Sample records for room temperature ionic

  1. Electrochemical Generation of Superoxide in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Weidner, John W.

    with an inorganic salt.7 They are directly related to more familiar high-temperature molten salts that are used by the reduction of dioxygen in imidizalium chloride-aluminum chloride molten salt. However, the resulting su and chlorides.2,3,6 Room-temperature ionic liquids RTILs are stable mixtures of an organic cation/anion salt

  2. Is thermo-ionic emission at room temperature exploitable?

    E-Print Network [OSTI]

    Germano D'Abramo

    2009-05-21T23:59:59.000Z

    In this brief note we describe two devices, a sort of flat and spherical capacitor, with which one should be able to test the possibility of creating a macroscopic voltage, and thus exploitable current, out of a single thermal source at room temperature. The basic idea is trivial and it makes use of a thermo-emitting cathode with work function as low as 0.7eV. The idea is not completely new, but our approach is simpler and neat. When implemented, it should allow to assess if approaches based on thermo-ionic materials at room temperature really violate the Second Law of Thermodynamics macroscopically.

  3. Sum frequency generation study on the orientation of room-temperature ionic liquid at the grapheneionic liquid interface

    E-Print Network [OSTI]

    Bao, Jiming

    such as dye-sensitized solar cells and super capacitors, room-temperature ionic liquids are considered

  4. Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Reid, Scott A.

    unique chemical and physical properties, including being air and moisture stable, a high solubility power with supercritical fluid CO2;9-11 (4) electrochemical reactions;12,13 and (5) as a medium for enzymatic reactions.14Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near

  5. From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems

    E-Print Network [OSTI]

    Salanne, Mathieu; Seitsonen, Ari P; Madden, Paul A; Kirchner, Barbara; 10.1039/C1FD00053E

    2013-01-01T23:59:59.000Z

    An interaction potential including chloride anion polarization effects, constructed from first-principles calculations, is used to examine the structure and transport properties of a series of chloroaluminate melts. A particular emphasis was given to the study of the equimolar mixture of aluminium chloride with 1-ethyl-3-methylimidazolium chloride, which forms a room temperature ionic liquid EMI-AlCl 4. The structure yielded by the classical simulations performed within the framework of the polarizable ion model is compared to the results obtained from entirely electronic structure-based simulations: An excellent agreement between the two flavors of molecular dynamics is observed. When changing the organic cation EMI+ by an inorganic cation with a smaller ionic radius (Li+, Na+, K+), the chloroaluminate speciation becomes more complex, with the formation of Al2Cl 7- in small amounts. The calculated transport properties (diffusion coefficients, electrical conductivity and viscosity) of EMI-AlCl4 are in good ag...

  6. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Zhang, Hongwei [University of Tennessee, Knoxville (UTK); Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

    2005-01-01T23:59:59.000Z

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  7. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  8. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles

    SciTech Connect (OSTI)

    Lucas, Marcel [Los Alamos National Laboratory; Macdonald, Brian A [Los Alamos National Laboratory; Wagner, Gregory L [Los Alamos National Laboratory; Joyce, Steven A [Los Alamos National Laboratory; Rector, Kirk D [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Lignocellulosic biomass represents a potentially sustainable source of liquid fuels and commodity chemicals. It could satisfy the energy needs for transportation and electricity generation, while contributing substantially to carbon sequestration and limiting the accumulation of greenhouse gases in the atmosphere. Potential feedstocks are abundant and include crops, agricultural wastes, forest products, grasses, and algae. Among those feedstocks, wood is mainly constituted of three components: cellulose, hemicellulose, and lignin. The conversion process of lignocellulosic biomass typically consists of three steps: (1) pretreatment; (2) hydrolysis of cellulose and hemicellulose into fermentable sugars; and (3) fermentation of the sugars into liquid fuels (ethanol) and other commodity chemicals. The pretreatment step is necessary due to the complex structure of the plant cell wall and the chemical resistance of lignin. Most current pretreatments are energy-intensive and/or polluting. So it is imperative to develop new pretreatments that are economically viable and environmentally friendly. Recently, ionic liquids have attracted considerable interest, due to their ability to dissolve biopolymers, such as cellulose, lignin, native switchgrass, and others. Ionic liquids are also considered green solvents, since they have been successfully recycled at high yields for further use with limited efficiency loss. Also, a few microbial cellulases remain active at high ionic liquid concentration. However, all studies on the dissolution of wood in ionic liquids have been conducted so far at high temperatures, typically above 90 C. Development of alternative pretreatments at room temperature is desirable to eliminate the additional energy cost. In this study, thin sections of poplar wood were swollen at room temperature by a 3 h ionic liquid (1-ethyl-3-methylimidazolium acetate or EMIMAc) pretreatment. The pretreated sample was then exposed to an aqueous suspension of nanoparticles that resulted in the sample contraction and the deposition of nanoparticles onto the surface and embedded into the cell wall. To date, both silver and gold particles ranging in size from 40-100 nm have been incorporated into wood. Penetration of gold nanoparticles of 100 nm diameter in the cell walls was best confirmed by near-infrared confocal Raman microscopy, since the deposition of gold nanoparticles induces a significant enhancement of the Raman signal from the wood in their close proximity, an enhancement attributed to the surface-enhanced Raman effect (SERS). After rinsing with water, scanning electron microscopy (SEM) and Raman images of the same areas show that most nanoparticles remained on the pretreated sample. Raman images at different depths reveal that a significant number of nanoparticles were incorporated into the wood sample, at depths up to 4 {micro}m, or 40 times the diameter of the nanoparticles. Control experiments on an untreated wood sample resulted in the deposition of nanoparticles only at the surface and most nanoparticles were removed upon rinsing. This particle incorporation process enables the development of new pretreatments, since the nanoparticles have a high surface-to-volume ratio and could be chemically functionalized. Other potential applications for the incorporated nanoparticles include isotope tracing, catalysis, imaging agents, drug-delivery systems, energy-storage devices, and chemical sensors.

  9. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect (OSTI)

    Jiang, Xikai [ORNL] [ORNL; Huang, Jingsong [ORNL] [ORNL; Zhao, Hui [University of Nevada, Las Vegas] [University of Nevada, Las Vegas; Sumpter, Bobby G [ORNL] [ORNL; Qiao, Rui [Clemson University] [Clemson University

    2014-01-01T23:59:59.000Z

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  10. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect (OSTI)

    Hillesheim, Patrick C [ORNL; Mahurin, Shannon Mark [ORNL; Fulvio, Pasquale F [ORNL; Yeary, Joshua S [ORNL; Oyola, Yatsandra [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  11. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19T23:59:59.000Z

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  12. 81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Robin D. Rogers

    2004-12-09T23:59:59.000Z

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

  13. Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids

    E-Print Network [OSTI]

    Wan, Xin-hua

    , College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Received 14, the removal and recycling of the catalytic materials become important. It is expected that using ionic liquids as ATRP media. They performed the copper(I)-mediated ATRP of methyl methacrylate (MMA) in 1-butyl-3

  14. One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler-Volmer and Symmetric Marcus-Hush theories using microdisc electrodes

    E-Print Network [OSTI]

    Tanner, Eden E L; Barnes, Edward O; Compton, Richard G

    2015-01-01T23:59:59.000Z

    The voltammetry for the reduction of oxygen at a microdisc electrode is reported in two room temperature ionic liquids: 1-butyl-1-methylpyyrolidinium bis(trifluoromethylsulfonyl) imide ([Bmpyrr][NTf2]) and trihexyltetradecylphosphonium bis9trifluoromethylsulfonyl) imide ([P14,6,6,6][NTf2]) at 298 K. Simulated voltammograms using Butler-Volmer theory and Symmetric Marcus-Hush (SMH) theory were compared with experimental data. Butler-Volmer theory consistently provided experimental parameters with a higher level of certainty than SMH theory. A value of solvent reorganisation energy for oxygen reduction in ionic liquids was inferred for the first time as 0.4-0.5 eV, which is attributable to inner-sphere reorganisation with a negligible contribution from solvent reorganisation. The developed Butler-Volmer and Symmetric Marcus-Hush programs are also used to theoretically study the possibility of kinetically limited steady state currents, and to establish an approximate equivalence relationship between microdisc el...

  15. Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique

    E-Print Network [OSTI]

    Reid, Scott A.

    Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

  16. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  17. Metal-air low temperature ionic liquid cell

    DOE Patents [OSTI]

    Friesen, Cody A; Buttry, Daniel A

    2014-11-25T23:59:59.000Z

    The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

  18. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  19. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  20. ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE

    E-Print Network [OSTI]

    Caupin, Frédéric

    ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE FR´ED´ERIC CAUPIN AND VINCENT FOURMOND on ultrasonic cavitation in freon (1,1,2-trichloro 1,2,2-trifluoro ethane). We use a high intensity 1 MHz observe the nucleation of bubbles. We describe the three different methods we use to detect cavitation

  1. Absorber Materials at Room and Cryogenic Temperatures

    SciTech Connect (OSTI)

    F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

    2011-09-01T23:59:59.000Z

    We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

  2. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24T23:59:59.000Z

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  3. Electrodrift purification of materials for room temperature radiation detectors

    DOE Patents [OSTI]

    James, Ralph B. (5420 Lenore Ave., Livermore, Alameda County, CA 94550); Van Scyoc, III, John M. (P.O. Box 93, 65 Main St., Apt. 1, Plainfield, Cumberland County, PA 17081); Schlesinger, Tuviah E. (8 Carleton Dr., Mt. Lebanon, Allegheny County, PA 15243)

    1997-06-24T23:59:59.000Z

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  4. Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion

    E-Print Network [OSTI]

    Courtney, Daniel George

    2011-01-01T23:59:59.000Z

    Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

  5. Room-Temperature Multiferroic Hexagonal LuFeO3

    SciTech Connect (OSTI)

    Cheng, Xuemei [Bryn Mawr College; Balke, Nina [ORNL; Chi, Miaofang [ORNL; Gai, Zheng [ORNL; Keavney, David [Argonne National Laboratory (ANL); Lee, Ho Nyung [ORNL; Shen, Jian [University of Tennessee, Knoxville (UTK); Snijders, Paul C [ORNL; Wang, Wenbin [ORNL; Ward, Thomas Z [ORNL; Xu, Xiaoshan [ORNL; Yi, Jieyu [ORNL; Zhu, Leyi [Argonne National Laboratory (ANL); Christen, Hans M [ORNL; Zhao, Jun [University of California, Berkeley

    2013-01-01T23:59:59.000Z

    We observed the coexistence of ferroelectricity and weak ferromagnetism at room temperature in the hexagonal phase of LuFeO3 stabilized by epitaxial thin film growth. While the ferroelectricity in hexagonal LuFeO3 can be understood as arising from its polar structure, the observation of weak ferromagnetism at room temperature is remarkable considering the frustrated triangular spin structure. An explanation of the room temperature weak ferromagnetism is proposed in terms of a subtle lattice distortion revealed by the structural characterization. The combination of ferroelectricity and weak ferromagnetism in epitaxial films at room temperature offers great potential for the application of this novel multiferroic material in next generation devices.

  6. Terahertz Room-Temperature Photonic Crystal Nanocavity Laser

    E-Print Network [OSTI]

    Dirk Englund; Hatice Altug; Ilya Fushman; Jelena Vuckovic

    2007-06-21T23:59:59.000Z

    We describe an efficient surface-passivated photonic crystal nanocavity laser, demonstrating room-temperature operation with 3-ps total pulse duration (detector response limited) and low-temperature operation with ultra-low-threshold near 9uW.

  7. Determination of the Acceptable Room Temperature Range for Local Cooling

    E-Print Network [OSTI]

    Zhang, Y.; Zhao, R.

    2006-01-01T23:59:59.000Z

    Determination of the acceptable room temperature range is a key problem in satisfactory design of local cooling for energy savings. At the room temperatures ranging from neutral to warm, three sensitive body parts-the face, chest and back-were each...

  8. Numerical modelling and analysis of a room temperature magnetic

    E-Print Network [OSTI]

    Numerical modelling and analysis of a room temperature magnetic refrigeration system Thomas Frank and analysis of a room temperature magnetic refrigeration system Department: Fuel Cells and Solid State-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration

  9. Fast diffusion in a room temperature ionic liquid confined in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1(a) , E. Mamontov 1 , S. Dai 2 , X. Wang 2(b) , P. F. Fulvio 2 and D. J. Wesolowski 2 1 Neutron Scattering Science Division, Oak Ridge National Laboratory - Oak Ridge, TN 37831,...

  10. Near room temperature lithographically processed metal-oxide transistors

    E-Print Network [OSTI]

    Tang, Hui, M. Eng. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    A fully lithographic process at near-room-temperature was developed for the purpose of fabricating transistors based on metal-oxide channel materials. The combination of indium tin oxide (ITO) as the source/drain electrodes, ...

  11. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15 toAdvancesRockSodiumWIPPDepartmentRoom

  12. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  13. Single-Molecule Triplet-State Photon Antibunching at Room Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antibunching at Room Temperature. Abstract: We have demonstrated probing single-molecule metal-to-ligand charge transfer (MLCT) dynamics at room temperature. Using photon...

  14. ROOM TEMPERATURE STRENGTH DEGRADATION OF OPTICAL FIBERS

    E-Print Network [OSTI]

    Matthewson, M. John

    temperatures. 6 :4 Aging Time (s) Fig. 2. Residual strength of fiber B after aging in deionized water. Aging Time (s) Fig. 4. Data of Griffioen3 for residual strength (strain to failure) of fiber aged in water. 1) Fig. 1 . Residual strength of fiber A after aging in distilled water. io 10 i0 106 io 108 1.0 0.9 0 (0

  15. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  16. The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner

    E-Print Network [OSTI]

    Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

    2006-01-01T23:59:59.000Z

    A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

  17. Room Temperature Metastability of Multilayer Graphene Oxide Films

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Room Temperature Metastability of Multilayer Graphene Oxide Films Suenne Kim1 , Si Zhou2 , Yike Hu1 Centre National de la Recherche Scientifique ­ Institut N´eel, Grenoble, B.P. 166, 38042 France Graphene oxide has multiple potential applications. The chemistry of graphene oxide and its response to external

  18. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    SciTech Connect (OSTI)

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12T23:59:59.000Z

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  19. Pysico-chemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium cations

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-01-01T23:59:59.000Z

    P. A. Z. Ionic liquid (molten salt) phase organometallicambient-temperature molten salts. Inorg. Chem. 1996, 35,are room-temperature molten salts with melting points near

  20. Phosphonium-based ionic liquids and uses

    DOE Patents [OSTI]

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30T23:59:59.000Z

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  1. Temperature dependence of some liquid lithium properties from the ionic pseudopotential

    E-Print Network [OSTI]

    Engel, Anthony Wells

    1977-01-01T23:59:59.000Z

    OF SCIEECE May 1977 Ma)or Sub)ect: Mnclear Engineering TEMPERATURE DEPENDENCE OP SOME LIQUID LITHIUM PROPERTIES PROM THE IONIC PSEUDOPOTENTIAL A Thesis by ANTHONY WELLS ENGEL Approved as to style and content by: ea o spar men em er em er May 1977... ABSTRACT Temperature Dependence of Some Liquid Lithium Properties from the Ionic Pseudopotential. (May 1977) Anthony Wells Engely A B y Rutgers University Chairman of Advisory Committee: Dr. Henri R. Ieribaux The purpose of this investigation...

  2. Room-temperature Formation of Hollow Cu2O Nanoparticles

    SciTech Connect (OSTI)

    Hung, Ling-I; Tsung, Chia-Kuang; Huang, Wenyu; Yang, Peidong

    2010-01-18T23:59:59.000Z

    Monodisperse Cu and Cu2O nanoparticles (NPs) are synthesized using tetradecylphosphonic acid as a capping agent. Dispersing the NPs in chloroform and hexane at room temperature results in the formation of hollow Cu2O NPs and Cu@Cu2O core/shell NPs, respectively. The monodisperse Cu2O NPs are used to fabricate hybrid solar cells with efficiency of 0.14percent under AM 1.5 and 1 Sun illumination.

  3. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  4. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  5. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

    2011-01-11T23:59:59.000Z

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  6. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    E-Print Network [OSTI]

    Ohldag, H.

    2011-01-01T23:59:59.000Z

    B, 70:235106, 2004. The role of hydrogen in room-temperatureThe role of hydrogen in room-temperature ferromagnetism atto carbon ? states, also hydrogen-mediated electronic states

  7. Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO(110) Rutile. Room-Temperature Ferromagnetism in Ion-Implanted Co-Doped TiO(110) Rutile. Abstract: Interest in diluted...

  8. Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals using Ion Implantation. Synthesis of Room-Temperature Ferromagnetic Cr-doped TiO(110) Rutile Single Crystals...

  9. Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO(110) Rutile. Room Temperature Ferromagnetism in Ion-implanted Co-doped TiO(110) Rutile. Abstract: Ferromagnetic...

  10. On the room-temperature ferromagnetism of Zn1-xCrxO thin films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering. On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by...

  11. Semiconductor ridge microcavity source of quantum light at room temperature

    E-Print Network [OSTI]

    X. Caillet; A. Orieux; A. Lemaitre; P. Filloux; I. Favero; G. Leo; S. Ducci

    2009-10-31T23:59:59.000Z

    We experimentally demonstrate an integrated semiconductor ridge microcavity source of counterpropagating twin photons at room temperature in the telecom range. Based on parametric down conversion with a counterpropagating phase-matching, pump photons generate photon pairs with an efficiency of about 10^(-11) and a spectral linewidth of 0.3 nm for a 1mm long sample. The indistiguishability of the photons of the pair are measured via a two-photon interference experiment showing a visibility of 85%. This work opens a route towards new guided-wave semiconductor quantum devices.

  12. A dynamic macroscopic quantum oscillator at room temperature

    E-Print Network [OSTI]

    Xie, Wei; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

    2015-01-01T23:59:59.000Z

    We demonstrate a dynamic macroscopic quantum oscillator of a light--matter hybrid state in high-density plasmas created in an optically induced confining potential in a semiconductor microcavity at room temperature. One major advancement is the visualization of quantum oscillator states in a micrometer-scale optical potential at quantized energies up to 4 meV, an order of magnitude higher than that previously observed in spatially confined polariton condensates at cryogenic temperatures. Another advancement is the ability to characterize the time evolution and optical spin polarization of the quantum oscillator states directly from the consequent pulse radiation. The ability to control the macroscopic coherent state of plasma polaritons enables ultrafast multiple pulse lasing in a semiconductor microcavity.

  13. Room temperature ferromagnetism in a phthalocyanine based carbon material

    SciTech Connect (OSTI)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07T23:59:59.000Z

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490?±?10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  14. Room temperature triplet state spectroscopy of organic semiconductors

    E-Print Network [OSTI]

    Reineke, Sebastian

    2013-01-01T23:59:59.000Z

    Organic light emitting devices and solar cells are machines that create, manipulate and destroy excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is dark with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescen...

  15. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    SciTech Connect (OSTI)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15T23:59:59.000Z

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  16. Room-temperature 1.3 pm electroluminescence from strained Si, -,Ge,/Si quantum wells

    E-Print Network [OSTI]

    Room-temperature 1.3 pm electroluminescence from strained Si, -,Ge,/Si quantum wells Q. Mi, X. Xiao report the first room-temperature 1.3 ,um electroluminescence from strained Sir-,Ge,/Si quantum wells to that from the Sit-,GeX wells. A minimum band offset is required to have effective room

  17. Design Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Temperature

    E-Print Network [OSTI]

    Victoria, University of

    Design Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Principles and Performance Metrics for Magnetic Refrigerators Operating Near Room Temperature by Daniel Sean decade, active magnetic regenerative (AMR) refrigeration technology has progressed towards commercial

  18. Tailoring room temperature photoluminescence of antireflective silicon nanofacets

    SciTech Connect (OSTI)

    Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Schivalaya Marg. Bhubaneswar 751 005 (India); Kanjilal, A. [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh 201 314 (India); Sahoo, P. K. [National Institute of Science Education and Research, Bhubaneswar 751 005 (India)

    2014-09-21T23:59:59.000Z

    In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

  19. Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites AKASH milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare out in a high-energy ball mill, and it involves repeated deformation, cold-welding, fractur- ing

  20. Temperature Dependent Interaction Non-Additivity in the Inorganic Ionic Clusters

    E-Print Network [OSTI]

    Chaban, Vitaly V

    2015-01-01T23:59:59.000Z

    Interaction non-additivity in the chemical context means that binding of certain atom to a reference atom cannot be fully predicted from the interactions of these two atoms with other atoms. This constitutes one of key phenomena determining an identity of our world, which would have been much poorer otherwise. Ionic systems provide a good example of the interaction non-additivity in most cases due to electron transfer and delocalization effects. We report Born-Oppenheimer molecular dynamics (BOMD) simulations of LiCl, NaCl, and KCl at 300, 1500, and 2000 K. We show that our observations originate from interplay of thermal motion during BOMD and cation nature. In the case of alkali cations, ionic nature plays a more significant role than temperature. Our results bring fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering.

  1. High Temperature Separation of Carbon Dioxide/Hydrogen Mixtures Using Facilitated Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Myers, C.R.; Pennline, H.W.; Luebke, D.R.; Ilconich, J.B.; Dixon, J.K. (Univ. of Notre Dame, Notre Dame, IN); Maginn, E.J. (Univ. of Notre Dame, Notre Dame, IN); Brennecke, J.F. (Univ. of Notre Dame, Notre Dame, IN)

    2008-09-01T23:59:59.000Z

    Efficiently separating CO2 from H2 is one of the key steps in the environmentally responsible uses of fossil fuel for energy production. A wide variety of resources, including petroleum coke, coal, and even biomass, can be gasified to produce syngas (a mixture of COand H2). This gas stream can be further reacted with water to produce CO2 and more H2. Once separated, the CO2 can be stored in a variety of geological formations or sequestered by other means. The H2 can be combusted to operate a turbine, producing electricity, or used to power hydrogen fuel cells. In both cases, onlywater is produced as waste. An amine functionalized ionic liquid encapsulated in a supported ionic liquid membrane (SILM) can separate CO2 from H2 with a higher permeability and selectivity than any known membrane system. This separation is accomplished at elevated temperatures using facilitated transport supported ionic liquid membranes.

  2. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L [Los Alamos National Laboratory; Wetteland, Chris J [Los Alamos National Laboratory; Duncan, Wanda S [Los Alamos National Laboratory; Lakis, Rollin E [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  3. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals 

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01T23:59:59.000Z

    of simulated energy consumption can match the measured data. The simulation accuracy of room air temperature and energy consumption during the air-conditioner start-up period is not good and needs to be improved in future research. But in general...

  4. Room-temperature mid-infrared laser sensor for trace gas detection

    E-Print Network [OSTI]

    , and pipeline leak detection. Applications such as landfill emissions monitoring require measurements of gasRoom-temperature mid-infrared laser sensor for trace gas detection Thomas To¨ pfer, Konstantin P of a compact, portable, room-temperature mid-infrared gas sensor is reported. The sensor is based on continuous

  5. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1992-01-01T23:59:59.000Z

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  6. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  7. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  8. Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane

    SciTech Connect (OSTI)

    Pyati, R.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-02-01T23:59:59.000Z

    This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

  9. Local magnetoresistance in Fe/MgO/Si lateral spin valve at room temperature

    SciTech Connect (OSTI)

    Sasaki, Tomoyuki, E-mail: tomosasa@jp.tdk.com; Koike, Hayato; Oikawa, Tohru [Advanced Technology Development Center, TDK Corporation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Industrial Technology Center, Akita (Japan); Ando, Yuichiro; Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Shiraishi, Masashi [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2014-02-03T23:59:59.000Z

    Room temperature local magnetoresistance in two-terminal scheme is reported. By employing 1.6?nm-thick MgO tunnel barrier, spin injection efficiency is increased, resulting in large non-local magnetoresistance. The magnitude of the non-local magnetoresistance is estimated to be 0.0057 ? at room temperature. As a result, a clear rectangle signal is observed in local magnetoresistance measurement even at room temperature. We also investigate the origin of local magnetoresistance by measuring the spin accumulation voltage of each contact separately.

