Stevens County,

  5. Golden Reading Room: FOIA Frequently Requested Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Frequently Requested Documents Golden Reading Room: FOIA Frequently Requested Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DE-EE0002884 Sapphire Energy GO-12-043 Redacted Sapphire FOIA DE-EE0002877 Recovery Act Definitized Subcontract No.

  6. Golden Reading Room: FOIA Proactive Disclosures and Contracts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Proactive Disclosures and Contracts Golden Reading Room: FOIA Proactive Disclosures and Contracts Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). 2013 Solar Decathlon Information Click on this link for updates: Solar Decathlon Information. Alliance for

  7. Golden Reading Room: Office of Acquisition Documents, Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Support Services | Department of Energy Better Buildings Initiative Support Services Golden Reading Room: Office of Acquisition Documents, Better Buildings Initiative Support Services Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DE-SOL-0005538

  8. Golden Reading Room: Office of Acquisition Documents, Sole of Limited

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source Justifications | Department of Energy Sole of Limited Source Justifications Golden Reading Room: Office of Acquisition Documents, Sole of Limited Source Justifications Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Sole of Limited Source Justificati

  9. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Variable Speed Fan Retrofits for Computer Room Air Conditioners Variable Speed Fan Retrofits for Computer Room Air Conditioners Case study describes various concepts for more cost-effective cooling solutions in data centers, while keeping in mind that the reliability of computing systems and their respective cooling systems is always a key criterion. PDF icon dc_fancasestudy.pdf More Documents & Publications Wireless Sensors Improve Data Center Efficiency NSIDC Data

  10. Golden Reading Room: NREL Environmental and NEPA Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NREL Environmental and NEPA Documents Golden Reading Room: NREL Environmental and NEPA Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year NREL prepares an

  11. Golden Reading Room: Other NREL Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other NREL Documents Golden Reading Room: Other NREL Documents Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). National Renewable Energy Laboratory 10 Year Site Plan FY 2007 - FY 2018 Director's Discretionary Research and Development Program, Annual Report FY 2007

  12. Dorm Room Idea Now Revolutionizing Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dorm Room Idea Now Revolutionizing Energy Dorm Room Idea Now Revolutionizing Energy April 16, 2010 - 11:07am Addthis Joshua DeLung What does this project do? Princeton Power Systems is currently installing a 200-kW solar array and advanced battery system on company grounds to provide clean power to its building and to showcase advancements in renewable energy technology to businesses, municipalities and utilities that may be curious about renewable energy projects. While many college students

  13. DOE-ID FOIA Electronic Reading Room Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Reading Room Documents Electronic Reading Room Documents The information contained here represents DOE-ID's responses to FOIA requests that have been or are likely to be of broad public interest, as stipulated under the Electronic Freedom of Information Act Amendments of 1996. As required by the Act, documents created after November 1997, which meet the criteria for electronic presentation, will be made available here. Other documents requested under the FOIA will also be made

  14. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  15. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  16. Solid handling valve

    DOE Patents [OSTI]

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  17. Control Room operations: an investigation of the task of the operator in a Colliery Control Room. Final report

    SciTech Connect (OSTI)

    Simpson, G.C.; Best, C.F.; Ferguson, C.A.; Graveling, R.A.; Nicholl, A.G.M.

    1982-09-01

    A detailed study of the ergonomics aspects of four representative Colliery Control Rooms was carried out. Numerous ergonomics limitations, many common to each of the control rooms studied, were identified particularly in relation to workspace dimensions, console layout and lighting. In order to overcome these limitations in future designs, a report detailing the Ergonomics Principles of Colliery Control Room design and Layout was prepared on the basis of the information obtained. Task analysis carried out during the studies revealed that control room operators could have a direct effect on production and that ergonomics aspects were involved in these situations. Indications of potential ergonomics problems in the wider sphere of job design were also identified particularly in relation to information handling.

  18. Generator configuration for solid oxide fuel cells

    DOE Patents [OSTI]

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  19. Structural investigations on Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0 < x ? 2); High temperature ferromagnetism and enhanced low temperature anti-ferromagnetism

    SciTech Connect (OSTI)

    Singh, Harishchandra; Sinha, A. K. E-mail: hng@rrcat.gov.in; Ghosh, Haranath E-mail: hng@rrcat.gov.in; Singh, M. N.; Rajput, Parasmani; Prajapat, C. L.; Singh, M. R.; Ravikumar, G.

    2014-08-21

    In the quest of materials with high temperature ferromagnetism and low temperature anti-ferromagnetism, we prepare Co{sub 3-x}Mn{sub x}TeO{sub 6}; (0?solid solutions. Room temperature structural investigations on these solid solutions as a function of Mn concentration using Synchrotron X-ray diffraction (SXRD) and X-ray absorption near edge structure measurements in corroboration with magnetism are presented. Phase diagram obtained from Rietveld Refinement on SXRD data as a function of Mn concentration indicates doping disproportionate mixing of both monoclinic (C2/c) and rhombohedral (R 3{sup }) structure for x?

  20. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  1. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  2. Energy Efficiency in Small Server Rooms: Field Surveys and Findings

    SciTech Connect (OSTI)

    Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh; Brown, Richard; Tschudi, William

    2014-08-11

    Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 small server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.

  3. Method of altering the effective bulk density of solid material and the resulting product

    DOE Patents [OSTI]

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  4. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  5. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  6. Experimental Results in the Comparison of Search Algorithms Used with Room Temperature Detectors

    SciTech Connect (OSTI)

    Guss, P., Yuan, D., Cutler, M., Beller, D.

    2010-11-01

    Analysis of time sequence data was run for several higher resolution scintillation detectors using a variety of search algorithms, and results were obtained in predicting the relative performance for these detectors, which included a slightly superior performance by CeBr{sub 3}. Analysis of several search algorithms shows that inclusion of the RSPRT methodology can improve sensitivity.

  7. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  8. Cw laser action of Er/sup 3 +/ in double sensitized fluoroaluminate glass at room temperature

    SciTech Connect (OSTI)

    Heumann, E.; Ledig, M.; Ehrt, D.; Seeber, W.; Duczynski, E.W.; Heide, H.v.; Huber, G.

