Sample records for room fermilab web

  1. Section Course Term Credits Room Day Time 132D ALS4932 Fall 1 WEB WEB WEB

    E-Print Network [OSTI]

    Watson, Craig A.

    Section Course Term Credits Room Day Time 132D ALS4932 Fall 1 WEB WEB WEB 1G73 FNR3131C Fall 3 DEGREE APPLICATIONS DUE September 13th CLASSES END December 4th WEB WEB WEB WEB Forest Operations Sager WEB Capinera WEB Turf and Ornamental Entomology Buss WEB Bennet Capinera Lutz STAFF Mac

  2. Fermilab | Press Room | Subscribe to Press Release mailing list

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network toProcurementsPress Room

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the electropolishing room at the Cavity Processing Research Laboratory, David Baird, ESH&Q, presents Fermilab's Cavity Processing R&D Group with the 2012 Industrial Hygiene...

  4. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Tevatron

  5. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Tevatron

  6. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Tevatron

  7. Fermilab | Press Room | Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Tevatron

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2013 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Garden Club Spring Meeting The Fermilab...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Fermilab Lecture Series Presents Particle...

  10. Fermilab | Traffic Safety at Fermilab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit a SuggestionQuestion Fermilab traffic rules (FESHM 9010) Fermilab traffic accident statistics Traffic safety awareness training Resources Texting While Driving...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Providence Journal, April 28, 2014: Brown physicist, who helped predict Higgs boson, dies Tuesday, April 29 Introducing the Fermilab Test Beam Committee Director's...

  12. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    page Unsubscribe from Fermilab Today From symmetry Commentary: Massive thoughts The Higgs boson and the neutrino fascinate the general public and particle physicists alike. Why is...

  13. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - One West Speaker: Chris Neu, University of Virginia Title: Latest Results on the Higgs Boson from CMS 8 p.m. Fermilab Lecture Series - Auditorium Speaker: Chad Mirkin,...

  14. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2015 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement MS Office 2013Office 365: Transition from...

  15. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Lifestyle Patterns Approach to Weight...

  16. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2014 Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO Fermilab Today Announcements Submit an announcement Vehicles in restricted parking lots from...

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catfish - Southern style collard greens - Black eyed peas - Cornbread - Sweet potato pie Chez Leon menu Call x3524 to make your reservation. Archives Fermilab Today...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO An advance in superconducting magnet technology opens the door for more powerful colliders A focusing magnet,...

  19. Tritium at Fermilab Fermilab Community Advisory Board

    E-Print Network [OSTI]

    Quigg, Chris

    Tritium at Fermilab Fermilab Community Advisory Board September 23, 2010 Rob Plunkett, Fermilab #12;2 Got water? Robert Plunkett #12;Fermilab has plenty Robert Plunkett3 The Fermilab site has numerous ponds and is the origin of Indian Creek and Ferry Creek. Fermilab uses water to cool accelerators

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character," Shultz said. Photo: Amanda Solliday As of today, Fermilab's "What is a Higgs Boson?" video on YouTube has more than a million and a half views. This video and...

  1. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of the Day: Nectar of the birds From Science, July 22, 2014: Had there been no Higgs boson, this observation would have been the bomb Thursday, July 24 Fermilab technology...

  2. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hangout from the ICHEP conference in Valencia, Spain, on the latest news about the Higgs boson and more. Chat with Fermilab and CMS scientist Don Lincoln and with incoming CMS...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Lecture Series - Curia II Speaker: Don Lincoln, Fermilab Title: The Higgs Boson and the LHC 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO...

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speaker: Rouven Essig, Stony Brook University Title: Exotic Decays of the 125-GeV Higgs Boson 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Fermilab Colloquium - One...

  5. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab badge From Science News, June 23, 2014: It's almost time to get to know the Higgs boson better From UChicagoNews, June 19, 2014: Scholars and scientists explore factors...

  6. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cables criss-cross the surrounding space. Photo: Stephanie Timpone, PPD Safety Update ESH&Q weekly report, Feb. 10 This week's safety report, compiled by the Fermilab ESH&Q...

  7. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Have a safe day Wednesday, Jan. 28 3:30 p.m. Director's Coffee Break - WH2XO 4 p.m. Fermilab Colloquium - One West Speaker: Claudia Alexander, Jet Propulsion Laboratory Title:...

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINAR THIS WEEK Wednesday, Jan. 28 3:30 p.m. Director's Coffee Break - WH2XO 4 p.m. Fermilab Colloquium - One West Speaker: Claudia Alexander, Jet Propulsion Laboratory Title:...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p.m. Joint Experimental-Theoretical Physics Seminar - One West Speaker: Eun-Joo Ahn, Fermilab Title: Surprising Results on the Composition of the Highest-Energy Cosmic Rays Visit...

  10. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myer, who joins us as Fermilab's new general counsel. John takes the reins from Gary Leonard, who has served the lab for many years. Please join me in welcoming John and thanking...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the universe is comprised of empty voids, punctuated by narrow, winding filaments of dark matter that guide the growth of galaxies and galaxy clusters. This cosmic web, which...

  12. Fermilab FSPA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works: 2008 InternationalLife at Fermilab

  13. Fermilab at Work | Fermilab Now

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab Now Accelerator

  14. Fermilab | Directorate | Fermilab Directorate Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilab Directorate

  15. Fermilab | Directorate | Fermilab Former Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilab

  16. Fermilab | Fermilab at Work | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at Work Main

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Hadron Collider first turned on? Or been in the room when the discovery of the Higgs boson was announced? The creators of the new documentary "Particle Fever," which opens in...

  18. POLARIZED TARGET EXPERIMENT AT FERMILAB

    E-Print Network [OSTI]

    Chamberlain, O.

    2010-01-01T23:59:59.000Z

    on Experiment 61 at Fermilab, which is a large collaborationBernie Sandler, From From Fermilab. Alan Jonckheere andTARGET EXPERIMENT AT FERMILAB Owen Chamberlain January 1977

  19. Fermilab | Press Room | Fact Sheets & Brochures | Archives | About Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network to benefitgreen thumbsPhysics

  20. Fermilab | Press Room | Fact Sheets & Brochures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark Energy Survey createscelebrate

  1. The Fermilab recycler ring

    SciTech Connect (OSTI)

    Martin Hu

    2001-07-24T23:59:59.000Z

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  2. Fermilab E791

    E-Print Network [OSTI]

    L. M. Cremaldi

    2000-10-12T23:59:59.000Z

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billion events were recorded through a loose transverse energy trigger and written to 8mm tape in the the 1991-92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysed on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  3. Fermilab recycler diagnostics

    SciTech Connect (OSTI)

    Martin Hu

    2001-07-24T23:59:59.000Z

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  4. Fermilab | Fermilab at Work | Web Form | FAW Website Suggestions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto: EAGFermilab TodayFAW

  5. Fermilab | Fermilab at Work | Web Form | Feedback Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto: EAGFermilab

  6. Breakthrough: Fermilab Accelerator Technology

    SciTech Connect (OSTI)

    None

    2012-04-23T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  7. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  8. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14T23:59:59.000Z

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  9. Fermilab: Science at Work

    SciTech Connect (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01T23:59:59.000Z

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  10. About Fermilab | Fermilab and the Community | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strong

  11. Fermilab | Graphic Standards at Fermilab | Fermilab bar element

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group Robert R.Color paletteFermilab

  12. Fermilab | About | Organization | Fermilab Organization | Explanation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab

  13. Fermilab | Directorate | Fermilab Physics Advisory Committee (PAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev. 0Joseph LykkenFermilabPhysics

  14. Fermilab | Fermilab at Work | Labwide calendar information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at Work Navbar

  15. Fermilab | Illinois Accelerator Research Center | Fermilab Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab

  16. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto FermilabFacilities

  17. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's Accelerator

  18. World Wide WebWWWDeep Web Web Deep Web

    E-Print Network [OSTI]

    Deep Web Web World Wide WebWWWDeep Web Web Deep Web Deep Web Deep Web Deep Web Deep Web 1 World Wide Web [1] Web 200,000TB Web Web Web Internet Web Web Web "" Surface Web Deep Web Surface Web 21.3% Surface Web Deep Web [2] Deep Web Web Crawler Deep Web 1 Web

  19. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    1998-11-09T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  20. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  1. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  2. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  3. Scintillator manufacture at Fermilab

    SciTech Connect (OSTI)

    Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    1998-11-01T23:59:59.000Z

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

  4. FLARE, Fermilab Liquid Argon Experiments

    E-Print Network [OSTI]

    L. Bartoszek

    2004-08-24T23:59:59.000Z

    Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

  5. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  6. WebDeep Web Surface Web

    E-Print Network [OSTI]

    Web WebWeb WebWeb WebHTML Web WebDeep Web Surface Web " " Deep Web21 Dot-ComWebWeb2.0 WebWeb ""Web WebWeb Deep Web WebWeb SNS Web WebWeb 20017BrightPlanet.comDeep Web Web43,000-96,000Web7,500TB(Surface Web500) UIUCDeep Web2004Deep Web 307,000366,000-535,000 WebDeep Web "" Deep Web 1 Web Web #12

  7. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Niki Saoulidou

    2010-01-08T23:59:59.000Z

    Neutrino oscillations provide the first evidencefor physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments. NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  8. Fermilab Art Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08FermilabArt Work

  9. Fermilab Art Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging08FermilabArt

  10. Fermilab | DASTOW | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15 U.S.

  11. Fermilab | Labwide Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return to

  12. Fermilab | Newsroom | Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return7

  13. Fermilab | Science | Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's

  14. Deep Web Web Deep Web Web

    E-Print Network [OSTI]

    Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

  15. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  16. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  17. CDF Search for the Higgs at Fermilab

    SciTech Connect (OSTI)

    Barbara Alvarez

    2009-03-10T23:59:59.000Z

    Fermilab CDF experiment representative Barbara Alvarez explains the experiment and the search for the Higgs Boson

  18. Fermilab Today Tuesday, June 2, 2009

    E-Print Network [OSTI]

    Fermilab Today Tuesday, June 2, 2009 Calendar Have a safe day! Tuesday, June 2 Noon Summer Lecture Series - Curia II Speaker: Pier Oddone, Fermilab Title: Future of Fermilab THERE WILL BE NO ACCELERATOR-Over THERE WILL BE NO FERMILAB COLLOQUIUM TODAY Click here for NALCAL, a weekly calendar with links to additional information

  19. Fermilab Today Wednesday, October 31, 2007

    E-Print Network [OSTI]

    Fermilab Today Wednesday, October 31, 2007 Subscribe | Contact Fermilab Today | Archive | Classifieds Search Calendar Wednesday, Oct. 31 THERE WILL BE NO FERMILAB ILC R&D MEETING THIS WEEK 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4 p.m. Fermilab Colloquium - One West Speaker: F. Gianotti, CERN

  20. Fermilab | Director's Policy Manual | No. 22.000 Fermilab Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointments Effective Date 1199 2.0 Effective Date 060906 3.0 Scope This policy covers all appointments for scientific staff at Fermilab. 4.0 Applicability All...

  1. About Fermilab | Fermilab and the Community | ILC Citizens' Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strongFermilab -

  2. About Fermilab | Fermilab and the Community | Neighborhood Forum | Submit a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab values strongFermilab

  3. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01T23:59:59.000Z

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  4. Future Hadron Physics at Fermilab

    E-Print Network [OSTI]

    Jeffrey A. Appel

    2005-09-23T23:59:59.000Z

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future - a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC - the level of needed R&D, the ILC costs, and the timing - Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINER A and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  5. Looking to the Future: A Fermilab Viewpoint

    E-Print Network [OSTI]

    H. E. Montgomery

    2005-08-20T23:59:59.000Z

    This is a short paper summarising a presentation of the evolution of the Fermilab program for the next five to ten years. Emphasis is given to the Fermilab accelerator complex, but external collaboration is emphasised.

  6. DZero search for the Higgs at Fermilab

    SciTech Connect (OSTI)

    Michael Kirby

    2009-03-10T23:59:59.000Z

    Fermilab DZero experiment representative Michael Kirby explains the Dzero experiment and their search for the Higgs Boson

  7. DZero search for the Higgs at Fermilab

    ScienceCinema (OSTI)

    Michael Kirby

    2010-01-08T23:59:59.000Z

    Fermilab DZero experiment representative Michael Kirby explains the Dzero experiment and their search for the Higgs Boson

  8. Future hadron physics facilities at Fermilab

    SciTech Connect (OSTI)

    Appel, Jeffrey A.; /Fermilab

    2004-12-01T23:59:59.000Z

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  9. Future Hadron Physics Facilities at Fermilab

    E-Print Network [OSTI]

    Jeffrey A. Appel

    2004-12-10T23:59:59.000Z

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, will be described.

  10. observation at CDF Dmitry Litvintsev (Fermilab CD)

    E-Print Network [OSTI]

    Quigg, Chris

    b observation at CDF Dmitry Litvintsev (Fermilab CD) for CDF June 15, 2007 Special seminar #12 and plans q Conclusion June 15, 2007 Dmitry Litvintsev, Fermilab, CDF 2 #12;Introduction Happy to show, Fermilab, CDF 3 #12;Source of data: CDF II 3 ¡ ¡ ¢ £ ¤ total 2 ¢ ¡ ¢ £ ¤ on tape Analysis uses data

  11. Fermilab Energy Scaling Workshop April 27, 2009

    E-Print Network [OSTI]

    Field, Richard

    Fermilab Energy Scaling Workshop April 27, 2009 Rick Field ­ Florida/CDF/CMS Page 1 11stst Workshop-bias" collisions and the "underlying event" in Run 1 at CDF. Rick's View of Hadron Collisions Fermilab 2009 Studying the "associated" charged particle densities in "min-bias" collisions. #12;Fermilab Energy Scaling

  12. Fermilab Today Monday, September 25, 2006

    E-Print Network [OSTI]

    Quigg, Chris

    Fermilab Today Monday, September 25, 2006 Monday, September 25 1:00 p.m. Research Techniques:30 p.m. Particle Astrophysics Seminar - Curia II Speaker: S. Dodelson, University of Chicago/Fermilab.m. Fermilab Colloquium (NOTE DATE) - 1 West Speaker: D. Clowe, Ohio University Title: A Direct Empirical Proof

  13. Update: tritium at Fermilab Fermilab Community Advisory Board

    E-Print Network [OSTI]

    Quigg, Chris

    , Fermilab #12;2 How is tritium produced? · In nature, tritium is produced when cosmic particles hit the particles in Earth's atmosphere · Tritium is also produced in small quantities in accelerator operations. · Becomes part of water molecules like normal hydrogen · Cannot penetrate skin. · Does not accumulate

  14. Fermilab | Press Room | Fact Sheets & Brochures | Archives | Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network to benefitgreen

  15. Fermilab | Press Room | Fact Sheets & Brochures | Archives | Educational

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network to benefitgreenContributions

  16. Fermilab | Press Room | Fact Sheets & Brochures | Archives | FY Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network to benefitgreenContributionsFY

  17. Fermilab | Press Room | Fact Sheets & Brochures | Archives | Illinois

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network to

  18. Fermilab | Press Room | Fact Sheets & Brochures | Archives | Nationwide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network toProcurements Nationwide

  19. Fermilab | Press Room | Fact Sheets & Brochures | Archives | Tevatron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic network toProcurements

  20. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  1. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  2. Neutrino Oscillations Experiments at Fermilab

    E-Print Network [OSTI]

    Adam Para

    2000-05-01T23:59:59.000Z

    Neutrino oscillations provide an unique opportunity to probe physics beyond the Standard Model. Fermilab is constructing two new neutrino beams to provide a decicive test of two of the recent positive indications for neutrino oscillations: MiniBOONE experiment will settle the LSND controversy, MINOS will provide detailed studies of the region indicated by the SuperK results.