  10. Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor Data

    E-Print Network [OSTI]

    Hazas, Mike

    that our model can predict future indoor temperature trends with a 90th percentile aggregate error between thermo- stat actuates the heating, ventilation, and air condition- ing (HVAC) infrastructure to bring and these energy approaches, a heating model could allow future temperature trends to be predicted using

  11. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes

    E-Print Network [OSTI]

    Sun, Xiaochen

    We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

  12. Research on the Temperature Control Method of an Artificial Climate Room 

    E-Print Network [OSTI]

    Jiang, Y.; Tan, W.; Wei, B.; Guo, R.

    2006-01-01T23:59:59.000Z

    An artificial climate room plays an important role in the research of an apparatus test and indoor/outdoor environment simulation. Generally, the refrigerator is used to decrease temperature to simulate outdoor environment, ...

  13. Optical gain and lasing from band-engineered Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We present theoretical modeling and experimental results of optical gain and lasing from tensile-strained, n[superscript +] Ge-on-Si at room temperature. Compatible with silicon CMOS, these devices are ideal for large-scale ...

  14. Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and

    E-Print Network [OSTI]

    Chen, Junhong

    Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and the response time. Rutile-structured tin oxide (SnO2) is an n-type semiconducting material widely used in gas

  15. Room Temperature Aryl Trifluoromethylation via Copper- Mediated Oxidative Cross-Coupling

    E-Print Network [OSTI]

    Buchwald, Stephen Leffler

    A method for the room temperature copper-mediated trifluoromethylation of aryl and heteroaryl boronic acids has been developed. This protocol is amenable to normal benchtop setup and reactions typically require only 1?4 ...

  16. Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increase of temperature. Citation: Antony J, S Pendyala, DE McCready, MH Engelhard, D Meyer, AM Sharma, and Y Qiang.2006."Ferromagnetism in Ti-Doped ZnO Nanoclusters above Room...

  17. Research on the Temperature Control Method of an Artificial Climate Room

    E-Print Network [OSTI]

    Jiang, Y.; Tan, W.; Wei, B.; Guo, R.

    2006-01-01T23:59:59.000Z

    An artificial climate room plays an important role in the research of an apparatus test and indoor/outdoor environment simulation. Generally, the refrigerator is used to decrease temperature to simulate outdoor environment, while a heater is used...

  18. Stability limit of room air temperature of a VAV system

    SciTech Connect (OSTI)

    Matsuba, Tadahiko; Kamimura, Kazuyuki [Yamatake-Honeywell Co., Ltd., Tokyo (Japan). Building System Div.; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru [Oyama National Coll. of Technology (Japan); Murasawa, Itaru; Hashimoto, Yukihiko [Tonets Corp., Tokyo (Japan). Engineering Project Dept.

    1998-12-31T23:59:59.000Z

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  19. aerobic room temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconducting quantum interference device SQUID-temperature RT sample scanning superconduct- ing quantum interference device SQUID microscopy SSM is a very Weiss, Benjamin P....

  20. The use of ionic liquid ion sources (ILIS) in FIB applications

    E-Print Network [OSTI]

    Zorzos, Anthony Nicholas

    2009-01-01T23:59:59.000Z

    A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

  1. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOE Patents [OSTI]

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10T23:59:59.000Z

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  2. Mechanisms of Molecular Manipulation with the Scanning Tunneling Microscope at Room Temperature: Chlorobenzene=Si111-7 7

    E-Print Network [OSTI]

    Persson, Mats

    of such methods to room temperature systems is far from trivial, signifi- cant progress has been reported from the reconstructed Si111-7 7 surface at room temperature. This model system is also relevant s followed by quick cooling to 960 C and further cooling (1 C sÿ1) to room tem- perature. The STM tips

  3. Silicon single-electron quantum-dot transistor switch operating at room temperature

    E-Print Network [OSTI]

    , which showed drain current oscillations at room temperature. These oscillations are attributed current­voltage characteristic indicates that the energy level separation is about 110 meV and the silicon current (Id) as a function of the gate voltage (Vg) (I­V) was measured at different temperatures

  4. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19T23:59:59.000Z

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  5. Failure modes at room and elevated temperatures. Technical report

    SciTech Connect (OSTI)

    Braun, L.M.

    1995-04-01T23:59:59.000Z

    Successful development of reliable ceramic composites will depend on an understanding of matrix cracking and damage mechanisms in these materials. Therefore, the objective of the Failure Models subtask is to investigate failure and damage mechanisms in fiber reinforced ceramic composites. Issues such as how fiber coatings, the fiber/matrix interface, residual stresses, and fiber volume fraction affect frictional stresses, fiber debonding, fiber pull-out and failure modes will be examined. The effect of these microstructural parameters on matrix crack initiation, propagation and damage will also be determined. The resulting observations and measurements data will be used to develop theoretical models for damage mechanisms in fiber reinforced composites. This report presents results concerning the effect of temperature on the failure modes of continuous fiber ceramic composites performed during the last quarter of FY 1993 and FY 1994. The Raman stress measurements and calculations were performed during the last quarter of FY 1994 and the first quarter of FY 1995.

  6. Shot-noise-limited magnetometer with sub-pT sensitivity at room temperature

    E-Print Network [OSTI]

    Vito Giovanni Lucivero; Pawel Anielski; Wojciech Gawlik; Morgan W. Mitchell

    2014-11-20T23:59:59.000Z

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature $^{85}$Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of $70$ fT/$\\sqrt{\\mathrm{Hz}}$ at $7.6$ $\\mu$T. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from $5$ $\\mu$T to $75$ $\\mu$T. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  7. Room-Temperature Multiferroic Hexagonal LuFeO3 Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wenbin; Zhao, Jun; Wang, Wenbo; Gai, Zheng; Balke, Nina; Chi, Miaofang; Lee, Ho Nyung; Tian, Wei; Zhu, Leyi; Cheng, Xuemei; Keavney, David J.; Yi, Jieyu; Ward, Thomas Z.; Snijders, Paul C.; Christen, Hans M.; Wu, Weida; Shen, Jian; Xu, Xiaoshan

    2013-06-01T23:59:59.000Z

    The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics.

  8. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films

    SciTech Connect (OSTI)

    Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Kalghatgi, A. T. [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Kumar, Nitesh; Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India)

    2011-10-17T23:59:59.000Z

    We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm{sup -1} in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.

  9. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart storage system in the near future. Broader context With the rapid development of renewable energy sources

  10. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  11. Physica B 372 (2006) 286289 Thermal activation in Permalloy nanorectangles at room temperature

    E-Print Network [OSTI]

    Garcia-Cervera, Carlos J.

    2006-01-01T23:59:59.000Z

    orthogonal metallized tracks (word and bit lines), which induce a magnetic field in the free layer to reverse ¼ Lx=Ly) has been analyzed assuming uniform magnetization in the sample at room temperature-exponential factor in the Arrhenius formula for each aspect ratio. That allows us to estimate the relaxation time

  12. 1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity

    E-Print Network [OSTI]

    Moritz, Werner

    , the dissociation of hydrogen molecules at the Pd gate electrode, diffusion of the atoms, and formation of a dipole and the mechanism of hydrogen detection at the Pd/oxide interface are summarized in [2]. For this sensor type in the semiconductor. The Pd/SiO2/Si-based sensor was used for hydrogen detection at room temperature, but the behavior

  13. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    E-Print Network [OSTI]

    Southern California, University of

    films that form on aluminum and aluminum alloys in air protect the surface against further oxidationMolecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single Abstract The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations

  14. Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions

    E-Print Network [OSTI]

    Zare, Richard N.

    CONCEPTS Optical Detection and Manipulation of Single Molecules in Room-Temperature Solutions. Keywords: single-moleculedetection - single-moleculema- nipulation - laser-induced fluorescence * optical, frcquency-modulated optical ab- sorption and fluorescence excitation have been used to investi- gate

  15. Optical gain from the direct gap transition of Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

  16. Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires

    E-Print Network [OSTI]

    Wang, Deli

    Structural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires between pure zinc blende (ZB) NWs and wurtzite (WZ) NWs containing stacking faults and small ZB segments their growth-direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking

  17. Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays

    E-Print Network [OSTI]

    Chen, Wilfred

    Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays Joun Lee conductometric hydrogen sulfide (H2S) sensor was fabricated by AC dielectrophoretic assembly of amino acid-ppm level, the upper detection limit of 2 ppm, and a response time ofH2S was achieved

  18. High resolution InSb quantum well ballistic nanosensors for room temperature applications

    SciTech Connect (OSTI)

    Gilbertson, Adam; Cohen, L. F. [Blackett Laboratory, Imperial College London, SW7 2BZ (United Kingdom); Lambert, C. J. [Department of Physics, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Solin, S. A. [Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130 (United States)

    2013-12-04T23:59:59.000Z

    We report the room temperature operation of a quasi-ballistic InSb quantum well Hall sensor that exhibits a high frequency sensitivity of 560nT/?Hz at 20uA bias current. The device utilizes a partitioned buffer layer design that suppresses leakage currents through the mesa floor and can sustain large current densities.

  19. ECE 103 Solid State Electronics Master Exam 2012 Assume silicon, room temperature, complete ionization.

    E-Print Network [OSTI]

    Wang, Deli

    ECE 103 Solid State Electronics Master Exam 2012 Assume silicon, room temperature, complete ionization. (q=1.6×10-19 C, ox=3.9×8.85×10-14 F/cm, si=11.7×8.85×10-14 F/cm, kT/q=0.0259 V, Eg=1.12 e

  20. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

    E-Print Network [OSTI]

    Murphy, Thomas E.

    Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene . The hot-electron photothermoelectric effect in graphene is a prom- ising detection mechanism; photoexcited, we demonstrate a graphene thermoelectric terahertz photodetector with sensi- tivity exceeding 10 V W

  1. Combined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling

    E-Print Network [OSTI]

    Zexian, Cao

    In the last two decades, magnetic refrigeration has been demonstrated as a very promising alternativeCombined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling Report, we report on the observation of a giant positive inverse magnetic entropy change about 28.6 J K-1

  2. Synthesis, characterization, and magnetic properties of room-temperature nanofluid ferromagnetic graphite

    E-Print Network [OSTI]

    de Lima, Oscar Ferreira

    Synthesis, characterization, and magnetic properties of room-temperature nanofluid ferromagnetic characterization, and physical properties of nanofluid magnetic graphite NFMG obtained from the previously. © 2009 American Institute of Physics. doi:10.1063/1.3265945 Nanofluids can be defined as fluids

  3. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect (OSTI)

    Tang, Linlong [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China); Du, Jinglei, E-mail: dujl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology, College of Physics and Technology, Sichuan University, Chengdu, 610064 (China); Shi, Haofei, E-mail: shi@cigit.ac.cn; Wei, Dongshan; Du, Chunlei, E-mail: cldu@cigit.ac.cn [Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122 (China)

    2014-10-15T23:59:59.000Z

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  4. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20T23:59:59.000Z

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  5. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  6. Acetonitrile Drastically Boosts Conductivity of Ionic Liquids

    E-Print Network [OSTI]

    Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-01-01T23:59:59.000Z

    We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

  7. Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy

    E-Print Network [OSTI]

    Hellman, Frances

    Oxygen-assisted room-temperature deposition of CoPt3 films with perpendicular magnetic anisotropy B Jolla, California 92093 Received 23 July 2002; accepted 30 September 2002 Trace amounts of oxygen CoPt3 grown by vapor deposition at or slightly above room temperature. Oxygen is known to act

  8. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect (OSTI)

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my [PETRONAS Ionic Liquids Center, Universiti Teknologi PETRONAS (Malaysia); Wilfred, Cecilia Devi; Taha, M. F. [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Thanabalan, M. [Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24T23:59:59.000Z

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  9. Coupling of PbS Quantum Dots to Photonic Crystal Cavities at Room Temperature

    E-Print Network [OSTI]

    Ilya Fushman; Dirk Englund; Jelena Vuckovic

    2005-05-14T23:59:59.000Z

    We demonstrate the coupling of PbS quantum dot emission to photonic crystal cavities at room temperature. The cavities are defined in 33% Al, AlGaAs membranes on top of oxidized AlAs. Quantum dots were dissolved in Poly-methyl-methacrylate (PMMA) and spun on top of the cavities. Quantum dot emission is shown to map out the structure resonances, and may prove to be viable sources for room temperature cavity coupled single photon generation for quantum information processing applications. These results also indicate that such commercially available quantum dots can be used for passive structure characterization. The deposition technique is versatile and allows layers with different dot densities and emission wavelengths to be re-deposited on the same chip.

  10. Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature

    E-Print Network [OSTI]

    Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

    2015-01-01T23:59:59.000Z

    Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

  11. Observation of optical spin injection into Ge-based structures at room temperature

    SciTech Connect (OSTI)

    Yasutake, Yuhsuke; Hayashi, Shuhei; Fukatsu, Susumu [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan)] [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Yaguchi, Hiroyuki [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)] [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura, Saitama 338-8570 (Japan)

    2013-06-17T23:59:59.000Z

    Non-zero spin polarization induced by optical orientation was clearly observed at room temperature in a Ge/Ge{sub 0.8}Si{sub 0.2} quantum well grown on Ge and a Ge layer grown on Si by molecular beam epitaxy, whereas it was absent in bulk Ge. This occurred because indirect-gap photoluminescence (PL), which can obscure the spin-polarization information carried by the direct-gap PL, was quenched by unintentional growth-related defects in the epitaxial layers. Such interpretation was confirmed by applying time gating that effectively removed the indirect-gap PL characterized by a slower rise time, which allowed us to demonstrate the existence of room-temperature spin polarization in bulk Ge.

  12. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01T23:59:59.000Z

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic cooling is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.

  13. Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder

    SciTech Connect (OSTI)

    Pennycook, Timothy J [ORNL; Beck, Matthew [Vanderbilt University; Varga, Kalman [ORNL; Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL; Pantelides, Sokrates T [ORNL

    2010-01-01T23:59:59.000Z

    Oxide ionic conductors typically operate at high temperatures, which limits their usefulness. Colossal room-temperature ionic conductivity was recently discovered in multilayers of yttria-stabilized zirconia (YSZ) and SrTiO3. Here we report density-functional calculations that trace the origin of the effect to a combination of lattice-mismatch strain and O-sublattice incompatibility. Strain alone in bulk YSZ enhances O mobility at high temperatures by inducing extreme O disorder. In multilayer structures, O-sublattice incompatibility causes the same extreme disorder at room temperature.

  14. Energy Consumption Estimation for Room Air-conditioners Using Room Temperature Simulation with One-Minute Intervals

    E-Print Network [OSTI]

    Wang, F.; Yoshida, H.; Matsumoto, K.

    2006-01-01T23:59:59.000Z

    For the purpose of developing optimized control algorithm for room air-conditioners to ensure their energy efficiency, a short time interval (i.e., one minute) simulation of building thermal performance is necessary because the sampling time...

  15. Complexation and optimization of use of non-ionic ethoxylated surfactants in EOR from low temperature fields

    SciTech Connect (OSTI)

    Lawrence, S.A.; Pilc, J.; Sermon, P.A.; Readman, J.; Hurd, B.G.

    1988-05-01T23:59:59.000Z

    Complexation with aquated cations (e.g., Al/sup 3/, etc.) is shown to enable the extent of adsorption of ethoxylated non-ionic surfactants on sandstone and limestone reservoir rocks to be controlled and minimized. If such reservoirs are at temperatures below the cloud point of the complexed surfactants, such methods can allow EOR with such non-ionic surfactants in low concentrations, NMR evidence is presented to show how the complexation takes place and how it may be controlled. Its beneficial effect on oil recovery is demonstrated with microcapillary de-oiling and surfactant flood tests. Its effect is explained in terms of changes in surfactant characteristics, e.g., phase equilibria, rate and extent of adsorption, oil solubilization and solubility, interfacial tension, viscosity, and contact angles.

  16. On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    Reginald B. Little

    2014-03-27T23:59:59.000Z

    A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

  17. On the Mechanism of Above Room Temperature Superconductivity and Superfluidity by Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    Reginald B. Little

    2015-04-23T23:59:59.000Z

    A comprehensive theory of superconductivity (SC) and superfluidity (SF) is presented of new types III and IV at temperatures into millions of degrees involving phase transitions of fermions in heat reservoirs to form general relativistic triple quasi-particles of 3 fermions interacting to boson-fermion pairs. Types 0, I, and II SC/SF are deduced from such triples as: thermally dressed, relativistic fermionic vortices; spin coupled, dressed, fermionic vortical pairs (diamagnetic bosons); and spinrevorbitally coupled, dressed fermionic, vortical pairs (ferromagnetic bosons). All known SC, SF and trends in critical temperatures (Tc) are thereby explained. The recently observed SC/SF in nano-graphene systems is explained. The above room temperature SC/SF is predicted and modeled by transformations of intense thermal boson populations of heat reservoirs to relativistic mass, weight, spin and magnetism for further reasoning over compression to electricity, weak phenomena and strong phenomena for connecting general relativism and quantum mechanics.

  18. 11-GHz direct modulation bandwidth GaAlAs window laser on semi-insulating substrate operating at room temperature

    SciTech Connect (OSTI)

    Lau, K.Y.; Bar-Chaim, N.; Ury, I.; Yariv, A.

    1984-08-15T23:59:59.000Z

    We have demonstrated a direct modulation bandwidth of up to 11 GHz in a window GaAlAs buried heterostructure laser fabricated on a semi-insulating substrate, operating at room temperature.

  19. 2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature Magnetocaloric Response of an (FeNi)ZrB Alloy

    E-Print Network [OSTI]

    McHenry, Michael E.

    a good candidate for magnetic refrigeration near room temperature with additional benefits that is non2494 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 Near Room Temperature of this powder was slightly higher than room temperature. The refrigerant capacity calculated for this alloy, kg

  20. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors

    SciTech Connect (OSTI)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Rosenberg, Robert; Kowalczyk, Robert; Khoshakhlagh, Arezou; Fisher, Anita; Ting, David Z.-Y.; Gunapala, Sarath D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91030 (United States)

    2014-07-14T23:59:59.000Z

    In this work, we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5??m. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77–325?K temperature range, indicating potential for room temperature operation. The current generation of nBn detectors shows an increase of operational bias with temperature, which is attributed to a shift in the Fermi energy level in the absorber. Analysis of the device performance shows that operational bias and quantum efficiency of these detectors can be further improved. The device dark current stays diffusion limited in the 150?K–325?K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities are D*(?)?=?1?×?10{sup 9} (cm Hz{sup 0.5}/W) at T?=?300?K and D*(?)?=?5?×?10{sup 9} (cm Hz{sup 0.5}/W) at T?=?250?K, which is easily achievable with a one stage TE cooler.

  1. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature

    SciTech Connect (OSTI)

    Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2006-02-06T23:59:59.000Z

    The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.

  2. Light storage in a room temperature atomic vapor based on coherent population oscillations

    E-Print Network [OSTI]

    M. -A. Maynard; F. Bretenaker; F. Goldfarb

    2014-10-21T23:59:59.000Z

    We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $\\Lambda$ system selected by polarization in metastable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $\\Lambda$ system.

  3. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

  4. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film

    SciTech Connect (OSTI)

    Wang, Jun, E-mail: ueoewj@gmail.com; Gou, Jun; Li, Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-02-15T23:59:59.000Z

    Research on room temperature terahertz (THz) detector is essential for promoting the application of THz science and technology. Both lithium tantalate crystal (LiTaO{sub 3}) and lithium tantalate thin film were used to fabricate the THz detector in this paper. Polishing process were used to reduce the thickness of LiTaO{sub 3} crystal slice by chemical mechanical polishing techniques and an improved sol-gel process was used to obtain high concentration LiTaO{sub 3} precursor solution to fabricate LiTaO{sub 3} thin film. Three dimension models of two THz detectors were set up and the temperature increasing map of two devices were simulated using finite element method. The lowest noise equivalent power value for terahertz detector using pyroelectric material reaches 6.8 × 10{sup ?9} W at 30 Hz operating frequency, which is suitable for THz imaging application.

  5. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24T23:59:59.000Z

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  6. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths

    E-Print Network [OSTI]

    Shakoor, A; Cardile, P; Portalupi, S L; Gerace, D; Welna, K; Boninelli, S; Franzo, G; Priolo, F; Krauss, T F; Galli, M; Faolain, L O

    2013-01-01T23:59:59.000Z

    Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({\\Delta}{\\lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects a...

  7. Static dielectric properties of dense ionic fluids

    E-Print Network [OSTI]

    Zarubin, Grigory

    2015-01-01T23:59:59.000Z

    The static dielectric properties of dense ionic fluids, e.g., room temperature ionic liquids (RTILs) and inorganic fused salts, are investigated on different length scales by means of grandcanonical Monte Carlo simulations. A generally applicable scheme is developed which allows one to approximately decompose the electric susceptibility of dense ionic fluids into the orientation and the distortion polarization contribution. It is shown that at long range the well-known plasma-like perfect screening behavior occurs, which corresponds to a diverging distortion susceptibility, whereas at short range orientation polarization dominates, which coincides with that of a dipolar fluid of attached cation-anion pairs. This observation suggests that the recently debated interpretation of RTILs as dilute electrolyte solutions might not be simply a yes-no-question but it might depend on the considered length scale.

  8. Room temperature ferromagnetism in Co-doped amorphous carbon composites from the spin polarized semiconductor band

    SciTech Connect (OSTI)

    Hsu, H. S., E-mail: hshsu@mail.nptu.edu.tw; Chien, P. C.; Chang, Y. Y. [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Sun, S. J. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lee, C. H. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2014-08-04T23:59:59.000Z

    This study provides conclusive evidence of room temperature ferromagnetism in Co-doped amorphous carbon (a-C) composites from the spin polarized semiconductor band. These composites are constructed from discontinuous [Co(3?nm)/a-C(d{sub c} nm)]{sub 5} multilayers with d{sub c}?=?3?nm and d{sub c}?=?6?nm. Only remnant circular dichroism (CD) was observed from the d{sub c}?=?3?nm sample but not when d{sub c}?=?6?nm. In addition, the remnant CD peaks at 5.5?eV, which is comparable with the absorption peak associated with the C ?-?* gap transition. We suggest that the possible mechanism for this coupling can be considered as a magnetic proximity effect in which a ferromagnetic moment in the C medium is induced by Co/C interfaces.

  9. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.