    1988-01-25

    cw lasing at 1.6 ..mu..m was obtained for the first time in Cr, Yb, Er:fluoroaluminate glass. Double step pumping via Cr/sup 3 +/ and Yb/sup 3 +/ with a krypton laser yields a threshold pump power of 80 mW. Efficient lasing can be expected using glass samples of optimized dopant concentration and improved optical quality.

  9. Tunable cw laser action of Er sup 3+ in double sensitized fluoroaluminate glass at room temperature

    SciTech Connect (OSTI)

    Heumann, E.; Ledig, M.; Ehrt, D.; Seeber, W. ); Duczynski, E.W.; v.d. Heide, H.J.; Huber, G. )

    1989-10-20

    An efficient energy transfer from chromium via ytterbium to erbium are reported together with the first observation of lasing in fluoroaluminate glass. Lasing can be obtained in only low erbium concentrations. (AIP)

  10. Room temperature spin-polarizations of Mn-based antiferromagnetic nanoelectrodes

    SciTech Connect (OSTI)

    Yamada, Toyo Kazu; Vazquez de Parga, Amadeo L.

    2014-11-03

    Antiferromagnets produce no stray field, and therefore, a tip electrode made of antiferromagnetic material has been considered to be the most suitable choice to measure such as magnetoresistance (MR) through single isolated magnetic nanoparticles, molecules, and ultrathin films. Spin polarizations (P) of antiferromagnetic 3-nm, 6-nm, and annealed 3-nm Mn films grown on W tips with a bcc(110) apex as well as bulk-NiMn tips were obtained at 300?K by measuring MR in ultrahigh vacuum by means of spin-polarized scanning tunneling microscopy using a layerwise antiferromagnetically stacking bct-Mn(001) film electrode. The Mn-coated tips with coverages of 3 and 6?nm exhibited P values of 1??1% and 3??2%, respectively, which tips likely contain ?- or strained Mn. With a thermal assist, the crystalline quality and the magnetic stability of the film could increase. The annealed tip exhibited P?=?9??2%. The bulk-NiMn tips exhibit spin polarizations of 0 or 6??2% probably depending on the chemical species (Mn or Ni) present at the apex of the tip. Fe-coated W tips were used to estimate the bct-Mn(001) film spin polarization.

  11. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect (OSTI)

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  12. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Future Trends for DPFSCR On-Filter ...

  13. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol

    Broader source: Energy.gov (indexed) [DOE]

    Deposition for Potential Marine Applications | Department of Energy Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance PDF icon p-06_choi.pdf More Documents & Publications Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Future Trends for DPFƒSCR On-Filter (SCRF) Development of Optimal Catalyst Designs and Operating

  14. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    SciTech Connect (OSTI)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-10-28

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 1251000?Torr and fixed plasma input DC power of 6?kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mssbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  15. Research on cw electron accelerators using room-temperature rf structures. Annual report

    SciTech Connect (OSTI)

    Not Available

    1985-08-20

    Highlights reported include: measurement of the 100 keV chopped beam emittance, completion of installation of the entire 5 MeV injector linac system with all rf power and drive, extensive field mapping of one end magnet, completion of construction of the 12 MeV linac for the racetrack microtron (RTM), installation of most of the control system, and first acceleration of beam to 5 MeV. Plans for completion of the project are discussed. When the RTM is operating, it is expected to have many unique performance characteristics, including the cw nature of the beam, high current, easily variable energy over a wide range, excellent emittance, and small energy spread. Plans for future uses in the areas of nuclear physics, dosimetry research and standards, accelerator development, and free electron laser research are discussed. 19 refs. (LEW)

  16. Enhanced Room-Temperature Formability in High-Strength Aluminum Alloys through Pulse-Pressure Forming

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  18. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; et al

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (Hmore » K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int« less

  19. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOE Patents [OSTI]

    Xu,Shoujun; Lowery, Thomas L.; Budker, Dmitry; Yashchuk, Valeriy V.; Wemmer, David E.; Pines, Alexander

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  20. Room-temperature quantum noise limited spectrometry and methods of the same

    DOE Patents [OSTI]

    Stevens, Charles G; Tringe, Joseph W

    2014-12-02

    In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.

  1. Room-temperature quantum noise limited spectrometry and methods of the same

    DOE Patents [OSTI]

    Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas

    2014-08-26

    In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.

  2. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    SciTech Connect (OSTI)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; Cao, Huibo; Lumsden, Mark D; Christianson, Andrew D

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int

  3. Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  4. Edge remap for solids

    SciTech Connect (OSTI)

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  5. PURPA and solid fuels

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    Speaking before the FERC during the Spring, 1987 PURPA Hearings, Dr. Thomas A.V. Cassel, president of the Philadelphia, Pennsylvania-based Reading Energy Group, testified on the role PURPA has played in the development of the nation's solid fuel resource. Reading's Energy Group has in excess of $150 million of cogeneration assets under construction. These projects represent more than 65 MW and are fired by solid fuels which, prior to PURPA's enactment, were considered to be valueless waste and were overlooked by the electric utility industry. These plants will burn lignite and culm. Because of PURPA, culm will soon be eliminated as an eyesore and source of river pollution, and, at the same time, will help revitalize depressed mining areas.

  6. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  7. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  8. solid rocket propellant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid rocket propellant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D.

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  10. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  11. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  12. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; Dominique E. Williams; Li, Yunchao; Paranthaman, M. Parans; Zaghib, Karim; Manivannan, A.

    2015-09-30

    In this study, titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZOmore » (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10–6, 1.01 ×10–6, and 1.2 × 10–4 S cm–1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).« less

  13. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  14. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  15. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  16. MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System

    SciTech Connect (OSTI)

    Cabana, Jordi; Shirakawa, Junichi; Chen, Guoying; Richardson, Thomas; Grey, Clare P.