  3. Jobtong Deep Web Web""Surface WebDeep Web

    E-Print Network [OSTI]

    Jobtong Deep Web Web Web Web""Surface WebDeep Web Surface WebDeep Web Web[1] 20007BrightPlanet.comDeep Web[2] Web43,000-96,000Web7,500TB(Surface Web500) UIUC5Deep Web[3]2004Deep Web 307,000366,000-535,000"" Deep Web""Google Yahoo32%Deep Web WAMDMWebDeep WebJobtong Deep Web (Jobtong) Jobtong(, http

  4. Fermilab, Indiana University Horn Optimization for nuSTORM

    E-Print Network [OSTI]

    McDonald, Kirk

    Fermilab, Indiana University Horn Optimization for nuSTORM HPTW 05/21/2014 Fermilab, Indiana University Ao Liu* A. Bross, D. Neuffer Fermilab, Indiana University *www.frankliuao.com/research.html #12;Fermilab, Indiana University WHO WE ARE, WHAT WE DO nuSTORM Overview 5/23/2014 Ao Liu 1 #12;Fermilab

  5. Presenta ons made available by Fermilab's Interna onal Services Office, WDRS and Fermilab Users Execu ve Commi ee's

    E-Print Network [OSTI]

    Quigg, Chris

    Presenta ons made available by Fermilab's Interna onal Services Office, WDRS and Fermilab Users to be announced. Check Fermilab Today or the Visa Office website. All presenta ons will occur in Wilson Hall on for a presenta on topic of interest to Fermilab users, email visaoffice@fnal.gov or contact the Fermilab UEC

  6. Mashups--Web Web Internet

    E-Print Network [OSTI]

    Mashups-- Web Web 1. Web Internet mashup Wikipedia Mashup web api web Web Internet Mashup public APIs, XML/RSS/Atom feeds, web services, HTML Mashup Web 2.0 Web 2.0 Mashup Web Web Web api eBay, Amazon, Google and Yahoos APIs Mashups Web Mashup Mashup 2. Mashup [2] Mashup

  7. indirect LFV Stephan Lammel, Fermilab CD

    E-Print Network [OSTI]

    Fermilab

    , Fermilab CD Lepton-Photon 2005 Uppsala, June 30th Search for Higgs and New Phenomena at Colliders / #12;Lepton-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 2/28 · Large variety of excellent-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 3/28 Precision EWK/Top and Higgs CDF/D0 mtop went

  8. Physics at a Fermilab Proton Driver

    E-Print Network [OSTI]

    M. G. Albrow; S. Antusch; K. S. Babu; T. Barnes; A. O. Bazarko; R. H. Bernstein; T. J. Bowles; S. J. Brice; A. Ceccucci; F. Cei; H. W. KCheung; D. C. Christian; J. I. Collar; J. Cooper; P. S. Cooper; A. Curioni; A. deGouvea; F. DeJongh; P. F. Derwent; M. V. Diwan; B. A. Dobrescu; G. J. Feldman; D. A. Finley; B. T. Fleming; S. Geer; G. L. Greene; Y. Grossman; D. A. Harris; C. J. Horowitz; D. W. Hertzog; P. Huber; J. Imazato; A. Jansson; K. P. Jungmann; P. A. Kasper; J. Kersten; S. H. Kettell; Y. Kuno; M. Lindner; M. Mandelkern; W. J. Marciano; W. Melnitchouk; O. Mena; D. G. Michael; J. P. Miller; G. B. Mills; J. G. Morfin; H. Nguyen

    2005-09-16T23:59:59.000Z

    This report documents the physics case for building a 2 MW, 8 GeV superconducting linac proton driver at Fermilab.

  9. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used at Fermilab? I understand that they are used in "detectors" and "particle accelerators", but I would like more specific information. Student of Physics, Ami Dear Ami:...

  10. FIRST RESULTS FROM THE BERKELEY-FERMILAB-PRINCETON MULTIMUON SPECTROMETER

    E-Print Network [OSTI]

    Strovink, M.

    2010-01-01T23:59:59.000Z

    Witherell, and R.P. Johnson, Fermilab Propusal 391 (1975,nucleon scattering in the Fermilab muon beam emphasized theA. Mugge, and R.E. Shafer (Fermilab); G.D. Gollin, F.C.

  11. Fermilab Engineering Manual Appendices Revision 1.0

    E-Print Network [OSTI]

    Quigg, Chris

    Fermilab Engineering Manual Appendices Revision 1.0 Page 1 FERMI NATIONAL ACCELERATOR LABORATORY:__________________________ DATE:_________ REVISION NO.________ REVISION ISSUE DATE:____________ #12;Fermilab Engineering Manual ..................................... 166 #12;Fermilab Engineering Manual Appendices Revision 1.0 Page 3 A. REQUIREMENTS AND SPECIFICATIONS

  12. Fermilab | About Fermilab | Office of Communication | Internships In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab

  13. Fermilab | Director's Policy Manual | List of Fermilab Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW

  14. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMOGridDataFermilab

  15. Fermilab at Work | Job Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab Now

  16. Fermilab at Work | Lab Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life Abri

  17. Fermilab at Work | Physics Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life AIP

  18. Fermilab at Work | Work Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab LifeWork

  19. Fermilab | Director's Policy Manual | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15flags

  20. Fermilab | Science | Particle Physics 101

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle Physics

  1. Fermilab "Wine & Cheese" Talk September 27, 2013

    E-Print Network [OSTI]

    Field, Richard

    the Tevatron Energy Scan. Wine & Cheese talk, October 4, 2002. Studying the underlying event (UE) at CDF observables from the Tevatron Energy Scan. The PYTHIA UE tunes. #12;Fermilab "Wine & Cheese" Talk September 27Fermilab "Wine & Cheese" Talk September 27, 2013 Rick Field ­ Florida/CDF/CMS Page 1 Rick Field

  2. Physics at an Upgraded Fermilab Proton Driver

    E-Print Network [OSTI]

    S. Geer

    2005-07-19T23:59:59.000Z

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  3. Fermilab Today Thursday, July 16, 2009

    E-Print Network [OSTI]

    Toback, David

    based on the missing energy. In the GMSB model, the gravitino is the particle responsible for the dark Title: An Ultimate Neutrino Detector - Multi-Megaton Water Cherenkov Detector Click here for NALCAL at Fermilab. Many of them live on site. Fermilab Result of the Week Shedding light on dark matter Physicists

  4. Neutrino SuperBeams at Fermilab

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2011-08-23T23:59:59.000Z

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  5. Extruding plastic scintillator at Fermilab

    SciTech Connect (OSTI)

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31T23:59:59.000Z

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  6. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Gary Feldman 1 Fermilab Workshop Multiple Measurements and

    E-Print Network [OSTI]

    Feldman, Gary

    Gary Feldman 1 Fermilab Workshop Multiple Measurements and Parameters in the Unified Approach Gary Feldman Workshop on Confidence Limits Fermilab March 28, 2000 #12;Gary Feldman 2 Fermilab Workshop Origins Feldman 3 Fermilab Workshop Lack of Uniformly Most Powerful Test · Error of the first kind: Rejecting

  8. Cecilia Gerber, Fermilab The D0 Silicon Microstrip Tracker

    E-Print Network [OSTI]

    Gerber, Cecilia E.

    1 Cecilia Gerber, Fermilab The D0 Silicon Microstrip Tracker Cecilia Gerber - Fermilab Outline · Conclusions and Outlook #12;2 Cecilia Gerber, Fermilab · Run II will start March 1st 2001 · Center forward preshower #12;3 Cecilia Gerber, Fermilab D0 Silicon Microstrip Tracker Barrel H-disk F

  9. Fermilab FERMILAB-TM-2175 July 2002 SAM Managed Cache and Processing for Clusters in a Worldwide

    E-Print Network [OSTI]

    Fermilab FERMILAB-TM-2175 July 2002 SAM Managed Cache and Processing for Clusters in a Worldwide, Sinisa Veseli, Stephen White, Victoria White Fermilab, Batavia, Illinois, USA *Northwestern University at Fermilab as a versatile, distributed, data management system. One of its many features is its ability

  10. DIMUON PRODUCTION BY HIGH ENERGY NEUTRINOS AND ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

    E-Print Network [OSTI]

    Orthel, John L.

    2010-01-01T23:59:59.000Z

    ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBERANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER*ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

  11. Physics History Books in the Fermilab Library

    SciTech Connect (OSTI)

    Sara Tompson.

    1999-09-17T23:59:59.000Z

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  12. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study the first three (and experience the last) at Fermilab. We are most familiar with gravity and second-most familiar with the electromagnetic force in our daily routine. So I...

  13. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Frequency Beams Hi, I'm a physics student and I love the work you are doing at Fermilab. I've been watching closely your progress and I believe some of the best mind are...

  14. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotation of Black Holes Hello Alyssa -- The questions you sent to Fermilab about physics didn't get lost, they just got routed to a couple of lazy postdocs. That's why it took so...

  15. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appreciate it if you could send it to me. That would be awesome. Thanks Luke Luke - Hello. I am a scientist here at Fermilab and your question got forwarded to me. In some...

  16. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could happen, and one of the solution was to introduce a new particle, called the Higgs boson. There are many other suggestions in the air, and one of our goals here at Fermilab...

  17. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to run Fermilab for one year -- the kinetic energy of 3 MILLION, 1000 ton freight trains all moving at 50 mileshour -- the explosion of 300 kilotons of TNT (or about 15...

  18. Heavy quark masses from Fermilab Fermions

    E-Print Network [OSTI]

    Matthew Nobes; Howard Trottier

    2005-09-26T23:59:59.000Z

    Using automated perturbation theory techniques, we have computed the one-loop mass of Fermilab fermions, with an improved gluon action. We will present the results of these calculations, and the resulting predictions for the charm and bottom quark masses in the MSbar scheme. We report mc(mc) = 1:22(9) GeV and mb(mb) = 4:7(4) GeV. In addition we present results for the one-loop coeffcients of the Fermilab action.

  19. Developpement web Developpement web

    E-Print Network [OSTI]

    Matthieu, Basseur

    D´eveloppement web D´eveloppement web Caroline DEVRED, librement adapt´e par Matthieu BASSEUR Universit´e d'Angers 1/230 D´eveloppement web Plan XHTML et CSS Introduction Introduction `a XHTML Javascript Introduction La base Les formulaires Quelques ´ev`enements javascript 2/230 D´eveloppement web

  20. Fermilab | Web Cams | NOvA Far Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Follow us on: Facebook Twitter NOvA Far Detector Live Webcam Detector Hall Looking Downstream This text will be replaced View this full feed on Twitter @NOvANuz Twitter Feed...

  1. OBSERVATIONS AND COMPUTATIONS OF HIGHER ENERGY COLLECTIVE EFFECTS IN THE FERMILAB BOOSTER

    E-Print Network [OSTI]

    Cornacchia, M.

    2010-01-01T23:59:59.000Z

    Energy Collective Effects in the Fermilab Booster* Massimoin during my visit to Fermilab in November and December

  2. News Room

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/News Archives NewsRoom

  3. Fermilab Workshop for Prairie - Our Heartland: Chemistry Institutes...

    Broader source: Energy.gov (indexed) [DOE]

    Chemistry Institutes Fermilab Workshop for Prairie - Our Heartland: Chemistry Institutes June 17, 2013 7:15PM EDT to June 21, 2013 9:15PM EDT Fermilab What was the Midwest like 200...

  4. Groundwater migration of radionuclides at Fermilab

    SciTech Connect (OSTI)

    Malensek, A.J.; Wehmann, A.A.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-09-20T23:59:59.000Z

    The simple Single Resident Well (SRW) Model has been used to calculate groundwater movement since Fermilab`s inception. A new Concentration Model is proposed which is more realistic and takes advantage of computer modeling that has been developed for the siting of landfills. Site geologic and hydrologic data were given to a consultant who made the migration calculations from an initial concentration that was based upon the existing knowledge of the radioactivity leached out of the soil. The various components of the new Model are discussed, and numerical examples are given and compared with DOE/EPA limits.

  5. Webgrep: Web Webgrep: User Centered Web Personalization

    E-Print Network [OSTI]

    Tanaka, Jiro

    Webgrep: Web Webgrep: User Centered Web Personalization y Hironobu Aoki yy Jiro Tanaka y Master and Electronics,University of Tsukuba WWW Web Web Webgrep Webgrep 1 Web Web Web Web Web [1] My Yahoo! [2] MyNetscape [3] amazon.com [4] Web Web 2 Web Web |1| #12;1. Web 2. 3. 4. Web WWWC [5] Web Auto [6] Web 1 2 Web 3

  6. Photoproduction of charm particles at Fermilab

    SciTech Connect (OSTI)

    Cumalat, John P. [University of Colorado, Department of Physics Boulder, Colorado 80309 (United States)

    1997-03-15T23:59:59.000Z

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  7. Recent results on Charm Physics from Fermilab

    E-Print Network [OSTI]

    J. C. Anjos; E. Cuautle

    2000-05-16T23:59:59.000Z

    New high statistics, high resolution fixed target experiments producing $10^5$ - $10^6$ fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E791, SELEX and FOCUS are presented.

  8. One Loop Renormalization of Fermilab Fermions

    E-Print Network [OSTI]

    Matthew Nobes; Howard Trottier

    2002-09-02T23:59:59.000Z

    We discuss the current status of our automatic perturbation theory program as applied to Fermilab Fermions. We give an overview of our methods, a discussion of tree level matching, and one loop results for the coefficients of the higher dimension kinetic operators.

  9. Proposed New Antiproton Experiments at Fermilab

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2008-12-13T23:59:59.000Z

    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.

  10. Correction magnets for the Fermilab Recycler Ring

    SciTech Connect (OSTI)

    James T Volk et al.

    2003-05-27T23:59:59.000Z

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

  11. , Web . Web Google[1] CLEVER[2] ,

    E-Print Network [OSTI]

    Shirai, Kiyoaki

    Web 1 , Web , Web , Web . Web , Web , Web . , , . , , , . , , 1 . , . , 1 , . , , Web . , , . Web . Google[1] CLEVER[2] , . , 1 , [3]. , . Amitay , HTML , . , , [4]. , Web . , [5]. , HTML Amitay . , , , 1: Web . 2 , · Web . , , 200 . , . , 10 . , . , 1 . , . , . 2.1 1: Web 14 7 386 296 27.6 42.3 #12

  12. DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  13. DZero (D0) Experiment Results for Electroweak Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Electroweak Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  14. DZero (D0) Experiment Results for Top Quark Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Top Quark Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  15. DZero (D0) Experiment Results for Higgs Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Higgs Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  16. DZero (D0) Experiment Results for QCD Physics from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the QCD Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  17. Web Search. Web Spidering Introduction

    E-Print Network [OSTI]

    Inkpen, Diana

    1 Web Search. Web Spidering Introduction #12;2 Outline · Information Retrieval applied on the Web · The Web ­ the largest collection of documents available today ­Still, a collection ­Should be able to apply "traditional" IR techniques, with few changes · Web Search · Spidering #12;3 Web Search Using IR

  18. Electron Cloud induced instabilities in the Fermilab Main Injector (MI) for the High Intensity Neutrino Source (HINS) project

    E-Print Network [OSTI]

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2008-01-01T23:59:59.000Z

    Fermilab Main Injector (MI) for the High Intensity Neutrinofor the Fermilab maininjector (MI) show the existence of amitance growth. The Fermilab MI is being considered for an

  19. Electron Cloud induced instabilities in the Fermilab Main Injector (MI) for the High Intensity Neutrino Source (HINS) project

    E-Print Network [OSTI]

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2008-01-01T23:59:59.000Z

    induced instabilities in the Fermilab Main Injector (MI) forrings. Results for the Fermilab maininjector (MI) show theem- mitance growth. The Fermilab MI is being considered for

  20. lingyy@ruc.edu.cn Web Web Web

    E-Print Network [OSTI]

    DEEP WEB 100872 lingyy@ruc.edu.cn Web Web Web Deep Web Deep Web Deep Web; Web TP391 Entity Identification for Deep Web Data Integration Ling Yan-Yan, Liu Wei, Wang Zhong-Yuan, Ai Nowadays, growing number of Web Databases emerge from the web with their contents duplicated. Two or more

  1. Physics at a New Fermilab Proton Driver

    E-Print Network [OSTI]

    S. Geer

    2006-04-03T23:59:59.000Z

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ``Study on the Physics of Neutrinos'' concluded that the future U.S. neutrino program should have, as one of its components, ``A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing CP violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  2. Fixed target experiments at the Fermilab Tevatron

    E-Print Network [OSTI]

    Gaston Gutierrez; Marco A. Reyes

    2014-09-29T23:59:59.000Z

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of $\\sqrt{s}=40$ GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include $\\pi^+\\pi^-$, $K^0_s K^0_s$, $ K^0_sK^\\pm\\pi^\\mp$, $\\phi\\phi$ and $D^{*\\pm}$. Partial Wave Analysis results will be presented on the light states but only the cross section will be reviewed in the diffractive production of $D^{*\\pm}$

  3. Physics at a new Fermilab proton driver

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2006-04-01T23:59:59.000Z

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  4. A Roadmap for the Future of Fermilab

    SciTech Connect (OSTI)

    Oddone, Pier

    2005-12-12T23:59:59.000Z

    The principal aim of this roadmap is to place the US and Fermilab in the best position to host the International Linear Collider (ILC). The strategy must be resilient against the many vicissitudes that will attend the development of such a large project. Pier Oddone will explore the tension between the needed concentration of effort to move a project as large as the ILC forward and the need to maintain the breadth of our field.