    1997-07-08T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  10. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect (OSTI)

    Wu, Yan; Ji, Lingfei, E-mail: ncltji@bjut.edu.cn; Lin, Zhenyuan; Jiang, Yijian [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Zhai, Tianrui [College of Applied Science, Beijing University of Technology, Beijing 100124 (China)

    2014-01-27T23:59:59.000Z

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  11. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect (OSTI)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07T23:59:59.000Z

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  12. Environmental effect on room-temperature ductility of isothermally forged TiAl-base alloys

    SciTech Connect (OSTI)

    Nakamura, Morihiko; Hashimoto, Kenki (National Research Inst. for Metals, Tokyo (Japan)); Itoh, Naoyuki (Nippon Steel Corp., Chiba (Japan)); Tsujimoto, Tokuzo (Ibaraki Univ. (Japan). Faculty of Engineering); Suzuki, Toshiyuki (Kougakuin Univ., Tokyo (Japan))

    1994-02-01T23:59:59.000Z

    Isothermally forged TiAl-base alloy (Al-rich, Mn-containing, and Cr-containing TiAl) were heat-treated in various conditions, and equiaxed grain structures consisting of [gamma] and [alpha][sub 2] or [beta] phases were obtained. The heat-treated alloys were tensile tested in vacuum and air at room temperature, and the environmental effect on tensile elongation was studied. The ductility of the alloys consisting of equiaxed [gamma] grains and a large amount of [alpha][sub 2] grains was not largely affecting by laboratory air, and a decrease in the amount of [alpha][sub 2] grains resulted in a large reduction of ductility in air. The [beta] phase in the Cr-containing alloy improved the ductility in vacuum, but it resulted in a large reduction of ductility in air.

  13. Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

    E-Print Network [OSTI]

    Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

    2015-01-01T23:59:59.000Z

    Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

  14. Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films

    SciTech Connect (OSTI)

    Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

    2014-04-24T23:59:59.000Z

    Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

  15. Method for stabilizing low-level mixed wastes at room temperature

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

    1997-01-01T23:59:59.000Z

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  16. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    SciTech Connect (OSTI)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16T23:59:59.000Z

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  17. CW Room Temperature Re-Buncher for the Project X Front End

    SciTech Connect (OSTI)

    Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-09T23:59:59.000Z

    At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

  18. CDZNTE ROOM-TEMPERATURE SEMICONDUCTOR GAMMA-RAY DETECTOR FOR NATIONAL-SECURITY APPLICATIONS.

    SciTech Connect (OSTI)

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; KOHMAN, K.T.; JAMES, R.B.

    2007-05-04T23:59:59.000Z

    One important mission of the Department of Energy's National Nuclear Security Administration is to develop reliable gamma-ray detectors to meet the widespread needs of users for effective techniques to detect and identify special nuclear- and radioactive-materials. Accordingly, the Nonproliferation and National Security Department at Brookhaven National Laboratory was tasked to evaluate existing technology and to develop improved room-temperature detectors based on semiconductors, such as CdZnTe (CZT). Our research covers two important areas: Improving the quality of CZT material, and exploring new CZT-based gamma-ray detectors. In this paper, we report on our recent findings from the material characterization and tests of actual CZT devices fabricated in our laboratory and from materials/detectors supplied by different commercial vendors. In particular, we emphasize the critical role of secondary phases in the current CZT material and issues in fabricating the CZT detectors, both of which affect their performance.

  19. Could light harvesting complexes exhibit non-classical effects at room temperature?

    E-Print Network [OSTI]

    Mark M. Wilde; James M. McCracken; Ari Mizel

    2009-11-05T23:59:59.000Z

    Mounting experimental and theoretical evidence suggests that coherent quantum effects play a role in the efficient transfer of an excitation from a chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein complex. However, it is conceivable that a satisfying alternate interpretation of the results is possible in terms of a classical theory. To address this possibility, we consider a class of classical theories satisfying the minimal postulates of macrorealism and frame Leggett-Garg-type tests that could rule them out. Our numerical simulations indicate that even in the presence of decoherence, several tests could exhibit the required violations of the Leggett-Garg inequality. Remarkably, some violations persist even at room temperature for our decoherence model.

  20. Above room-temperature ferromagnetism of Mn delta-doped GaN nanorods

    SciTech Connect (OSTI)

    Lin, Y. T.; Wadekar, P. V.; Kao, H. S.; Chen, T. H.; Chen, Q. Y.; Tu, L. W., E-mail: lwtu@faculty.nsysu.edu.tw [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Huang, H. C.; Ho, N. J. [Department of Materials and Optoelectronic Science and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2014-02-10T23:59:59.000Z

    One-dimensional nitride based diluted magnetic semiconductors were grown by plasma-assisted molecular beam epitaxy. Delta-doping technique was adopted to dope GaN nanorods with Mn. The structural and magnetic properties were investigated. The GaMnN nanorods with a single crystalline structure and with Ga sites substituted by Mn atoms were verified by high-resolution x-ray diffraction and Raman scattering, respectively. Secondary phases were not observed by high-resolution x-ray diffraction and high-resolution transmission electron microscopy. In addition, the magnetic hysteresis curves show that the Mn delta-doped GaN nanorods are ferromagnetic above room temperature. The magnetization with magnetic field perpendicular to GaN c-axis saturates easier than the one with field parallel to GaN c-axis.

  1. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    SciTech Connect (OSTI)

    Mickalonis, J.; Duffey, J.

    2012-09-12T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times as short as 85 days. In all cases, the cracking appeared to be associated with pitting or localized general corrosion. Crack initiation at other sites, such as surface imperfections or inclusions, cannot be excluded. Cracks appear in most cases to initiate through an intergranular mode and transition to a transgranular mode.

  2. Nanowire-based frequency-selective capacitive photodetector for resonant detection of infrared radiation at room temperature

    SciTech Connect (OSTI)

    Bandyopadhyay, Saumil, E-mail: saumilb@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2014-07-14T23:59:59.000Z

    Characteristics of a capacitive infrared photodetector that works at room temperature by registering a change in capacitance upon illumination are reported. If used in an ideal resonant inductor-resistor-capacitor circuit, it can exhibit zero dark current, zero standby power dissipation, infinite detectivity, and infinite light-to-dark contrast ratio. It is also made frequency-selective by employing semiconductor nanowires that selectively absorb photons of energies close to the nanowire's bandgap. Based on measured parameters, the normalized detectivity is estimated to be ?3?×?10{sup 7} Jones for 1.6??m IR wavelength at room temperature.

  3. Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers

    E-Print Network [OSTI]

    Zuniga-Perez, J; Hahe, R; Rashid, M J; Bouchoule, S; Brimont, C; Disseix, P; Duboz, J Y; Gommé, G; Guillet, T; Jamadi, O; Lafosse, X; Leroux, M; Leymarie, J; Li, Feng; Réveret, F; Semond, F

    2014-01-01T23:59:59.000Z

    A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN pairs and achieve cavity quality factors of several thousands with a large spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon and the cavities are completed with top dielectric Bragg reflectors. The two structures display strong-coupling and polariton lasing at room temperature and constitute an intermediate step in the way towards integrated polariton devices.

  4. From Standard Model of particle physics to room-temperature superconductivity

    E-Print Network [OSTI]

    G. E. Volovik

    2015-04-23T23:59:59.000Z

    Topological media are gapped or gapless fermionic systems, whose properties are protected by topology, and thus are robust to deformations of parameters of the system and generic. We discuss the class of gapless topological media, which contains the quantum vacuum of Standard Model in its symmetric phase, and condensed matter systems with zeroes in the energy spectrum, which form Fermi surfaces, Weyl and Dirac points, Dirac lines, Khodel-Shaginyan flat bands, etc. Some zeroes are topologically protected, being characterized by topological invariants, expressed in terms of Green's function. For stability of the others the ${\\bf p}$-space topology must be accompanied by symmetry. Vacua with Weyl points serve as a source of effective relativistic quantum fields emerging at low energy: chiral fermions, effective gauge fields and tetrad gravity emerge together in the vicinity of a Weyl point. The accompanying effects, such as chiral anomaly, electroweak baryo-production and chiral vortical effect, are expressed via the symmetry protected ${\\bf p}$-space invariants. The gapless topological media exhibit the bulk-surface and bulk-vortex correspondence: which in particular may lead to the flat band on the surface of the system or in the core of topological defects. The materials with flat band in bulk, on the surface or within the dislocations have singular density of states, which crucially influences the critical temperature of the superconducting transition in such media. While in all the known superconductors the transition temperature is exponentially suppressed as a function of the pairing interaction, in the flat band the transition temperature is proportional to the pairing interaction, and can be essentially higher. The ${\\bf p}$-space topology may give us the general recipe for search or artificial fabrication of the room-temperature superconductors.

  5. New insights into designing metallacarborane based room temperature hydrogen storage media

    SciTech Connect (OSTI)

    Bora, Pankaj Lochan; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2013-10-28T23:59:59.000Z

    Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

  6. Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Processing Age-hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies, Poland 3 Departments of Aerospace & Mechanical Engineering and Materials Science, University of SouthernZnMg alloys, precipitation, Guinier-Preston zones, Equal-Channel Angular Pressing, strengthening, elongation

  7. hal-00132485,version1-21Feb2007 Liquid nitrogen to room temperature thermometry using niobium nitride thin films

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00132485,version1-21Feb2007 Liquid nitrogen to room temperature thermometry using niobium´eel, CNRS-UJF, 25 avenue des Martyrs, 38042 Grenoble, France (Dated: February 21, 2007) Niobium nitride thin, the interesting properties of niobium nitride (NbN) as well as amorphous Nb-Si have been ex- tensively used

  8. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    SciTech Connect (OSTI)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

    2014-08-25T23:59:59.000Z

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70?nm and lengths of 200–250?nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  9. Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor

    E-Print Network [OSTI]

    Norman Y. Yao; Liang Jiang; Alexey V. Gorshkov; Peter C. Maurer; Geza Giedke; J. Ignacio Cirac; Mikhail D. Lukin

    2010-12-13T23:59:59.000Z

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Much progress has been made towards this goal. Indeed, quantum operations have been demonstrated on several trapped ion qubits, and other solid-state systems are approaching similar levels of control. Extending these techniques to achieve fault-tolerant operations in larger systems with more qubits remains an extremely challenging goal, in part, due to the substantial technical complexity of current implementations. Here, we propose and analyze an architecture for a scalable, solid-state quantum information processor capable of operating at or near room temperature. The architecture is applicable to realistic conditions, which include disorder and relevant decoherence mechanisms, and includes a hierarchy of control at successive length scales. Our approach is based upon recent experimental advances involving Nitrogen-Vacancy color centers in diamond and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems. Additionally, the proposed architecture may greatly alleviate the stringent constraints, currently limiting the realization of scalable quantum processors.

  10. Molecular and crystal structure of n-hexyloxybenzoic anhydride at low and room temperatures

    SciTech Connect (OSTI)

    Konstantinov, I. I., E-mail: konst@ips.ac.ru [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation); Churakov, A. V.; Kuz'mina, L. G. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2010-09-15T23:59:59.000Z

    The crystal and molecular structures of n-hexyloxybenzoic anhydride, C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)-O-C(O)-C{sub 6}H{sub 4}-C{sub 6}H{sub 13}, at low (120 K) and room (296 K) temperatures have been investigated. The molecule has an asymmetric bent structure. The dihedral angle between the benzene ring planes is 48.5 deg. The aliphatic chain on one side of the molecule has a transoid orientation with respect to the 'internal' C4 atom of the closest benzene ring, whereas the aliphatic chain on the other side has a cissoid orientation with respect to the analogous C(4A) atom. The crystal packing does not exhibit any pronounced separation of the crystal space into closely packed aromatic or loosely packed aliphatic regions. No weak directional interactions are observed in the packing; this fact explains the absence of liquid-crystal properties for this compound.

  11. VOC and HAP recovery using ionic liquids

    SciTech Connect (OSTI)

    Michael R. Milota : Kaichang Li

    2007-05-29T23:59:59.000Z

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  12. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, Ram S.

    2011-01-01T23:59:59.000Z

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr?.??Ti?.??O?) (1-x)- (PbFe?.?Ta?.?O?)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 ?C/cm², which actually increases (to 40 ?C/cm²) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO?. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.

  13. The 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, U.S.A, 11-15 May 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    The 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines of Design of Experiments (DOE) method in magnetic refrigeration (MR) understanding and optimization and magnetocaloric effect (MCE). 1. INTRODUCTION Room temperature magnetic refrigeration has been shown

  14. Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Singha, R. K.; Manna, S.; Das, S.; Dhar, A.; Ray, S. K. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2010-06-07T23:59:59.000Z

    We report on the observation of intraband near infrared (approx3.1 mum) and mid infrared (approx6.2 mum) photocurrent response at room temperature using Ge/Si self-assembled quantum dots grown by molecular beam epitaxy. Due to the bimodal size distribution and SiGe intermixing, distinguishable photoluminescence transitions are observed at 10 K, below and above the optical band gap of bulk Ge. The observed redshift in photocurrent with increasing temperature has been explained by the excitonic electric field originated due to infrared excitation at low temperatures. A good correlation between the spectral photocurrent response and photoluminescence of the quantum dots has been established.

  15. Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room-Temperature

    E-Print Network [OSTI]

    He, Zhong

    Digital Signal Processing Methods for Pixelated 3-D Position Sensitive Room for Charge Collecting Signals . . . . 22 2.2.2 Optimal Filter for Transient signals . . . . . . . . . 26 2 . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Maxwell . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 The Signal Induction

  16. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect (OSTI)

    Poulopoulos, P., E-mail: poulop@upatras.gr [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Materials Science Department, University of Patras, 26504 Patras (Greece); Goschew, A.; Straub, A.; Fumagalli, P. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Kapaklis, V.; Wolff, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P.220, 38043 Grenoble (France); Pappas, S. D. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2014-03-17T23:59:59.000Z

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4?×?10{sup ?9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8?nm thick and EuS layers are 2–4?nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  17. hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature.

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature. J in NMR pacs 03.67.-a: Quantum information pacs 67.57.Lm: Spin dynamics Abstract Nuclear spin interference in a static mag- netic field B0 4.7 T. For a homogeneity of B0 of the order of B0/B0 = 2 · 10-8 , the nuclear

  18. Multilayered YSZ/GZO films with greatly enhanced ionic conduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YSZGZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Multilayered YSZGZO films with greatly enhanced ionic conduction for low...

  19. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125° C

    SciTech Connect (OSTI)

    Ilconich, J.B.; Myers, C.R.; Pennline, H.W.; Luebke, D.R.

    2007-07-01T23:59:59.000Z

    Supported liquid membranes have been prepared by impregnation of commercial porous polymer films with the ionic liquid 1-n-hexyl-3- methylimidazolium bis(trifluoromethanesulfonyl)imide. The ionic liquid has been characterized, and the membranes have been tested to determine performance in the selective separation of CO2 from He. Experiments were conducted in a constant pressure system, and pure gas permeability/selectivity data are reported. Membranes prepared with polysulfone supports have been found to be stable to 125 °C. The CO2 permeability of the membranes increases from 744 to 1200 barrer as the temperature increases from 37 to 125 °C. The CO2/He selectivity decreased from 8.7 to 3.1 over the same temperature range.

  20. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays

    SciTech Connect (OSTI)

    Cui, J.B.; Gibson, U.J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000 (United States)

    2005-09-26T23:59:59.000Z

    Cobalt and nickel doped ZnO nanowire arrays were synthesized by an electrochemical process at a temperature of 90 deg. C. Energy dispersive x-ray spectroscopy and x-ray diffraction show that the dopants are incorporated into the wurtzite-structure ZnO. Anisotropic ferromagnetism with an easy direction of magnetization either perpendicular or parallel to the wire axis, depending on the wire geometry and density, was observed in 1.7% Co and 2.2% Ni-doped ZnO nanowires at room temperature. The anisotropic magnetism was explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanowires.

  1. Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature

    E-Print Network [OSTI]

    Howlader, Matiar R

    ], spark welding [3], explosive bonding [4], and diffusion bonding [5,6]. However, the processing such as diffusion bonding [5,6], friction welding [7e11], vacuum roll bonding [12] and hot roll bonding [13Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room

  2. Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts

    E-Print Network [OSTI]

    Sidheswaran, Meera A.

    2012-01-01T23:59:59.000Z

    in VOC abatement. Applied Catalysis B-Environmental. 61:calcination temperature. Applied Catalysis B- Environmental.ambient temperature. Applied Catalysis B-Environmental. 81:

  3. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment

    E-Print Network [OSTI]

    Haiyan Li; Shengfu Mei; Lei Wang; Yunxia Gao; Jing Liu

    2013-09-04T23:59:59.000Z

    In this article, the fluid dynamics of room temperature liquid metal (RTLM) droplet impacting onto a pool of the same liquid in ambient air was investigated. A series of experiments were conducted in order to disclose the influence of the oxidation effect on the impact dynamics. The droplet shape and impact phenomenology were recorded with the aid of a high-speed digital camera. The impact energy stored in the splash structures was estimated via a theoretical model and several morphological parameters obtained from instantaneous images of the splash. It was observed that the droplet shape and the splashing morphology of RTLM were drastically different from those of water, so was the impact dynamics between room temperature LM pool and high temperature LM pool. The energy analysis disclosed that the height of the jet is highly sensitive to the viscosity of the fluid, which is subjected to the oxidation effect and temperature effect simultaneously, and thus perfectly explained the phenomena. These basic findings are important for the application of RTLM in a series of newly emerging technologies such as liquid metal based spray cooling, ink-jet printed electronics, interface material painting and coating, metallurgy, and 3D packages, etc.

  4. IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 8, AUGUST 2008 867 On the Source of Jitter in a Room-Temperature

    E-Print Network [OSTI]

    Mohseni, Hooman

    IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 8, AUGUST 2008 867 On the Source of Jitter in a Room infrared photon detector was studied by exploring the relation between lateral charge transfer and jitter. The jitter of the device was measured to be 15 ps at room temperature. The jitter was almost independent

  5. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect (OSTI)

    VAJO, JOHN

    2014-06-12T23:59:59.000Z

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

  6. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  7. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect (OSTI)

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12T23:59:59.000Z

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  8. Importance of glassy fragility for energy applications of ionic liquids

    E-Print Network [OSTI]

    P. Sippel; P. Lunkenheimer; S. Krohns; E. Thoms; A. Loidl

    2015-02-24T23:59:59.000Z

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

  9. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent

    E-Print Network [OSTI]

    Li, Jing

    , the two-dimensional net- work [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], pro- duced via and 1,3-bis(4-pyridyl)propane (bpp) ligand. [bmim][BF4], as a room temperature ionic liquid, is air

  10. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01T23:59:59.000Z

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1?×?10{sup 5}?L (1 L?=?1?×?10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that Hf–OH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  11. Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A copper(II)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C–H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl ...

  12. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis

    SciTech Connect (OSTI)

    Huang Yuying [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Sun Fengqiang, E-mail: fengqiangsun@yahoo.c [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in GuangDong Universities, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2011-03-15T23:59:59.000Z

    CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

  13. Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region

    SciTech Connect (OSTI)

    Kryzhanovskaya, N. V., E-mail: kryj@mail.ioffe.ru; Zhukov, A. E.; Nadtochy, A. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Moiseev, E. I. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Kulagina, M. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Savelev, A. V.; Arakcheeva, E. M. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Lipovskii, A. A. [St. Petersburg Polytechnic University (Russian Federation)] [St. Petersburg Polytechnic University (Russian Federation); Zubov, F. I. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Center for Research and Education (Russian Federation); Kapsalis, A.; Mesaritakis, C.; Syvridis, D. [University of Athens (Greece)] [University of Athens (Greece); Mintairov, A. [University of Notre Dame (United States)] [University of Notre Dame (United States); Livshits, D. [Innolume GmbH (Germany)] [Innolume GmbH (Germany)

    2013-10-15T23:59:59.000Z

    Microring cavities (diameter D = 2.7-7 {mu}m) with an active region based on InAs/InGaAs quantum dots are fabricated and their characteristics are studied by the microphotoluminescence method and near-field optical microscopy. A value of 22 000 is obtained for the Q factor of a microring cavity with the diameter D = 6 {mu}m. Lasing up to room temperature is obtained in an optically pumped ring microlaser with a diameter of D = 2.7 {mu}m.

  14. Strong Room-temperature Negative Transconductance In An Axial Si/Ge Hetero-nanowire Tunneling Field-effect Transistor

    SciTech Connect (OSTI)

    Zhang, Peng; Le, Son T.; Hou, Xiaoxiao; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, Samuel T.

    2014-08-11T23:59:59.000Z

    We report on room-temperature negative transconductance (NTC) in axial Si/Ge hetero-nanowire tunneling field-effect transistors (TFETs). The NTC produces a current peak-to-valley ratio > 45, a high value for a Si-based device. We characterize the NTC characteristics over a range of gate VG and drain VD voltages, finding that NTC persists down to VD = –50 mV. The physical mechanism responsible for the NTC is the VG-induced depletion in the p-Ge section that eventually reduces the maximum electric field that triggers the tunneling ID, as confirmed via three-dimensional TCAD simulations.

  15. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    E-Print Network [OSTI]

    Brown, G V

    2014-01-01T23:59:59.000Z

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  16. Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Awan, Saif Ullah, E-mail: saifullah@comsats.edu.pk, E-mail: ullahphy@gmail.com [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Hasanain, S. K. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Anjum, D. H. [Advanced Nanofabrication, Imaging and Characterization Core Lab (ANIC), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23599-6900 (Saudi Arabia); Awan, M. S. [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Shah, Saqlain A. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-10-28T23:59:59.000Z

    Memory and switching devices acquired new materials which exhibit ferroelectric and ferromagnetic order simultaneously. We reported multiferroic behavior in Zn{sub 1?y}Li{sub y}O(0.00?y?0.10) nanoparticles. The analysis of transmission electron micrographs confirmed the hexagonal morphology and wurtzite crystalline structure. We investigated p-type conductivity in doped samples and measured hole carriers in range 2.4?×?10{sup 17}/cc to 7.3?×?10{sup 17}/cc for different Li contents. We found that hole carriers are responsible for long range order ferromagnetic coupling in Li doped samples. Room temperature ferroelectric hysteresis loops were observed in 8% and 10% Li doped samples. We demonstrated ferroelectric coercivity (remnant polarization) 2.5?kV/cm (0.11 ?C/cm{sup 2}) and 2.8?kV/cm (0.15 ?C/cm{sup 2}) for y?=?0.08 and y?=?0.10 samples. We propose that the mechanism of Li induced ferroelectricity in ZnO is due to indirect dipole interaction via hole carriers. We investigated that if the sample has hole carriers ?5.3?×?10{sup 17}/cc, they can mediate the ferroelectricity. Ferroelectric and ferromagnetic measurements showed that higher electric polarization and larger magnetic moment is attained when the hole concentration is larger and vice versa. Our results confirmed the hole dependent coexistence of ferromagnetic and ferroelectric behavior at room temperature, which provide potential applications for switchable and memory devices.

  17. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    SciTech Connect (OSTI)

    Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-03-03T23:59:59.000Z

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300?K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5?J·kg{sup ?1}·K{sup ?1} was observed near 300?K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300?K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300?K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62?K at 280?K.

  18. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03T23:59:59.000Z

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  19. Thin film growth and characterization of Potassium-Tantalate-Niobate room temperature ferroelectric

    E-Print Network [OSTI]

    Muntha, Nageswara Rao Venkat

    1995-01-01T23:59:59.000Z

    the perovskite compounds KNbO3 and KTaO3. The Curie temperature of KTN can be varied by a4justing x i.e.., the composition of niobium. In the vicinity of the ferroto-paraelectric phase transition, high dielectric permittivities, large pyroelectric as well...