    2009-10-09

    Li and 3IP NMR experiments were conducted on a series of single- or two-phase samples in the LiFePCvFePCM system with different overall lithium contents, and containing the two end-members and/or two metastable solid solution hases, Lio.6FeP04 or Lio.34FeP04. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for Li+-Fe2+ interactions was bserved for both Lio.6FeP04 and Lio.34FePC>4. The strength of this interaction leads to the formation of LiFePCvlike clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.

  17. Studies on the Properties of Plasticizer and Lithium Salt on PMMA-based Solid Polymer Electrolytes

    SciTech Connect (OSTI)

    Chew, K. W.; Tan, C. G.; Osman, Z.

    2010-03-11

    The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF{sub 3}SO{sub 3} salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10{sup -10} Scm{sup -1} is obtained. This may be due to the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system is 1.36x10{sup -5} Scm{sup -1}. Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.

  18. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect (OSTI)

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  19. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  20. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  1. High temperature solid oxide fuel cell: Customer test units

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1993-11-01

    There are three 25-kW class SOFC customer test unit programs; two are in Japan (utility joint ventures), one for Southern California Edison Co. The two in Japan are described: Startup, testing, modifications, and operational performance are discussed.

  2. High Temperature Solid Oxide Fuel Cell Generator Development

    SciTech Connect (OSTI)

    Joseph Pierre

    2007-09-30

    This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

  3. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  4. Information Foraging in Nuclear Power Plant Control Rooms

    SciTech Connect (OSTI)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  5. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  6. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  7. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  8. Solid state optical microscope

    DOE Patents [OSTI]

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  9. Solid state optical microscope

    DOE Patents [OSTI]

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  10. Low Energy Electrodynamics in Solids (LEES) 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Energy Electrodynamics in Solids (LEES) 2012 Low Energy Electrodynamics in Solids (LEES) 2012 July 22-27, 2012; Napa...

  11. Low Energy Electrodynamics in Solids (LEES) 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Energy Electrodynamics in Solids (LEES) 2012 Low Energy Electrodynamics in Solids (LEES) 2012 July 22-27, 2012; Napa

  12. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  13. Studies on phase formation, microstructure development and elastic properties of reduced NiO-8YSZ anode supported bi-layer half-cell structures of solid oxide fuel cells

    SciTech Connect (OSTI)

    Nithyanantham, T.; Biswas, S.; Thangavel, S.N.; Bandopadhyay, S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Detailed study on the development of microstructure and phase in NiO-8YSZ anodes. Black-Right-Pointing-Pointer Detailed study on elastic properties at high temperatures in air/reducing atmosphere. Black-Right-Pointing-Pointer Effects of initial porosity, composition and other issues are evaluated in detail. -- Abstract: Half-cell structures of solid oxide fuel cells (SOFCs) with a thin and dense electrolyte layer of 8YSZ supported by a thick and porous NiO-8YSZ anode precursor structure were reduced in a gas mixture of 5% H{sub 2}-95% Ar at 800 Degree-Sign C for selected time periods in order to fabricate cermets with desired microstructure and composition, and to study their effects on the elastic properties at ambient and reactive atmospheres. It appears that 2 h of exposure to the reducing conditions is enough to reduce {approx}80% of NiO with an enhanced porosity value of 35%. The Ni-8YSZ cermet phase formation in the anode was analyzed with X-ray diffraction (XRD) in correlation with its microstructure. The elastic properties were determined after the reduction, at room and elevated temperatures using the impulse excitation technique. At room temperature the decrease in the Young's modulus was about 44% (after 8 h of reduction) and can be attributed mainly to the changes in the microstructure, particularly the increase in porosity from {approx}12% to 37%. Young's moduli of the as-received precursor and reduced anodes were evaluated as a function of temperature in air and reducing atmosphere. The results were explained in correlation to the initial porosity, composition and oxidation of Ni at the elevated temperatures.

  14. Operator experiences on working in screen-based control rooms

    SciTech Connect (OSTI)

    Salo, L.; Laarni, J.; Savioja, P.

    2006-07-01

    This paper introduces the results of two interview studies carried out in Finland in four conventional power plants and one nuclear power plant. The aim of the studies was to gather data on user experiences on the effects of control room modernization and digital control room technology on operator work Since the number of completed digitalization projects in nuclear power plants is small supplementary information was gathered by interviewing operators in conventional power plants. Our results suggest that even though the modernization processes have been success stories, they have created new challenges for operator personnel. Examples of these challenges are increased requirements for competence and collaboration, problems in trust calibration and development of awareness of the process state. Some major differences in the digitalization of human-system interfaces between conventional and nuclear power plants were discussed. (authors)

  15. A computerized main control room for NPP: Development and investigation

    SciTech Connect (OSTI)

    Anokhin, A. N.; Marshall, E. C.; Rakitin, I. D.; Slonimsky, V. M.

    2006-07-01

    An ergonomics assessment of the control room at Leningrad Nuclear Power Plant has been undertaken as part of an international project funded by the EU TACIS program. The project was focused on the upgrading of the existing control facilities and the installation of a validation facility to evaluate candidate refurbishment proposals before their implementation at the plant. The ergonomics methodology applied in the investigation was wide ranging and included an analysis of reported events, extensive task analysis (including novel techniques) and validation studies using experienced operators. The paper addresses the potential difficulties for the human operator associated with fully computerized interfaces and shows how the validation facility and the outcomes from ergonomics assessment will be used to minimise any adverse impact on performance that may be caused by proposed control room changes. (authors)

  16. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  17. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  18. System for use with solid state dosimeter

    DOE Patents [OSTI]

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Tomeraasen, P.L.

    1990-09-04

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquefied nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions. 3 figs.

  19. System for use with solid state dosimeter

    DOE Patents [OSTI]

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1990-01-01

    The present invention constitutes a system for determining the amounts of ionizing radiation to which dosimeters using thermoluminescent materials have been exposed. In accordance with this system, the thermoluminescent materials which comprise the dosimeters are first cooled by contact with a cryogenic substance such as liquified nitrogen. The thermoluminescent materials are then optically stimulated by exposure to ultraviolet light. Thereafter, the amounts of visible light emitted by the thermoluminescent materials are detected and counted as the materials are allowed to warm up to room temperature. The amounts of luminescence exhibited by the materials are related to radiation exposure and provide a sensitive measure of radiation dosage. It has been discovered that the above procedure is most effective when heavily doped thermoluminescent materials are used and that the procedure allows many useful plastic materials to now be employed in dosimeter constructions.