  5. Mathematics Help Room

    E-Print Network [OSTI]

    Link to Help Room Schedule. The Mathematics Help Room is available to help you with your 100 and 200 level Algebra, Algebra/Trigonometry, or Calculus...

  6. Data from Fermilab E-687 (Photoproduction of Heavy Flavours) and Fermilab E-831 (FOCUS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The FERMILAB E687 Collaboration studies production and decay properties of heavy flavours produced in photon-hadron interactions. The experiment recorded approximately 500 million hadronic triggers in the 1990-91 fixed target run at Fermilab from which over 80 thousand charm decays were fully reconstructed. Physics publications include the precision lifetime measurements of the charm hadrons, D meson semileptonic form factors, detailed Dalitz plot analyses, charm meson and baryon decay modes and spectroscopy, searches for rare and forbidden phenomena, and tests of QCD production mechanisms. The follow-on experiment FOCUS Collaboration (Fermilab E831) successfully recorded huge amount of data during the 1996-1997 fixed target run. The FOCUS home page is located at http://www-focus.fnal.gov/. FOCUS is an international collaboration with institutions in Brazil, Italy, South Korea, Mexico, Puerto Rico, and the U.S.

  7. Mr. Jack W. Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    permitting. Liquid Effluents Erosion control devices would be utilized to prevent sediment accumulation in storm water runoff. V. NEPA Recommendati on Fermilab staff have...

  8. X013 Mr. Jack Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    AT FERMI NATIONAL ACCELERATOR LABORATORY (FERMILAB) - VARIOUS DEMOLITION JOBS 2013 Reference: Memorandum, from J. Anderson to M. Weis, dated May 28, 2013, Subject: National...

  9. Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Fermilab. The vertical axis shows amounts and the horizontal axis shows three categories: electricity consumption, demand, and annual electricity cost. For each category there are...

  10. Report of the Fermilab Committee for Site Studies

    SciTech Connect (OSTI)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10T23:59:59.000Z

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  11. Fermilab Workshop for Prairie - Our Heartland: Beauty and Charm...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  12. Fermilab Workshop for Prairie - Our Heartland: Insects at Work...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  13. Fermilab Workshop for Prairie - Our Heartland: Biology Institute...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  14. Fermilab Workshop for Prairie - Our Heartland: | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  15. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    PILLBOX CAVITY AT LAB G OF FERMILAB* Derun Li, J. Corlett,apertures at Lab G of Fermilab, a dedicated facility forwas shipped to Lab G of Fermilab for high power tests in

  16. Aperture studies for the AP2 anti-proton Line at Fermilab

    E-Print Network [OSTI]

    Reichel, Ina; Zisman, Michael; Placidi, Massimo

    2003-01-01T23:59:59.000Z

    I Project. Technical report, Fermilab, Septem- ber 1984. [2]Upgrades. Pbar Note 680, Fermilab, April 2003. [4] M.mm-mrad. Pbar Note 571, Fermilab, October [5] F. Bieniosek.

  17. Fermilab silicon strip readout chip for BTev

    SciTech Connect (OSTI)

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01T23:59:59.000Z

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  18. Numerical Tests of the Improved Fermilab Action

    E-Print Network [OSTI]

    C. Detar; A. S. Kronfeld; M. B. Oktay

    2010-11-23T23:59:59.000Z

    Recently, the Fermilab heavy-quark action was extended to include dimension-six and -seven operators in order to reduce the discretization errors. In this talk, we present results of the first numerical simulations with this action (the OK action), where we study the masses of the quarkonium and heavy-light systems. We calculate combinations of masses designed to test improvement and compare results obtained with the OK action to their counterparts obtained with the clover action. Our preliminary results show a clear improvement.

  19. Dilepton Production at Fermilab and RHIC

    E-Print Network [OSTI]

    J. C. Peng; P. L. McGaughey; J. M. Moss

    1999-05-21T23:59:59.000Z

    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC.

  20. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2009-10-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  1. Fermilab at Work | Manuals and Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life

  2. Fermilab at Work | Physics Links: HEP Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilab NowLab Life

  3. Fermilab | Director's Policy Manual | Document Hierarchy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW '15

  4. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at Work

  5. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab at

  6. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab atCo-Op

  7. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilab

  8. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory

  9. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory Related

  10. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory Related

  11. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheory

  12. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheoryJohn

  13. Fermilab | For Physicists & Engineers | Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000 Rev.Group MembersFermilabTheoryJohnLee

  14. Fermilab | Illinois Accelerator Research Center | Construction Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at

  15. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab atContact

  16. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC

  17. Semantic Web Enabled Composition of Web Services

    E-Print Network [OSTI]

    Medjahed, Brahim

    Semantic Web Enabled Composition of Web Services Brahim Medjahed Dissertation submitted Falls Church, Virginia, USA Keywords: Semantic Web - Web Service - Ontology - Service Composition. Copyright 2004, Brahim Medjahed #12;Semantic Web Enabled Composition of Web Services Brahim Medjahed

  18. Metropolitan area network support at Fermilab

    SciTech Connect (OSTI)

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01T23:59:59.000Z

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  19. Scaling the Web Composing Web

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Composing Web Services:A QoS View A n Internet application can invoke several ser- vices -- a stock-trading Web service, for example, could invoke a payment service, which could then invoke an authentication service. Such a scenario is called a composite Web service, and it can

  20. EVOLUZIONE-WEB -1 -Evoluzione del Web

    E-Print Network [OSTI]

    De Antonellis, Valeria

    EVOLUZIONE-WEB - 1 - Evoluzione del Web (fonte prof. Polillo) #12;- 2 - L'evoluzione del web EVOLUZIONE-WEB · Dal primo sito Web (1991) il Web è in continua crescita, e in continua evoluzione tecnologia, il mercato, i comportamenti delle persone · Le fasi della storia del Web: Web 1.0, Web 2.0, il

  1. SRO : single room occupancy

    E-Print Network [OSTI]

    Shimada, Taketo

    1997-01-01T23:59:59.000Z

    During August of 1996, I stayed in a series of SRO hotels in New York City leaving a book and diary behind when I checked out of each room. The books that were left in the rooms differ from one room to the other but all ...

  2. The New (g-2) Experiment at Fermilab Brendan C. K. Casey

    E-Print Network [OSTI]

    Quigg, Chris

    The New (g-2)µ Experiment at Fermilab Brendan C. K. Casey Fermilab, PO Box 500, Batavia, IL 60510. This new g-2 experiment will be hosted by Fermilab making use of minor modifications to the existing hosted at Brookhaven. In particular, the entire storage ring and magnet will be shipped to Fermilab. We

  3. What Will The Neighbors Think? A Discussion with the Fermilab ILC Citizens' Task Force

    E-Print Network [OSTI]

    Quigg, Chris

    What Will The Neighbors Think? A Discussion with the Fermilab ILC Citizens' Task Force July 27 community play in working directly with the local community to bring the ILC to Fermilab? 5. Why should we build the ILC at Fermilab? What are the benefits for the local community? Why is Fermilab the best site

  4. LATBauerdick/Fermilab Condor Week May 3, 2012 Open Science Grid

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    LATBauerdick/Fermilab Condor Week May 3, 2012 f 1 Open Science Grid LATBauerdick/Fermilab #12;LATBauerdick/Fermilab Condor Week May 3, 2012 fThe OSG Ecosystem OSG Consortium sites/resources providers, reliable and shared resources to support computation at all scales. #12;LATBauerdick/Fermilab Condor Week

  5. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge, Spin and Mass of Fundamental Particles You asked: Hello, I've been searching the web for some kind of list of the rest mass, charge and spin of the most fundamental...

  6. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    i am student teaching at downers grove north high school. we are doing a unit in electromagnetism and somehow came upon the concept of the quark. i did some web research only to...

  7. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have a question, but first, thank you for the terrific new web site. You did a fantastic job. Question: Where does present theory say the energy of a red shifted photon goes? The...

  8. Charm Physics at Fermilab E791

    E-Print Network [OSTI]

    Fermilab E791 Collaboration; D. J. Summers

    2000-09-06T23:59:59.000Z

    Experiment 791 at Fermilab's Tagged Photon Laboratory has just accumulated a high statistics charm sample by recording 20 billion events on 24000 8mm tapes. A 500 GeV/c pi- beam was used with a fixed target and a magnetic spectrometer which now includes 23 silicon fixed target and a magnetic spectrometer which now includes 23 silicon microstrip planes for vertex reconstruction. A new data acquisition system read out 9000 events/sec during the part of the Tevatron cycle that delivered beam. Digitization and readout took 50 uS per event. Data was buffered in eight large FIFO memories to allow continuous event building and continuous tape writing to a wall of 42 Exabytes at 9.6 MB/sec. The 50 terabytes of data buffered to tape is now being filtered on RISC CPUs. Preliminary results show D0 --> K- pi+ and D+ --> K- pi+ pi+ decays. Rarer decays will be pursued.

  9. Bob Wilson and The Birth of Fermilab

    ScienceCinema (OSTI)

    Edwin L. Goldwasser

    2010-01-08T23:59:59.000Z

    In the 1960?s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a ?budget buster?. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget?s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that ?Catch 22? and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.

  10. Fermilab collider run 1b accelerator performance

    SciTech Connect (OSTI)

    Bharadwaj, V.; Halling, M.; Lucas, P.; McCrory, E.; Mishra, S.; Pruss, S.; Werkema, S.

    1996-04-01T23:59:59.000Z

    This report summarizes the performance of Run 1b as of the end of July 1995. This run is the conclusion of Fermilab Collider Run 1, which consists of Run 1a (May 1992 - May 1993) and Run 1b (January 1994 - February 1996). Run 1b is characterized by being the first with the new 400 MeV Linac. At this time the run is not complete. Colliding beam physics is scheduled to resume after the summer 1995 shut down and continue until mid-February 1996. All of the operation to date is at a Tevatron energy of 900 GeV. This report emphasizes performance numbers and the various improvements made to systems to achieve this performance. It will only discuss the underlying physics to a limited extent. The report is divided into sections on: run statistics, I&C issues, proton source performance, antiproton source performance, main ring performance, Tevatron performance, and a summary.

  11. Status of the KTeV experiment at Fermilab

    SciTech Connect (OSTI)

    Ben-David, R.; KTeV Collaboration

    1997-10-01T23:59:59.000Z

    The KTeV experiment is a fixed target experiment at Fermilab. Its primary goal is the search for direct CP violation in the decay of neutral kaons. Its current status and some preliminary results will be discussed.

  12. Fermilab Workshop for Prairie- Our Heartland: Physics Institutes (second session)

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago?The Prairie - Our Heartlandis both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  13. Ms. Victoria A. White Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    Ms. Victoria A. White Chief Operating Officer Fermilab P.O. Box 500 Batavia, I L 60510 Dear Ms. White: SUBJECT : NATIONA L ENVIRON MENTAL POLICY ACT DETERMI NATION AT FERMI...

  14. Ms. Victoria A, White Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    A, White Chief Operating Officer Fermilab P.O. Box 50Q Batavia, I L 60510 Dear Ms. White: SUBJECT: NATIONAL ENVIRONMEN TAL POLICY ACT DTRMINATI QN AT ERMs NATIONAL ACCELERATO R...

  15. Fermilab Muon Ring Arrives to a Large Crowd of Fans

    SciTech Connect (OSTI)

    None

    2013-08-15T23:59:59.000Z

    A very large group of people gathered to watch the muon g-2 ring on its last leg of the big move from Brookhaven National Laboratory in Long Island, NY to Fermilab in Batavia, IL.

  16. Mr. Jack W. Anderson Chief Operating Officer Fermilab

    Broader source: Energy.gov (indexed) [DOE]

    'JAN 2013 Mr. Jack W. Anderson Chief Operating Officer Fermilab P.O. Box 500 Batavia, IL 60510 Dear Mr. Anderson: FSO H- fnAB U22 13 Scot' 1 13 FSO Bo, 3 Fso...

  17. Status of the KTeV Experiment at Fermilab

    E-Print Network [OSTI]

    R. Ben-David; representing the KTeV collaboration

    1998-01-06T23:59:59.000Z

    The KTeV experiment is a fixed target experiment at Fermilab. Its primary goal is the search for direct CP violation in the decay of neutral kaons. Its current status and some preliminary results will be discussed.

  18. Non-Perturbative Renormalization and the Fermilab Action

    E-Print Network [OSTI]

    Huey-Wen Lin

    2003-10-30T23:59:59.000Z

    We discuss the application of the regularization independent (RI) scheme of Rome/Southampton to determine the normalization of heavy quark operators non-perturbatively using the Fermilab action.

  19. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imagined Landscape - Melanie P. Brown, Suzanne K. Loechl, Julian E. Williams On Display: December 4, 2014 -January 29, 2015 Artist Reception - December 12 5-7pm Fermilab Art...

  20. Common Help Room Hours

    E-Print Network [OSTI]

    Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16200 - MATH 205 - Nathanael Cox...

  1. Common Help Room Hours

    E-Print Network [OSTI]

    Common Help Room Hours for Spring 2015. Monday, Tuesday, Wednesday, Thursday, Friday. 10:30 am. 11:30 am. MA 16010 - MATH 205 - Alessandra...

  2. WEB HARVESTING Wolfgang Gatterbauer

    E-Print Network [OSTI]

    Gatterbauer, Wolfgang

    WEB HARVESTING Wolfgang Gatterbauer Computer Science and Engineering University of Washington, USA SYNONYMS web data extraction, web information extraction, web mining DEFINITION Web harvesting describes the process of gathering and integrating data from var- ious heterogeneous web sources. Necessary input

  3. World Wide Web( WWW ) Greenberg Web

    E-Print Network [OSTI]

    Shirai, Kiyoaki

    WWW 1 World Wide Web( WWW ) WWW Web Web Greenberg Web 30% [1] Web WWW Web WWW [2] [3] WWW 2 2.1 WWW Web 1 1: · 1 · 1 #12;· Web Web 2: 2 2 Web 2.2 Web Web URL URL .html / Yahoo http://headlines.yahoo.co.jp/hl?a=2 0011205-00000101-yom-soci URL onmouseover on- mouseout JavaScript 2.1 2.3 URL URL 1. Web HTML 2. 1

  4. Fermilab | Newsroom | Fermilab/U.S. experts on the Large Hadron Collider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab « Return

  5. Physics at an upgraded proton driver at Fermilab

    SciTech Connect (OSTI)

    Steve Geer

    2004-07-28T23:59:59.000Z

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also supporting a vigorous 8 GeV fixed-target program. In addition, a Proton Driver might also serve as a stepping-stone to future accelerators, both as an R&D test bed and as an injector, with connections to the Linear Collider, Neutrino Factories, and a VLHC. Hence, although neutrino physics would provide the main thrust for the science program at an upgraded Fermilab proton source, the new facility would also offer exciting opportunities for other fixed-target particle physics (kaons, muons, neutrons, antiprotons, etc.) and a path towards new accelerators in the future.

  6. CP Violation in Strange Baryon Decays: A Report from Fermilab Experiment 871

    E-Print Network [OSTI]

    Fermilab Experiment E871

    CP Violation in Strange Baryon Decays: A Report from Fermilab Experiment 871 C. James, a R. A, Alabama 36688 j University of Virginia, Charlottesville, Virginia 22901 Abstract. Fermilab experiment 871

  7. The Mu2e Experiment at Fermilab: a Search for Charged Lepton Flavor Violation

    E-Print Network [OSTI]

    The Mu2e Experiment at Fermilab: a Search for Charged Lepton Flavor of the Mu2e Collaboration. A new experiment, Mu2e, is being developed at Fermilab

  8. Web of Science Welcome to the Web of Science................................................................................................ 2

    E-Print Network [OSTI]

    Huang, Su-Yun

    Web of Science #12; Welcome to the Web of Science................................................................................................ 2 Web of Science.............................................................................................. 4 Web of Science

  9. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04T23:59:59.000Z

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  10. Prospects for low-energy antiproton physics at Fermilab

    E-Print Network [OSTI]

    Daniel M. Kaplan

    2001-02-10T23:59:59.000Z

    Fermilab has long had the world's most intense antiproton source, but the opportunities for medium-energy antiproton physics have been limited, and those for low-energy antiproton physics nonexistent. The conclusion of E835 brings this era to an end. While the future of antiproton physics at Fermilab remains highly uncertain, developments are occurring that may lead to a low-energy program within the next several years, with the possibility of an improved medium-energy program thereafter. These issues were considered at the recent $\\bar{p}2000$ Workshop at Illinois Institute of Technology. I summarize the current status of the Fermilab antiproton facility, review hyperon {\\em CP} violation as an example of the physics that might be achievable, and discuss future possibilities.