  20. Selective-area room temperature visible photoluminescence from SiC/Si heterostructures

    E-Print Network [OSTI]

    Steckl, Andrew J.

    shown8 to produce monocrystalline thin films, while minimizing the high temperature exposure. The Sic mismatch, heteroepitaxial growth of Sic films on Si has been achieved by several groups?-' In addition, SicSi. For example, polycrystalline Sic deposited on Si after it is rendered porous has been utilized9

  1. Photoluminescence in the Ca{sub x}Sr{sub 1-x}WO{sub 4} system at room temperature

    SciTech Connect (OSTI)

    Porto, S.L. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Longo, E. [CMDMC/LIEC, Instituto de Quimica, UNESP-Araraquara, Rua Prof. Francisco Degni s/n, Araraquara, SP, CEP 14800-900 (Brazil); Pizani, P.S.; Boschi, T.M. [Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, Rodovia Washington Luiz km 235, SP, CEP 13565-905 (Brazil); Simoes, L.G.P. [Centro Multidisciplinar de Desenvolvimento de Materiais Ceramicos (LIEC/DQ), Universidade Federal de Sao Carlos, Rodovia Washington Luiz km 235, Sao Carlos, SP, CEP 13565-905 (Brazil); Lima, S.J.G. [Laboratorio de Solidificacao Rapida, Departamento de Tecnologia Mecanica (LSR/DTM/CT), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Ferreira, J.M. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); COAMA, Area de Meio Ambiente, Centro Federal de Educacao Tecnologica da Paraiba, Av. 1o de Maio 720, Jaguaribe, Joao Pessoa, PB, CEP 58015-430 (Brazil); Soledade, L.E.B.; Espinoza, J.W.M.; Cassia-Santos, M.R.; Maurera, M.A.M.A. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil); Paskocimas, C.A. [Departamento de Engenharia Mecanica, Universidade Federal do Rio Grande do Norte, Natal, RN, CEP 59072-970 (Brazil); Santos, I.M.G. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil)], E-mail: ieda@quimica.ufpb.br; Souza, A.G. [Laboratorio de Combustiveis e Materiais (LACOM/DQ/CCEN), Universidade Federal da Paraiba, Campus I, Cidade Universitaria, Joao Pessoa, PB, CEP 58059-900 (Brazil)

    2008-08-15T23:59:59.000Z

    In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the Ca{sub x}Sr{sub 1-x}WO{sub 4} (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 deg. C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 deg. C, which is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO{sub 4} and SrWO{sub 4}. - Graphical abstract: The structural and room temperature photoluminescence of Ca{sub x}Sr{sub 1-x}WO4 synthesized by a soft chemical method was studied. The most intense PL emission was obtained for the sample calcined at 600 deg. C, that is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}.

  2. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S., E-mail: sspsm2@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Chatterjee, S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Salt Lake, Kolkata 700 098 (India)

    2014-09-15T23:59:59.000Z

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?J·kg{sup ?1}·K{sup ?1} for 0–50 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  3. Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating

    SciTech Connect (OSTI)

    Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)] [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States); Lee, Seoung-Ki [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of) [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Jong-Hyun [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)] [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-11-18T23:59:59.000Z

    A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

  4. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    SciTech Connect (OSTI)

    Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

    2010-01-01T23:59:59.000Z

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I?V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ?12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  5. Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature

    SciTech Connect (OSTI)

    Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

    2007-10-15T23:59:59.000Z

    The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

  6. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    E-Print Network [OSTI]

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01T23:59:59.000Z

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  7. Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature

    E-Print Network [OSTI]

    Alessandro Farsi; Mario Siciliani de Cumis; Francesco Marino; Francesco Marin

    2011-09-21T23:59:59.000Z

    Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

  8. Room temperature organic exciton-polariton flow exploiting high-speed, high-Q propagating modes

    E-Print Network [OSTI]

    Lerario, Giovanni; Cannavale, Alessandro; Mangione, Federica; Gambino, Salvatore; Dominici, Lorenzo; De Giorgi, Milena; Gigli, Giuseppe; Sanvitto, Daniele

    2015-01-01T23:59:59.000Z

    Exciton-polaritons, bosonic quasi-particles formed by the interaction of light and matter, have shown a plethora of exciting phenomena that have been chiefly restricted to inorganic semiconductors and low temperature operation. Only recently, polariton condensation and non-linear effects have been demonstrated with polymers and organic molecules, making these systems suited for a realistic new generation of all-optical devices. However, polariton propagation in the plane of the device, essential for on-chip integration, is still limited by the very strong dissipation inherent to present organic microcavities. Here, we demonstrate strong-coupling of organic excitons with a Bloch surface wave (Q $\\approx$ 3000) which sustains polariton propagation for distances longer than 300 $\\mu$m and polariton lifetimes of about 1 ps, a record value in organic devices. The group velocity of the polariton mode is found to be $\\approx$ 50% the speed of light, about two order of magnitude higher than in any planar microcavity.

  9. Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature

    SciTech Connect (OSTI)

    John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

    2001-04-01T23:59:59.000Z

    Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, O{sub 2} is eliminated first by the water-catalyzed Pu + O{sub 2} reaction and H{sub 2}O is then consumed by the Pu + H{sub 2}O reaction, producing a gas mixture of N{sub 2}, argon, and H{sub 2}. Hydrogen formed by the reaction of water and concurrent radiolysis of hydrogenous materials either reacts to form PuH{sub 2} or accumulates in the system. Accumulation of H{sub 2} is correlated with the presence of hydrogenous materials in liquid and volatile forms that are readily distributed over the plutonium surface. Areal rates of radiolytic H{sub 2} generation are determined and applied in showing that modest extents of H{sub 2} production are expected for hydrogenous solids if the contact area with plutonium is limited. The unpredictable nature of complex chemical systems is demonstrated by occurrence of the chloride-catalyzed Pu + H{sub 2}O reaction in some tests and hydride-catalyzed nitriding in another.

  10. Metalized T graphene: A reversible hydrogen storage material at room temperature

    SciTech Connect (OSTI)

    Ye, Xiao-Juan; Zhong, Wei, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn; Du, You-Wei [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: wzhong@nju.edu.cn [Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-09-21T23:59:59.000Z

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H?. The adsorption/desorption of H? at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  11. Graphene terahertz modulators by ionic liquid gating

    E-Print Network [OSTI]

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01T23:59:59.000Z

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  12. Core-shell multi-quantum wells in ZnO / ZnMgO nanowires with high optical efficiency at room temperature

    E-Print Network [OSTI]

    Thierry, Robin; Jouneau, Pierre-Henri; Ferret, Pierre; Feuillet, Guy; 10.1088/0957-4484/23/8/085705

    2013-01-01T23:59:59.000Z

    Nanowire-based light-emitting devices require multi-quantum well heterostructures with high room temperature optical efficiencies. We demonstrate that such efficiencies can be attained through the use of ZnO/Zn(1-x)MgxO core shell quantum well heterostructures grown by metal organic vapour phase epitaxy. Varying the barrier Mg concentration from x=0.15 to x=0.3 leads to the formation of misfit induced dislocations in the multi quantum wells. Correlatively, temperature dependant photoluminescence reveals that the radial well luminescence intensity decreases much less rapidly with increasing temperature for the lower Mg concentration. Indeed, about 54% of the 10K intensity is retained at room temperature with x=0.15, against 2% with x=0.30. Those results open the way to the realization of high optical efficiency nanowire-based light emitting diodes.

  13. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect (OSTI)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China)] [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2014-02-15T23:59:59.000Z

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  14. Electrical characterization of H{sub 2}S adsorption on hexagonal WO{sub 3} nanowire at room temperature

    SciTech Connect (OSTI)

    Liu, Binquan; Tang, Dongsheng, E-mail: dstang@hunnu.edu.cn; Zhou, Yong; Yin, Yanling; Peng, Yuehua; Zhou, Weichang; Qin, Zhu'ai; Zhang, Yong [Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China)

    2014-10-28T23:59:59.000Z

    We have characterized the electrical transport properties of Au/WO{sub 3} nanowire/Au devices in ambient air and gaseous H{sub 2}S to investigate the adsorption kinetics of H{sub 2}S molecules on the surface of WO{sub 3} nanowire at room temperature. The WO{sub 3} nanowire devices exhibit increasing linear conductance and electrical hysteresis in H{sub 2}S. Furthermore, the contact type between Au electrode and WO{sub 3} nanowire can be converted from original ohmic/Schottky to Schottky/ohmic after being exposed to H{sub 2}S. These results suggest that adsorbed H{sub 2}S molecules are oxidized by holes to form hydrogen ions and S atoms, which will result in formation of hydrogen tungsten bronze and desorption of previously chemically adsorbed H{sub 2}O molecules. Adsorbed H{sub 2}S molecules can also oxidize previously adsorbed and ionized oxygen, which will release the electrons from the ionized oxygen and then weaken upward band bending at the surface of WO{sub 3} nanowire.

  15. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect (OSTI)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16T23:59:59.000Z

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  16. Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films

    SciTech Connect (OSTI)

    Cezar, A. B. [Instituto Federal do Paraná (IFPR), Campus Paranaguá (Brazil); Graff, I. L., E-mail: graff@fisica.ufpr.br; Varalda, J.; Schreiner, W. H.; Mosca, D. H. [Departamento de Física, Universidade Federal do Paraná (UFPR), Curitiba (Brazil)

    2014-10-28T23:59:59.000Z

    In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

  17. Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of a polymer electrolyte composite

    E-Print Network [OSTI]

    Pramod Kumar Singh; Amreesh Chandra

    2003-04-21T23:59:59.000Z

    The dispersal of high dielectric constant ferroelectric ceramic material Ba(0.7)Sr(0.3)TiO(3) (Tc~30 C) and Ba(0.88)Sr(0.12)TiO(3) (Tc~90 C) in an ion conducting polymer electrolyte (PEO:NH4I) is reported to result in an increase in the room temperature ionic conductivity by two orders of magnitude. The conductivity enhancememt "peaks" as we approach the dielectric phase transition of the dispersed ferroelectric material where the dielectric constant changes from ~ 2000 to 4000. This establishes the role of dielectric constant of the dispersoid in enhancing the ionic conductivity of the polymeric composites.

  18. Anomalous high ionic conductivity of nanoporous -Li3PS4

    SciTech Connect (OSTI)

    Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Yu, Xiang [ORNL] [ORNL; Wu, Zili [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Kiggans, Jim [ORNL] [ORNL; Hong, Kunlun [ORNL] [ORNL; Rondinone, Adam Justin [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Lithium-ion conducting solid electrolytes hold the promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries1-3. Achieving the combination of high ionic conductivity and broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of room-temperature lithium-ion conductivity of 3 orders of magnitude by creating nanostructured Li3PS4. This material has a wide (5V) electrochemical window and superior chemical stability against lithium metal. The nanoporous structure of Li3PS4 reconciles two vital effects that enhance ionic conductivity: (1) The reduced dimension to nanometer-sized framework stabilizes the high conduction beta phase that occurs at elevated temperatures1,4; and (2) The high surface-to-bulk ratio of nanoporous -Li3PS4 promotes surface conduction5,6. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications such as batteries, fuel-cells, sensors, photovoltaic systems, and so forth3,7.

  19. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    SciTech Connect (OSTI)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab; Rawat, R. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, S. M. [Ceramic Laboratory, LMDDD, RRCAT, Indore 452013 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201303 (India)

    2014-09-15T23:59:59.000Z

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x?=?0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x?=?5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x???10% and for x?=?5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x?=?5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  20. Room temperature magnetoresistance in CoFeB/SrTiO{sub 3}/CoFeB magnetic tunnel junctions deposited by ion beam sputtering

    SciTech Connect (OSTI)

    Hassen, E. M. J. [CEA, LETI, MINATEC Campus, Grenoble (France); SPINTEC (UMR 8191 CEA-CNRS-UJF), CEA-INAC, 38054 Grenoble Cedex (France); Viala, B.; Cyrille, M. C.; Cartier, M.; Redon, O. [CEA, LETI, MINATEC Campus, Grenoble (France); Lima, P. [SPTS, Process Technology Systems, Ringland Way, Newport (United Kingdom); Belhadji, B.; Yang, H. X.; Chshiev, M. [SPINTEC (UMR 8191 CEA-CNRS-UJF), CEA-INAC, 38054 Grenoble Cedex (France); Velev, J. [Department of Physics, University of Puerto Rico, San Juan 00931 (Puerto Rico)

    2012-04-01T23:59:59.000Z

    Room temperature transport properties are reported in polycrystalline SrTiO{sub 3}-based magnetic tunnel junctions deposited by ion beam sputtering. The junctions comprise CoFeB electrodes and the SrTiO{sub 3} barrier with thickness varied between 0.9 and 1.9 nm. Resistance area product values between 3 {Omega}.{mu}m{sup 2} and 22 k{Omega}.{mu}m{sup 2} have been measured with a tunnel magnetoresistance ratio ranging from 3.1 to 13% at room temperature. At low barrier thickness (1.2 nm), ferromagnetic coupling between electrodes is observed, indicating the presence of defects in the structure. A post-oxidation step was found to improve transport properties at lower barrier thickness.

  1. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect (OSTI)

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01T23:59:59.000Z

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  2. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01T23:59:59.000Z

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  3. Room-temperature cw operation of InGaAsP/InGaP lasers at 727 nm grown on GaAs substrates by liquid phase epitaxy

    SciTech Connect (OSTI)

    Wakao, K.; Nishi, H.; Kusunoki, T.; Isozumi, S.; Ohsaka, S.

    1984-06-01T23:59:59.000Z

    InGaAsP/InGaP lasers emitting at 724--727 nm have been fabricated on GaAs substrates using liquid phase epitaxy. The threshold current is reduced to 8 kA/cm/sup 2/ by thinning the active layer. Room-temperature cw operation is achieved for the first time in the lasing wavelength range below 760 nm in this quaternary system.

  4. Room-temperature-grown rare-earth-doped GaN luminescent thin films D. S. Lee and A. J. Steckla)

    E-Print Network [OSTI]

    Steckl, Andrew J.

    efforts to achieve this goal with GaN growth on oxide films or on glass substrates3­6 being a main focus: 50­100 °C. GaN films were grown on p-type 111 Si substrate by MBE with a Ga elemental sourceRoom-temperature-grown rare-earth-doped GaN luminescent thin films D. S. Lee and A. J. Steckla

  5. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    SciTech Connect (OSTI)

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde [Advanced Materials Processing and Analysis Center (AMPAC) and Mechanical Materials Aerospace Engineering (MMAE) Department, Engineering 381, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States); National Aeronautics and Space Administration (NASA), John F. Kennedy Space Center, Kennedy Space Center (KSC), Florida 32899 (United States)

    2005-03-01T23:59:59.000Z

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  6. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15T23:59:59.000Z

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  7. Room-temperature mid-infrared “M”-type GaAsSb/InGaAs quantum well lasers on InP substrate

    SciTech Connect (OSTI)

    Chang, Chia-Hao; Li, Zong-Lin; Pan, Chien-Hung; Lu, Hong-Ting; Lee, Chien-Ping; Lin, Sheng-Di, E-mail: sdlin@mail.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-02-14T23:59:59.000Z

    We have demonstrated experimentally the InP-based “M”-type GaAsSb/InGaAs quantum-well (QW) laser lasing at 2.41??m at room temperature by optical pumping. The threshold power density per QW and extracted internal loss were about 234?W/cm{sup 2} and 20.5?cm{sup ?1}, respectively. The temperature-dependent photoluminescence (PL) and lasing spectra revealed interesting characteristics for this type of lasers. Two distinct regions in the temperature dependent threshold behavior were observed and the transition temperature was found to coincide with the cross over point of the PL and lasing emission peaks. The current-voltage characteristic of “M”-type QW laser was superior to the inverse “W”-type one due to its thinner barrier for holes. Further improvement of the “M”-type QW structure could lead to a cost-effective mid-infrared light source.

  8. Mixed-Salt Effects on the Ionic Conductivity of Lithium-Doped PEO-Containing Block Copolymers

    SciTech Connect (OSTI)

    Young, Wen-Shiue; Albert, Julie N.L.; Schantz, A. Benjamin; Epps, III, Thomas H. (Delaware)

    2012-10-10T23:59:59.000Z

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter ({chi}{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  9. Mixed-salt Effects on the Ionic Conductivity of Lithium-doped PEO-containing Block Copolymers

    SciTech Connect (OSTI)

    W Young; J Albert; A Schantz; T Epps

    2011-12-31T23:59:59.000Z

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter (x{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  10. Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F. [Universite de Lorraine, Institut Jean Lamour, Departement CP2S, UMR CNRS 7198, Nancy, F-54042 (France); Laffez, P. [Groupe de Recherche Electronique, Materiaux, Acoustique, Nanoscience (GREMAN), Universite Francois Rabelais de Tours, UMR CNRS 7347, IUT de Blois, 15 rue de la Chocolaterie, Blois, F-41000 (France)

    2012-06-01T23:59:59.000Z

    Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

  11. Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Matteppanavar, Shidaling; Angadi, Basavaraj [Department of Physics, JB Campus, Bangalore University, Bangalore -560056 (India); Rayaprol, Sudhindra [UGC-DAE-CSR, Mumbai Centre, BARC, Mumbai - 400085 (India)

    2013-02-05T23:59:59.000Z

    The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

  12. Room temperature ferromagnetic and ferroelectric properties of Bi{sub 1?x}Ca{sub x}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Pugazhvadivu, K. S.; Tamilarasan, K., E-mail: dr.k.tamilarasan@gmail.com [Thin Film Laboratory, Department of Physics, Kongu Engineering College, Perundurai - 638 052 (India); Balakrishnan, L. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India); Mohan Rao, G. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore - 560 012 (India)

    2014-11-15T23:59:59.000Z

    Bi{sub 1?x}Ca{sub x}MnO{sub 3} (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 °C and 800 °C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca{sup 2+} ions into BiMnO{sub 3} films. The BCMO (x = 0.2) film grown at 400 °C shows better magnetization (M{sub sat}) and polarization (P{sub s})with the measured values of 869 emu / cc and 6.6 ?{sub C}/ cm{sup 2} respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca{sup 2+} ions substituted BMO films makes potentially interesting for spintronic device applications.

  13. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})

    SciTech Connect (OSTI)

    Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Parsons, Gregory N.; Losego, Mark D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-06-23T23:59:59.000Z

    We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

  14. Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection laser on (110) Si substrate at room temperature

    SciTech Connect (OSTI)

    Chen, H.Z.; Ghaffari, A.; Wang, H.; Morkoc, H.; Yariv, A.

    1987-10-01T23:59:59.000Z

    Room-temperature continuous-wave operation of large-area (120 ..mu..m x 980 ..mu..m) GaAs/AlGaAs graded-refractive-index separate-confinement heterostructure lasers on (100)Si substrates has been obtained. Minimum threshold-current densities of 214 A/cm/sup 2/ (1900-..mu..m cavity length), maximum slope efficiencies of about 0.8 W/A (600-..mu..m cavity length), and optical power in excess of 270 mW/facet (900-..mu..m cavity length) have been observed under pulsed conditions.

  15. Efficient room temperature aqueous Sb2S3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies

    E-Print Network [OSTI]

    Gödel, Karl C.; Choi, Yong Chan; Roose, Bart; Sadhanala, Aditya; Snaith, Henry J.; Seok, Sang Il; Steiner, Ullrich; Pathak, Sandeep K.

    2015-04-14T23:59:59.000Z

    . Steiner and S. K. Pathak, Chem. Commun., 2015, DOI: 10.1039/C5CC01966D. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies† Karl C. Go¨del,a Yong Chan Choi,b Bart Roose,ac Aditya Sadhanala... -gu, Sungkyunkwan University, Suwon 440-746, Republic of Korea. Further, the material has been used to improve the stability of methyl-ammonium lead iodide perovskite solar cells.5 Antimony sulfide synthesis typically involves deposition in aqueous and non...

  16. In-situ Analysis of Zinc Electrodeposition within an Ionic Liquid Electrolyte

    E-Print Network [OSTI]

    Keist, Jayme

    2013-01-01T23:59:59.000Z

    chloride low temperature molten salt. Electrochimica Acta,room temperature molten salt. Journal of the Electrochemical

  17. Luminescence thermometry below room temperature via up-conversion emission of Y{sub 2}O{sub 3}:Yb{sup 3+},Er{sup 3+} nanophosphors

    SciTech Connect (OSTI)

    Lojpur, V.; Nikoli?, G.; Drami?anin, M. D., E-mail: dramican@vinca.rs [Vin?a Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia)

    2014-05-28T23:59:59.000Z

    This study explores potential of Er{sup 3+}-Yb{sup 3+} doped phosphors for up-conversion luminescence thermometry in the temperature range from 10?K to 300?K. Yttrium oxide nanopowder doped with trivalent ytterbium and erbium ions (Y{sub 1.97}Yb{sub 0.02}Er{sub 0.01}O{sub 3}) was prepared by hydrothermal synthesis as an example. The intensity ratios of up-conversion emissions from thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} show strong temperature dependence (in the range 150?K–300?K) with much higher relative sensitivity than those reported for thermometry above room temperature with Er{sup 3+}-Yb{sup 3+} based up-conversion materials. The maximal value of relative sensitivity is 5.28%K{sup ?1} at 150?K, with temperature resolution ranging from 0.81?K to 0.06?K. In addition, the intensity ratios of emission from thermally non-coupled Er{sup 3+} levels ({sup 2}H{sub 9/2} and {sup 4}F{sub 9/2}) and from {sup 4}S{sub 3/2} also show temperature dependence that can be approximated with an exponential function. With these up-conversion emission ratios, it is possible measure temperature in the range of 10?K to 300?K with excellent sensitivity and resolution.

  18. Supported Ionic Liquid Membranes for Gas Separation

    SciTech Connect (OSTI)

    Myers, C.R.; Ilconich, J.B.; Pennline, H.W.; Luebke, D.R.

    2007-08-01T23:59:59.000Z

    Ionic liquids have been rapidly gaining attention for various applications including solvent separation and gas capture. These substances are noted for extremely low vapor pressure and high CO2 solubility making them ideal as transport or capture media for CO2 abatement in power generation applications. Ionic liquids, combined with various supports to form membranes, have been proven selective in CO2 separation. Several ionic liquids and a variety of polymer supports have been studied over a temperature range from 37°C to 300°C and have been optimized for stability. The membranes have demonstrated high permeability and high selectivity since the supported ionic liquid membranes incorporate functionality capable of chemically complexing CO2. A study aimed at improving supported ionic liquid membranes will examine their durability with greater transmembrane pressures and the effects on CO2 permeance, CO2/H2 selectivity and thermal stability.