  20. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  1. Solids feeder apparatus

    DOE Patents [OSTI]

    Bell, Jr., Harold S.

    1979-01-01

    This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

  2. Tubular solid oxide fuel cell development program

    SciTech Connect (OSTI)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  3. Fast-neutron solid-state dosimeter

    DOE Patents [OSTI]

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  4. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  5. Golden Reading Room: NEPA Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Categorical Exclusions Golden Reading Room: NEPA Categorical Exclusions Categorical Exclusion Determinations issued by Golden Field Office. DOCUMENTS AVAILABLE FOR DOWNLOAD May 10, 2016 CX-100608 Categorical Exclusion Determination Supplemental Notice of Proposed Rulemaking (SNOPR) for Energy Conservation Standards for Residential Conventional Cooking Products RIN 1904-AD15 CX(s) Applied: B5.1 EERE-Buildings Technology Program Date: 05/10/2016 Location(s): Nationwide Office(s): Golden Field

  6. Solid-State Lighting Webcasts

    SciTech Connect (OSTI)

    2011-12-16

    Links to past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available.

  7. Improved Laser Induced Breakdown Spectroscopy (LIBS) Elemental Composition Detection System: A device to measure subsurface gases, liquids, and solids at subsurface conditions

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2016-02-23

    This device can measure subsurface gases, liquids, and solids at subsurface conditions. Atomic identification and concentration measurements can be made on solids, liquids, and gases at down hole pressure and temperature conditions....

  8. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  9. Verification and Validation of Digitally Upgraded Control Rooms

    SciTech Connect (OSTI)

    Boring, Ronald; Lau, Nathan

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice—the propensity for late-stage V&V and the use of increasingly complex psychological assessment measures for V&V.

  10. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  11. Computational Investigations of Solid-Liquid Interfaces

    SciTech Connect (OSTI)

    Mark Asta

    2011-08-31

    In a variety of materials synthesis and processing contexts, atomistic processes at heterophase interfaces play a critical role governing defect formation, growth morphologies, and microstructure evolution. Accurate knowledge of interfacial structure, free energies, mobilities and segregation coefficients are critical for predictive modeling of microstructure evolution, yet direct experimental measurement of these fundamental interfacial properties remains elusive in many cases. In this project first-principles calculations were combined with molecular-dynamics (MD) and Monte-Carlo (MC) simulations, to investigate the atomic-scale structural and dynamical properties of heterophase interfaces, and the relationship between these properties and the calculated thermodynamic and kinetic parameters that influence the evolution of phase transformation structures at nanometer to micron length scales. The topics investigated in this project were motivated primarily by phenomena associated with solidification processing of metals and alloys, and the main focus of the work was thus on solid-liquid interfaces and high-temperature grain boundaries. Additional efforts involved first-principles calculations of coherent solid-solid heterophase interfaces, where a close collaboration with researchers at the National Center for Electron Microscopy was undertaken to understand the evolution of novel core-shell precipitate microstructures in aluminum alloys.

  12. Thermochemistry of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3} solid solutions (0

    SciTech Connect (OSTI)

    Kemik, Nihan; Takamura, Yayoi; Navrotsky, Alexandra

    2011-08-15

    The structure, the energetics and the internal redox reactions of La{sub 0.7}Sr{sub 0.3}Fe{sub x}Mn{sub 1-x}O{sub 3} have been studied in the complete solid solution range 0.0temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. There is a noticeable change in the energetics of the solid solution near x=0.7, which is due to the growing concentration of Fe{sup 4+} at higher Fe/(Fe+Mn) ratio. The balance between different valences of the transition metals, Mn and Fe, is the main factor in determining the energetics of the La{sub 0.70}Sr{sub 0.30}Fe{sub x}Mn{sub 1-x}O{sub 3} solid solution. - Graphical abstract: Enthalpy of mixing ({Delta}H{sub mix}) of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3-{gamma}} solid solution at room temperature as a function of Fe/(Fe+Mn) ratio, x. Linear fits for the two regions at low and high x are shown as solid lines. The inset shows the content of Mn{sup 3+}, Mn{sup 4+}, Fe{sup 3+} and Fe{sup 4+} as a function of x based on the work by Jonker. The redox reactions between different valence states of Fe and Mn dominate the energetic behavior of the solid solution. Highlights: > Investigated the structure, the energetics and the internal redox reactions of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3}. > Determined the formation and mixing enthalpy by high temperature oxide melt solution calorimetry. > Symmetry of the perovskite, transition metal valence and energetics are interdependent. > Thermochemical data shows convincing evidence of the interplay between the Mn{sup 4+} and the Fe{sup 4+} ions. > Balance between different valences of Mn and Fe dominates the energetics of La{sub 0.7}Sr{sub 0.3}Fe{sub x}Mn{sub 1-x}O{sub 3}.

  13. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  14. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M. Daniel (Idaho Falls, ID)

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  15. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  16. Solid Xenon Project

    SciTech Connect (OSTI)

    Balakishiyeva, Durdana N.; Saab, Tarek [University of Florida (United States); Mahapatra, Rupak [Texas A and M University (United States); Yoo, Jonghee [FNAL (United States)

    2010-08-30

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  17. Using magnetic fields to understand high-temperature superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using magnetic fields to understand high-temperature superconductivity Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Using magnetic fields to understand high-temperature superconductivity The eventual goal of the research would be to create a superconductor that operates at room temperature and needs no cooling at all May 1, 2015 Los Alamos National Laboratory scientist Brad Ramshaw conducts an experiment at the

  18. A comparison of observables for solid-solid phase transitions

    SciTech Connect (OSTI)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  19. DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy $1.5M Settlement with Room Air Conditioner Manufacturer DOE Reaches $1.5M Settlement with Room Air Conditioner Manufacturer October 27, 2015 - 5:48pm Addthis The General Counsel's enforcement office settled an enforcement action against Friedrich Air Conditioning Company for $1,494,626.25, for the distribution of room air conditioners that failed to meet federal minimum standards for energy efficiency. Room air conditioners must meet minimum efficiency standards to be

  20. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon...