  11. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect (OSTI)

    None

    2008-06-01T23:59:59.000Z

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  12. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M1 Informatique - 2010-2011 1 / 33 #12;D´eveloppement Web´eveloppement Web - Servlet Introduction Programmation Web avec Java Objectifs · initiation `a la programmation Web

  13. Web Applications and Security Web protocol overview

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Web Applications and Security Web protocol overview Web forms Cookies Attacks against Web>University of Massachusetts Amherst #12;Basic Web scripting There are two basic HTTP request methods, GET and POST descriptor. #12;Securing basic web apps is easy DON'T TRUST USER INPUT, EVER... Never execute code provide

  14. Microsoft Word - Customer Forum 38 Agenda_web_final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:00 pm Location: BPA Rates Hearing Room Phone Bridge: (877) 336-1828 Passcode: 2034081 Web site for additional information: http:www.bpa.govtransmissionCustomerInvolvement...

  15. Siena College Web Governance

    E-Print Network [OSTI]

    Siena College Web Governance Web Governance: Roles & Responsibilities. WEB ADVISORY COMMITTEE (WAC) The Web Advisory Committee is the Owner of the Siena homepage. The Web Advisory Committee is responsible for: Providing the process that will move Siena College

  16. Developpement WebPHP pour le Web Developpement Web

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement WebPHP pour le Web D´eveloppement Web PHP pour le Web Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer 2008 1 / 130 #12;D´eveloppement WebPHP pour le Web Objectif´eveloppement Web fonctionnalit´es de base du langage acc`es aux bases de donn´ees (PDO) la couche objet (classe, h

  17. World Network Speed Record Shattered Caltech, SLAC, Fermilab, CERN, Michigan, Florida,

    E-Print Network [OSTI]

    Low, Steven H.

    World Network Speed Record Shattered Caltech, SLAC, Fermilab, CERN, Michigan, Florida, Brookhaven, the Stanford Linear Accelerator Center (SLAC), Fermilab, CERN, and the University of Michigan and partners and Fermilab and an optimized Linux kernel developed at Michigan. Professor Harvey Newman of Caltech, head

  18. Eileen Berman Condor in the Fermilab Grid FacilitiesApril 30, 2008

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Eileen Berman #12;Condor in the Fermilab Grid FacilitiesApril 30, 2008 Fermi National Accelerator of 1000' s of users working for many years, rely on Fermilab to provide the core services and software necessary to enable the research that leads to scientific discoveries The Fermilab Grid Facilities

  19. Simona Rolli, Fermilab W&C Recent results on top quark,

    E-Print Network [OSTI]

    Fermilab

    4/27/04 Simona Rolli, Fermilab W&C seminar 1 Recent results on top quark, electroweak and new;4/27/04 Simona Rolli, Fermilab W&C seminar 2 Introduction Exciting time now at CDF ! frenzy activity in physics datasets Common identification/reconstruction cuts #12;4/27/04 Simona Rolli, Fermilab W&C seminar 3 Outline

  20. Kaori Maeshima, Fermilab La Thuile, 4th March 2005 1 Non SUSY Searches at the

    E-Print Network [OSTI]

    Fermilab

    Kaori Maeshima, Fermilab La Thuile, 4th March 2005 1 Non SUSY Searches at the Tevatron Kaori Maeshima (Fermilab) For the D0 and CDF Collaborations #12;Search Strategies & This Talk OrganizationSearch Strategies & This Talk Organization Kaori Maeshima, Fermilab La Thuile, 4th March 2005 2 New Phenomena Exp

  1. 7/25/13 Fermilab Today www.fnal.gov/pub/today/ 1/4

    E-Print Network [OSTI]

    Toback, David

    7/25/13 Fermilab Today www.fnal.gov/pub/today/ 1/4 Thursday, July 25, 2013 Subscribe | Contact Us, a weekly calendar with links to additional information. Ongoing and upcoming conferences at Fermilab Campaigns Take Five Weather Increasing clouds 79°/61° Extended forecast Weather at Fermilab Video of the Day

  2. A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 1 Anatoly Evdokimov

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory

    A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 1 Anatoly Evdokimov Institute & Cheese Seminar, Fermilab 18 Jun 2004 2 OutlineOutline Heavy-Light Meson Spectroscopy Reminder about SELEX Conclusions #12;A. Evdokimov, ITEP Wine & Cheese Seminar, Fermilab 18 Jun 2004 3 Heavy

  3. Measurement of the W Boson Mass With the Collider Detector at Fermilab

    E-Print Network [OSTI]

    Weitz, David

    Measurement of the W Boson Mass With the Collider Detector at Fermilab A thesis presented by Andrew With the Collider Detector at Fermilab Andrew Scott Gordon Thesis Advisor: Melissa Franklin Abstract We measure at Fermilab from pp collisions at ps = 1800 GeV. The data weretaken from January 1994 through July 1995

  4. *Correspondence address. Fermilab, MS 122 E 871, Batavia, IL 60510, USA. Fax: 16308403867.

    E-Print Network [OSTI]

    Fermilab Experiment E871

    *Correspondence address. Fermilab, MS 122 E 871, Batavia, IL 60510, USA. Fax: 1­630­840­3867. E, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA #Fermilab, Batavia, IL 60510, USA; accepted 29 April 2000 Abstract The data acquisition system of the HyperCP experiment at Fermilab recorded

  5. CIPANP -2003 Peter S. Cooper -Fermilab 1 Brief theory and model review

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory

    CIPANP - 2003 Peter S. Cooper - Fermilab 1 Outline ? Brief theory and model review ?Search methods. Cooper Fermi National Accelerator Laboratory #12;CIPANP - 2003 Peter S. Cooper - Fermilab 2 SELEX Collaboration #12;CIPANP - 2003 Peter S. Cooper - Fermilab 3 Some Nomenclature In this talk we replace PDG names

  6. The NuMI Neutrino Beam at Fermilab

    E-Print Network [OSTI]

    Sacha E. Kopp

    2004-12-18T23:59:59.000Z

    The Neutrinos at the Main Injector (NuMI) facility at Fermilab is due to begin operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy 2-20 GeV directed into the Earth at 58 mrad for short (~1 km) and long (~700-900 km) baseline experiments. Several aspects of the design are reviewed, as are potential upgrade requirements to the facility in the event a Proton Driver is built at Fermilab to enhance the neutrino flux.

  7. Research Activities at Fermilab for Big Data Movement

    SciTech Connect (OSTI)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01T23:59:59.000Z

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  8. 3D Interactive Room Organizer Eranda De Alwis and Baihua Li

    E-Print Network [OSTI]

    Li, Baihua

    3D Interactive Room Organizer Eranda De Alwis and Baihua Li Department of Computing and Mathematics in position. To resolve the problem, we present the prototype implementation of a web-based 3D interactive to interact with furniture and other elements in the room, and arrange them properly in 3D world. The user can

  9. Developpement WebIntroduction generale Developpement Web

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement WebIntroduction g´en´erale D´eveloppement Web Introduction g´en´erale Jean #12;D´eveloppement WebIntroduction g´en´erale Plan Plan 1 Introduction 2 Historique et ´evolution du Web 3 Difficult´e du d´eveloppement Web 4 Le Web dans le monde actuel 2 / 58 #12;D´eveloppement Web

  10. First events and prospects at the Fermilab collider

    SciTech Connect (OSTI)

    Binkley, M.

    1986-03-01T23:59:59.000Z

    A brief description of the Collider Detector at Fermilab (CDF) is given including the detector components and the data acquisition system. The first test run, the first events, and the performance of the detector are discussed. Finally the prospects for future running are reviewed.

  11. MINERvA Detector ConstructionTimelapse at Fermilab

    SciTech Connect (OSTI)

    2009-09-01T23:59:59.000Z

    This is a short timelapse of one day of construction of the MINERvA detector located at Fermilab, approximately 375 feet below the ground. This sequence was shot at 5 minute intervals from 6:00 am until 11:00 pm on April 6, 2009.

  12. Search for New Fermions (Quirks) at the Fermilab Tevatron Collider

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Sekaric, Jadranka; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.

    2010-11-19T23:59:59.000Z

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4??fb(?1) of integrated luminosity collected by the D0 experiment at the Fermilab...

  13. Fermilab Recycler Ring: Technical design report. Revision 1.1

    SciTech Connect (OSTI)

    Jackson, G. [ed.

    1996-07-01T23:59:59.000Z

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  14. B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 -p. 1/66 Muon (g-2) Past and Future

    E-Print Network [OSTI]

    Roberts, B. Lee

    B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 1/66 Muon (g-2) Past and Future Beam@bu.edu http://physics.bu.edu/roberts.html #12;B. Lee Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 2 Roberts, Fermilab, (g-2) Meeting 12 January 2008 - p. 3/66B. L. Roberts, Fermilab , 3 September 2008 - p

  15. LIGHTWEIGHT JAVA WEB DEVELOPMENT An eight-week comprehensive program covering open-source, lightweight, Java enterprise Web

    E-Print Network [OSTI]

    Schaefer, Marcus

    -source, lightweight, Java enterprise Web development using POJOs (Plain Old Java Objects) DePaul University. Wabash Avenue, Room 301 Chicago, IL 60604-2300 (312)362-6282 ipd.cdm.depaul.edu #12;LIGHTWEIGHT JAVA WEB and Hibernate both allow the programmer to use Plain Old Java Objects (POJOs) to encode data and business logic

  16. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M1/M2 Informatique - 2010-2011 1 / 34 #12;D´eveloppement Web / 34 #12;D´eveloppement Web - Servlet Introduction Programmation Web avec Java Objectifs · initiation

  17. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M1 Informatique - 2010-2011 1 / 29 #12;D´eveloppement Web´eveloppement Web - Servlet Introduction Introduction Introduction 3 / 29 #12;D´eveloppement Web - Servlet

  18. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer L3 Pro Informatique - 2010-2011 1 / 34 #12;D´eveloppement Web / 34 #12;D´eveloppement Web - Servlet Introduction Programmation Web avec Java Objectifs · initiation

  19. Web Information Retrieval Author Preprint for Web

    E-Print Network [OSTI]

    Hawking, David

    Web Information Retrieval Author Preprint for Web Nick Craswell and David Hawking 18 April 2009 1 Introduction This chapter outlines some distinctive characteristics of web information re- trieval, starting with a broad description of web data and the needs of web searching users, then working through ranking

  20. Managing Web Data Managing Web Data

    E-Print Network [OSTI]

    Davulcu, Hasan

    Managing Web Data Dan Suciu AT&T Labs Managing Web Data Sigmod, 1999 Dan Suciu AT&T Labs 1 #12;How the Web is Today HTML documents all intended for human consumption many are generated automatically by applications Managing Web Data Sigmod, 1999 Dan Suciu AT&T Labs 2 #12;Paradigm Shift on the Web applications

  1. Scaling the Web Scaling Web Sites

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Scaling Web Sites Through Caching A large jump in a Web site's traffic may indi, pushing the site's through- put to its maximum point. When a Web site becomes overloaded, cus- tomers grow-generated revenue and may even tarnish the reputation of organizations relying on Web sites to support mission

  2. Webbed Footnotes : collaborative annotation on the Web

    E-Print Network [OSTI]

    Golder, Scott Andrew

    2005-01-01T23:59:59.000Z

    More and more, web users are moving from simply consuming content on the web to creating it as well, in the form of discussion boards, weblogs, wikis, and other collaborative and conversational media. Despite this, the web ...

  3. Clean Cities Web Sites and Web Tools

    Broader source: Energy.gov (indexed) [DOE]

    Clean Cities Web Sites and Web Tools Johanna Levene July 28, 2010 Innovation for Our Energy Future Fuel Economy fueleconomy.gov What vehicle? Clean Cities Web Site * Information...

  4. WEB DE ESQUEMAS WEB DE ESQUEMAS ALGORTMICOSALGORTMICOS

    E-Print Network [OSTI]

    Giménez, Domingo

    WEB DE ESQUEMAS WEB DE ESQUEMAS ALGORÍTMICOSALGORÍTMICOS PROYECTO FINAL DE CARRERA DE INGENIERÍA MOTIVACI?NINTRODUCCION Y MOTIVACI?N PROPUESTA DE SOLUCI?NPROPUESTA DE SOLUCI?N Aplicación web con C++Aplicación web con FUNCIONAMIENTO DE WEAFUNCIONAMIENTO DE WEA WEA: Web de Esquemas AlgorítmicosWEA: Web de Esquemas Algorítmicos

  5. Semantic Web 30Artificial

    E-Print Network [OSTI]

    van Harmelen, Frank

    312007.11 "" Semantic Web 30Artificial IntelligenceKnowledge Representation Inductive Web datasets ---- Tim Berners-Lee Tim Berners-Lee " "" " Web 2.0---- Web Web 2.0 Frank van Harmelen W3C OWL Web Sesame RDF Aduna 100 Hirsch 35 5 15 ECAI2002 3 ISWC

  6. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29T23:59:59.000Z

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  7. New Phenomena II: Recent Results from the Fermilab Tevatron

    E-Print Network [OSTI]

    David Toback

    2000-05-12T23:59:59.000Z

    The CDF and D\\O collaborations continue to search for new physics using more than 100~pb$^{-1}$ of \\xxbar{p} collisions at $\\sqrt{s}=1.8$ TeV collected at the Fermilab Tevatron. We present recent results from both experiments on R-parity violating Supersymmetry and $Z'$/Technicolor production with $ee$ and \\xxbar{t} final states. In addition we introduce Sherlock, a new quasi-model-independent search strategy.

  8. Measuring Gaugino Soft Phases and the LSP Mass At Fermilab

    E-Print Network [OSTI]

    S. Mrenna; G. L. Kane; Lian-Tao Wang

    1999-10-25T23:59:59.000Z

    Once superpartners are discovered at colliders, the next challenge will be to determine the parameters of the supersymmetric Lagrangian. We illustrate how the relative phases of the gluino, SU(2), and U(1) gauginos and the Higgsino mass parameter mu can be measured at a hadron collider without ad hoc assumptions about the underlying physics, focusing on Fermilab. We also discuss how the gluino and LSP masses can be measured.

  9. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect (OSTI)

    Syphers, M.J.; /Fermilab

    2009-10-01T23:59:59.000Z

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  10. Press Room | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &User ServicesRadioPress Room Tesla

  11. Room to grow | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: Sulfur K-edgeDepartment|Room to

  12. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M1/M2 Informatique - 2010-2011 1 / 30 #12;D´eveloppement Web Bibliographie 2 / 30 #12;D´eveloppement Web - Servlet Introduction Introduction Introduction 3 / 30 #12;D

  13. Adaptive Web Sites: Automatically Synthesizing Web Pages

    E-Print Network [OSTI]

    Etzioni, Oren

    Adaptive Web Sites: Automatically Synthesizing Web Pages Mike Perkowitz Oren Etzioni Department interfaces Abstract The creation of a complex web site is a thorny problem in user interface design. In IJCAI '97, we challenged the AI community to address this problem by creating adaptive web sites: sites

  14. Agents on the Web The Sentient Web

    E-Print Network [OSTI]

    Huhns, Michael N.