  19. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11T23:59:59.000Z

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  20. Studies on the room temperature growth of nanoanatase phase TiO{sub 2} thin films by pulsed dc magnetron with oxygen as sputter gas

    SciTech Connect (OSTI)

    Karuppasamy, A.; Subrahmanyam, A. [Semiconductor Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-03-15T23:59:59.000Z

    The anatase phase titanium dioxide (TiO{sub 2}) thin films were deposited at room temperature by pulsed dc magnetron sputtering using pure oxygen as sputter gas. The structural, optical, electrical, and electrochromic properties of the films have been studied as a function of oxygen pressure in the chamber. The x-ray diffraction results indicate that the films grown above 4.5x10{sup -2} mbar are nanocrystalline (grain size of 28-43 nm) with anatase phase. The films deposited at the chamber pressure of 7.2x10{sup -2} mbar are found to be highly crystalline with a direct optical band gap of 3.40 eV, refractive index of 2.54 (at {lambda}=400 nm), and work function of 4.77 eV (determined by the Kelvin probe measurements). From the optical emission spectra of the plasma and transport of ions in matter calculations, we find that the crystallization of TiO{sub 2} at room temperature is due to the impingement of electrons and ions on the growing films. Particularly, the negative oxygen ions reflected from the target by 'negative ion effects' and the enhanced density of TiO, TiO{sup +}, TiO{sub 2}{sup +}, and O{sup 2+} particles in the plasma are found to improve the crystallization even at a relatively low temperature. From an application point of view, the film grown at 7.2x10{sup -2} mbar was studied for its electrochromic properties by protonic intercalation. It showed good electrochromic behavior with an optical modulation of {approx}45%, coloration efficiency of 14.7 cm{sup 2} C{sup -1}, and switching time (t{sub c}) of 50 s for a 2x2 cm{sup 2} device at {lambda}=633 nm.

  1. Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ishikawa, M.; Ohba, Y.; Sugawara, H.; Yamamoto, M.; Nakanisi, T.

    1986-01-20T23:59:59.000Z

    Room-temperature cw operation for InGaP/InGaAlP double heterostructure (DH) laser diodes on GaAs substrates was achieved for the first time. The DH wafers were grown by low-pressure metalorganic chemical vapor deposition using methyl metalorganics. A lasing wavelength of 679 nm and a threshold current of 109 mA at 24C were obtained for an inner stripe structure laser diode with a 250- m-long and 7- m stripe geometry. The laser operated at up to 51C. The characteristic temperature T0 was 87 K at around room temperature. The lowest threshold current density, 5.0 kA/cmS, was obtained with a 20- m stripe width laser diode under room-temperature pulsed operation.

  2. Ionic conductors for solid oxide fuel cells

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bloom, Ira D. (Bolingbrook, IL); Pullockaran, Jose D. (Hanover Park, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  3. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect (OSTI)

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon [School of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); LC/OLED Research Team, LCD R and D Center, LCD Business, Samsung Electronics Co. Ltd., Yongin, Gyeonggi-Do 449-711 (Korea, Republic of); Process Development Team, LCD R and D Center, LCD Business, Samsung Electronics Co. Ltd., Yongin, Gyeonggi-Do 449-711 (Korea, Republic of)

    2007-09-03T23:59:59.000Z

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  4. Low-threshold (--600 A/cm/sup 2/ at room temperature) GaAs/AlGaAs lasers on Si (100)

    SciTech Connect (OSTI)

    Chen, H.Z.; Ghaffari, A.; Wang, H.; Morkoc, H.; Yariv, A.

    1987-10-26T23:59:59.000Z

    Low-threshold graded-refractive-index GaAs/AlGaAs laser structures were grown on Si (100) by molecular beam epitaxy and tested at room temperature under a probe station. Broad area devices having widths of 110--120 ..mu..m and cavity lengths of --500--1210 ..mu..m exhibited threshold current densities as low as 600 A/cm/sup 2/ and total slope efficiencies of as high as 0.75 W/A. The thresholds fell in the range of 600--1000 A/cm/sup 2/ in three different wafers, and it is assumed that the quality of the facets accounts for most of the spread in results.

  5. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers

    SciTech Connect (OSTI)

    Wei, Wei; Zhang, Xia, E-mail: xzhang@bupt.edu.cn; Ren, Xiaomin [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 66, Beijing 100876 (China); Liu, Yange, E-mail: ygliu@nankai.edu.cn; Wang, Zhi [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

    2014-06-02T23:59:59.000Z

    Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers are proposed and demonstrated. The nanowires are axially excited by evanescent wave outside a microfiber with a diameter about 10??m via a ns-pulse laser. The lasing emission with a low effective threshold less than 90 nJ is achieved at 868.62?nm along with a linewidth of ?1.8?nm. Moreover, multiple lasing lines in a wavelength range from 852.56?nm to 882.48?nm are observed. The mechanism of diverse lasing wavelengths is revealed. Furthermore, the proposed GaAs/AlGaAs nanowire laser has advantages such as simple structure, easy to operate, and controllable lasing wavelength, tending to be practical in optical communications and integrated photonic circuits.

  6. Observation of room temperature optical absorption in InP/GaAs type-II ultrathin quantum wells and quantum dots

    SciTech Connect (OSTI)

    Singh, S. D., E-mail: devsh@rrcat.gov.in; Porwal, S.; Mondal, Puspen; Srivastava, A. K.; Mukherjee, C.; Dixit, V. K.; Sharma, T. K.; Oak, S. M. [Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2014-06-14T23:59:59.000Z

    Room temperature optical absorption process is observed in ultrathin quantum wells (QWs) and quantum dots (QDs) of InP/GaAs type-II band alignment system using surface photovoltage spectroscopy technique, where no measurable photoluminescence signal is available. Clear signature of absorption edge in the sub band gap region of GaAs barrier layer is observed for the ultrathin QWs and QDs, which red shifts with the amount of deposited InP material. Movement of photogenerated holes towards the sample surface is proposed to be the main mechanism for the generation of surface photovoltage in type-II ultrathin QWs and QDs. QDs of smaller size are found to be free from the dislocations as confirmed by the high resolution transmission electron microscopy images.

  7. Partially fluorinated ionic compounds

    DOE Patents [OSTI]

    Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

    2008-11-25T23:59:59.000Z

    Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

  8. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  9. Solid State Electronics (ECE 103) ECE MS Comp Exam, Fall 2013 (a) Draw the energy band diagram of a piece of Si at room temperature (label the diagram) and

    E-Print Network [OSTI]

    California at San Diego, University of

    Solid State Electronics (ECE 103) ­ ECE MS Comp Exam, Fall 2013 (a) Draw the energy band diagram of a piece of Si at room temperature (label the diagram) and use the band diagram to illustrate the doping (r.t.). (b) Use band diagrams to illustrate the formation of p/n junction. (c) For a p/n+ diode, p-Si

  10. Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature

    SciTech Connect (OSTI)

    Chen, D. Y., E-mail: cdy7659@126.com [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China); Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Sun, Y.; He, Y. J. [Nanjing University of posts and Telecommunications, Nanjing 210046 (China); Xu, L.; Xu, J. [Department of Physics, Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic, materials, Nanjing University, Nanjing 210093 (China)

    2014-01-28T23:59:59.000Z

    We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.

  11. High spin polarization at room temperature in Ge-substituted Fe{sub 3}O{sub 4} epitaxial thin film grown under high oxygen pressure

    SciTech Connect (OSTI)

    Seki, Munetoshi, E-mail: m-seki@ee.t.u-tokyo.ac.jp; Takahashi, Masanao; Ohshima, Toshiyuki; Yamahara, Hiroyasu; Tabata, Hitoshi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2013-11-18T23:59:59.000Z

    Epitaxial thin films of room-temperature ferrimagnetic (Fe,Ge){sub 3}O{sub 4} were fabricated using pulsed laser deposition. Films with a single-phase spinel structure were grown under high oxygen pressures (0.01–0.6?Pa). The carrier transport across (Fe,Ge){sub 3}O{sub 4}/Nb:SrTiO{sub 3} interface was studied to estimate the spin polarization of (Fe, Ge){sub 3}O{sub 4}. Current–voltage curves of Fe{sub 2.8}Ge{sub 0.2}O{sub 4}/Nb:SrTiO{sub 3} junction showed rectifying behavior even at 300?K whereas Fe{sub 3}O{sub 4}/Nb:SrTiO{sub 3} junction showed ohmic behavior. Calculations based on a model for a Schottky contact with a ferromagnetic component yielded a spin polarization of 0.50 at 300?K for Fe{sub 2.8}Ge{sub 0.2}O{sub 4}, indicating its potential as a promising spin injector.

  12. Magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations and tunnel magnetoresistance effect at room temperature

    SciTech Connect (OSTI)

    Nagahama, Taro, E-mail: nagahama@eng.hokudai.ac.jp; Matsuda, Yuya; Tate, Kazuya; Kawai, Tomohiro; Takahashi, Nozomi; Hiratani, Shungo; Watanabe, Yusuke; Yanase, Takashi; Shimada, Toshihiro [Graduate School of Engineering, Hokkaido University, Kita13 Nishi8, Kitak-ku, Sapporo 060-8628 (Japan)

    2014-09-08T23:59:59.000Z

    Fe{sub 3}O{sub 4} is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe{sub 3}O{sub 4} electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe{sub 3}O{sub 4}(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe{sub 3}O{sub 4} (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe{sub 3}O{sub 4}(110) electrodes and obtained a TMR effect of ?12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe{sub 3}O{sub 4} predicted from band calculations.

  13. Novel room temperature ferromagnetic semiconductors

    E-Print Network [OSTI]

    Gupta, Amita

    2004-01-01T23:59:59.000Z

    Spin Related Phenomena in Semiconductors, (27-28 Jan 1997,FERROMAGNETIC SEMICONDUCTORS Amita Gupta Stockholm, Junedata are processed by semiconductor chips, and stored in the

  14. Interfacial Ionic Liquids: Connecting Static and Dynamic Structures

    E-Print Network [OSTI]

    Ahmet Uysal; Hua Zhou; Guang Feng; Sang Soo Lee; Song Li; Peter T. Cummings; Pasquale F. Fulvio; Sheng Dai; John K. McDonough; Yury Gogotsi; Paul Fenter

    2014-12-06T23:59:59.000Z

    It is well-known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e., with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time X-ray reflectivity (XR) to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics (MD) simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion and cation adsorbed structures separated by an energy barrier (~0.15 eV).

  15. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases NewsRoom

  16. Ionic liquids and electrochemistry: from proteins to electrochromic devices.

    SciTech Connect (OSTI)

    Keizer, T. S. (Timothy S.); McCleskey, T. M. (Thomas Mark); Baker, G. A. (Gary A.); Burrell, A. K. (Anthony K.); Baker, S. N. (Sheila N.); Warner, B. P. (Benjamin P.); Hall, S. B. (Simon B.)

    2004-01-01T23:59:59.000Z

    We will report on a wide range of activities within the chemistry division at Los Alamos National Laboratory. Results on basic and applied research involving electrochemistry will be discussed. Topics will include electrochemistry of proteins, sensors based on electrochemical signals, temperature sensors, electrochromic devices in ionic liquids and the characterization of organic cation radicals. We have recently developed several applications in ionic liquids that include electrochromic devices, temperature sensors and chemical sensors. The electrochromic windows are being marketed as selftinting automotive mirrors. The ionic liquid based temperature sensor is stable and accurate over a wide range and has the potential to provide high-resolution temperature imaging. Chemical sensors have been developed that use electrochemistry to detect low levels of potential chemical agents in air. We have also studied the basic chemistry of charge transfer complexes and proteins in ionic liquids. Charge transfer complexes display unique behavior in ionic liquid compare to traditional solvents. Proteins can be solubilized at high levels that make it possible to probe electrochemistry in the proper ionic liquid.

  17. Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits.

    SciTech Connect (OSTI)

    Lee, S.; Cummins, M. D.; Willing, G. A.; Firestone, M. A.; Materials Science Division; Univ. of Louisville

    2009-01-01T23:59:59.000Z

    The transport properties of self-supporting Au nanoparticle-ionic liquid-derived polymer composites were characterized. Topographic AFM images confirm the perforated lamellar composite architecture determined by small-angle X-ray scattering (SAXS) and further show that the in situ synthesized Au nanoparticles are localized within the hydrophilic (water) domains of the structure. At low Au nanoparticle content, the images reveal incomplete packing of spherical particles (i.e., voids) within these columns. The confinement and organization of the Au nanoparticles within the hydrophilic columns give rise to a large manifold of optical resonances in the near-IR region. The bulk composite conductivity, R{sub b}, was determined by ac electrochemical impedance spectroscopy (EIS) for samples prepared with increasing Au{sup 3+} content over a frequency range of 10 Hz to 1 MHz. A 100-fold increase was observed in the bulk conductivity at room temperature for composites prepared with the highest amount of Au{sup 3+} (1.58 {+-} 0.065 {micro}mol) versus the no Au composite, with the former reaching a value of 1.3 x 10{sup -4} S cm{sup -1} at 25 C. The temperature dependence of the conductivity recorded over this range was well-modeled by the Arrhenius equation. EIS studies on samples containing the highest Au nanoparticle content over a broader range of frequencies (2 x 10{sup -2} Hz to 5 x 10{sup 5} Hz) identified a low frequency component ascribed to electronic conduction. Electronic conduction due to aggregated Au nanoparticles was further confirmed by dc conductivity measurements. This work identifies a nanostructured composite that exhibits both ionic transport through the polymeric ionic liquid and electronic conduction from the organized encapsulated columns of Au nanoparticles.

  18. Decoupling of Ionic Trasport from Segmental Relaxation in Polymer Electrolytes

    SciTech Connect (OSTI)

    Wang, Yangyang [ORNL; Agapov, Alexander L [ORNL; Fan, Fei [ORNL; Hong, Kunlun [ORNL; Yu, Xiang [ORNL; Mays, Jimmy [ORNL; Sokolov, Alexei P [ORNL

    2012-01-01T23:59:59.000Z

    We present detailed studies of the relationship between ionic conductivity and segmental relaxation in polymer electrolytes. The analysis shows that the ionic conductivity can be decoupled from segmental dynamics and the strength of the decoupling correlates with the fragility but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, where the loose local structure is also responsible for the increase in their fragility.

  19. Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL

    2011-01-01T23:59:59.000Z

    Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with widths from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width-dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of 'ion solvation' in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  20. Complex Capacitance Scaling in Ionic Liquids-filled Nanopores

    SciTech Connect (OSTI)

    Qiao, Rui [Clemson University; Huang, Jingsong [ORNL; Meunier, Vincent [ORNL; Sumpter, Bobby G [ORNL; Peng, Wu [Clemson University

    2011-01-01T23:59:59.000Z

    Recent experiments have shown that the capacitance of sub-nanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with width from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of ion solvation in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  1. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01T23:59:59.000Z

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  2. Methods of using ionic liquids having a fluoride anion as solvents

    DOE Patents [OSTI]

    Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

    2011-12-06T23:59:59.000Z

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  3. Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La{sub 0.8}Na{sub 0.1}MnO{sub 3}

    SciTech Connect (OSTI)

    Khlifi, M., E-mail: khlifimouadh3000@yahoo.fr; Dhahri, E. [Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, B.P. 802, Université de Sfax, Sfax 3018 (Tunisia); Hlil, E. K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-05-21T23:59:59.000Z

    The La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide was prepared by the solid-state reaction and annealed in air. The X-ray diffraction data reveal that the sample is crystallized in a rhombohedral structure with R3{sup ¯}c space group. Magnetic study shows a second-order magnetic phase transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C}?=?295?K. In addition, the magnetizations as a function of temperature and the magnetic field is used to evaluate the magnetic entropy change ?S{sub M}. Then, we have deduced that the La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide has a large magnetocaloric effect at room temperature. Such effect is given by the maximum of the magnetic entropy change ?S{sub Mmax}?=?5.56, and by the Relative cooling power (RCP) factor which is equal to 235 under a magnetic field of 5?T. Moreover, the magnetic field dependence of the magnetic entropy change is used to determine the critical exponents ?, ?, and ? which are found to be ??=?0.495, ??=?1.083, and ??=?3.18. These values are consistent with the prediction of the mean field theory (??=?0.5, ??=?1, and ??=?3). Above all, the temperature dependence of electrical resistivity shows a metal–insulator transition at T{sub ?}. The electrical resistivity decrease when we apply a magnetic field giving a magnetoresistance effect in the order of 60% at room temperature.

  4. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01T23:59:59.000Z

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport mechanism established. The presentation will detail membrane development, the effect of increasing transmembrane pressure, and preliminary results dealing with other gas pairs and contaminants.

  5. Ionic Liquid Pretreatment Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane HydrateEnergy InvestmentsWorld DesignIonic

  6. Room to grow | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room to grow Room to grow Released: June 26, 2012 New lithium ion battery strategy offers more energy, longer life cycle In situ transmission electron microscopy at EMSL was used...

  7. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect (OSTI)

    Feng, Guang [ORNL; Jiang, Deen [ORNL; Cummings, Peter T [ORNL

    2012-01-01T23:59:59.000Z

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  8. Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?

    SciTech Connect (OSTI)

    Agapov, Alexander L [ORNL; Sokolov, Alexei P [ORNL

    2011-01-01T23:59:59.000Z

    Using broadband dielectric spectroscopy, we studied the temperature dependence of ionic conductivity and structural relaxation in a number of polymers. We demonstrate that temperature dependence of ionic conductivity can be decoupled from structural relaxation in a material specific way. We show that the strength of the decoupling correlates with the steepness of the temperature dependence of structural relaxation in the polymer, i.e., with its fragility. We ascribe the observed result to stronger frustration in chain packing characteristic for more fragile polymers. We speculate that employment of more fragile polymers might lead to design of polymers with higher ionic conductivity.

  9. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect (OSTI)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30T23:59:59.000Z

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

  10. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    SciTech Connect (OSTI)

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30T23:59:59.000Z

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  11. Room temperature magnetocaloric effect and refrigerant capacitance in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube arrays

    SciTech Connect (OSTI)

    Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Sousa, C. T.; Pires, A.; Pereira, A. M.; Araujo, J. P. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Porto (Portugal); Lopes, A. M. L. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Porto (Portugal); CFNUL, University of Lisbon, Lisbon (Portugal)

    2014-08-25T23:59:59.000Z

    High aspect ratio La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanotube (NT) arrays have been synthesized using nitrates based sol-gel precursor by nanoporous anodized aluminum oxide template assisted method. Their phase purity and microstructures were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Magnetocaloric effect (MCE) of as prepared NTs was investigated by means of field dependence magnetization measurements. Significant magnetic entropy change, ??S{sub M}?=?1.6?J/kg K, and the refrigerant capacitance, RC?=?69?J/kg, were achieved near the transition temperature at 315?K for 5?T. For comparison, a bulk sample was also prepared using the same precursor solution which gives a value of ??S{sub M}?=?4.2?J/kg K and a RC?=?165?J/kg. Though the bulk sample exhibits higher ?S{sub M} value, the NTs present an expanded temperature dependence of ??S{sub M} curves that spread over a broad temperature range and assured to be appropriate for active magnetic refrigeration. The diminutive MCE observed in manganite NTs is explained by the increased influence of surface sites of nanograins which affect the structural phase transition occurred by external magnetic field due to the coupling between magnetism and the lattice in manganese perovskites. Our report paves the way for further investigation in 1D manganite nanostructured materials towards applications in such magnetic refrigeration technology or even on hyperthermia/drug delivery.

  12. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products

    SciTech Connect (OSTI)

    Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); Bruce Mincher

    2012-12-01T23:59:59.000Z

    This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf{sub 2}N] with TBP(HNO{sub 3}){sub 1.8}(H{sub 2}O){sub 0.6} and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO{sub 2} phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO{sub 2} phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO{sub 2}) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO{sub 2} has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO{sub 2} extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf{sub 2}N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO{sub 2} extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at ambient temperature and pressure, selective extraction due to tunable sc-CO{sub 2} solvation strength, no IL loss during back-extraction, and no organic solvent introduced into the IL phase.

  13. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01T23:59:59.000Z

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Improvements to the ionic liquid and support have allowed testing of these supported ionic liquid membranes at temperatures up to 300°C without loss of support mechanical stability or degradation of the ionic liquid. Substantial improvements in selectivity have also been observed at elevated temperature with the best membrane currently achieving optimum performance at 75°C.

  14. Ab-initio Kinetic Monte Carlo Model of Ionic Conduction in Bulk Yttria-stabilized Zirconia

    E-Print Network [OSTI]

    Cai, Wei

    oxide fuel cell (SOFC) and oxygen sensor, and hence has been extensively studied. In particular, the necessity of reducing the operating temperature of SOFC without losing ionic conductivity encourages

  15. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Abstract: The degradation of the ionic pathway throughout the catalyst...

  16. Refreshments will be served For more information contact Kim Coleman at kcole@wustl.edu

    E-Print Network [OSTI]

    Subramanian, Venkat

    and solid poly- mers, proteins, asphaltenes, and Room Temperature Ionic Liquids as well as numerical

  17. ORNL 2010-G01068/jcn UT-B ID 200501661

    E-Print Network [OSTI]

    additives. Room temperature ionic liquids are familiarly known as "green solvents," and this invention

  18. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, S.

    1994-06-21T23:59:59.000Z

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  19. Research on Thermal Properties in a Phase Change Wallboard Room Based on Air Conditioning Cold Storage

    E-Print Network [OSTI]

    Feng, G.; Li, W.; Chen, X.

    2006-01-01T23:59:59.000Z

    After comparing the thermal performance parameters of an ordinary wall room to a phase change wall (PCW) room, we learn that phase change wallboard affects the fluctuation of temperature in air-conditioning room in the summer. We built a PCW room...

  20. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes

    SciTech Connect (OSTI)

    Wang, Yangyang [ORNL; Fan, Fei [ORNL; Agapov, Alexander L [ORNL; Saito, Tomonori [ORNL; Yang, Jun [ORNL; Yu, Xiang [ORNL; Hong, Kunlun [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

    2014-01-01T23:59:59.000Z

    Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

  1. Unusual oxidation states give reversible room temperature magnetocaloric effect on perovskite-related oxides SrFe{sub 0.5}Co{sub 0.5}O{sub 3}

    SciTech Connect (OSTI)

    Yin, C.; Liu, Q.; Decourt, R.; Pollet, M.; Gaudin, E. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Toulemonde, O., E-mail: toulemon@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France)

    2011-12-15T23:59:59.000Z

    The magnetic properties and the magnetocaloric effect are presented for the perovskite-related oxide SrFe{sub 0.5}Co{sub 0.5}O{sub 3} prepared using electrochemical oxidation. SrFe{sub 0.5}Co{sub 0.5}O{sub 3} exhibits a second order paramagnetic-ferromagnetic transition close to room temperature (T{sub C}=330 K). The maximal magnetic entropy change {Delta}S{sub M}{sup Max} , the maximal adiabatic temperature change {Delta}T{sub ad} and the refrigerant capacity are found to be equal to respectively 4.0 J/kgK, 1.8 K and 258 J/kg while raising the B-field change from 0 to 5 T. - Graphical Abstract: Moderate but reversible magnetocaloric properties are associated with the 2nd order paramagnetic to ferromagnetic phase transition exhibited at 330 K. A metal-like behavior is seen for the first time on the ferromagnetic regime. Highlights: Black-Right-Pointing-Pointer Both Fe{sup 4+} and Co{sup 4+} are stabilized on perovskite-related phase SrFe{sub 0.5}Co{sub 0.5}O{sub 3} using electrochemical oxidation. Black-Right-Pointing-Pointer Its crystallographic structure is cubic. Black-Right-Pointing-Pointer SrFe{sub 0.5}Co{sub 0.5}O{sub 3} is metal-like/ferromagnetic below 330 K Black-Right-Pointing-Pointer SrFe{sub 0.5}Co{sub 0.5}O{sub 3} exhibits magnetocaloric properties associated with the sharp paramagnetic to ferromagnetic phase transition.

  2. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  3. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  4. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12T23:59:59.000Z

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  5. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency. Current photocathodes degrade because cesium, the alkali material, leaves the emitting surface over the lifetime of the device. The RTDP, on the other hand,...