  1. The Committee convened in the Clark Room, Holiday Inn Capitol,

    U.S. Energy Information Administration (EIA) Indexed Site

    MEETING - - - Thursday, April 25, 1996 - - - The Committee convened in the Clark Room, Holiday Inn Capitol, 550 C Street, S.W., Washington, D.C., at 9:00 a.m., Dr. Timothy D. Mount, Chairman, presiding. PRESENT: TIMOTHY D. MOUNT, Chairman SAMPRIT CHATTERJEE BRENDA G. COX JOHN D. GRACE CALVIN KENT GRETA M. LJUNG RICHARD A. LOCKHART DANIEL A. RELLES PRESENT (Continued): BRADLEY O. SKARPNESS G. CAMPBELL WATKINS ALSO PRESENT: RENEE MILLER YVONNE BISHOP MARY HUTZLER JAY HAKES DOUGLAS HALE ART HOLLAND

  2. Golden Reading Room: Freedom of Information Act (FOIA) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Freedom of Information Act (FOIA) Golden Reading Room: Freedom of Information Act (FOIA) The Golden FOIA Office exists to execute the legal requirements of the Freedom of Information Act (5 U.S.C. § 552(a)(3)(A) (2006), amended by OPEN Government Act of 2007, Pub. L. No. 110175, 121 Stat. 2524). Enacted on July 4, 1966, and taking effect on one year later, the Freedom of Information Act provides that any person has a right, enforceable in court, to obtain access to federal agency

  3. Guest Room Lighting at the Hilton Columbus Downtown

    SciTech Connect (OSTI)

    2014-06-30

    At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code. This document is a summary case study of the report.

  4. Notices Ave. SW., Room 3E207, Washington, DC

    Energy Savers [EERE]

    5295 Federal Register / Vol. 81, No. 55 / Tuesday, March 22, 2016 / Notices Ave. SW., Room 3E207, Washington, DC 20202. Telephone: (202) 453-6891 or by email: ddra@ed.gov. If you use a TDD or a TTY, call the FRS, toll free, at 1-800-877-8339. If you request an application from ED Pubs, be sure to identify this program as follows: CFDA number 84.022A. VIII. Other Information Accessible Format: Individuals with disabilities can obtain this document and a copy of the application package in an

  5. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  6. Regenerable solid imine sorbents

    DOE Patents [OSTI]

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  7. Process for the retorting of hydrocarbon-containing solids

    SciTech Connect (OSTI)

    Silva, J.C.; Gaiao, U.; Novicki, R.E.

    1987-11-17

    This patent describes a process for the retorting of hydrocarbon-containing solids, characterized in that it comprises the following steps: (a) contacting the solid particles with superheated steam; (b) transporting, in an upward direction, the mixture obtained in the previous step, at a gas velocity close to the critical impact velocity, through a vertical multi-tube reactor, immersed in a vertical furnace, held at a temperature in the range from 800/sup 0/ to 1000/sup 0/C; (c) heating the obtained mixture to the solids' pyrolysis temperature, by means of the heat generated by the burning of fuel inside the vertical furnace and supplied to the mixture through the walls of the reactor; (d) removing the products from the reactor, separating the solid phase from the retorting products, by forcing the products to pass through primary and secondary separators; (e) removing the gaseous phase from the retorting products exiting the secondary separator thus effecting a second separation stage, for the obtaining of fuel gas and oil the process further characterized in that spaced static devices are provided within the multi-tube reactor tube, so as to cause the solid particles to come close to the walls of the reactor, as a consequence of the superheated steam flow redistribution in order to increase heat transfer between the vertical furnace and the reactor walls.

  8. Solid-State NMR | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State NMR Solid-State NMR Our team is well-known for its work in the following areas: - Using multi-dimensional solid-state NMR of quadrupolar nuclei to study spin-12 nuclei...

  9. Rapid, Reversible, SolidGas and Solution-Phase Insertion of CO 2 into InP Bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dickie, Diane A.; Barker, Madeline T.; Land, Michael A.; Hughes, Kira E.; Clyburne, Jason A. C.; Kemp, Richard A.

    2015-11-17

    The P,P-chelated heteroleptic complex bis[bis(diisopropylphosphino)amido]indium chloride [(i-Pr2P)2N]2InCl was prepared in high yield by treating InCl3 with 2 equiv of (i-Pr2P)2NLi in Et2O/tetrahydrofuran solution. Samples of [(i-Pr2P)2N]2InCl in a pentane slurry, a CH2Cl2 solution, or in the solid state were exposed to CO2, resulting in the insertion of CO2 into two of the four MP bonds to produce [O2CP(i-Pr2)NP(i-Pr2)]2InCl in each case. These compounds were characterized by multinuclear NMR and IR spectroscopy, as well as single-crystal X-ray diffraction. ReactIR solution studies show that the reaction is complete in less than 1 min at room temperature in solution and in less thanmore2 h in the solidgas reaction. The CO2 complex is stable up to at least 60 C under vacuum, but the starting material is regenerated with concomitant loss of carbon dioxide upon heating above 75 C. Furthermore, the compound [(i-Pr2P)2N]2InCl also reacts with CS2 to give a complicated mixture of products, one of which was identified as the CS2 cleavage product [S=P(i-Pr2)NP(i-Pr2)]2InCl]2(?-Cl)[?-(i-Pr2P)2N)].less

  10. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  11. Hanford workers begin cleaning out historic McCluskey Room | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hanford workers begin cleaning out historic McCluskey Room Hanford workers begin cleaning out historic McCluskey Room Addthis Description Workers have entered one of the most hazardous rooms at the Hanford Site in Washington state to begin final cleanup of a room that became known to workers over the years by the name of a worker injured there in a Cold War-era accident. The first reentry on Monday, September 8, 2014, consisted mostly surveying the room. More information:

  12. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. Is solid helium a supersolid?