    Agents on the Web The Sentient Web "I n a startling revelation, a team of uni- versity scientists. In spite of the ominous tone typically cho- sen for dramatic effect, a sentient Web would be more helpful and much easier for people to use. When people find the Web frustrating, it is usual- ly not because

  15. Semantic Web Technologies for the Adaptive Web

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    23 Semantic Web Technologies for the Adaptive Web Peter Dolog1 and Wolfgang Nejdl2 1 Department.de Abstract. Ontologies and reasoning are the key terms brought into focus by the semantic web community. Formal representation of ontologies in a common data model on the web can be taken as a foundation

  16. WEB Maintainers Meetup Web Branding Committee

    E-Print Network [OSTI]

    Florida, University of

    WEB Maintainers Meetup UF/IFAS DEPARTMENT #12; Web Branding Committee Introduction and TERMINALFOUR (T4) recap Preparation Page layouts Questions #12;WEB BRANDING COMMITTEE what we heard #12;Some) is the new UF Web Content Management System (WCMS) chosen for the next five years. T4 allows non

  17. Einsatz von Web Services im Semantic Web

    E-Print Network [OSTI]

    Moeller, Ralf

    Einsatz von Web Services im Semantic Web am Beispiel der RACER Engine und OWL-QL Jan Galinski Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . 2 2 Grundlagen 5 2.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Komponenten des Semantic Web . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Repräsentation

  18. Developpement Web -JSTL Developpement Web -JSTL

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - JSTL D´eveloppement Web - JSTL Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M2 Informatique 2010-2011 1 / 44 #12;D´eveloppement Web - JSTL Plan Plan 1 Introduction 2 Utilisation de la JSTL 3 Bibliographie 2 / 44 #12;D´eveloppement Web

  19. Developpement Web -Servlet Developpement Web -Servlet

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - Servlet D´eveloppement Web - Servlet Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer L3 Pro Informatique - 2010-2011 1 / 31 #12;D´eveloppement Web Bibliographie 2 / 31 #12;D´eveloppement Web - Servlet Introduction Introduction Introduction 3 / 31 #12;D

  20. Web Information Retrieval Web Science Course

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    1 Web Information Retrieval Web Science Course #12;2 #12;What to Expect · Information Retrieval on the Web ­ Differences to traditional IR · Selected Papers 3 #12;4 Information Retrieval Basics #12 documents on the Internet ­ Searching the World Wide Web #12;16 Recent IR History · 2000's ­ Link analysis

  1. ISI Web of Knowledge111 -ISI Web of Knowledge

    E-Print Network [OSTI]

    Ben-Or, Michael

    ­ ISI Web of Knowledge111 © , . , , , . . , . , . . -ISI Web of Knowledge )http:// webofknowledge.com( , , , . . -ISI Web of Knowledge: Web of Science(-1691) , . Biosis Previews(-1661 ) - , , , . MEDLINE(-1611

  2. Networking and the Web World-Wide Web

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Networking and the Web #12;World-Wide Web · Wide use of computers Web · Key components of the web ­ Computer Communica8on Networks

  3. Mobility of Tritium in Engineered and Earth Materials at the NuMI Facility, Fermilab: Progress report for work performed between June 13 and September 30, 2006

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    for the NuMI project, FERMILAB-TM-2009 and NuMI-B-279, Fermito NuMI beam tunnels, FERMILAB-TM-2083, Fermi Nationalprotection radiation safety, Fermilab report, July 2001.

  4. PERFORMANCE CHARACTERISTICS OF THE FERMILAB 15-FOOT BUBBLE CHAMBER WITH A 1/3-SCALE INTERNAL PICKET FENCE (IPF) AND A TWO-PLANE EXTERNAL MUON IDENTIFIER (EMI)

    E-Print Network [OSTI]

    Stevenson, M.L.

    2011-01-01T23:59:59.000Z

    L. Stevenson, G. P. Yost; Fermilab: B. Chrisman, D. Gee, A.of Hawaii; and M. Atac, Fermilab; "Status of the InternalPicket Fence for the Fermilab 15-Foot Bubble Chamber", U. H.

  5. Developpement WebFrameworks AJAX Developpement Web

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement WebFrameworks AJAX D´eveloppement Web Frameworks AJAX Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer 2009 1 / 27 #12;D´eveloppement WebFrameworks AJAX Objectif d´eveloppement Web et augmenter l'interactivit´e avec l'utilisateur 2 / 27 #12;D´eveloppement Web

  6. Web Personalization Magdalini Eirinaki

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    Web Mining for Web Personalization Magdalini Eirinaki Michalis Vazirgiannis Athens University of Economics and Business Department of Informatics #12;M.Eirinaki, M. Vazirgiannis Web Mining for Web Personalization 2PKDD 2005 Introduction Continuous growth in the size and the use of WWW Large and complicated web

  7. Logical Foundations Semantic Web

    E-Print Network [OSTI]

    Sattler, Ulrike

    Logical Foundations for the Semantic Web Ian Horrocks and Ulrike Sattler University of Manchester Manchester, UK {horrocks|sattler}@cs.man.ac.uk #12;Introduction #12;History of the Semantic Web · Web of the Web was much more ambitious than the reality of the existing (syntactic) Web: · TBL (and others) have

  8. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  9. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  10. Web Conferencing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWasteWeb Conferencing Adobe

  11. Web Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply|InPoliciesWeb

  12. Clean Room Orientation/Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shoes Shoe covers before entering gowning room Head cover, then coverall. Boots over shoe covers. Gloves If gloves get ripped or soiled during your time in...

  13. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect (OSTI)

    Holmes, Stephen D.; /Fermilab

    2010-05-01T23:59:59.000Z

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  14. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    SciTech Connect (OSTI)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab

    2012-05-14T23:59:59.000Z

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  15. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2007-06-01T23:59:59.000Z

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  16. Combining CPT-conjugate Neutrino channels at Fermilab

    E-Print Network [OSTI]

    Andreas Jansson; Olga Mena; Stephen Parke; Niki Saoulidou

    2007-11-07T23:59:59.000Z

    We explore an alternative strategy to determine the neutrino mass hierarchy by making use of possible future neutrino facilities at Fermilab. Here, we use CPT-conjugate neutrino channels, exploiting a nu_mu beam from the NuMI beamline and a barnu_e beam from a betabeam experimental setup. Both experiments are performed at approximately the same E/L. We present different possible accelerator scenarios for the betabeam neutrino setup and fluxes. This CPT-conjugate neutrino channel scenario can extract the neutrino mass hierarchy down to sin^2 (2 theta_13) \\approx 0.02.

  17. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect (OSTI)

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13T23:59:59.000Z

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  18. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  19. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)Perspectives ofTheArtist Within Fermilab

  20. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab Examined -

  1. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab Examined

  2. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)PerspectivesImaginedMaryFermilab

  3. Fermilab | Director's Policy Manual | No. 11.000 Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.000 Rev.

  4. Fermilab | Director's Policy Manual | No. 12.000 Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.000

  5. Fermilab | Director's Policy Manual | No. 13.000 Document Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall Works:OklahomaatWayneFermilabDASTOW1.00013.000

  6. Fermilab | Newsroom | Press Releases | April 14, 2015: High School Students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «

  7. Fermilab | Newsroom | Press Releases | April 2, 2013: Explore the Wonders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «of Science

  8. Fermilab | Newsroom | Press Releases | April 22, 2015: Icarus Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto:Fermilab «ofICARUS

  9. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at Work

  10. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC and

  11. Fermilab | Science | Particle Physics 101 | Ask a Scientist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle PhysicsAsk

  12. Fermilab | Science | Particle Physics 101 | How Particle Physics Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticle

  13. Fermilab | Science | Particle Physics 101 | Questions for the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab'sParticleQuestions

  14. EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously cancelled (DOE/EA-1799).

  15. Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E

    E-Print Network [OSTI]

    Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E D0 The Isolated Photon Cross Section Purposes. #12;Fermilab-Pub-99 354-E The Isolated Photon Cross Section in pp Collisions at ps = 1.8 TeV B

  16. Web Accessibility Accessibility

    E-Print Network [OSTI]

    Oklahoma, University of

    Web Accessibility #12;Accessibility Webaim This is a pre-y prolific site that vary based on the type of web content. StaFc, content managed and dynamic web sites can benefit from our accessibility review service. Rich media

  17. Introduction Semantic Web

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    Introduction Semantic Web Ontologies Linked Data Information Sources Information Extraction Web Application Use Cases Knowledge Bases Entity Linking Entity Retrieval Linked Data Quality Conclusions Papers for Presentations Resources Semantic Web: Extracting and Mining Structured Data from

  18. web identity application sectioneleven

    E-Print Network [OSTI]

    Derisi, Joseph

    web identity application sectioneleven 99 contents elements of webpage design......................................................................... 100-101 web development and design considerations web banners is required for all official UCSF webpages. This banner includes a required link

  19. Fermilab Wine and Cheese, May 13th , 2005 p. 1 Search for Massive ResonancesGregory Veramendi

    E-Print Network [OSTI]

    Fermilab

    Fermilab Wine and Cheese, May 13th , 2005 p. 1 CDF Search for Massive ResonancesGregory Veramendi of Illinois, Urbana-Champaign) for the CDF collaboration #12;Fermilab Wine and Cheese, May 13th , 2005 p. 2 decaying to leptons and photons provides very clean signature even in a hadron collider #12;Fermilab Wine

  20. nature physics | VOL 7 | FEBRUARY 2011 | www.nature.com/naturephysics 93 In early January, the closure of Fermilab's

    E-Print Network [OSTI]

    Loss, Daniel

    , the closure of Fermilab's Tevatron accelerator in 2011 was confirmed. Last year, physicists working on the two over as the world's highest-energy accelerator. Director of Fermilab Pier Oddone must now chart the way, but Fermilab's accelerator facilities are already integral to various projects, present and future

  1. arXiv:hep-ph/0010338v26Dec2000 FERMILAB-Conf-00/279-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0010338v26Dec2000 FERMILAB-Conf-00/279-T SCIPP 00/37 hep­ph/0010338 October 31, 2000 Working Group Members Michael Albrow (Fermilab) Howard Baer (Florida State) Emanuela Barberis (LBNL) Armando A. Barrientos Bendez´u (Hamburg) Pushpalatha Bhat (Fermilab) Alexander Belyaev (Moscow State

  2. Piggy Bank: Experience the Semantic Web Inside Your Web Browser

    E-Print Network [OSTI]

    Huynh, David

    The Semantic Web Initiative envisions a Web wherein information is offered free of presentation, allowing more effective exchange and mixing across web sites and across web pages. But without substantial Semantic Web ...

  3. The Web Services Vision Definition of Web Services

    E-Print Network [OSTI]

    Cheverst, Keith

    1 The Web Services Vision Overview Definition of Web Services Key concepts Difference from traditional web model Context Service-oriented architecture Distributed computing Overview Microsoft .NET vision Web Services Difference from traditional web model Context Service-oriented architecture

  4. ORISE: Web Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Development As computer-based applications become increasingly popular for the delivery of health care training and information, the need for Web development in support of...

  5. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  6. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  7. Fermilab | Contact Fermilab | Email Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Form Subscribefeature photo

  8. Developpement Web -JDBC Developpement Web -JDBC

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - JDBC D´eveloppement Web - JDBC Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer M1/M2 Informatique 2010-2011 1 / 32 #12;D´eveloppement Web - JDBC Plan Plan 1 Pr´eambule 2 Utilisation de JDBC 3 Outils 2 / 32 #12;D´eveloppement Web - JDBC Pr

  9. Developpement WebPHP Avance Developpement Web

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement WebPHP Avanc´e D´eveloppement Web PHP Avanc´e Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer 2008 1 / 73 #12;D´eveloppement WebPHP Avanc´e Objectif codage documentation SPL gestion des fichiers 2 / 73 #12;D´eveloppement WebPHP Avanc´e Plan Plan 1

  10. WORLD WIDE WEB 2.3 Web

    E-Print Network [OSTI]

    Markatos, Evangelos P.

    H I2 C WORLD WIDE WEB 1996 #12; 1. 1.1 I2 Cnet 1.2 1.3 WWW 2 2.1 2.2 2.3 Web 2.4 3 O 3.1 3.2 3.3 3.4 O Web browsers. 4. 4.1 4.2 4 File System 9.6 10 A. Web browser HTT . B A #12

  11. Developpement Web -JDBC Developpement Web -JDBC

    E-Print Network [OSTI]

    Richer, Jean-Michel

    D´eveloppement Web - JDBC D´eveloppement Web - JDBC Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer 28 septembre 2010 1 / 30 #12;D´eveloppement Web - JDBC Plan Plan 1 Pr´eambule 2 Utilisation de JDBC 3 Outils 2 / 30 #12;D´eveloppement Web - JDBC Pr´eambule Pr

  12. Developpement Web -JDBC Developpement Web -JDBC

    E-Print Network [OSTI]

    Hao, Jin-Kao

    D´eveloppement Web - JDBC D´eveloppement Web - JDBC Jean-Michel Richer jean-michel.richer@univ-angers.fr http://www.info.univ-angers.fr/pub/richer L3 Pro Informatique 2010-2011 1 / 32 #12;D´eveloppement Web - JDBC Plan Plan 1 Pr´eambule 2 Utilisation de JDBC 3 Outils 2 / 32 #12;D´eveloppement Web - JDBC Pr

  13. Celebrating 30 Years of K-12 Educational Programing at Fermilab

    E-Print Network [OSTI]

    M. Bardeen; M. P. Cooke

    2011-09-21T23:59:59.000Z

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  14. Mathematical modeling of a Fermilab helium liquefier coldbox

    SciTech Connect (OSTI)

    Geynisman, M.G.; Walker, R.J.

    1995-12-01T23:59:59.000Z

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

  15. PHP SCILAB | .. | 1 (Web Site) Web Site ,

    E-Print Network [OSTI]

    Kovintavewat, Piya

    PHP SCILAB | .. | 1 Chapter 1 , (Web Site) Web Site , (World Wide Web) : http://school.obec.go.th/borkruwitt/inter/internet01.gif HTML PHP,JavaScript,ASP PHP SCILAB AppServ PHP http://www.appservnetwork.com #12; PHP SCILAB | .. | 2 1. 2. Next 3. I

  16. Semantic Web Service Architecture --Evolving Web Service Standards toward the Semantic Web

    E-Print Network [OSTI]

    Staab, Steffen

    Coverpage Semantic Web Service Architecture -- Evolving Web Service Standards toward the Semantic Web Tanja Sollazzo, Siegfried Handschuh, Steffen Staab, Martin Frank Abstract. The importance of Web by Semantic Web technologies such that a smooth evolution from Web services in the current Web to Web services

  17. Keeping the Web in Web 2.0 An HCI Approach to Designing Web

    E-Print Network [OSTI]

    Tomkins, Andrew

    Keeping the Web in Web 2.0 An HCI Approach to Designing Web Applications CHI 2007 Course Notes.....................................................................................................................................1 1. Web Application UI versus Desktop Application UI..............................................................................................................................2 3. Examples of State Management in Web Applications

  18. AGREEMENT & AUTHORIZATION FOR TELECOMMUTING The Employee named below is hereby authorized to perform work for Fermilab at the residence or off-site office located at

    E-Print Network [OSTI]

    Quigg, Chris

    FERMILAB AGREEMENT & AUTHORIZATION FOR TELECOMMUTING The Employee named below is hereby authorized to perform work for Fermilab at the residence or off-site office located at understands and agrees that authorization to perform Fermilab job duties away from the Fermilab premises

  19. Introducing Web Application Development

    E-Print Network [OSTI]

    Ding, Wei

    Introducing Web Application Development Instructor: Dr Wei Ding Development Instructor: Dr.Wei Ding Fall 2009 1CS 437/637 Database-BackedWeb Sites andWeb Services Introduction: Internet vs. World Wide Web Internet is an interconnected network of thousands ofInternet is an interconnected network

  20. Name:_____________________________ (Web Exercise)

    E-Print Network [OSTI]

    Richardson, David

    Name:_____________________________ (Web Exercise) Model quality, validation exercise. You will need a web link to MolProbity (with Java), and the file 1JIRon1S83_Arg66_supr.kin download- ed from the kinemage.biochem.duke.edu BCH681 web site, or from Sakai. Part 1: MolProbity Go to the MolProbity web

  1. Web Technology (elective package)

    E-Print Network [OSTI]

    Franssen, Michael

    Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing

  2. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  3. A Web Usage Mining Framework for Web Directories Personalization

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    A Web Usage Mining Framework for Web Directories Personalization Dimitrios Pierrakos Department framework that combines Web personalization and Web directories, which results in the concept of Community Web Directories. Community Web directories is a novel form of personalization performed on Web

  4. Exploiting the Social and Semantic Web for Guided Web Archiving

    E-Print Network [OSTI]

    Senellart, Pierre

    Exploiting the Social and Semantic Web for Guided Web Archiving Thomas Risse1 , Stefan Dietze1. The constantly growing amount of Web content and the suc- cess of the Social Web lead to increasing needs for Web archiving. These needs go beyond the pure preservation of Web pages. Web archives are turning

  5. Web of People Improving Search on the Web

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    Web of People Improving Search on the Web Wolfgang Nejdl L3S Research Center Hannover, Germany #12;19/10/10 2 Overview · Web Science / Web of People · Research Questions and Topics · Web Science @ L3S · User Generated Content and Search #12;19/10/10 3 Web Science / Web of People The World Wide Web is a Web

  6. Physics Results from the Antiproton Experiment (APEX) at Fermilab

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    APEX Collaboration

    Is Antimatter stable? The APEX experiment searches for the decay of antiprotons at the Fermilab Antiproton Accumulator. Observation of antiproton decay would indicate a violation of the CPT theorem, which is one of the most fundamental theorems of modern physics. The best laboratory limits on antiproton decay come from the APEX experiment which achieved a sensitivity to antiproton lifetimes up to of order 700,000 years for the most sensitive decay modes. Antiproton lifetimes in this range could arise from CPT violation at the Planck scale.[copied from http://www-apex.fnal.gov/] This website presents published results from the APEX Test Experiment (T861) and from the E868 Experiment. Limits were placed on six antiproton decay modes with a muon in the final state and on seven antiproton decay modes with an electron in the final state. See also the summary table and plot and the APEX picture gallery.