  6. Room temperature and productivity in office work

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.; Lei, Q.H.

    2006-01-01T23:59:59.000Z

    vigilance in a moving vehicle. Ergonomics 39 (1996)1,61-75.paired associate learning. Ergonomics, 21 [2] Berglund, L. ,

  7. Room temperature and productivity in office work

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.; Lei, Q.H.

    2006-01-01T23:59:59.000Z

    University of Technology Laboratory of Heating, VentilatingUniversity of Technology, Laboratory of Heating, Ventilating

  8. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01T23:59:59.000Z

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  9. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01T23:59:59.000Z

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  10. Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition

    E-Print Network [OSTI]

    Trivedi, Tushar J; Kumar, Arvind

    2014-01-01T23:59:59.000Z

    We report simultaneous dissolution of agarose (AG) and chitosan (CH) in varying proportions in an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]. Composite materials were constructed from AG-CH-IL solutions using the antisolvent methanol, and IL was recovered from the solutions. Composite materials could be uniformly decorated with silver oxide (Ag2O) nanoparticles (Ag NPs) to form nanocomposites in a single step by in situ synthesis of Ag NPs in AG-CH-IL sols, wherein the biopolymer moiety acted as both reducing and stabilizing agent. Cooling of Ag NPs-AG-CH-IL sols to room temperature resulted in high conductivity and high mechanical strength nanocomposite ionogels. The structure, stability and physiochemical properties of composite materials and nanocomposites were characterized by several analytical techniques, such as Fourier transform infrared (FTIR), CD spectroscopy, differential scanning colorimetric (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and...

  11. Halogenation of Imidazolium Ionic Liquids. Thermodynamics Perspective

    E-Print Network [OSTI]

    Chaban, Vitaly V

    2015-01-01T23:59:59.000Z

    Imidazolium cations are promising for anion exchange membranes, and electrochemical applications and gas capture. They can be chemically modified in many ways including halogenation. Halogenation possibilities of the imidazole ring constitute a particular interest. This work investigates fluorination and chlorination reactions of all symmetrically non-equivalent sites of the imidazolium cation. Halogenation of all carbon atoms is thermodynamically permitted. Out of these, the most favorable site is the first methylene group of the alkyl chain. In turn, the least favorable site is carbon of the imidazole ring. Temperature dependence of enthalpy, entropy, and Gibbs free energy at 1 bar is discussed. The reported results provide an important guidance in functionalization of ionic liquids in search of task-specific compounds.

  12. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2014-09-15T23:59:59.000Z

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.1–0.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  13. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  14. Research on Cool Storage Time of a Phase Change Wallboard Room in the Summer 

    E-Print Network [OSTI]

    Feng, G.; Liang, R.; Li, G.

    2006-01-01T23:59:59.000Z

    Through testing and analysis of the parameters of the indoor thermal property in a phase change wallboard room and an ordinary room, the effects of using phase change wallboards on indoor temperature in summer and with air ...

  15. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12T23:59:59.000Z

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  16. Room temperature multiferroic properties of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}–Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} composites

    SciTech Connect (OSTI)

    Pradhan, Dhiren K., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Katiyar, Ram S., E-mail: dhirenkumarp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Narayan Tripathy, Satya; Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India); Scott, J. F. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)

    2013-12-21T23:59:59.000Z

    We report the crystal structure, magnetic, ferroelectric, dielectric, and magneto-dielectric properties of [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3}]{sub (1?x)}[Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}]{sub x}: (x?=?0.1, 0.2, 0.3, and 0.4) composites. Rietveld refinement results of X-ray diffraction patterns confirm the formation of these composites for all x values. All the composites show well-saturated ferroelectric and ferromagnetic hysteresis (multiferroic-composite behavior) at room temperature. With increase in Co{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4} (CZFO) content an increase in saturation magnetization, and decrease in saturation polarization, remanent polarization, and dielectric constant are observed. The ferroelectric phase transition temperature increases with increase in CZFO content. All of the compositions undergo second-order ferroelectric phase transitions, which can be explained by Landau-Devonshire theory. The recoverable energy density (?0.20 to 0.04?J/cm{sup 3}) and charge-curve energy density (?0.84 to 0.11?J/cm{sup 3}) decrease with increase in the CZFO content. The room-temperature magneto-dielectric measurements provide direct evidence of magneto-electric coupling via strain at room temperature.

  17. Adsorption of acetonitrile (CH{sub 3}CN) on Si(111)-7x7 at room temperature studied by synchrotron radiation core-level spectroscopies and excited-state density functional theory calculations

    SciTech Connect (OSTI)

    Bournel, F.; Carniato, S.; Dufour, G.; Gallet, J.-J.; Ilakovac, V.; Rangan, S.; Rochet, F.; Sirotti, F. [Laboratoire de Chimie Physique Matiere et Rayonnement, Universite Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Boite Postale 48, 91192 Gif sur Yvette Cedex (France)

    2006-03-15T23:59:59.000Z

    The room temperature adsorption of acetonitrile (CH{sub 3}-C{identical_to}N) on Si(111)-7x7 is examined by synchrotron radiation N 1s x-ray photoemission and x-ray absorption spectroscopies. The experimental spectroscopic data point to multiple adsorption geometries. Candidate structures are optimized using density functional theory (DFT), the surface being simulated by silicon clusters encompassing one (adjacent) adatom-rest atom pair. This is followed by the DFT calculation of electron transition energies and cross sections. The comparison of theoretical spectra with experimental ones indicates that the molecule is adsorbed on the surface under two forms, a nondissociated geometry (an sp{sup 2}-hybridized CN) and a dissociated one (leading to a pendent sp-hybridized CN). In the nondissociative mode, the molecule bridges an adatom-rest atom pair. For bridge-type models, the discussion of the core-excited state calculations is focussed on the so-called silicon-molecule mixed-state transitions that strongly depend on the breaking or not of the adatom backbonds and on the attachment of the nitrogen end either to the adatom or to the rest atom. Concerning the dissociated state, the CH bond cleavage leads to a cyanomethyl (Si-CH{sub 2}-CN) plus a silicon monohydride, which accounts for the spectroscopic evidence of a free C{identical_to}N group (we do not find at 300 K any spectroscopic evidence for a C{identical_to}N group datively bonded to a silicon atom via its nitrogen lone pair). Therefore the reaction products of acetonitrile on Si(111)-7x7 are similar to those detected on the Si(001)-2x1 surface at the same temperature, despite the marked differences in the reconstruction of those two surfaces, especially the distance between adjacent silicon broken bonds. In that respect, we discuss how adatom backbond breaking in the course of adsorption may explain why both surface orientations react the same way with acetonitrile.

  18. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  19. Study on Influencing Factors of Night Ventilation in Office Rooms

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01T23:59:59.000Z

    A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort are simulated using Airpak software. Some main influencing factors of night ventilation in office rooms...

  20. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    SciTech Connect (OSTI)

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10T23:59:59.000Z

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  1. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect (OSTI)

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14T23:59:59.000Z

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  2. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  3. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09T23:59:59.000Z

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  4. Interfacial ionic liquids: connecting static and dynamic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structures separated by an energy barrier (0.15 eV). Keywords: ionic liquid, supercapacitor, electric double layer, epitaxial graphene, x-ray reflectivity, RTIL, interfacial...

  5. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    SciTech Connect (OSTI)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P., E-mail: jcoutinho@ua.pt [CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal)] [CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Gonçalves, Fernando [Departamento de Biologia e CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro (Portugal)] [Departamento de Biologia e CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro (Portugal); Esperança, José [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras (Portugal)] [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras (Portugal); Mutelet, Fabrice [Laboratoire Réactions et Génie des Procédés, CNRS (UPR3349), Nancy-Université, 1 rue Grandville, BP 20451 54001 Nancy (France)] [Laboratoire Réactions et Génie des Procédés, CNRS (UPR3349), Nancy-Université, 1 rue Grandville, BP 20451 54001 Nancy (France)

    2014-02-14T23:59:59.000Z

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  6. Room Policies Printing Options

    E-Print Network [OSTI]

    , please return them to the desk for new ones. Saving the stuff you write on the Whiteboard 1. Make the room as bright as you can for best contrast 2. Hit the "Save to Web" button on the gray wall box 3, they are incorrect. #12;2. Click on your image to enlarge it. Click on the image to get the `save' option. Save

  7. Elucidating graphene - Ionic Liquid interfacial region: a combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphene - Ionic Liquid interfacial region: a combined experimental and computational study. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and...

  8. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

  9. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  10. Ionic Liquids as Multifunctional Ashless Additives for Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Ashless Additives for Engine Lubrication Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication A group of oil-miscible ionic liquids has been...

  11. Infrared spectroscopy of ionic clusters

    SciTech Connect (OSTI)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01T23:59:59.000Z

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  12. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect (OSTI)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance.

  13. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  14. Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

    SciTech Connect (OSTI)

    Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

    2002-06-21T23:59:59.000Z

    Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

  15. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  16. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  17. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect (OSTI)

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01T23:59:59.000Z

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  18. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    SciTech Connect (OSTI)

    Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

    2010-01-01T23:59:59.000Z

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  19. Superbase-derived protic ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03T23:59:59.000Z

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  20. Carbon dioxide separation through supported ionic liquids membranes in polymeric matrixes

    SciTech Connect (OSTI)

    Ilconich, J.B.; Luebke, D.R.; Myers, C.R.; Pennline, H.W

    2006-09-01T23:59:59.000Z

    As compared to other gas separation techniques, membranes have several advantages which can include low capital cost, relatively low energy usage and scalability. While it could be possible to synthesize the ideal polymer for membrane separation of carbon dioxide from fuel gas, it would be very intensive in terms of money and time. Supported liquid membranes allow the researcher to utilize the wealth of knowledge available on liquid properties. Ionic liquids, which can be useful in capturing CO2 from fuel gas because they posses high CO2 solubility in the ionic liquid relative to H2, are an excellent candidate for this type of membrane. Ionic liquids are not susceptible to evaporation due to their negligible vapor pressure and thus eliminate the main problem typically seen with supported liquid membranes. A study has been conducted evaluating the use of the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, the ionic liquid was synthesized and characterized at the University of Notre Dame, incorporated into a polymeric matrix, and tested at the National Energy Technology Laboratory. Initial results have been very promising with calculated CO2 permeabilities as high as 950 barrers and significant improvements in CO2/H2 selectivity over the unmodified polymer at 37 oC along with promising results at elevated temperatures. In addition to performance, the study included examining the choice of polymeric supports on performance and membrane stability in more realistic operating conditions. Also included in this study was an evaluation of novel approaches to incorporate the ionic liquid into polymer matrices to optimize the performance and stability of the membranes.

  1. Ion transport and storage of ionic liquids in ionic polymer conductor network composites

    E-Print Network [OSTI]

    Heflin, Randy

    , have shown a great promise for ap- plications in energy storage, conversion devices, and otherIon transport and storage of ionic liquids in ionic polymer conductor network composites Yang Liu,1, USA 6 Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA Received 24 February

  2. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  3. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16T23:59:59.000Z

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  4. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  5. "Rapid Pattern Based Powder Sintering With Room Temperature Polymer Infiltration," Z. He, Y. Kim, M. Kokkengada and J. G. Zhou, Proceedings of the Tenth Solid Freeform Fabrication Symposium, Austin, Texas,

    E-Print Network [OSTI]

    Zhou, Jack

    of polymer materials, several kinds of infiltration materials were selected, and their main mechanical and infiltration. After a green mold or part, having desired cavity/geometry, is made through laser scanning (such should have a lower melting temperature than that of the powder material, so that the melted alloy can

  6. Integrated experimental and modeling study of the ionic conductivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling study of the ionic conductivity of samaria-doped ceria thin films. Abstract: Oxygen diffusion and ionic conductivity of samaria-doped ceria (SDC) thin films have been...

  7. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect (OSTI)

    Holcomb, Don

    2011-03-29T23:59:59.000Z

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  8. Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles

    E-Print Network [OSTI]

    Lu, Wei

    2014-05-14T23:59:59.000Z

    and with organic solvents and electrochemical properties [7]. Because of these properties ionic liquids become a new green solvent or lubricant in industrial application. 1.2.2 The application of ionic liquid in tribology 1.2.2.1 Ionic liquids as lubrication...

  9. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    SciTech Connect (OSTI)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Sazonkin, M. A., E-mail: figma@mail.r [Sarov State Physicotechnical Institute (Russian Federation)

    2010-11-15T23:59:59.000Z

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  10. Thermal and structural properties of ionic fluids

    E-Print Network [OSTI]

    Hendrik Bartsch; Oliver Dannenmann; Markus Bier

    2015-05-04T23:59:59.000Z

    The electrostatic interaction in ionic fluids is well-known to give rise to a characteristic phase behavior and structure. Sometimes its long range is proposed to single out the electrostatic potential over other interactions with shorter ranges. Here the importance of the range for the phase behavior and the structure of ionic fluids is investigated by means of grandcanonical Monte Carlo simulations of the lattice restricted primitive model (LRPM). The long-ranged electrostatic interaction is compared to various types of short-ranged potentials obtained by sharp and/or smooth cut-off schemes. Sharply cut off electrostatic potentials are found to lead to a strong dependence of the phase behavior and the structure on the cut-off radius. However, when combined with a suitable additional smooth cut-off, the short-ranged LRPM is found to exhibit quantitatively the same phase behavior and structure as the conventional long-ranged LRPM. Moreover, the Stillinger-Lovett perfect screening property, which is well-known to be generated by the long-ranged electrostatic potential, is also fulfilled by short-ranged LRPMs with smooth cut-offs. By showing that the characteristic phase behavior and structure of ionic fluids can also be found in systems with short-ranged potentials, one can conclude that the decisive property of the electrostatic potential in ionic fluids is not the long range but rather the valency dependence.

  11. 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09T23:59:59.000Z

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  12. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 480012 (Kazakhstan); Deutsch, Claude [LPGP (UMR-CNRS 8578), Universite Paris XI, 91405 Orsay (France); Fromy, Patrice [Direction de l'Informatique, Universite Paris XI, 91405 Orsay (France)

    2008-10-15T23:59:59.000Z

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  13. Building Name Room Support By

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Building Name Room Technology Classroom? Technology Support By: Phone Number: Contact Name: Agricultural Sciences Building G29 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G31 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G101 Standard iDC 304-293-2832 n/a Agricultural

  14. Master Clock in Laser Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Master Clock in Laser Room Master clock MITEQ MN XTO-02-81.6-G-T-20P SN 180585 1 2 3 4 To YAG SYSTEM CLOCK To YAG SYSTEM C 975 81.6 MHz To MEZZ SPARE J17 J15 Multiplier...

  15. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    SciTech Connect (OSTI)

    Bedrov, Dmitry [University of Utah] [University of Utah

    2013-08-15T23:59:59.000Z

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  16. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. Substantial progress has been made on both characterizing thin films as well as developing methods to produce films on nanoporous substrates. The results of electrical conductivity measurements on ZrO{sub 2}:16%Sc nanocrystalline thin films under controlled oxygen partial pressure and temperature are presented. The experimental data have been interpreted using a defect model, which describes the interaction between Sc and oxygen vacancies resulting in the formation of donor - (Sc{sub Zr} - V{sub o} - e){sup x} and acceptor - (Sc{sub Zr}-h){sup x} levels. From this the electronic and ionic contribution to the electrical transport has been determined and correlated with the band structure. These results suggest that ZrO{sub 2}:16%Sc possesses higher electronic conductivity than ZrO{sub 2}:16%Y, which dominates the total conductivity in reducing atmospheres. This is an important result since it indicates that Sc-YSZ maybe useful in the anode regions of the cell. We have made important breakthroughs on depositing dense Ceria films on to porous LSM substrates. In previous studies we have found that in order to produce a surface which is smooth enough to coat with dense polymer precursor derived films, the required thickness of the colloidal film layer is determined by the maximum surface roughness. That is, if we wish to make 2 micron thick colloidal oxide layers, the roughness of the LSM surface can not exceed 2 microns. Currently, we are producing the composite CeO{sub 2}/LSM structures that can be coated with polymer precursor to produce 0.5 to 1.5 micron thickness dense YSZ films. In the next quarter, we will be testing SOFC's using these structures. YSZ/CeO{sub 2}/LSM composites have been formed by annealing at 800 C. Our studies show that the YSZ films are very dense with a 20 nm grain size. SOFC's using these composites are being fabricated and we expect to obtain cell data during the next quarter. As we reported in November 2000, we have had difficulties in making pore free films with larger areas that about 0.2cm{sup 2} which is due to problems in our clean room. Modifications have now been completed on the clean room and we should be approaching a class 100 in the film making area. This level of cleanliness is sufficient to obtain films without pores over areas up to 100cm{sup 2}.

  17. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  18. The Live Room : transducing resonant architectures

    E-Print Network [OSTI]

    Bain, Mark, 1966-

    1998-01-01T23:59:59.000Z

    The Live Room is a temporary site specific installation presented in building N 51, room 117 on the MIT campus on May 7, 1998 and concluded on June 10, 1998. Using small acoustic intensifying equipment which mount directly ...

  19. Temperature Sensor Data Michael W. Bigrigg

    E-Print Network [OSTI]

    Sadeh, Norman M.

    in the room. Sensor networks can be used to identify larger trends in temperature which could be used to report energy usage, HVAC problems, computer failures based on high temperatures, and fire evacuation

  20. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... of thermostat, and the relationship between room temperature set point and return air temperature. The Role Of Thermostat Traditional pneumatic thermostat is a proportional (P) type controller. It senses the space temperature changes and produces...

  1. Auto Template Assembly of CaCO3-Chitosan Hybrid Nanoboxes and Nanoframes in Ionic Liquid Medium

    E-Print Network [OSTI]

    Chen, Hsingming Anna

    2012-07-16T23:59:59.000Z

    . Consequently, ILs exist in the liquid state at room temperature. ILs have extremely low vapor pressure compared to traditional volatile solvents; this characteristic qualifies them to be categorized as green solvents. Moreover, particular synthesis...

  2. Library Reserved Room Policy All Meeting Spaces

    E-Print Network [OSTI]

    Mather, Patrick T.

    Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

  3. Multisurface Interaction in the WILD Room

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Multisurface Interaction in the WILD Room Michel Beaudouin-Lafon, Stéphane Huot, Mathieu University Abstract The WILD room (wall-sized interaction with large datasets) serves as a testbed. (2012), "Multisurface Interaction in the WILD Room", IEEE Computer, vol 45, nº 4, pp. 48-56. DOI

  4. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03T23:59:59.000Z

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  5. Electronic Docket Room (e-Docket Room) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifying YourElectronic Docket Room

  6. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01T23:59:59.000Z

    + ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

  7. Lipid extraction from microalgae using a single ionic liquid

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28T23:59:59.000Z

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  8. Compositions and methods useful for ionic liquid treatment of biomass

    DOE Patents [OSTI]

    Dibble, Dean C.; Cheng, Aurelia; George, Anthe

    2014-07-29T23:59:59.000Z

    The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

  9. Effect of Ferroelectric Polarization on Ionic Transport and Resistance ...

    E-Print Network [OSTI]

    2014-07-18T23:59:59.000Z

    reliability of ceramic capacitors emerges as a critical chal- lenge when operation ... On the other hand, mathematical models of ionic/electronic defect transport ...

  10. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  11. Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    test results showed that compared with fully-formulated engine oils, selected low-viscosity ionic liquids, used as neat lubricants or basestock, produced significantly lower...

  12. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  13. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect (OSTI)

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01T23:59:59.000Z

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  14. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15T23:59:59.000Z

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  15. Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory

    SciTech Connect (OSTI)

    Qin, Yuan; Prausnitz, John M.

    2005-09-20T23:59:59.000Z

    In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.

  16. Ionic conductivity of Bi{sub 2}Ni{sub x}V{sub 1?x}O{sub 5.5?3x/2} (0.1 ? x ? 0.2) oxides prepared by a low temperature sol-gel route

    SciTech Connect (OSTI)

    Rusli, Rolan; Patah, Aep, E-mail: ismu@chem.itb.ac.id; Prijamboedi, Bambang, E-mail: ismu@chem.itb.ac.id; Ismunandar, E-mail: ismu@chem.itb.ac.id [Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Abrahams, Isaac [Materials Research Institute, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-03-24T23:59:59.000Z

    Solid oxides fuel cells (SOFCs) is one technology that could contribute toward future sustainable energy. One of the most important components of an SOFC is the electrolyte, which must have high ionic conductivity. Cation substitution of vanadium in Bi{sub 4}V{sub 2}O{sub 11} yields a family of fast oxide ion conducting solids known collectively as the BIMEVOXes (bismuth metal vanadium oxide), which have the potential to be applied as electrolytes in SOFCs. The purpose of this work is to study the effect of Ni concentration, when used as a dopant, on the ionic conductivity of Bi{sub 2}Ni{sub x}V{sub 1?x}O{sub 5.5?3x/2} (BINIVOX) oxides (0.1 ? x ? 0.2) when prepared by a sol gel method. The gels were calcined at 600 °C for 24 h to produce pure BINIVOX. These oxides were found to exhibit the ?-phase structure with tetragonal symmetry in space group I4/mmm. Ionic conductivity of BINIVOX at 300 °C were 6.9 × 10{sup ?3} S cm{sup ?1}, 1.2 × 10{sup ?3} S cm{sup ?1}, and 8.2 × 10{sup ?4} S cm{sup ?1}, for x = 0.1; 0.15; and 0.2; respectively; and at 600 °C were 1.1 × 10{sup ?1} S cm{sup ?1}, 5.3 × 10{sup ?2} S cm{sup ?1}, and 2.8 ×10{sup ?2} S cm{sup ?1}, for x = 0.1; 0.15; and 0.2; respectively.

  17. Last Updated 8/12/2013 Page 1 of 2 Meeting Room 2 Meeting Room 3 Meeting Room 4 Meeting Room 5 Meeting Room 6

    E-Print Network [OSTI]

    Minnesota, University of

    Meeting Room 6 8:00 a.m.-12:00 noon Intro to LID Rainwater Harvesting 1:00-5:00 p.m. Advances in Design Strategies for Achieving Water Quality Goals Publications and Approaches for Mainstreaming LID LID Modeling Cities Light Rail Monitoring Bioretention and Rainwater Harvesting Systems Urban Trees as a LID Source

  18. Durable electrooptic devices comprising ionic liquids

    SciTech Connect (OSTI)

    Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2005-11-01T23:59:59.000Z

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  19. Ionic Power Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESInterval DataCalifornia:PowerIonic

  20. Ionic Liquid Pretreatment Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15 PATRICIA HOFFMANEnergy Investor DealatIonic

  1. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  2. Room-Temperature Synthesis Leading to Nanocrystalline Frederic Sauvage,

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    . Introduction The need for energy storage gave rise to the lithium-ion battery, while the effort given electrode in Li- ion batteries, despite a very low intrinsic electronic conductivity of ca. 10-9 S

  3. Evaluation of Station Post Porcelain Insulators with Room Temperature

    E-Print Network [OSTI]

    research on challenges facing the electric power industry and educating the next generation of power&E for their assistance in this project. PSERC is a National Science Foundation Industry/University Cooperative Research were artificially contaminated with different levels of contamination ranging from light to very heavy

  4. Strong Room-temperature Negative Transconductance In An Axial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Si-based device. We characterize the NTC characteristics over a range of gate VG and drain VD voltages, finding that NTC persists down to VD –50 mV. The physical...