    SciTech Connect (OSTI)

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  14. Solid Waste Management Program Plan

    SciTech Connect (OSTI)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  15. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  16. Incorporating Technetium in Minerals and Other Solids: A Review

    SciTech Connect (OSTI)

    Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael J.; Hrma, Pavel R.

    2015-08-29

    Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. Reviewing the diverse ways in which Tc-immobilizing materials can be made shows the range of options available.

  17. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Oxide Fuel Cells Solid oxide fuel cells (SOFC) are electrochemical devices that convert chemical energy of a fuel and oxidant directly into electrical energy. Since SOFCs produce electricity through an electrochemical reaction and not through a combustion process, they are much more efficient and environmentally benign than conventional electric power generation processes. Their inherent characteristics make them uniquely suitable to address the environmental, climate change, and water

  18. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  19. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  20. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    or Solid Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWastesHazardousorSolid&oldid612186" Feedback Contact needs updating Image...

  1. NETL: Solid Oxide Fuel Cells Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Oxide Fuel Cells Publications This page provides links to SOFC Program related documents and reference materials. Solid Oxide Fuel Cells Program 2015 Project Portfolio The ...

  2. Solid Catalyzed Isoparaffin Alkylation at Supercritical Fluid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About This Technology Technology Marketing Summary INL has developed a solid catalyst process for the alkylation reaction of isoparaffins with olefins over solid catalysts. The...

  3. Microsoft Word - Solid Waste at Hanford

    Office of Environmental Management (EM)

    Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project ... Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of ...

  4. Municipal Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSo...

  5. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (OSTI)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  6. Solid feeder and method

    DOE Patents [OSTI]

    Hathaway, Thomas J.

    1979-01-01

    This invention provides a housing containing a rotatable coal bucket that is sealed at its ends in the housing with a reciprocal plunger that is sealed in the bucket at one end and has an opposite cone-shaped end that wedges up against a closed end of the bucket, and a method for feeding dry, variable size coal from an ambient atmosphere at low pressure into a high temperature, high pressure reactor between the seals for producing fuel gas substantially without losing any high pressure gas from the reactor or excessively wearing the seals. To this end, the piston biases the plunger back and forth for loading and unloading the bucket with coal along an axis that is separated from the seals, the bucket is rotated to unload the coal into the reactor so as to fill the bucket with trapped high pressure gas from the reactor while preventing the gas from escaping therefrom, and then the cone-shaped plunger end is wedged into mating engagement with the closed end of the bucket to displace this high pressure bucket gas by expelling it back into the reactor whereby the bucket can be re-rotated for filling it with coal again substantially without losing any of the high pressure gas or excessively wearing the seals.

  7. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  8. Subsidence vulnerability in shallow room-and-pillar mines

    SciTech Connect (OSTI)

    Missavage, R.

    1985-07-01

    Concern over mining-related subsidence is inhibiting the development of surface land uses in previously mined areas and is constraining the recovery of coal resources in areas with established land uses that might be impacted by subsequent subsidence. The determination of subsidence vulnerability of mined-out areas (especially abandoned mine areas) can be a useful tool in the design and location of surface structures. A model has been developed for assessing subsidence vulnerability in shallow room-and-pillar mines based on the flexural rigidity and strength characteristics of the overlying strata. The model does not predict the subsidence profile or when the subsidence will occur. It only predicts those areas that are likely to subside. This paper briefly describes the model and its testing.

  9. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect (OSTI)

    Burdick, A.

    2014-12-01

    ?Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  10. The high-pressure-high-temperature behavior of bassanite (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect The high-pressure-high-temperature behavior of bassanite Citation Details In-Document Search Title: The high-pressure-high-temperature behavior of bassanite The pressure evolution of bassanite (CaSO{sub 4} {center_dot} 1/2 H{sub 2}O) was investigated by synchrotron X-ray powder diffraction along three isotherms: at room temperature up to 33 GPa, at 109 C up to 22 GPa, and at 200 C up to 12 GPa. The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a

  11. Supplemental Radiological Survey Plan for the Lease of the Rooms Associated with C107 of Building K-1006 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Blevins M.F.

    2010-09-01

    In 1998, a portion of Bldg. K-1006 was leased to the Community Reuse Organization of East Tennessee (CROET) as part of the reindustrialization efforts at the East Tennessee Technology Park (ETTP). The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include rooms C107, C107-A, C107-B, C107-C, and C107-D. The lease of these rooms is now desired. These rooms comprise the area to be surveyed. The building was constructed as a laboratory facility to support the gaseous diffusion uranium enrichment process. It also contains offices and administrative spaces for laboratory personnel. After the gaseous diffusion process was shut down in the mid-1980s, the building was used to provide research and development support to ETTP environmental, safety, and health programs; the Toxic Substances Control Act Incinerator; the Central Neutralization Facility; and other multi-site waste treatment activities. It also served as the chemistry laboratory for the Environmental Technology Technical Services Organization. The activities currently conducted in Bldg. K-1006 utilize a variety of analytical techniques. Some of the major techniques being employed are X-ray analysis, electron microanalysis, and spectrochemical analysis. In 1998, a portion of Bldg. K-1006 was leased to CROET as part of the reindustrialization efforts at ETTP. The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include Rooms C107, C107-A, C107-B, C107-C, and C107-D. Some demolition of furniture and decontamination activities has taken place for Rooms C 107 and C 107-B since the last radiological survey of those rooms. In March 2009, a final remedial action (RA) was performed for the Bldg. K-1006 north basement sump. The Bldg. K-1006 north basement sump is a nominal 30-in.-diameter, 36-in.-deep concrete structure in the north corner of room C107B. The building receives groundwater in-leakage that is periodically pumped to the sewer system via this float-controlled pump. Solids in the bottom of the sump consisted of an estimated 1-ft{sup 3} coarse-grained material that varied in thickness from 0 to 4 in. with no suspended fraction. The RA consisted of removing the water in the sump and then removing and sampling the solids. The solids were mixed with grout after removal and allowed to set. The solids were then disposed off-site at an approved disposal facility. The building sump will remain until the K-1006 building is demolished. The actions for the K- 1006 sump are described in the revised Phased Construction Completion Report for Exposure Unit (EU) Z2-33, which received regulatory approval in December 2009.