  7. Techniques for the Top Squark Search at the Fermilab Tevatron

    E-Print Network [OSTI]

    John Sender

    2000-10-04T23:59:59.000Z

    This dissertation addresses the question of how to detect light top squarks at the upgraded Fermilab Tevatron collider. After a brief introduction to supersymmetry, the basic phenomenology of the light stop is reviewed and the current experimental situation is surveyed. The analysis presented here is based on collider event simulations. The main decay modes accessible to the Tevatron are studied, feasible discovery channels are identified, and recipes for experimental analysis are proposed. It is found that stops with masses up to the top quark mass are liable to detection under these schemes with the data from a few years' running at the upgraded Tevatron. With such an extended run, significant portions of parameter space may be probed.

  8. Forward Neutron Production at the Fermilab Main Injector

    E-Print Network [OSTI]

    T. S. Nigmanov; D. Rajaram; M. J. Longo; U. Akgun; G. Aydin; W. Baker; P. D. Barnes, Jr.; T. Bergfeld; A. Bujak; D. Carey; E. C. Dukes; F. Duru; G. J. Feldman; A. Godley; E. Glmez; Y. O. Gnaydin; N. Graf; H. R. Gustafson; L. Gutay; E. Hartouni; P. Hanlet; M. Heffner; C. Johnstone; D. M. Kaplan; O. Kamaev; J. Klay; M. Kostin; D. Lange; A. Lebedev; L. C. Lu; C. Materniak; M. D. Messier; H. Meyer; D. E. Miller; S. R. Mishra; K. S. Nelson; A. Norman; Y. Onel; J. M. Paley; H. K. Park; A. Penzo; R. J. Peterson; R. Raja; C. Rosenfeld; H. A. Rubin; S. Seun; N. Solomey; R. Soltz; E. Swallow; Y. Torun; K. Wilson; D. Wright; K. Wu

    2010-12-03T23:59:59.000Z

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\\alpha$ is $0.46\\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  9. Computer Room Fresh Air Cooling

    E-Print Network [OSTI]

    Wenger, J. D.

    1985-01-01T23:59:59.000Z

    This paper discusses the concept of a computer room fresh air cooling system with evaporative humidification. The system offers significantly lower energy consumption than conventional cooling units, with 24% reduction for Dallas and 56% reduction...

  10. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  11. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16T23:59:59.000Z

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  12. ECON 466 -INTRODUCTION TO ECONOMETRICS Instructor: Kai Sun Class Room: Engineering Building N25

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    ECON 466 - INTRODUCTION TO ECONOMETRICS Fall 2010 Instructor: Kai Sun Class Room: Engineering web page: blackboard.binghamton.edu (log in and select Intro To Econometrics-FALL10) TA: TBA, Introductory Econometrics: A Modern Approach, 4th edition, South-Western, 2008. Prerequisites: Grades of C

  13. Introduction...................................................................................................... 4 Web browser .........................................................................................................................4

    E-Print Network [OSTI]

    Blows, Mark

    ...................................................................................................... 4 Web browser that Mac OS 10.3 is not supported for Blackboard v9 Web browser Blackboard is a web-based application

  14. web identity standards introduction .............................................................................................................87

    E-Print Network [OSTI]

    Mullins, Dyche

    web identity standards sectionten 86 contents introduction............................................................................................................... 89-90 tagline and the web .................................................................................................91 tagline and the web: improper use

  15. Semantic Analysis of Web Site Audience by Integrating Web Usage Mining and Web

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    Semantic Analysis of Web Site Audience by Integrating Web Usage Mining and Web Content Mining Jean://www.jrc.it/langtech Abstract. With the emergence of the World Wide Web, analyzing and improving Web communication has become essential to adapt the Web content to the visitors' expectations. Web communication analysis

  16. Generation of Web Service Descriptions and Web Service

    E-Print Network [OSTI]

    Generation of Web Service Descriptions and Web Service Module Implementation for Concept University of Science and Technology Software Systems Institute (STS) #12;Abstract Nowadays web services in order to initiate the communication. A web services endpoint communication interface utilizes

  17. Clean Cities Web Sites and Web Tools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Sites and Web Tools Clean Cities Web Sites and Web Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation...

  18. Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    E-Print Network [OSTI]

    E. D. Courant; A. D. Krisch; M. A. Leonova; A. M. T. Lin; J. Liu; W. Lorenzon; D. A. Nees; R. S. Raymond; D. W. Sivers; V. K. Wong; I. Kourbanis; Ya. S. Derbenev; V. S. Morozov; D. G. Crabb; P. E. Reimer; J. R. O'Fallon; G. Fidecaro; M. Fidecaro; F. Hinterberger; S. M. Troshin; M. N. Ukhanov; A. M. Kondratenko; W. T. H. van Oers

    2011-10-13T23:59:59.000Z

    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.

  19. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    SciTech Connect (OSTI)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mazur, P.; Orris, D.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Thompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1992-04-01T23:59:59.000Z

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST. These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results.

  20. Incremental Web Search: Tracking Changes in the Web

    E-Print Network [OSTI]

    Mohri, Mehryar

    Incremental Web Search: Tracking Changes in the Web by Ziyang Wang A dissertation submitted #12; Abstract A large amount of new information is posted on the Web every day. Large­scale web search. In this thesis, we present our solutions of searching new information from the web by tracking the changes of web

  1. Web Community Directories: A new approach to Web Personalization

    E-Print Network [OSTI]

    Paliouras, George

    Web Community Directories: A new approach to Web Personalization Dimitrios Pierrakos1 , Georgios@ucy.ac.cy Abstract. This paper introduces a new approach to Web Personaliza- tion, named Web Community Directories personalization techniques to the well-known concept of Web Directories. The Web directory is viewed as a concept

  2. Incremental Web Search: Tracking Changes in the Web

    E-Print Network [OSTI]

    Mohri, Mehryar

    Incremental Web Search: Tracking Changes in the Web by Ziyang Wang A dissertation submitted amount of new information is posted on the Web every day. Large-scale web search engines often update our solutions of searching new information from the web by tracking the changes of web documents

  3. Automated Web Page Synthesis in Adaptive Web Systems

    E-Print Network [OSTI]

    Ghorbani, Ali

    Automated Web Page Synthesis in Adaptive Web Systems Hossein Sadat and Ali Ghorbani Intelligent, Canada {t15h7,ghorbani}@unb.ca Abstract. An adaptive Web system adapts the Web pages to its users, based of the system. In this paper, we formalize dynamic generation of Web pages and refer to it as Web page synthesis

  4. Web Style Guide Fixed Dimension

    E-Print Network [OSTI]

    Web Style Guide KEY: Fixed Dimension: Variable Dimension: V1.1, SEPTEMBER 2010 #12;Page 2 Table PAGE NEWS & EVENTS PAGE Fonts & Colors FONTS COLORS Web Writing Guidelines WEB WRITING GUIDELINES Web

  5. Web services @ MIT

    E-Print Network [OSTI]

    Tyagi, Sapna DevendraSingh, 1978-

    2004-01-01T23:59:59.000Z

    There are several useful web services developed at MIT by students, faculty and researchers. However, they are scattered all over MIT. Most people at MIT are unaware of the availability of these web services and hence they ...

  6. Demystifying Web GIS

    E-Print Network [OSTI]

    Fu, Pinde

    2010-11-18T23:59:59.000Z

    ESRI, Senior GIS application developer and project lead http://www.esri.com/news/arcwatch/0610/web-gis.html...

  7. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/News Archives NewsRoomNews Room

  8. Allegato A) SERVIZI WEB

    E-Print Network [OSTI]

    Guidoni, Leonardo

    Allegato A) SERVIZI WEB Dottorato di ricerca Modalità per la stampa del modulo di pagamento e della bisogna: 1. connettersi alla pagina web: http://www.uniroma1.it/didattica/sportelli/infostud (sulla stessa pagina web sono illustrati anche i requisiti tecnici necessari per effettuare correttamente le operazioni

  9. WebWorkload Characterization

    E-Print Network [OSTI]

    Zilles, Craig

    WebWorkload Characterization at a Micro­architectural Level Ramesh Radhakrishnan, Lizy John Laboratory, IBM Austin, TX. #12; Goals of this study n We study the behavior of modernWeb server applications programs to understand how they interact with the underlyingWeb server, hardware and OS under realistic

  10. Semantic Web Pascal Hitzler

    E-Print Network [OSTI]

    Hitzler, Pascal

    Chapter 1 Semantic Web Pascal Hitzler Kno.e.sis Center, Wright State University, Dayton, OH, USA 1.1.1 Languages for Representing Knowledge on the Web ............................. 2 1.1.2 Formal the Semantic Web Vision ................................ 4 1.1.4 Linked Data

  11. WEB SEARCH TECHNOLOGIES FOR TEXT DOCUMENTS

    E-Print Network [OSTI]

    Meng, Weiyi

    , and metasearch engines. Key Words: search engine, Web, Surface Web, Deep Web, Web crawler, text retrieval, Vector and the Deep Web (or Hidden Web) (Bergman 2000). The former refers to the collection of web pages) it has more than 45 billion web pages according to www.worldwidewebsize.com. The Deep Web contains web

  12. Section Course Title Instructor Credits Day Time Room 1F51 ALS4932 Plant Communities Lecture Miller/Thetford 1 TBA TBA TBA

    E-Print Network [OSTI]

    Watson, Craig A.

    /Pest/Vector/Management Capinera 3 WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB Distance Education Courses WEB WEB WEB WEB WEB Spring 2013 Course Schedule Classes Begin January 7, 2012 Method Undergraduate Level Courses WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB WEB #12;06GF FAS4932 Algae Biology/Ecology Phlips 3 0417 GLY3163

  13. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect (OSTI)

    Convery, M.E.

    1997-05-01T23:59:59.000Z

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  14. Cryogenic system for the Cryomodule Test Facility at Fermilab

    SciTech Connect (OSTI)

    White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

  15. Solenoid magnet system for the Fermilab Mu2e experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamm, M J [Fermilab; Andreev, N [Fermilab /Boston U.; Ambrosio, G [Fermilab; Brandt, J [Fermilab; Coleman, R [CERN; Evbota, D [Fermilab; Kashikhin, V V [City Coll., N.Y.; Lopes, M [Fermilab; Miller, J [Fermilab; Nicol, T [KEK; Ostojic, R [Tsukuba

    2012-06-08T23:59:59.000Z

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  16. Particle Production Measurements using the MIPP Detector at Fermilab

    E-Print Network [OSTI]

    Sonam Mahajan; Rajendran Raja; for the MIPP Collaboration

    2013-11-10T23:59:59.000Z

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. It measures particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $\\pi^{\\pm}, \\rm{K}^{\\pm}$, p and $\\bar{\\rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (CKOV), Ring Imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. We present inelastic cross section measurements for 58 and 85 GeV/c p-H interactions, and 58 and 120 GeV/c p-C interactions. A new method is described to account for the low multiplicity inefficiencies in the interaction trigger using KNO scaling. Inelastic cross sections as a function of multiplicity are also presented. The MIPP data are compared with the Monte Carlo predictions and previous measurements. We also describe an algorithm to identify charged particles ($\\pi^{\\pm}/\\rm{p}/\\bar{\\rm{p}}$ etc.), and present the charged pion and kaon spectra from the interactions of 120 GeV/c protons with carbon target.

  17. Status of the Fermilab Muon (g-2) Experiment

    E-Print Network [OSTI]

    B. Lee Roberts

    2010-01-20T23:59:59.000Z

    The New Muon $(g-2)$ Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, $a_\\mu$, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained $a_\\mu = [116 592 089 (63)] \\times 10^{-11}$ $\\pm 0.54$ ppm. The last digit of $a_{\\mu}$ is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the $\\simeq 3$ standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

  18. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    E866 NuSea Collaboration

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  19. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thurman-Keup, R; Cheung, H W.K.; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-09-01T23:59:59.000Z

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  20. Celebrating 30 Years of K-12 Educational Programing at Fermilab

    E-Print Network [OSTI]

    Bardeen, M

    2011-01-01T23:59:59.000Z

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Cent...

  1. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect (OSTI)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01T23:59:59.000Z

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  2. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01T23:59:59.000Z

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  3. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15T23:59:59.000Z

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  4. Parallel Transports in Webs

    E-Print Network [OSTI]

    Christian Fleischhack

    2003-07-17T23:59:59.000Z

    For connected reductive linear algebraic structure groups it is proven that every web is holonomically isolated. The possible tuples of parallel transports in a web form a Lie subgroup of the corresponding power of the structure group. This Lie subgroup is explicitly calculated and turns out to be independent of the chosen local trivializations. Moreover, explicit necessary and sufficient criteria for the holonomical independence of webs are derived. The results above can even be sharpened: Given an arbitrary neighbourhood of the base points of a web, then this neighbourhood contains some segments of the web whose parameter intervals coincide, but do not include 0 (that corresponds to the base points of the web), and whose parallel transports already form the same Lie subgroup as those of the full web do.

  5. CW Room Temperature Re-Buncher for the Project X Front End

    SciTech Connect (OSTI)

    Romanov, Gennady; Awida, Mohamed H.; Chen, Meiyu; Gonin, Ivan V.; Kazakov, Sergey; Kostin, Roman; Lebedev, Valeri; Solyak, Nikolay; Yakovlev, Vyacheslav P.; /Fermilab

    2012-05-09T23:59:59.000Z

    At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The room temperature front end of the linac contains an ion source, an RFQ accelerator and a Medium Energy Beam Transport (MEBT) section comprising a high bandwidth bunch selective chopper. The MEBT length is about 10 m, so three re-bunching CW cavities are used to support the beam longitudinal dynamics. The paper reports a RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.

  6. KWIC [KWiCFinder homepage] [WebKWIC homepage] [WebCorp

    E-Print Network [OSTI]

    Sekine, Satoshi

    WEB KWIC WEB WEB KWIC [KWiCFinder homepage] [WebKWIC homepage] [WebCorp homepage] WEB KWIC [ 2003] WEB IDE 32 G KWIC 350G WEB 100 2 cdb 40 KWIC WEB WEB NTCIR Web Retrieval Task 100G 1100 [Eguchi et. al 2002] WEB WEB Yahoo! Japan UNIX GNU Wget WEB html,htm txt robots.txt 3500 1 G G 1 #12;KWIC ( ) 1 40 1TB

  7. Fermilab | Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALLSubscription Formphoto: EAGFermilab Today

  8. Fermilab | Tritium at Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified Forces | DoTravel and

  9. Fermilab | About Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,

  10. Fermilab | Contact Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,Contact

  11. Fermilab | Fermilab Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun

  12. Fermilab | Visit Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDarkDiscoveriesMuonsTheoryfeature

  13. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and Events

  14. Efficient and Anonymous Web-Usage Mining for Web Personalization

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Efficient and Anonymous Web-Usage Mining for Web Personalization Cyrus Shahabi · Farnoush Banaei fixed. The full economic potential of the web will not be realized unless enabling technologies approach to remedy this problem, and web mining, particularly web-usage mining, is considered a crucial

  15. Deep Web: Databases on the Web Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    Deep Web: Databases on the Web Denis Shestakov Turku Centre for Computer Science, Finland I N T R O D U C T I O N Finding information on the Web using a web search engine is one of the primary activities of today's web users. For a majority of users results returned by conventional search engines

  16. Personalizing Web Directories with the Aid of Web Usage Data

    E-Print Network [OSTI]

    Paliouras, George

    Personalizing Web Directories with the Aid of Web Usage Data Dimitrios Pierrakos, Member, IEEE of Community Web Directories, a concept that we introduced in our recent work, applying personalization to Web directories. In this context, the Web directory is viewed as a thematic hierarchy and personalization

  17. Pace Web Server: A Pure Java Web Server

    E-Print Network [OSTI]

    Tao, Lixin

    Pace Web Server: A Pure Java Web Server with a Servlet Container by Priya Srinivasaraghavan University 2003 #12;Abstract Pace Web Server: A Pure Java Web Server with a Servlet Container by Priya their products and services to their customers. An essential ingredient to the Internet has been the web server

  18. Web Content Filtering 1 User Guidelines Web content filter guidelines

    E-Print Network [OSTI]

    Web Content Filtering 1 User Guidelines Web content filter guidelines Introduction The basic criterion for blocking a Web page Categories of material which will be blocked Requesting the unblocking of Aberdeen applies a Web Content Filtering service to all web pages accessed from the undergraduate network

  19. Towards a Framework for Migrating Web Applications to Web Services

    E-Print Network [OSTI]

    Cordy, James R.