  5. Aqueous, Room Temperature Electrochemical Deposition of Compact Si Films

    E-Print Network [OSTI]

    Suni, Ian Ivar

    . For all Si deposi- tion experiments, the Al sample was rotated at 850 rpm with a rotat- ing disc electrode scanning electron microscope (FESEM), following Au=Pd sputtering. X-ray diffraction measure- ments were

  6. Efficient room-temperature source of polarized single photons

    DOE Patents [OSTI]

    Lukishova, Svetlana G. (Honeoye Falls, NY); Boyd, Robert W. (Rochester, NY); Stroud, Carlos R. (Rochester, NY)

    2007-08-07T23:59:59.000Z

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  7. Ge-on-Si laser operating at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    Monolithic lasers on Si are ideal for high-volume and large-scale electronic–photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide ...

  8. The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature

    E-Print Network [OSTI]

    Brezinski, Mark E.

    2012-01-01T23:59:59.000Z

    The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within ...

  9. Generating Ultrafast Inhomogeneous Strain in Room-Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Force to Influence Cell Survival X-ray Topography of Threading Dislocations in Aluminum Nitride New Materials for Capturing Carbon Dioxide from Combustion Gases Building...

  10. Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order?Disorder and Order?Order Transitions

    SciTech Connect (OSTI)

    Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.; Gann, Eliot; Hexemer, Alex; Balsara, Nitash P.; (UCB); (LBNL)

    2009-09-15T23:59:59.000Z

    Order-order and order-disorder phase transitions in mixtures of poly(styrene-block-ethylene oxide) (SEO) copolymers and lithium bis(trifluoromethylsulfonimide) (LiTFSI), a common lithium salt used in polymer electrolytes, were studied using a combination of small-angle X-ray scattering (SAXS), birefringence, and ac impedance spectroscopy. The SEO/LiTFSI mixtures exhibit lamellar, hexagonally packed cylinders, and gyroid microphases. The molecular weight of the blocks and the salt concentration was adjusted to obtain order-order and order-disorder transition temperatures within the available experimental window. The ionic conductivities of the mixtures, normalized by the ionic conductivity of a 20 kg/mol homopolymer PEO sample at the salt concentration and temperature of interest, were independent of temperature, in spite of the presence of the above-mentioned phase transitions.

  11. INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES

    E-Print Network [OSTI]

    Suni, Ian Ivar

    INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES H. Lin, A. A. Busnaina, and I. I. Suni T he removal of ionic contaminants from silicon surfaces surface contamination level canM Communications L td. INTRODUCTION with increasing frequency and power, and decreases Contamination removal is one

  12. Structure and magnetic behavior of transition metal based ionic liquids

    SciTech Connect (OSTI)

    Del Sesto, Rico E [Los Alamos National Laboratory (LANL); Mccleskey, T [Los Alamos National Laboratory (LANL); Burrell, Anthony K [ORNL; Baker, Gary A [ORNL; Thompson, Joe D. [Los Alamos National Laboratory (LANL); Scott, Brian L. [Los Alamos National Laboratory (LANL); Wilkes, John S [United States Air Force Academy (USAFA), Colorado; Williams, Peg [United States Air Force Academy (USAFA), Colorado

    2008-01-01T23:59:59.000Z

    A series of ionic liquids containing different paramagnetic anions have been prepared and all show paramagnetic behavior with potential applications for magnetic and electrochromic switching as well as novel magnetic transport; also, the tetraalkylphosphonium-based ionic liquids reveal anomalous magnetic behavior.

  13. Temperature effects on the electronic conductivity of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Mascaro, Mark Daniel

    2007-01-01T23:59:59.000Z

    The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

  14. Durable electrooptic devices comprising ionic liquids

    SciTech Connect (OSTI)

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin; John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-12-15T23:59:59.000Z

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  15. Electrochromic device with a polymer ionic conductor

    SciTech Connect (OSTI)

    Zhou, Y.; Gu, P.; Tang, J. [Zhejiang Univ., Hangzhou (China). Dept. of Optical Engineering

    1993-12-31T23:59:59.000Z

    An electrochromic material is one which can undergo a reversible color change on the exertion of an external electric field. This can be used for large-area glazings of future buildings, automobiles, aircrafts, etc. Transmittance control of the smart windows can be useful to reduce lighting, heating and cooling energy loads. The optical and electrochromic properties of tungsten oxide films deposited by e-beam evaporation were investigated. A laminated structure device was prepared. The as-deposited tungsten oxide film was used as the electrochromic film. A solid polymer electrolyte PPG-PMMA-LiClO{sub 4} was used as an ionic conductor. Spectrophotometric measurements show that the luminous transmittance of the device can be modulated between about 60% and 15%.

  16. Durable Electrooptic Devices Comprising Ionic Liquids

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2008-11-11T23:59:59.000Z

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  17. Durable electrooptic devices comprising ionic liquids

    SciTech Connect (OSTI)

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2006-10-10T23:59:59.000Z

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  18. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect (OSTI)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01T23:59:59.000Z

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters, graphic recorders, digital displays and counters, light indicators, visual and audio alarms, and cathode-ray tubes.

  19. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19T23:59:59.000Z

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  20. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16T23:59:59.000Z

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  1. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28T23:59:59.000Z

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  2. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect (OSTI)

    van Swol, Frank B.; Medforth, Craig John (University of New Mexico, Albuquerque, NM)

    2010-10-01T23:59:59.000Z

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  3. Utrecht University's High Potential Programme Making Room

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Utrecht University's High Potential Programme Making Room for Talent 2 #12;Making Room for Talent Utrecht University has a worldwide reputation for excellence in research across a broad range. This is why in 2003 Utrecht University created the High Potential Programme, an incentive scheme which gives

  4. Also Known As (Room or Building)

    E-Print Network [OSTI]

    Mottram, Nigel

    Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

  5. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01T23:59:59.000Z

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  6. Ionic conductivity and dielectric relaxation in {gamma}-irradiated TlGaTe{sub 2} crystals

    SciTech Connect (OSTI)

    Sardarli, R. M., E-mail: sardarli@yahoo.com; Samedov, O. A.; Abdullayev, A. P. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan); Huseynov, E. K. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Salmanov, F. T.; Alieva, N. A.; Agaeva, R. Sh. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan)

    2013-05-15T23:59:59.000Z

    The switching effect, field and temperature dependences of the permittivity and conductivity of TlGaTe{sub 2} crystals subjected to various {gamma}-irradiation doses are studied. Under rather low electric fields, the phenomenon of threshold switching with an S-shaped current-voltage characteristic containing a portion with negative differential resistance is observed in the crystals. In the region of critical voltages, current and voltage oscillations and imposed modulation are observed. Possible mechanisms of switching, ionic conductivity, disorder, and electrical instability in TlGaTe{sub 2} crystals are discussed.

  7. Los Alamos test-room results

    SciTech Connect (OSTI)

    McFarland, R.D.; Balcomb, J.D.

    1982-01-01T23:59:59.000Z

    Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

  8. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06T23:59:59.000Z

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  9. Analysis of Energy Saving in a Clean Room Air-conditioning System

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    temperature field, small supply air temperature difference, large airflow, but no reheater. As the design airflow rate of air conditioning system for cleaning mainly considered to meet the need of the cleanliness class, its air exchange rate was much... above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  10. Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions

    E-Print Network [OSTI]

    Haward, Simon J.

    In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions ...

  11. Ionic Liquids as Novel Lubricant Additives for Next-Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic Liquids as Novel Lubricant Additives for Next-Generation Fuel-Efficient Engines May 15 2015 10:00 AM - 11:00 AM Jun Qu, Materials Science and Technology Division ORNL...

  12. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    E-Print Network [OSTI]

    . Lozano June 2010 SSL # 6-10 #12;#12;Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion Nanako Takahashi, Paulo C. Lozano June 2010 SSL # 6-10 This work is based on the unaltered text

  13. The radiation chemistry of ionic liquids: a review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03T23:59:59.000Z

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore »radiation chemistry literature as it affects separations, with these considerations in mind.« less

  14. Kinetics and Solvent Effects in the Synthesis of Ionic Liquids

    E-Print Network [OSTI]

    Schleicher, Jay C.

    2007-12-12T23:59:59.000Z

    Ionic liquids (ILs) are being recognized as environmentally friendly ("green") solvents. However, their synthesis is often conducted in the very solvents that they will reportedly replace. This research has investigated the kinetics and solvent...

  15. The radiation chemistry of ionic liquids: a review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03T23:59:59.000Z

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  16. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOE Patents [OSTI]

    Lin, Yupo J. (Naperville, IL); Snyder, Seth W. (Lincolnwood, IL)

    2012-02-07T23:59:59.000Z

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  17. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Feng, Guang [Clemson University; Sumpter, Bobby G [ORNL; Qiao, Rui [ORNL; Meunier, Vincent [ORNL

    2011-01-01T23:59:59.000Z

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF4]; (2) the capacitance of EDLs near negative electrodes (with BMIM+ ion as the counter-ion) is smaller than that near positive electrodes (with BF4as counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.

  18. Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach

    SciTech Connect (OSTI)

    Srikanth Gopalan

    2006-12-31T23:59:59.000Z

    Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

  19. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect (OSTI)

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30T23:59:59.000Z

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  20. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  1. Environmental color for pediatric patient room design

    E-Print Network [OSTI]

    Park, Jin Gyu

    2009-05-15T23:59:59.000Z

    Color has a large impact on our psychological and physiological responses. This study examines the value of color as a component in a healing environment for pediatric patient rooms by measuring color preferences among healthy children, pediatric...

  2. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01T23:59:59.000Z

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  3. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    SciTech Connect (OSTI)

    Qu, J. [ORNL; Viola, M. B. [General Motors Company

    2013-10-31T23:59:59.000Z

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  4. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01T23:59:59.000Z

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  5. Temperature Dependent Neutron Scattering Sections for Polyethylene

    E-Print Network [OSTI]

    Roger E. Hill; C. -Y. Liu

    2003-09-05T23:59:59.000Z

    This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

  6. Field Test of Room-to-Room Distribution of Outside Air with Two Residential Ventilation Systems

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Barley, D.; Rudd, A.; Townsend, A.; Hancock, E.

    2008-08-01T23:59:59.000Z

    Uniform distribution of outside air is one way to ensure that residential dilution ventilation systems will provide a known amount of fresh air to all rooms.

  7. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25T23:59:59.000Z

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  8. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect (OSTI)

    Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2013-01-01T23:59:59.000Z

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  9. Analysis of Energy Saving in a Clean Room Air-conditioning System 

    E-Print Network [OSTI]

    Liu, S.; Liu, J.; Pei, J.; Wang, M.

    2006-01-01T23:59:59.000Z

    above, we had chosen a representative air-handling unit for the testing renovation of 2nd return air system. Cleaning area for this AHU was a capsule clean room with a hundred thousand cleanliness classes. Indoor controlled dry-bulb temperature...

  10. Thermal Inertia: Towards An Energy Conservation Room Management System (Technical report)

    E-Print Network [OSTI]

    Wang, Dan

    increasing attention to energy conservation around the world. The heating and air-conditioning systems-dissipated cool or heated air and conserve energy. We develop a green room management system with three main expenses of the heating or air-conditioning devices. Second, we build an energy-temperature correlation

  11. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21T23:59:59.000Z

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  12. RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System

    E-Print Network [OSTI]

    Whitehouse, Kamin

    RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

  13. A New Control Room for SLAC Accelerators

    SciTech Connect (OSTI)

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04T23:59:59.000Z

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  14. Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Hin Hark Gan

    E-Print Network [OSTI]

    Schlick, Tamar

    Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Approach Hin Hark Gan and Tamar an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin

  15. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction...

  16. Growth of flower-like CdSe dendrites from a Brnsted acidbase ionic liquid precursor{

    E-Print Network [OSTI]

    Utrecht, Universiteit

    solution of water, ethanol and ionic liquid based on formic acid and N,N-dimethylformamide. Experimental, ethanol, an ionic liquid based on formic acid and N,N-dimethylformamide, cadmium chloride and sel

  17. Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation

    E-Print Network [OSTI]

    Fedkiw, Timothy Peter

    2010-01-01T23:59:59.000Z

    Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

  18. Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators

    E-Print Network [OSTI]

    Liu, Sheng

    Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great ...

  19. Dynamics in Organic Ionic Liquids in Distinct Regions Using Charged and Uncharged Orientational Relaxation Probes

    E-Print Network [OSTI]

    Fayer, Michael D.

    Dynamics in Organic Ionic Liquids in Distinct Regions Using Charged and Uncharged Orientational probe molecules display markedly different rotational dynamics when analyzed using Stokes increasingly subslip as the length of ionic liquid alkyl chain is increased. The dynamics approach those

  20. Energy conservation standards for room air conditioners

    SciTech Connect (OSTI)

    Rosenquist, G.J. [Lawrence Berkeley National Lab., CA (United States)

    1998-12-31T23:59:59.000Z

    The National Appliance Energy Conservation Act (NAECA) of 1987 established minimum energy-efficiency standards for room air conditioners, which became effective on January 1, 1990. The 1990 minimum energy-efficiency ratios (EER) range from 8.0 to 9.0 (Btu/h)/W (2.34 to 2.64 W/W). As required by NAECA, the Department of Energy (DOE) must also consider amending the room air conditioner standards that went into effect in 1990. As a result, the DOE issued a Notice of Proposed Rulemaking (NOPR) in March 1994 proposing new energy-efficiency standards for several products including room air conditioners. DOE received an extensive number of comments in response to the updated standards that were proposed. A reanalysis was conducted incorporating these comments, resulting in revised estimates of the cost and efficiency increases for more efficient room air conditioner designs. This paper describes the cost-efficiency analysis of design options carried out in support of DOE`s effort to revise the energy-efficiency standards that were proposed for room air conditioners in March 1994. The analysis shows that for the most popular classes of room air conditioners (classes without reverse cycle, with louvered sides, and with capacities ranging from less than 5000 to 20,000 Btu/h [1758 to 5860 W]) EERs of approximately 10.0 (Btu/h)/W (2.93 W/W) can be achieved by incorporating commonly used technologies, such as high-efficiency rotary compressors, grooved refrigerant tubing, slit-type fins, subcoolers, and permanent split capacitor fan motors. Even greater increases in efficiency can be realized with brushless permanent magnet fan motors, enlarged heat exchanger coils, and variable-speed compressors.

  1. News Room | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases NewsRoomRoom

  2. Operation Manual for the TA Instruments TGA Q-500: Temperature Range: Room Temperature 1000C

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Sample Weight: 10 mg ­ 1 g Platinum Sample Pans are supplied by the lab. 1. If the TGA Q-500 experimental by EQUILIBRATE at 60°C. This will cool the furnace down without collecting data. The instrument is set to cool

  3. Effect of K loadings on nitrate formation/decomposition and on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NO2 adsorption at room temperature, ionic and bidentate nitrates were observed by fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter...

  4. Spinful fermionic ladders at incommensurate filling: Phase diagram, local perturbations, and ionic potentials

    SciTech Connect (OSTI)

    Carr, Sam T., E-mail: S.T.Carr@kent.ac.uk [School of Physical Sciences, University of Kent, Canterbury CT2 7NH (United Kingdom); Institut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruher Institut für Technologie, 76128 Karlsruhe (Germany); Narozhny, Boris N. [Institut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie, 76128 Karlsruhe (Germany) [Institut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruher Institut für Technologie, 76128 Karlsruhe (Germany); Nersesyan, Alexander A. [The Abdus Salam International Centre for Theoretical Physics, 34100, Trieste (Italy)] [The Abdus Salam International Centre for Theoretical Physics, 34100, Trieste (Italy)

    2013-12-15T23:59:59.000Z

    We study the effect of external potential on transport properties of the fermionic two-leg ladder model. The response of the system to a local perturbation is strongly dependent on the ground state properties of the system and especially on the dominant correlations. We categorize all phases and transitions in the model (for incommensurate filling) and introduce “hopping-driven transitions” that the system undergoes as the inter-chain hopping is increased from zero. We also describe the response of the system to an ionic potential. The physics of this effect is similar to that of the single impurity, except that the ionic potential can affect the bulk properties of the system and in particular induce true long range order. -- Highlights: •We study low temperature electronic properties of a two leg ladder. •We find a wide variety of phase transitions as a function of model parameters. •We study the effect of impurities on these models. •Conductance may be very sensitive to the structure of these impurities.

  5. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO{sub 2} Capture

    SciTech Connect (OSTI)

    Charles Eckert; Charles Liotta

    2011-09-30T23:59:59.000Z

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  6. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture

    SciTech Connect (OSTI)

    Eckert, Charles; Liotta, Charles

    2011-09-30T23:59:59.000Z

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  7. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS 

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical ...

  8. MECHANICAL PROPERTIES OF Sc???Ce????Zr????O? ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

    E-Print Network [OSTI]

    Lim, Wendy

    2011-02-22T23:59:59.000Z

    Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim...

  9. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18T23:59:59.000Z

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  10. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel

    E-Print Network [OSTI]

    Sun, Baolin

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell-Verlag 2009 Abstract Increasing the ionic strength of the electrolyte in a microbial fuel cell (MFC) can in some MFC applications. Keywords Microbial fuel cell . Shewanella marisflavi . Ionic strength . Internal

  11. Macquarie University Design Standards ROOM DATA SHEETS

    E-Print Network [OSTI]

    Wang, Yan

    ALARM Thermal Smoke POWER GPO's Dedicated GPO 3 phase Oven UPS AUDIOVISUAL OUTLETS Outlets Video projector Induction loop #12;Macquarie University Design Standards Section S ANNEXURE 9 ROOM DATA SHEETS) Conference chair Coffee table Blinds Modular table Microwave Oven Curtains Conference table Refrigerator

  12. Registrar's Office Room 130, 6299 South Street

    E-Print Network [OSTI]

    Brownstone, Rob

    Registrar's Office Room 130, 6299 South Street Henry Hicks Academic Administration Bldg PO Box, Visa, MasterCard, American Express or debit in person. Please do not send cash in the mail or enclose Integrated Science Program Skills Transcript (for courses completed between September 1998 and April 2005

  13. Einstein Room Reservations Rules and Regulations

    E-Print Network [OSTI]

    Yates, Andrew

    Einstein Room Reservations Rules and Regulations Before Reservation: Requests are not confirmed Activities, Joan Junger, (718) 430-2105 or student.activities@einstein.yu.edu. A meeting or conversation in accordance to Albert Einstein College of Medicine's Alcohol Policy. Before your request is confirmed you must

  14. Covered Product Category: Room Air Conditioners

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including room air conditioners, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  15. Texas Union Pizza Order Form ROOM RESERVED ______________________________________________________

    E-Print Network [OSTI]

    Jefferys, William

    : ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ Pick-up All orders are to be picked up at the Texas Union Hospitality Center desk in the south end West#12;#12;Texas Union Pizza Order Form ROOM RESERVED with the Texas Union Policies and Procedures. I understand that I will be held responsible for any debts incurred

  16. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  17. ROOM AIR CONDITIONER WALL MOUNTED type

    E-Print Network [OSTI]

    Kleinfeld, David

    SPLIT TYPE ROOM AIR CONDITIONER WALL MOUNTED type Reciprocating Compressor Models Indoor unit.6 - 11.4 ----- MOISTURE REMOVAL ( / hr) 2.0 1.8 2.7 2.7 4.3 3 AIR CIRCULATION - Hi (m / hr) 800 800 1

  18. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19T23:59:59.000Z

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  19. High performance batteries with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen (Littleton, CO)

    2012-08-07T23:59:59.000Z

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  20. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen; Henry, Kent Douglas

    2012-10-09T23:59:59.000Z

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  1. INFLUENCE OF SUPPLY AIR TEMPERATURE ON UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM ENERGY PERFORMANCE

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    chilled water cooling coil, and supply fan. The fan is aspecify the VAV box cooling design supply air temperature (the underfloor supply plenum (thereby, reducing room cooling

  2. Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning

    E-Print Network [OSTI]

    Liu, D.; Tang, G.; Zhao, F.

    2006-01-01T23:59:59.000Z

    Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The radiator heating room...

  3. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect (OSTI)

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09T23:59:59.000Z

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  4. A Preliminary Study of Oxidation of Lignin from Rubber Wood to Vanillin in Ionic Liquid Medium

    E-Print Network [OSTI]

    Shamsuri, A A

    2013-01-01T23:59:59.000Z

    In this study, lignin was oxidised to vanillin by means of oxygen in ionic liquid (1,3-dimethylimidazolium methylsulphate) medium. The parameters of the oxidation reaction that have been investigated were the following: concentration of oxygen (5, 10, 15 and 20 ft3 h-1), reaction time (2, 4, 6, 8 and 10 h) and reaction temperature (25, 40, 60, 80 and 100{\\deg}C). The Fourier transform infrared spectroscopy, high performance liquid chromatography and ultraviolet-visible analyses were used to characterise the product. The results revealed vanillin as the product obtained via the oxidation reaction. The optimum parameters of vanillin production were 20 ft3 h-1 of oxygen for 10 h at 100{\\deg}C. In conclusion, 1,3-dimethylimidazolium methylsulphate could be used as an oxidation reaction medium for the production of vanillin from rubber wood lignin.

  5. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    SciTech Connect (OSTI)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01T23:59:59.000Z

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  6. Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

    SciTech Connect (OSTI)

    Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

    2006-11-01T23:59:59.000Z

    This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

  7. Local public document room directory. Revision 7

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This directory (NUREG/BR-0088, Revision 7) lists local public document rooms (LPDRs) for commercial nuclear power plants with operating or possession-only licenses or under construction, plus the LPDRs for potential high-level radioactive waste repository sites, gaseous diffusion plants, certain fuel cycle facilities, certain low-level waste disposal facilities, and any temporary LPDRs established for the duration of licensing proceedings. In some instances, the LPDR libraries maintain document collections for more than one licensed facility. The library staff members listed are the persons most familiar with the LPDR collections. Reference librarians in the NRC Headquarters Public Document Room (PDR) are also available to assist the public in locating NRC documents.

  8. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01T23:59:59.000Z

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  9. Release of DRAFT RFP Headquarters Reading Room Instructions/Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release of DRAFT RFP Headquarters Reading Room InstructionsGuidelines 1. Reading Room Points of Contact: 721 - 88, Mike Baehre, (202) 586-6575 89 - Close of Draft RFP, John...

  10. A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH

    E-Print Network [OSTI]

    A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH ATTACHED WALL JETS By WEIXIU KONGQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS

  11. Non-Fickian ionic diffusion across high-concentration gradients

    SciTech Connect (OSTI)

    Carey, A.E.; Wheatcraft, S.W. [Univ. of Nevada, Reno, NV (United States)] [Univ. of Nevada, Reno, NV (United States); Glass, R.J. [Sandia National Laboratory, Albuquerque, NM (United States)] [and others] [Sandia National Laboratory, Albuquerque, NM (United States); and others

    1995-09-01T23:59:59.000Z

    A non-Fickian physico-chemical model for electrolyte transport in high-ionic strength systems is developed and tested with laboratory experiments with copper sulfate as an example electrolyte. The new model is based on irreversible thermodynamics and uses measured mutual diffusion coefficients, varying with concentration. Compared to a traditional Fickian model, the new model predicts less diffusion and asymmetric diffusion profiles. Laboratory experiments show diffusion rates even smaller than those predicted by our non-Fickian model, suggesting that there are additional, unaccounted for processes retarding diffusion. Ionic diffusion rates maybe a limiting factor in transporting salts whose effect on fluid density will in turn significantly affect the flow regime. These findings have important implications for understanding and predicting solute transport in geologic settings where dense, saline solutions occur. 30 refs., 5 figs.