  12. Current Approaches for Control Room I and C Modernization

    SciTech Connect (OSTI)

    Lopez, Alberto; Jimenez, Alfonso

    2002-07-01

    In general, instrumentation and control (I and C) systems for nuclear power plants were made using analogic systems and relays, since this was the only technology available by the time these systems were designed. This fact impacts on the operational and maintenance capabilities required to these systems. For this reason, nuclear power plants are facing nowadays two challenges: on one hand, the obsolescence of these systems contributes to the increase in the operation and maintenance costs - due to the difficulties for getting spare parts and support from the system vendors -. On the other hand, there has been an increase in the utilities competitiveness due to the electric power market liberalization. All this, of course, along with the commitment to maintain the current safety levels and meet the new requirements and standards that may arise in the near future. The application of current technologies, especially digital technology, solves the obsolescence problems and allows for a more functional and updated human-machine interface. Nevertheless, the cost associated to these modifications makes it necessary to develop strategies to determine which systems need to be modified and how to implement modifications effectively, so that these systems can work jointly with others using different technologies. Other issues inherent to digital technology must be considered, such as verification and validation of the software and of the human-machine interface, which are required for its licensing. This presentation describes the current approaches for I and C modernization, the main reasons, technologies and implementation plans, focusing on the control room and on the impact on operations. The main issues to be considered for developing a specific modernization plan are analysed. The goals and status of the 'Feasibility Study of the Control Room I and C Modernization' are described. This study is currently being developed by Endesa, Iberdrola and Tecnatom, and is included within the PROFIT program (Programa Nacional de Fomento de la Investigacion Tecnica). Vandellos 2 NPP is the pilot plant. (authors)

  13. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 497.0950 mA Date: 16-May-2016 02:53:04 Beamline Temperatures Energy 3.0000 GeV Current 497.1 mA 16-May-2016 02:53:04 LN:MainTankLevel 168.9 in LN:MainTankPress 60.0 psi SPEAR-BL:B120HeFlow 13.4 l/min SPEAR-BL:B131HeFlow 22.7 l/min BL 2 BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -13.0 ℃ BL04-1:Bottom1 54.0 ℃ BL04-1:Bottom2 55.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 64.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA

  14. Synthesis, magnetic and dielectric characterization of nanocrystalline solid solutions of In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15)

    SciTech Connect (OSTI)

    Ahmad, Tokeer; Khatoon, Sarvari; Coolahan, Kelsey

    2013-09-01

    Graphical abstract: Monophasic and crystalline In{sub 2−x}Ni{sub x}O{sub 3} nanoparticles of size 8–15 nm have been synthesized solvothermally and showed red shift in energy band gap which decreases on increasing Ni{sup 2+} concentration in In{sub 2}O{sub 3} host lattice. - Highlights: • Monophasic Ni-doped In{sub 2}O{sub 3} nanoparticles by solvothermal method for first time. • Plausible reaction mechanism using thermogravimetric analysis. • High surface area with small particle size obtained. • Solid solutions exhibit paramagnetism with very weak antiferromagnetic interactions. - Abstract: In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15) nanoparticles were successfully synthesized by solvothermal method by the thermal decomposition of oxalate precursor at 450 °C for the first time. X-ray diffraction studies showed the formation of highly crystalline and monophasic cubic structure of In{sub 2}O{sub 3} which is attributed to the formation of solid solution. These nanoparticles show good optical transmittance in the visible region. Optical measurements showed an energy band gap which decreases with increasing Ni concentration. The grain size decreases from 15 nm to 8 nm and surface area increases from 90 to 254 m{sup 2} g{sup −1} on increasing the Ni concentration. High dielectric constant and dielectric loss has been obtained which indicates the conducting nature of these solid solutions. Magnetic measurements showed that the samples are strong paramagnetic in nature with very weak antiferromagnetic interactions. No evidence of ferromagnetism is observed for these solid solutions at room temperature.

  15. The Effects of Lithium Triflate (LiCF{sub 3}SO{sub 3}) on the PMMA-based Solid Polymer Electrolytes

    SciTech Connect (OSTI)

    Chew, K. W.; Chen, S. S.; Pang, W. L.; Tan, C. G.; Osman, Z.

    2010-03-11

    The effects of Lithium triflate salt (LiCF{sub 3}SO{sub 3}), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF{sub 3}SO{sub 3}) and (PMMA+PC+LiCF{sub 3}SO{sub 3}) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperature to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF{sub 3}SO{sub 3}) system is 2.83x10{sup -12} Scm{sup -1}, 4.39x10{sup -11} Scm{sup -1} and 3.93x10{sup -6} Scm{sup -1} respectively. The conductivity for (PMMA+PC+LiCF{sub 3}SO{sub 3}) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10{sup -5} Scm{sup -1}. Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH{sub 3} band.

  16. Solids flow rate measurement in dense slurries

    SciTech Connect (OSTI)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  17. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    SciTech Connect (OSTI)

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; Dominique E. Williams; Li, Yunchao; Paranthaman, M. Parans; Zaghib, Karim; Manivannan, A.

    2015-09-30

    In this study, titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10–6, 1.01 ×10–6, and 1.2 × 10–4 S cm–1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).

  18. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  19. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  20. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  1. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect (OSTI)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  2. Method for processing pulverized solid fuel

    SciTech Connect (OSTI)

    Chukhanov, Z.F.; Chukhanov, Z.Z.; Karasev, V.A.; Samsonov, V.I.; Tsuprov, S.A.

    1982-01-05

    A method is disclosed for processing a pulverized solid fuel by heat, which comprises the steps of drying said fuel and subjecting the latter to two-stage pyrolysis with the resulting formation of vapor, gaseous products and small coke. According to the invention, at least a part of the small coke is additionally heated to a temperature of 800 to 1500/sup 0/C by combustion gas and/or by partial burning of the small coke, whereafter the heated small coke is separated from the combustion gas, fed to the first stage of pyrolysis and for drying the fuel. The heated small coke is gasified by steam. The resultant gasification products are separated from the small coke which is then fed as the heat carrier to the first stage of pyrolysis.