    Towards a Framework for Migrating Web Applications to Web Services Asil A. Almonaies Manar H {asil,alalfi,cordy,dean}@cs.queensu.ca Abstract Migrating traditional legacy web applications to web services is an important step in the modernization of web-based business systems to more complex inter

  20. Evaluation of Performance of Cooperative Web Caching with Web Polygraph

    E-Print Network [OSTI]

    Subhlok, Jaspal

    Evaluation of Performance of Cooperative Web Caching with Web Polygraph Ping Du Jaspal Subhlok This paper presents a framework for evaluating the performance of cooperative Web cache hierarchies. Web Poly cache hierarchies built with Squid proxy cache servers. 1 Introduction Multiple Web caches can cooperate

  1. Preprocessing and Mining Web Log Data for Web Personalization

    E-Print Network [OSTI]

    Ruggieri, Salvatore

    Preprocessing and Mining Web Log Data for Web Personalization M. Baglioni1 , U. Ferrara2 , A. Romei/26, 56017 S. Martino Ulmiano (PI) Italy ferrara@ksolutions.it Abstract. We describe the web usage mining behaviour of a web site users. The models are inferred from the access logs of a web server by means of data

  2. World Wide Web Internet and Web Information Systems

    E-Print Network [OSTI]

    Cao, Longbing

    1 23 World Wide Web Internet and Web Information Systems ISSN 1386-145X World Wide Web DOI 10's request, provided it is not made publicly available until 12 months after publication. #12;World Wide Web worlds. Its detection is a typical use case of the broad-based Wisdom Web of Things (W2T) methodology

  3. The Web Changes Everything: Understanding the Dynamics of Web Content

    E-Print Network [OSTI]

    Bergstrom, Carl T.

    The Web Changes Everything: Understanding the Dynamics of Web Content Eytan Adar University, USA jelsas@cs.cmu.edu ABSTRACT The Web is a dynamic, ever changing collection of information. This paper explores changes in Web content by analyzing a crawl of 55,000 Web pages, selected to represent

  4. Databases on the Web: national web domain survey Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    , Aalto University Konemiehentie 2, Espoo, 02150 Finland denis.shestakov@aalto.fi ABSTRACT The deep Web of the deep Web by sampling one national web domain. We report some of our results ob- tained when surveying the Russian Web. The survey find- ings, namely the size estimates of the deep Web, could be useful for further

  5. Web Archiving Claudia Niedere, Gideon Zenz

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    Web Archiving Claudia Niederée, Gideon Zenz Web Science Lecture November 30, 2010 1Web Archiving-time Archiving · Motivation for Web Archiving · Web Archiving at a Glance · Web Archiving Challenges · Web Archiving Methods and Technologies · Current Research in Web archiving Web Archiving, November 30, 2010 2

  6. Web Database Integration School of Information

    E-Print Network [OSTI]

    into two parts: Surface Web and Deep Web. The Surface Web refers to the static Web pages which can be crawled and indexed by popular search engines, while the Deep Web refers to the contents stored in Web across all top- ics. Some Deep Web portal services provide Deep Web di- rectories which classify Web

  7. Denis Shestakov Search Interfaces on the Web

    E-Print Network [OSTI]

    Hammerton, James

    of the Web (hereafter referred as the deep Web) hidden behind web search in- terfaces. We concentrate on three classes of problems around the deep Web: characterization of deep Web, finding and classifying deep web resources, and querying web databases. Characterizing deep Web: Though the term deep Web

  8. Webs of Walls

    E-Print Network [OSTI]

    Minoru Eto; Youichi Isozumi; Muneto Nitta; Keisuke Ohashi; Norisuke Sakai

    2005-06-20T23:59:59.000Z

    Webs of domain walls are constructed as 1/4 BPS states in d=4, N=2 supersymmetric U(Nc) gauge theories with Nf hypermultiplets in the fundamental representation. Web of walls can contain any numbers of external legs and loops like (p,q) string/5-brane webs. We find the moduli space M of a 1/4 BPS equation for wall webs to be the complex Grassmann manifold. When moduli spaces of 1/2 BPS states (parallel walls) and the vacua are removed from M, the non-compact moduli space of genuine 1/4 BPS wall webs is obtained. All the solutions are obtained explicitly and exactly in the strong gauge coupling limit. In the case of Abelian gauge theory, we work out the correspondence between configurations of wall web and the moduli space CP^{Nf-1}.

  9. Group Study Room Policy and Reservation Form

    E-Print Network [OSTI]

    Reynolds, Albert C.

    to the Group Study Reservation Form. Fill out the web form and click "Send" to submit the request. A confirming

  10. Introduction web smantique

    E-Print Network [OSTI]

    Gagnon, Michel

    Introduction au web sémantique Michel Gagnon ?cole polytechnique de montréal #12;Plan de la présentation Définition et description générale Les différentes couches du web sémantique Exemples d'application Conclusion #12; Définition et description générale Les différentes couches du web sémantique Exemples d

  11. The Live Room : transducing resonant architectures

    E-Print Network [OSTI]

    Bain, Mark, 1966-

    1998-01-01T23:59:59.000Z

    The Live Room is a temporary site specific installation presented in building N 51, room 117 on the MIT campus on May 7, 1998 and concluded on June 10, 1998. Using small acoustic intensifying equipment which mount directly ...

  12. Energy Integration Visualization Room (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    This two-page fact sheet describes the new Energy Integration Visualization Room in the ESIF and talks about some of the capabilities and unique visualization features of the the room.

  13. Status report on Fermilab experiment E-760: A study of charmonium produced by proton-antiproton annihilation

    SciTech Connect (OSTI)

    Pordes, S.

    1990-09-04T23:59:59.000Z

    This was a status report on Fermilab experiment E-760 -- an experiment to study charmonium states by resonant formation in proton-antiproton annihilation. The experiment uses antiprotons circulating in the Fermilab antiproton-accumulator as the beam and an internal hydrogen gas-jet as the target. Data taking with the full complement of apparatus started in early July 1990.

  14. FERMILAB-CONF-09-434-E LAL 09-120 D0Note 5999 Measurement of Z/

    E-Print Network [OSTI]

    Boyer, Edmond

    FERMILAB-CONF-09-434-E LAL 09-120 D0Note 5999 Measurement of Z/ +jet+X and +b/c+X Cross Sections. In this note, we present measurements of Z/ + jets production and photon plus heavy flavor jets at the Fermilab

  15. arXiv:hep-ph/0106116v327Feb2002 FERMILAB-Pub-00/334-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0106116v327Feb2002 FERMILAB-Pub-00/334-T SCIPP-01/25 UCD-01-23 hep-ph/0106116 and approaches zero in the so-called "decoupling limit" of the model [1]. Experiments at the Fermilab Tevatron [2

  16. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  17. SOFTWAREENGINEERING The World Wide Web

    E-Print Network [OSTI]

    Whitehead, James

    SOFTWAREENGINEERING The World Wide Web Distributed Authoring and Versioning working group on the Web. WEBDAV: IETF Standard for Collaborative Authoring on the Web E. JAMES WHITEHEAD, JR. University remains to be done. What if instead you could simply edit Web documents (or any Web resource) in place

  18. RESTful Web service composition with

    E-Print Network [OSTI]

    Bae, Doo-Hwan

    RESTful Web service composition with BPEL for REST Cesare Pautasso Data & Knowledge Engineering (2009) 2010-05-04 Seul-Ki Lee #12;Contents Introduction Background Design principles of RESTful Web SE LAB 2010 #12;Introduction (1/5) Web Service Describes web-based applications over the web

  19. Compressed Gas EHS-2200-WEB

    E-Print Network [OSTI]

    Compressed Gas Safety EHS-2200-WEB Register and launch through http://axess.stanford.edu Course title and STARS number: General Safety & Emergency Preparedness EHS-4200-WEB Chemical Safety for Laboratories EHS-1900-WEB Biosafety EHS-1500-WEB Radiation Safety Training EHS-5250 Laser Safety EHS-4820-WEB

  20. MSTC - Web Development Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Maintenance Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards...

  1. Open Data: the elephant in the room?

    E-Print Network [OSTI]

    Morgan, Peter

    Journal of the European Association for Health Information and Libraries (November 2008) vol.4(4) pp.4-6 Open Data: the elephant in the room?(*) Peter Morgan Cambridge University Medical... elephant in the room ... is an English idiom for an obvious truth that is being ignored or goes unaddressed. It is based on the idea that an elephant in a room would be impossible to overlook; thus, people in the room who pretend the elephant...

  2. Experimental observation of breakdowns in the Fermilab RF Gun G4 J.-P. Carneiro1, D. Edwards2, I. Gonin2, S. Schreiber1

    E-Print Network [OSTI]

    Experimental observation of breakdowns in the Fermilab RF Gun G4 J.-P. Carneiro1, D. Edwards2, I Fermilab has developed and delivered to DESY Hamburg two RF guns for the operation of the phase I at the A0 photo-injector at Fermilab since January 1999 where it has been successfully conditioned at 1 Hz

  3. Fermilab Today http://www.fnal.gov/pub/today/archive_2005/today05-05-06.html 1 of 4 8/31/2006 10:11 AM

    E-Print Network [OSTI]

    Toback, David

    Fermilab Today http://www.fnal.gov/pub/today/archive_2005/today05-05-06.html 1 of 4 8/31/2006 10: Central Exclusive Production of Higgs Bosons and Other States 8:00 p.m. Fermilab International Film Society - Auditorium Tickets: Adults $4 Title: Uzak (Distant) Saturday, May 7 8:00 p.m. Fermilab Arts

  4. A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab, aims to transform our understanding of neutrinos

    E-Print Network [OSTI]

    Quigg, Chris

    June 2013 A new particle physics experiment, planned to take place at Fermilab and the Sanford Lab Accelerator Laboratory (Fermilab), located in Batavia, Illinois, and the Sanford Underground Research Facility to understanding neutrinos and their role in the universe. The distance between Fermilab and the Sanford Lab is 800

  5. 5/20/2014 Fermilab Today http://www.fnal.gov/pub/today/archive/archive_2014/today14-05-08.html 1/4

    E-Print Network [OSTI]

    Toback, David

    5/20/2014 Fermilab Today http://www.fnal.gov/pub/today/archive/archive_2014/today14-05-08.html 1 University Title: The MicroBooNE Detector, Beam Requirements and Status Milestone Fermilab launches new home page on website The new Fermilab home page features a rotating series of images of the laboratory

  6. U.S.-India Discovery Science Collaboration The Indian Institutions and Fermilab Collaboration (IIFC) is paving the way toward a successful

    E-Print Network [OSTI]

    Quigg, Chris

    U.S.-India Discovery Science Collaboration The Indian Institutions and Fermilab Collaboration (IIFC by collaborating with the Illinois Accelerator Research Center at Fermilab and seizing business opportunities at hundreds of millions of dollars, toward a new accelerator and physics research program at Fermilab

  7. Opportunities to Advance Fundamental Symmetries Research with Project-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic

    E-Print Network [OSTI]

    -X is a staged evolution of the Fermilab accelerator complex realized by the dramatic advances in super-conducting RF technology [1] of the past decade and it is central to Fermilab's strategic plan for the comingV would produce intense neutrino sources and beams illuminating near detectors on the Fermilab site

  8. Library Reserved Room Policy All Meeting Spaces

    E-Print Network [OSTI]

    Mather, Patrick T.

    Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

  9. Multisurface Interaction in the WILD Room

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Multisurface Interaction in the WILD Room Michel Beaudouin-Lafon, Stéphane Huot, Mathieu University Abstract The WILD room (wall-sized interaction with large datasets) serves as a testbed. (2012), "Multisurface Interaction in the WILD Room", IEEE Computer, vol 45, nº 4, pp. 48-56. DOI

  10. Heavy-Quark Masses from the Fermilab Method in Three-Flavor Lattice QCD

    E-Print Network [OSTI]

    Elizabeth D. Freeland; Andreas S. Kronfeld; James N. Simone; Ruth S. Van de Water; Fermilab Lattice; MILC Collaborations

    2007-10-23T23:59:59.000Z

    We report on heavy quark mass calculations using Fermilab heavy quarks. Lattice calculations of heavy-strange meson masses are combined with one-loop (automated) lattice perturbation theory to arrive at the quark mass. Mesons are constructed from Fermilab heavy quarks and staggered light quarks. We use the MILC ensembles at three lattice spacings and sea quark mass ratios of $m_{\\rm u,d} / m_{\\rm s} = 0.1$ to 0.4. Preliminary results for the bottom quark are given in the potential subtracted scheme.

  11. Public Reading Room | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter for GasNews & Events Web

  12. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  13. Last Updated 8/12/2013 Page 1 of 2 Meeting Room 2 Meeting Room 3 Meeting Room 4 Meeting Room 5 Meeting Room 6

    E-Print Network [OSTI]

    Minnesota, University of

    Cities Light Rail Monitoring Bioretention and Rainwater Harvesting Systems Urban Trees as a LID Source Meeting Room 6 8:00 a.m.-12:00 noon Intro to LID Rainwater Harvesting 1:00-5:00 p.m. Advances in Design for CSO Communities LID Research Panel Urban Trees and Stormwater Management LID Education Approaches

  14. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17T23:59:59.000Z

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  15. Pushpa Bhat, Fermilab June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat 2

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    1 Pushpa Bhat, Fermilab #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat 2 Richard Feynman automata-based programs on the connection machine #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa Bhat@fnal.gov ACAT 2002 Workshop June 24-28, 2002 Moscow, Russia #12;June 24-28, 2002 ACAT2002, Moscow, Russia Pushpa

  16. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect (OSTI)

    Asner, David M.; /Carleton U.; Phillips, Thomas J.; /Duke U.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray; /Fermilab /INFN, Ferrara /Hbar Technol., West Chicago /IIT, Chicago /CHEP, Taegu /Luther Coll. /Michigan U. /Northwestern U. /Notre Dame U. /St. Xavier U., Chicago

    2009-02-05T23:59:59.000Z

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  17. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    E-Print Network [OSTI]

    T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; J. Guimaraes da Costa; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; D. Beecher; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; I. Bizjak; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; M. Deninno; M. D'Errico; F. Devoto; A. Di Canto; B. Di Ruzza; J. R. Dittmann; S. Donati; M. D'Onofrio; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; R. Eusebi; S. Farrington; J. P. Fernndez Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. Gonzlez Lpez; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. H. Kim; S. B. Kim; Y. J. Kim; Y. K. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; D. Lucchesi; A. Luc; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; L. Marchese; F. Margaroli; P. Marino; M. Martnez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; E. Nurse; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; A. Pranko; F. Prokoshin; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernndez; P. Renton; M. Rescigno; T. Riddick; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; R. Shekhar; P. F. Shepard; M. Shimojima; M. Shochet; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; H. Song; V. Sorin; R. St. Denis; M. Stancari; O. Stelzer-Chilton; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; S. Sun; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; I. Shreyber-Tecker; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vzquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizn; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang

    2014-04-29T23:59:59.000Z

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  18. C. Gerber -Fermilab W and Z PT DistributionsW and Z PT Distributions

    E-Print Network [OSTI]

    Gerber, Cecilia E.