  12. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17T23:59:59.000Z

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  13. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15T23:59:59.000Z

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  14. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect (OSTI)

    Langi, Bhushan [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Shah, Chetan; Singh, Krishankant [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chaskar, Atul, E-mail: achaskar@rediffmail.com [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Kumar, Manmohan; Bajaj, Parma N. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-06-15T23:59:59.000Z

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  15. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    SciTech Connect (OSTI)

    Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2002-01-01T23:59:59.000Z

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  16. Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid

    E-Print Network [OSTI]

    Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

    2010-11-09T23:59:59.000Z

    Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

  17. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

    2011-01-01T23:59:59.000Z

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  18. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05T23:59:59.000Z

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  19. Dissertation Room Application Form Cecil H. Green Library

    E-Print Network [OSTI]

    Quake, Stephen R.

    Dissertation Room Application Form Cecil H. Green Library Name address: E-mail: sul-privileges@stanford.edu Campus Mail: Access Services, Attn. ­Dissertation Rooms, Green Library, 6063 Fax number: (650) 723-3992 U.S. Mail: Access Services, Attn. Dissertation Rooms

  20. 2012-2013 Housing Lottery & Room Selection Information

    E-Print Network [OSTI]

    Rusu, Adrian

    2012-2013 Housing Lottery & Room Selection Information Residential Learning & University Housing Room Selection Profile Deadline to Apply for 2012-2013 Housing Lottery Room Selection Begins March 9th housing for 2012-2013 must apply online: www.rowan.edu/rluh/roomselection Due to high demand

  1. Observation of Kerr nonlinearity inObservation of Kerr nonlinearity in micromicro--cavities at room temperaturecavities at room temperature

    E-Print Network [OSTI]

    phenomenanonlinear phenomena nn High quality factorHigh quality factor (Q)(Q) and smalland small mode volumesmode 2 2 xC Vn n QQP P P eff pumpeff pump total probepump probe probe = sfthermal µ 52/1 == s n R DD

  2. MEAN TEMPERATURE RISE IN A TARGET Keith Symon LS-99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by formula (8), which is therefore conservative. The thermal conductivity of tungsten at room temperature is 0.5 calsec cm degC, and about half that at 2000C. The...

  3. Design and Construction of a Low Temperature Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Chen, Chi

    2010-10-12T23:59:59.000Z

    A low temperature scanning tunneling microscope (LTSTM) was built that we could use in an ultra high vacuum (UHV) system. The scanning tunneling microscope (STM) was tested on an existing 3He cryostat and calibrated at room, liquid nitrogen...

  4. Media Room | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologies | BlandineMediaMedia Room

  5. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c eRooftop UnitRooftopRoom

  6. Carbon War Room | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S ACarbonWar Room Jump to:

  7. NEPA Reading Room | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEESReading Room |

  8. 2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012

    SciTech Connect (OSTI)

    Anne McCoy

    2012-02-03T23:59:59.000Z

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of clusters at XUV light sources.

  9. An analysis of the impact of datacenter temperature on energy efficiency

    E-Print Network [OSTI]

    Lee, Heechang

    2012-01-01T23:59:59.000Z

    The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

  10. Recent developments in high-temperature photonic crystals for energy conversion

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

  11. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  12. E-Print Network 3.0 - ammonium ionic liquids Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Data Center (CFADC) Collection: Plasma Physics and Fusion 2 "Control of protein folding and misfolding in ionic liquid media, and a conjecture on early earth biology"....

  13. A holistic investigation of complexity sources in nuclear power plant control rooms

    E-Print Network [OSTI]

    Sasangohar, Farzan

    2011-01-01T23:59:59.000Z

    The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

  14. How the Number and Placement of Sensors Controlling Room Air Distribution Systems Affect Energy Use and Comfort

    E-Print Network [OSTI]

    Wang, D.; Arens, E.; Webster, T.; Shi, M.

    2002-01-01T23:59:59.000Z

    , ISRACVE, ASHRAE, 1993 Li, Y., M. Sandberg, and L. Fuchs. ?Vertical temperature profiles in rooms ventilated by displacement: full-scale measurement and nodal modeling.? Indoor Air, 1992. Vol. 2, pp. 225-243. Linden, P.F., G.F. Lane-Serff,, and D...

  15. AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION

    SciTech Connect (OSTI)

    Fox, E.

    2013-08-13T23:59:59.000Z

    Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200?C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

  16. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26T23:59:59.000Z

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  17. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect (OSTI)

    Zhao, Hua [Savannah State University; Jones, Cecil L [Savannah State University; Baker, Gary A [ORNL; Xia, Shuqian [Tianjin University, Tianjin, China; Olubajo, Olarongbe [Savannah State University; Person, Vernecia [Savannah State University

    2009-01-01T23:59:59.000Z

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  18. Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid

    E-Print Network [OSTI]

    Chaban, Vitaly

    2015-01-01T23:59:59.000Z

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  19. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

    1989-04-11T23:59:59.000Z

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  20. Room air monitor for radioactive aerosols

    DOE Patents [OSTI]

    Balmer, D.K.; Tyree, W.H.

    1987-03-23T23:59:59.000Z

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  1. Influence of magnetic field on laser-produced barium plasmas: Spectral and dynamic behaviour of neutral and ionic species

    SciTech Connect (OSTI)

    Raju, Makaraju Srinivasa; Gopinath, Pramod, E-mail: pramod@iist.ac.in [Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547 (India); Singh, R. K.; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-10-21T23:59:59.000Z

    The expansion dynamics and spectral behaviour of plasma produced by a Nd:YAG laser (??=?1.064??m, pulse width: 8?ns) from barium target and expanding in 0.45?T transverse magnetic field in vacuum (10{sup ?5?}Torr pressure) are investigated using time-of-flight optical emission spectroscopy. The experiments are carried out at various laser fluences from 12 to 31?J/cm{sup 2}. The temporal profiles of neutral (Ba I 553.5 and 577.7?nm) lines are temporally broadened, while that of ionic (Ba II 413.0 and 455.4?nm) lines show strong confinement in the presence of a magnetic field. In the absence of magnetic field, the temporal profile of Ba I 553.5?nm is exactly reproduced by fitting with two Shifted Maxwell Boltzmann (SMB) Distribution components, while in the presence of a magnetic field the profile could only be fitted with three components. The field enhanced and field induced SMB components of neutral profile are correlated with populations of ground state, metastable states, and long-lived Rydberg states present in the barium plasma, while SMB components of ionic lines are explained on the basis of the presence of super-elastic collisions among the excited species in the plasma. The spatial variation of electron temperature and temporal variation of electron density are deduced and correlated to the different collisional processes in the barium plasma. The ionic profiles show efficient confinement in the presence of a magnetic field at higher fluences.

  2. High-temperature X-ray analysis of phase evolution in lithium ion conductor Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3}

    SciTech Connect (OSTI)

    He, Kun, E-mail: cbmahekun@163.com; Wang, Yanhang; Zu, Chengkui, E-mail: zuchengkui@126.com; Liu, Yonghua; Zhao, Huifeng; Chen, Jiang; Han, Bin; Ma, Juanrong

    2013-06-15T23:59:59.000Z

    Series of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass ceramic samples were prepared in this work through the change of heat treatment temperature from 650 to 1050 °C. The structures of glass ceramic samples were characterized by means of high temperature X-ray diffraction and Field Emission Scanning Electron Microscope. And the lithium ionic conductivity was analyzed through AC impedance spectroscopy. Through heat treatment at 850 °C for 4 h for the base glass sample, we obtained a maximum conductivity of 5.8 × 10{sup ?4} S/cm at room temperature. - Graphical Abstract: High temperature X-ray diffraction (HT-XRD) and Rietveld refinement of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} (LAGP) glass-ceramics were recorded to investigate the phase transformation, cell parameters and the mass fraction of each crystal phase, which occur in the glass to glass-ceramics process during different crystallization temperatures. The relationship between the average grain size and conductivity that originate from and relate to the crystallization temperature was analyzed by SEM micrograph and AC impedance spectroscopy. - Highlights: • Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass-ceramics were prepared from as-prepared glass. • The phases decomposition and mass fraction of each phase were analyzed by HT-XRD. • Conductivity is relate to grain size that influenced by crystallization temperature.

  3. Ionic hydrogenations of hindered olefins at low temperature. Hydride transfer reactions of transition metal hydrides

    SciTech Connect (OSTI)

    Bullock, R.M.; Song, J.S. (Brookhaven National Lab., Upton, NY (United States))

    1994-09-21T23:59:59.000Z

    Sterically hindered olefins can be hydrogenated at -50[degree]C in dichloromethane using triflic acid (CF[sub 3]SO[sub 3]H) and a hydride donor. Mechanistic studies indicate that these reactions proceed by hydride transfer to the carbenium ion that is formed by protonation of the olefin. Olefins that form tertiary carbenium ions upon protonation are hydrogenated in high yields (90-100%). Styrenes generally produce lower yields of hydrogenated products (50-60%). Suitable hydride donors include HSiE[sub 3] and several transition metal carbonyl hydrides HW(CO)[sub 3]Cp, HW(CO)[sub 3]Cp[sup +], HMo-(CO)[sub 3]Cp, HMn(CO)[sub 5], HRe(CO)[sub 3], and HO[sub 3](CO)[sub 1]Cp*; Cp = [eta][sup 5]-C[sub 3]H[sub 5+], Cp* = [eta][sup 5]-C[sub 5]Me[sub 5]. A characteristic that is required for transition metal hydrides to be effective is that the cationic dihydrides (or dihydrogen complexes) that result from their protonation must have sufficient acidity to transfer a proton to the olefin, as well as sufficient thermal stability to avoid significant decomposition on the time scale of the hydrogenation reaction. Metal hydrides that fall due to insufficient stability of their protonated forms include HMo(CO)[sub 2](PPH[sub 3])Cp, HMo(CO)[sub 3]Cp*, and HFe(CO)[sub 2]Cp*. 62 refs., 2 tabs.

  4. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Cheung, Hoi Ying Iris

    2014-01-01T23:59:59.000Z

    Heating, Ventilation and Air Conditioning Power Distributionlike a packaged air conditioning unit) for your server room(Refrigerating and Air-Conditioning Engineers’ (ASHRAE)

  5. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect (OSTI)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil)] [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)] [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14T23:59:59.000Z

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup ?} and PF{sub 6}{sup ?}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (?) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  6. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect (OSTI)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28T23:59:59.000Z

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  7. Interactions of Ionic Liquids with Uranium and its Bioreduction

    SciTech Connect (OSTI)

    Zhang, C.; Francis, A.

    2012-09-18T23:59:59.000Z

    We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

  8. Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas-to-particle

    E-Print Network [OSTI]

    Jacobson, Mark

    Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas Plateau. Size-resolved ionic aerosols (NH4 + , Na+ , K+ , Ca2+ , Mg2+ , SO4 2À , ClÀ , NO3 À CO3 2À , formate, acetate and oxalate), organic aerosols, black carbon and gaseous HNO3 and SO2 were measured

  9. Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers

    E-Print Network [OSTI]

    Heflin, Randy

    Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self The electrochromic switching times of solid state conducting polymer devices fabricated by the ionic self shown to decrease with the active area of the electrochromic device suggesting that even faster

  10. Short Communication Bioreduction and precipitation of uranium in ionic liquid aqueous

    E-Print Network [OSTI]

    Ohta, Shigemi

    Short Communication Bioreduction and precipitation of uranium in ionic liquid aqueous solution by Clostridium sp. C. Zhang a,b, , C.J. Dodge c , S.V. Malhotra a,1 , A.J. Francis c,d a Department of Chemistry t s Uranium forms various complexes with ionic liquids. Uranium bioreduction was affected by the type

  11. Probing Local Ionic Dynamics in Functional Oxides at the Nanoscale Evgheni Strelcov,*,

    E-Print Network [OSTI]

    Chen, Long-Qing

    electronic-ionic conductors, which underpins applications in energy conversion technologies, for example the development of novel data storage technologies. Notably, many TMOs classes including manganites,16 cobaltites, for example ionic transport, polarization-driven responses, and surface electro- chemistry.35,36 Recently, we

  12. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries

    SciTech Connect (OSTI)

    Weng, Wei [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.

    2011-01-01T23:59:59.000Z

    A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.

  13. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09T23:59:59.000Z

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  14. Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach

    E-Print Network [OSTI]

    Andelman, David

    Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach Tomer, 1000 Ljubljana, Slovenia (Dated: November 19, 2014) We study the surface tension of ionic solutions expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical

  15. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... understand how this reset scheme responds to building load change, thus resulting in supply air temperature reset, it is helpful to explain the role of thermostat. In the following section, we explain the way how the thermostat works, the type...

  16. Department of Energy and Mineral Engineering Spring 2013 Preliminary Plant Design For Bitumen Separation Using Ionic Liquid

    E-Print Network [OSTI]

    Demirel, Melik C.

    For Bitumen Separation Using Ionic Liquid Overview IL Fuels LLC invented a novel way to separate bitumen from of producing 5,000 barrels of bitumen per day while maximizing the recovery of ionic liquid and water of bitumen/day Maintain a maximum of 0.2% loss of ionic liquids to the cleaned sands Improve overall

  17. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which seat x 1 Toilet roll holder x 1 INVENTORY FOR SHACKLETON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

  18. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR MASON FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE

  19. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which holder x 1 INVENTORY FOR TENNIS COURT BLOCK NO: FLAT NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

  20. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which Toilet seat x 1 Toilet roll holder x 1 INVENTORY FOR ELGAR COURT FLAT NO: BLOCK NO: ROOM NO: NAME

  1. INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO.

    E-Print Network [OSTI]

    Birmingham, University of

    INVENTORY FOR ELGAR COURT FLAT NO. BLOCK NO. ROOM NO. Staff on the Vale Village try to ensure and cleaned to a high standard. Please make sure that you complete this inventory and note down anything which rail x 1 INVENTORY FOR MAPLE BANK FLAT NO: BLOCK NO: ROOM NO: NAME: TELEPHONE EXT. NO: #12;How

  2. Housing & Residential Services Room and Board Rates 20112012

    E-Print Network [OSTI]

    Heller, Barbara

    Housing & Residential Services Room and Board Rates 2011­2012 Campus housing offers a variety, please view the Housing & Residential Services website at: housing.iit.edu. McCormick Student Village to participate in the Residential 5 meal plan. Winter Break is included in MSV, Gunsaulus Hall and SSV. DAS room

  3. Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium/Copper Interlayers

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium-phase bonded using copper/niobium/copper interlayers have been investigated at both room and elevated, with failure primarily at the alumina/niobium interfaces. At room temperature, cyclic fatigue-crack propagation

  4. Multiphysics simulation of corona discharge induced ionic wind

    SciTech Connect (OSTI)

    Cagnoni, Davide [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland) [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Agostini, Francesco; Christen, Thomas [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland)] [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Parolini, Nicola [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy)] [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Stevanovi?, Ivica [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland) [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Falco, Carlo de [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy) [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); CEN - Centro Europeo di Nanomedicina, 20133 Milano (Italy)

    2013-12-21T23:59:59.000Z

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  5. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect (OSTI)

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11T23:59:59.000Z

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  6. Dependence of the dielectric constant of electrolyte solutions on ionic concentration

    E-Print Network [OSTI]

    Gavish, Nir

    2012-01-01T23:59:59.000Z

    We study the dependence of the static dielectric constant of aqueous electrolyte solutions upon the concentration of salt in the solution and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, the ionic response to an applied field, and the effect of thermal fluctuations. The analysis suggests that the formation of ion pairs by a small fraction of disassociated ions can have a significant effect on the static dielectric constant. The model predicts the dielectric has the functional dependence $\\varepsilon(c)=\\varepsilon_w-\\beta L(3\\alpha c/\\beta)$ where $L$ is the Langevin function, $c$ is the salt concentration, $\\varepsilon_w$ is the dielectric of the pure water, $\\alpha$ is the total excess polarization of the ions and $\\beta$ is the relative difference between the water dipole moment and the effective dipole moment of ion pairs as weighted by the density of ion pairs and their structural rigidity. The functional form gives an extreme...

  7. Thermomechanical room and canister region benchmark analyses between STEALTH-WI and SPECTROM-32: Draft final report

    SciTech Connect (OSTI)

    Dial, B.W.; Maxwell, D.E.; Yee, G.

    1987-12-01T23:59:59.000Z

    This report documents the benchmarking of the two-dimensional waste isolation version of STEALTH (designated STEALTH-WI) against the thermomechanical performance assessment calculations performed by RE/SPEC using SPECTROM-32. An axisymmetric, canister-scale (very-near-field) analysis was performed to compute the peak stress exerted by the salt on the waste package. A plane strain, room-scale (near-field) analysis was also performed to predict disposal room roof-to-floor closure and the temperatures at key locations in the vicinity of the disposal room. Comparisons between the STEALTH and SPECTROM-32 results showed that the temperature predictions agreed to within 5/degree/C, peak canister stresses better than 10%, and the average roof-to-floor closures within 30%. The stress and displacement differences were attributed to differences in the treatment of plasticity in the constitutive laws for salt employed in STEALTH and SPECTROM-32. The temperature differences were due to minor differences in the thermal models employed in STEALTH and SPECTROM- 41, the thermal analysis code which supplies temperatures for SPECTROM-32. 9 refs., 21 figs., 6 tabs.

  8. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent

    SciTech Connect (OSTI)

    Yannick J. Heintz; Laurent Sehabiague; Badie I. Morsi; Kenneth L. Jones; David R. Luebke; Henry W. Pennline [United States Department of Energy (U.S. DOE), Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    The mole fraction solubilities (x{asterisk}) and volumetric liquid-side mass-transfer coefficients (kLa) for H{sub 2}S and CO{sub 2} in the ionic liquid, TEGO IL K5, (a quaternary ammonium polyether) were measured under different pressures (up to 30 bar) and temperatures (up to 500 K) in a 4 L ZipperClave agitated reactor. CO{sub 2} and N{sub 2}, as single gases, and a H{sub 2}S/N{sub 2} gaseous mixture were used in the experiments. The solubilities of H{sub 2}S and CO{sub 2} were found to increase with pressure and decrease with temperature within the experimental conditions used. The H{sub 2}S solubilities in the ionic liquid (IL) were greater than those of CO{sub 2} within the temperature range investigated (300-500 K) up to a H{sub 2}S partial pressure of 2.33 bar. Hence, the IL can be effectively used to capture both H{sub 2}S and CO{sub 2} from dry fuel gas stream within the temperature range from 300 to 500 K under a total pressure up to 30 bar. The presence of H{sub 2}S in the H{sub 2}S/N{sub 2} mixture created mass-transfer resistance, which decreased k{sub L}{alpha} values for N{sub 2}. The k{sub L}{alpha} and x{asterisk} values of CO{sub 2} were found to be greater than those of N{sub 2} in the IL, which highlight the stronger selectivity of this physical solvent toward CO{sub 2} than toward N{sub 2}. In addition, within the temperature range from 300 to 500 K, the solubility and k{sub L}{alpha} of H{sub 2}S in the IL were greater than those of CO{sub 2}, suggesting that not only can H{sub 2}S be more easily captured from dry fuel gas streams but also a shorter absorber can be employed for H{sub 2}S capture than that for CO{sub 2}. 56 refs., 8 figs., 4 tabs.

  9. LOW TEMPERATURE PHYSICS The effect of neutron and gamma radiation on

    E-Print Network [OSTI]

    McDonald, Kirk

    PHYSICS Outlook · Radiation environment in a fission reactor ­ Neutron and - spectrum · Damage production, iterlaminar shear strength, fatigue behavior ­ Gas evolution · Conclusions #12;LOW TEMPERATURE PHYSICS Fission to displace one atom: (epithermal and fast neutrons) Bp EE > ~4 eV C-H ~few eV in metals ~5-40 eV in ionic

  10. Concrete calcium leaching at variable temperature: experimental data and numerical model inverse

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , concrete porous solution is very basic (pH around 13) and several ionic species are highly concentrated [1Concrete calcium leaching at variable temperature: experimental data and numerical model inverse/DSU/SSIAD/BERIS, Fontenay-aux-Roses, France Abstract A simplified model for calcium leaching in concrete is presented

  11. A few rooms on campus are available for students to use,

    E-Print Network [OSTI]

    Escher, Christine

    . Frosted glass walls let light into the room while keeping the space private. Foot baths are located in public bathrooms near the multifath room. A curtain in the middle of the room creates a separate space

  12. Prediction of Room Air Diffusion for Reduced Diffuser Flow Rates

    E-Print Network [OSTI]

    Gangisetti, Kavita

    2011-02-22T23:59:59.000Z

    With the ever-increasing availability of high performance computing facilities, numerical simulation through Computational Fluid Dynamics (CFD) is increasingly used to predict the room air distribution. CFD is becoming an important design...

  13. Modeling control room crews for accident sequence analysis

    E-Print Network [OSTI]

    Huang, Y. (Yuhao)

    1991-01-01T23:59:59.000Z

    This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

  14. Student Employment Office 883 Broadway Street, Room 102

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    1 STUDENT EMPLOYMENT HANDBOOK 2011-2012 Student Employment Office 883 Broadway Street, Room 102://www.uml.edu/financialaid #12;2 Table of Contents Introduction to the Student Employment Programs .....................................................4 The Basics of On-Campus Employment

  15. Financial Aid and Student Records Student Wing, Room 119

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Financial Aid and Student Records Student Wing, Room 119 PO Box 6000 Binghamton, New York 13902 or spring semester. · Any student wishing to drop all summer or winter classes is not required to complete

  16. Ionic Polymer-Metal Composites: Thermodynamical Modeling and Finite Element Solution 

    E-Print Network [OSTI]

    Arumugam, Jayavel

    2012-10-19T23:59:59.000Z

    This thesis deals with developing a thermodynamically consistent model to simulate the electromechanical response of ionic polymer-metal composites based on Euler-Bernoulli beam theory. Constitutive assumptions are made for the Helmholtz free...

  17. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  18. Free-standing graphene membranes on glass nanopores for ionic current measurements

    E-Print Network [OSTI]

    Walker, Michael I.; Weatherup, Robert S.; Bell, Nicholas A. W.; Hofmann, Stephan; Keyser, Ulrich F.

    2015-01-16T23:59:59.000Z

    A method is established to reliably suspend graphene monolayers across glass nanopores as a simple, low cost platform to study ionic transport through graphene membranes. We systematically show that the graphene seals glass nanopore openings...

  19. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect (OSTI)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01T23:59:59.000Z

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  20. Influence of Ionic strength on calcium carbonate (CaCO3) polymorphism

    E-Print Network [OSTI]

    Evans, Taylor

    2012-01-01T23:59:59.000Z

    CaCO3 crystals' physical properties, such as polymorphism and hence the reflectivity and stability, are critical factors of their qualities in industrial applications. Factors such as additives and substrates that influence CaCO3 polymorphism have been intensively studied. However, the effects of ionic strength created by varying additives are seldom paid attention to. This study is analyzing how ionic strength of the growth solution influences the crystalline structure of CaCO3, by applying growth solutions containing different types of cations of varying concentrations, K+, Na+, and NH4+. This study reveals that the ionic strength plays a significant role in polymorph selection in the way that the percentage of vaterite among the precipitates increases with the concentration of ionic strength.