  3. Pollution prevention opportunity assessment for Building 922 solid office waste

    SciTech Connect (OSTI)

    Phillips, N.M.

    1995-01-01

    Building 922 houses all of SNL/California`s ES and H Departments: Health Protection, Environmental Protection, Safety, and Environmental Operations. It covers approximately 10,000 square feet and houses about 80 people. The office personnel generate nonhazardous solid office wastes in their daily activities. To determine the types and amounts of waste generated, a special PPOA sorting team sorted all of the trash collected from the building for a period of one-week (including paper and aluminum cans in the recycling bins). The team sorted the trash into major categories: paper, plastic, metals, glass, wet garbage, rest room waste, and miscellaneous materials. They then sorted it into subcategories within each major category. Rest room waste was collected but not sorted. The waste in each category was weighed separately. The total amount of trash collected during the week was approximately 168.8 kg (371.4 lbs). The results of this PPOA indicate that SNL/California is minimizing most nonhazardous office waste and reductions planned for the near future will add significantly to the minimization efforts.

  4. Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF

    SciTech Connect (OSTI)

    Byun, Thak Sang; Toloczko, Mychailo B.; Saleh, Tarik A.; Maloy, Stuart A.

    2013-01-14

    To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3–148 dpa at 378–504 C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa pm occurred in room temperature tests when irradiation temperature was below 400 C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa pm was measured when the irradiation temperature was above 430 C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3–148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 *C) irradiation cases, which indicates that the ductile–brittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels.

  5. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  6. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  7. A high-pressure route to thermoelectrics with low thermal conductivity: The solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2} (x=0.10.6)

    SciTech Connect (OSTI)

    Schrder, Thorsten; Rosenthal, Tobias; Souchay, Daniel; Petermayer, Christian; Grott, Sebastian; Scheidt, Ernst-Wilhelm; Gold, Christian; Scherer, Wolfgang; Oeckler, Oliver

    2013-10-15

    Metastable rocksalt-type phases of the solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2} (x=0.1, 0.2, 0.4, 0.5 and 0.6) were prepared by high-pressure synthesis at 2.5 GPa and 400 C. In these structures, the coordination number of In{sup 3+} is six, in contrast to chalcopyrite ambient-pressure AgInTe{sub 2} with fourfold In{sup 3+} coordination. Transmission electron microscopy shows that real-structure phenomena and a certain degree of short-range order are present, yet not very pronounced. All three cations are statistically disordered. The high degree of disorder is probably the reason why AgIn{sub x}Sb{sub 1?x}Te{sub 2} samples with 0.4room temperature. These are lower than those of other rocksalt-type tellurides at room temperature; e.g. the well-known thermoelectric AgSbTe{sub 2} (? ?0.6 W/K m). The highest ZT value (0.15 at 300 K) is observed for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, mainly due to its high Seebeck coefficient of 160 V/K. Temperature-dependent X-ray powder patterns indicate that the solid solutions are metastable at ambient pressure. At 150 C, the quaternary compounds decompose into chalcopyrite-type AgInTe{sub 2} and rocksalt-type AgSbTe{sub 2}. - Graphical abstract: Reaction scheme, temperature characteristics of the ZT value and a selected-area electron diffraction pattern (background) of AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}, which crystallizes in a rocksalt-type structure with statistical cation disorder. Display Omitted - Highlights: High-pressure synthesis yields the novel solid solution series AgIn{sub x}Sb{sub 1?x}Te{sub 2}. In contrast to AgInTe{sub 2}, the compounds are inert at ambient pressure. HRTEM shows no pronounced short-range order in the disordered NaCl-type structure. The metastable phases exhibit very low total thermal conductivities <0.5 W/K m. ZT values of 0.15 at room temperature were measured for AgIn{sub 0.5}Sb{sub 0.5}Te{sub 2}.

  8. ISSUANCE 2015-06-09: Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Room Air Conditioners; Request for Information

  9. System and method for the identification of radiation in contaminated rooms

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2015-09-29

    Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.

  10. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOE Patents [OSTI]

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  11. Method of encapsulating solid radioactive waste material for storage

    DOE Patents [OSTI]

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  12. Stability analysis of a backfilled room-and-pillar mine

    SciTech Connect (OSTI)

    Tesarik, D.R.; Seymour, J.B.; Yanske, T.R.; McKibbin, R.W.

    1995-12-31

    Displacement and stress changes in cemented backfill and ore pillars at the Buick Mine, near Boss, MO, were monitored by engineers from the US Bureau of Mines and The Doe Run Co., St. Louis, MO. A test area in this room-and-pillar mine was backfilled to provide support when remnant ore pillars were mined. Objectives of this research were to evaluate the effect of backfill on mine stability, observe backfill conditions during pillar removal, and calibrate a numerical model to be used to design other areas of the mine. Relative vertical displacements in the backfill were measured with embedment strain gauges and vertical extensometers. Other types of instruments used were earth pressure cells (to identify loading trends in the backfill), borehole extensometers (to measure relative displacement changes in the mine roof and support pillars), and biaxial stressmeters (to measure stress changes in several support pillars and abutments). Two- and three-dimensional numeric codes were used to model the study area. With information from these codes and the installed instruments, two failed pillars were identified and rock mass properties were estimated.

  13. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  14. Solid-State Lighting Consortia

    Broader source: Energy.gov [DOE]

    Most potential users of light-emitting diode (LED) lighting do not have large training budgets to independently educate themselves; participation in the Solid-State Lighting (SSL) Consortia is a low-cost–low-risk way to benefit from the knowledge and experience of others.

  15. Solid-state radioluminescent compositions

    DOE Patents [OSTI]

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  16. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  17. Solid colloidal optical wavelength filter

    DOE Patents [OSTI]

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  18. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  19. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  20. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.