    Arnold-Kauffman Nucl. Phys. B349, 381 O(s 2) resummation (b -space) MRSA' after detector simulation) after detector simulation MRSA' #12;C. Gerber - Fermilab 12 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0

  19. The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    E-Print Network [OSTI]

    Howard Baer; B. W. Harris; Xerxes Tata

    1998-07-06T23:59:59.000Z

    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to $m_{H_{SM}}\\sim 120$ GeV via $WH_{SM} \\to \\ell\

  20. T864 (MiniMax): A Search for Disoriented Chiral Condensate at the Fermilab Collider

    E-Print Network [OSTI]

    J. D. Bjorken

    1996-10-16T23:59:59.000Z

    A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, $\\eta \\approx 4.1$. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

  1. TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement

    E-Print Network [OSTI]

    Quigg, Chris

    TO: Persons Joining the Fermilab (FRA) Staff SUBJECT: Inventions and Employee Patent Agreement in royalties received from patentable inventions to which FRA, LLC has taken title. As provided in FRA, LLC to sign a patent agreement. The attached form has been developed to comply with this requirement

  2. ISI Web of Knowledge111 , ,1111

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    ISI Web of Knowledge111 © , ,1111 -ISI Web of Knowledge (http://newisiknowledge.com) , , , . . -ISI Web of Knowledge : Web of Science(-1965) , . Biosis Previews(-1991) , ,, . MEDLINE(-1951) , , . Zoological Record(-1995). , . ISI Web of Knowledge . . -VPN( ). : 1.:http

  3. Report Tunneling Cost Reduction Study prepared for Fermilab

    SciTech Connect (OSTI)

    Not Available

    1999-07-16T23:59:59.000Z

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations, typical of the Chicago area. The rock is generally competent with widely spaced jointing, and slowdown of the operation for the installation of rock support is expected to be minimal. The tunneling system will have to be equipped with the necessary equipment for an efficient response to poor rock conditions however. Because the ground conditions are expected to be very favorable, a state-of-the-art TBM should have no difficulty in excavating at a high penetration rate of 10 meters per hour or more in rock of the average of the range of strengths stated to exist. Disc cutter changes will be few as the rock has very low abrasivity. However, experience has shown that overall tunneling rates are a relatively low percentage of the machine's penetration rate capability. Therefore the main focus of improvement is guaranteeing that the support systems, including mucking and advance of the utilities do not impede the operation. Improved mechanization of the support systems, along with automation where practicable to reduce manpower, is seen as the best means of raising the overall speed of the operation, and reducing its cost. The first phase of the study is mainly involved with establishing the baseline for current performance, and in identifying areas of improvement. It contains information on existing machine design concepts and provides data on many aspects of the mechanical tunneling process, including costs and labor requirements. While it contains suggestions for technical improvements of the various system, the time limitations of this phase have not permitted any detailed concept development. This should be a major part of the next phase.

  4. Efficient Materialization of Dynamic Web Data to Improve Web Performance

    E-Print Network [OSTI]

    Bouras, Christos

    Efficient Materialization of Dynamic Web Data to Improve Web Performance Christos Bouras, Agisilaos of performance, response efficiency and data consistency are among the most important ones for data intensive Web a materialization policy that may be applied to data intensive Web sites. Our research relies on the performance

  5. Cleaning Web Pages for Effective Web Content Mining

    E-Print Network [OSTI]

    Ezeife, Christie

    Cleaning Web Pages for Effective Web Content Mining Jing Li and C.I. Ezeife School of Computer://www.cs.uwindsor.ca/cezeife Abstract. Classifying and mining noise-free web pages will improve on accuracy of search results as well as search speed, and may benefit web- page organization applications (e.g., keyword-based search engines

  6. A Framework for Migrating Web Applications to Web Services

    E-Print Network [OSTI]

    Cordy, James R.

    A Framework for Migrating Web Applications to Web Services Asil A. Almonaies, Manar H. Alalfi-automatically migrat- ing monolithic legacy web applications to service oriented architecture (SOA) by separating potentially reusable features as web services. Software design re- covery and source transformation techniques

  7. the Web Ontologybased Community Web Portals Steffen Staab

    E-Print Network [OSTI]

    Staab, Steffen

    the Web Ontology­based Community Web Portals Steffen Staab J urgen Angele b , Stefan Decker of World Wide Web virtually everyone a computer contribute high­value information challenge to able information found. Search machines with task, ultimately provide appropriatly struc­ tured views onto web

  8. The Semantic Web: Collective Intelligence on the Web

    E-Print Network [OSTI]

    Staab, Steffen

    The Semantic Web: Collective Intelligence on the Web Maciej Janik, Ansgar Scherp, and Steffen Staab lastname@uni-koblenz.de Institute for Web Science and Technologies, WeST University of Koblenz-Landau Abstract. The World Wide Web has turned hypertext into a success story by enabling world-wide sharing

  9. Intelligent and Adaptive Crawling of Web Applications for Web Archiving

    E-Print Network [OSTI]

    Senellart, Pierre

    Intelligent and Adaptive Crawling of Web Applications for Web Archiving Muhammad Faheem1 and Pierre Kong, Hong Kong firstname.lastname@telecom.paristech.fr Abstract. Web sites are dynamic in nature with content and structure changing overtime. Many pages on the Web are produced by content management systems

  10. Web Projections: Learning from Contextual Subgraphs of the Web

    E-Print Network [OSTI]

    Horvitz, Eric

    Web Projections: Learning from Contextual Subgraphs of the Web Jure Leskovec Carnegie Mellon among web pages have been lever- aged as sources of information in methods for ranking search results. To date, specific graphical properties have been used in these analyses. We introduce web projections

  11. Towards an Accessible Web through Semantic Web Standards

    E-Print Network [OSTI]

    Watt, Stephen M.

    1 Towards an Accessible Web through Semantic Web Standards Clare M. So, Mark Perry and Stephen M Abstract-- Making information on the Web accessible to all people, including to those having special needs than actual semantic content that is rendered by alternative technologies. To make the Web more

  12. Towards a Taxonomy for Web Observatories Web Science Institute

    E-Print Network [OSTI]

    Towards a Taxonomy for Web Observatories Ian Brown Web Science Institute University of Southampton University of Southampton Southampton, SO17 1BJ, UK +44 (0)23 8059 5000 wh@soton.ac.uk Lisa Harris Web.j.harris@soton.ac.uk ABSTRACT In this paper, we propose an initial structure to support a taxonomy for Web Observatories (WO

  13. Towards an Accessible Web through Semantic Web Standards

    E-Print Network [OSTI]

    Perry, Mark

    Towards an Accessible Web through Semantic Web Standards Clare M. So, Mark Perry and Stephen M Abstract-- Making information on the Web accessible to all people, including to those having special needs than actual semantic content that is rendered by alternative technologies. To make the Web more

  14. 44 WEB ECOLOGY 9, 2009 Web Ecology 9: 4453.

    E-Print Network [OSTI]

    Rey Benayas, José María

    44 WEB ECOLOGY 9, 2009 Web Ecology 9: 44­53. Accepted 13 May 2009 Copyright © EEF ISSN 1399 agricultural landscape on local bird communities. ­ Web Ecol. 9: 44­53. This study assesses whether Alcalá de Henares, Spain. #12;45WEB ECOLOGY 9, 2009 multifunctional systems are common in southern Europe

  15. 120 WEB ECOLOGY 7, 2007 Web Ecology 7: 120131.

    E-Print Network [OSTI]

    Rey Benayas, José María

    120 WEB ECOLOGY 7, 2007 Web Ecology 7: 120­131. Accepted 27 December 2007 Copyright © EEF ISSN 1399 improves early performance of planted seedlings of the Mediterranean shrub Quer- cus coccifera. ­ Web, Spain. #12;121WEB ECOLOGY 7, 2007 have important economic consequences because large amounts of public

  16. Web Services Based Architecture in Computational Web Portals

    E-Print Network [OSTI]

    Web Services Based Architecture in Computational Web Portals By Choonhan Youn B.S. The University___________________________________ #12;Abstract Computational web portals provide user environments that simplify access and integrate. The computational web portal, Gateway, consists of a dynamically generated and browser-based user interface

  17. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    SciTech Connect (OSTI)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01T23:59:59.000Z

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  18. Web Cube: a Programming Model for Reliable Web Applications

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Web Cube: a Programming Model for Reliable Web Applications I.S.W.B. Prasetya, T.E.J. Vos, S UU-CS-2005-002 www.cs.uu.nl #12;Web Cube: a Programming Model for Reliable Web Applications I@cs.uu.nl, tanja@iti.upv.es, doaitse@cs.uu.nl, bela@cs.ui.ac.id Abstract Web Cube is a server side programming

  19. Web Mining for Hyperlinked Communities

    E-Print Network [OSTI]

    Hu, Wen-Chen

    Web Mining for Hyperlinked Communities Gary William Flake flake@research.nj.nec.com NEC Research Institute #12;Motivation for Web Mining More than 1B web pages and 20TB of raw data. Even more content will always be disorganized (or at best self-organized). In the future, everything will be on the web

  20. Building Data Integration Systems for the Web

    E-Print Network [OSTI]

    Halevy, Alon

    engines Data is embedded in web page, behind forms #12;Outline · Surfacing the Deep Web · Searching tables on the surface Web · Fusion Tables: a platform for data management on the Web. #12;What is the Deep Web? store to be integrated into general web search ­Can't assume special query syntax #12;Surfacing the Deep Web [Madhavan et

  1. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31T23:59:59.000Z

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  2. arXiv:hep-ph/0208209v313Dec2002 FERMILAB-Pub-02/114-T

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:hep-ph/0208209v313Dec2002 FERMILAB-Pub-02/114-T SCIPP 02/07 hep­ph/0208209 Higgs Boson Theory

  3. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  4. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01T23:59:59.000Z

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  5. UTEPBioinformaticsProgram Bell Hall, Room 138

    E-Print Network [OSTI]

    Fuentes, Olac

    UTEPBioinformaticsProgram Bell Hall, Room 138 The University of Texas at El Paso El Paso, TX 79968:www.bioinformatics.utep.edu UTEPBioinformatics BellHall,Room138 TheUniversityofTexasatElPaso 500W.UniversityAvenue ElPaso,TX79968 and Student Fitness Center with its two swimming pools underline the University's commitment to provide

  6. Utrecht University's High Potential Programme Making Room

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Utrecht University's High Potential Programme Making Room for Talent 2 #12;Making Room for Talent Utrecht University has a worldwide reputation for excellence in research across a broad range. This is why in 2003 Utrecht University created the High Potential Programme, an incentive scheme which gives

  7. Also Known As (Room or Building)

    E-Print Network [OSTI]

    Mottram, Nigel

    Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

  8. Factsheets Web Application

    SciTech Connect (OSTI)

    VIGIL,FRANK; REEDER,ROXANA G.

    2000-10-30T23:59:59.000Z

    The Factsheets web application was conceived out of the requirement to create, update, publish, and maintain a web site with dynamic research and development (R and D) content. Before creating the site, a requirements discovery process was done in order to accurately capture the purpose and functionality of the site. One of the high priority requirements for the site would be that no specialized training in web page authoring would be necessary. All functions of uploading, creation, and editing of factsheets needed to be accomplished by entering data directly into web form screens generated by the application. Another important requirement of the site was to allow for access to the factsheet web pages and data via the internal Sandia Restricted Network and Sandia Open Network based on the status of the input data. Important to the owners of the web site would be to allow the published factsheets to be accessible to all personnel within the department whether or not the sheets had completed the formal Review and Approval (R and A) process. Once the factsheets had gone through the formal review and approval process, they could then be published both internally and externally based on their individual publication status. An extended requirement and feature of the site would be to provide a keyword search capability to search through the factsheets. Also, since the site currently resides on both the internal and external networks, it would need to be registered with the Sandia search engines in order to allow access to the content of the site by the search engines. To date, all of the above requirements and features have been created and implemented in the Factsheet web application. These have been accomplished by the use of flat text databases, which are discussed in greater detail later in this paper.

  9. Los Alamos test-room results

    SciTech Connect (OSTI)

    McFarland, R.D.; Balcomb, J.D.

    1982-01-01T23:59:59.000Z

    Fourteen Los Alamos test rooms have been operated for several years; this paper covers operation during the winters of 1980-81 and 1981-82. Extensive data have been taken and computer analyzed to determine performance parameters such as efficiency, solar savings fraction, and comfort index. The rooms are directly comparable because each has the same net coefficient and solar collection area and thus the same load collector ratio. Configurations include direct gain, unvented Trombe walls, water walls, phase change walls, and two sunspace geometries. Strategies for reducing heat loss include selective surfaces, two brands of superglazing windows, a heat pipe system, and convection-suppression baffles. Significant differences in both backup heat and comfort are observed among the various rooms. The results are useful, not only for direct room-to-room comparisons, but also to provide data for validation of computer simulation programs.

  10. Plots and Figures from the Main Injector Neutrino Oscillation Search (MINOS) at Fermilab

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MINOS, or Main Injector Neutrino Oscillation Search, is an experiment at Fermilab designed to study the phenomena known as neutrino oscillations. It uses a beam of neutrino particles produced by the NuMI beamline facility - Neutrinos at the Main Injector. The beam of neutrinos is sent through the two MINOS detectors, one at Fermilab and one in the Soudan Mine in northern Minnesota. The Minos for Scientists page provides a link to the data plots that are available to the public and also provides explanations for some of the recent results of the experiment. Another links leads to a long listing of MINOS publications in refereed journals. Photo galleries are found by checking the links on the left menu.

  11. TMDs and Drell-Yan Experiments at Fermilab and J-PARC

    E-Print Network [OSTI]

    Jen-Chieh Peng

    2008-11-27T23:59:59.000Z

    The roles of the Drell-Yan experiments in studying the Transverse-Momentum-Dependent (TMD) parton distributions are discussed. Recent results from the Fermilab E866 experiment on the angular distributions of Drell-Yan dimuons in $p+p$ and $p+d$ at 800 GeV/c are presented. These data are compared with the pion-induced Drell-Yan data, and with models which attribute the $\\cos 2 \\phi$ azimuthal distribution to the presence of the transverse-momentum-dependent Boer-Mulders structure function $h_1^\\perp$. Constraints on the magnitude of the sea-quark $h_1^\\perp$ structure functions are obtained. Future prospects for studying the TMDs with Drell-Yan experiments at Fermilab and J-PARC are also discussed.

  12. Project-X: A new high intensity proton accelerator complext at Fermilab

    E-Print Network [OSTI]

    R. Tschirhart

    2011-09-15T23:59:59.000Z

    Fermilab has been working with the international particle physics and nuclear physics communities to explore and develop research programs possible with a new high intensity proton source known as "Project-X". Project X will provide multi-megawatt proton beams from the Fermilab Main Injector over the energy range 60-120 GeV simultaneous with multi-megawatt protons beams at 3 GeV with very flexible beam-timing characteristics and up to 300 kW of pulsed beam at 8 GeV. The Project-X research program includes world leading sensitivity in longbaseline neutrino experiments, neutrino scattering experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes that reach far beyond the Standard Model.

  13. Tuning Fermilab Heavy Quarks in 2+1 Flavor Lattice QCD with Application to Hyperfine Splittings

    E-Print Network [OSTI]

    C. Bernard; C. DeTar; M. Di Pierro; A. X. El-Khadra; R. T. Evans; E. D. Freeland; E. Gmiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; A. S. Kronfeld; J. Laiho; L. Levkova; P. B. Mackenzie; J. N. Simone; R. Sugar; D. Toussaint; R. S. Van de Water

    2011-02-22T23:59:59.000Z

    We report the non-perturbative tuning of parameters--- kappa_c, kappa_b, and kappa_crit ---that determine the heavy-quark mass in the Fermilab action. This requires the computation of the masses of Ds^(*) and Bs^(*) mesons comprised of a Fermilab heavy quark and a staggered light quark. Additionally, we report the hyperfine splittings for Ds and Bs mesons as a cross-check of our simulation and analysis methods. We find a splitting of 145 +/- 15 MeV for the Ds system and 40 +/- 9 MeV for the Bs system. These are in good agreement with the Particle Data Group average values of 143.9 +/- 0.4 MeV and 46.1 +/- 1.5 MeV, respectively. The calculations are carried out with the MILC 2+1 flavor gauge configurations at three lattice spacings $a$ approximately 0.15, 0.12, and 0.09 fm.

  14. An 800-MeV superconducting LINAC to support megawatt proton operations at Fermilab

    E-Print Network [OSTI]

    Derwent, Paul; Lebedev, Valeri

    2015-01-01T23:59:59.000Z

    Active discussion on the high energy physics priorities in the US carried out since summer of 2013 resulted in changes in Fermilab plans for future development of the existing accelerator complex. In particular, the scope of Project X was reduced to the support of the Long Base Neutrino Facility (LBNF) at the project first stage. The name of the facility was changed to the PIP-II (Proton Improvement Plan). This new facility is a logical extension of the existing Proton Improvement Plan aimed at doubling average power of the Fermilab's Booster and Main Injector (MI). Its design and required R&D are closely related to the Project X. The paper discusses the goals of this new facility and changes to the Project X linac introduced to support the goals.

  15. The discovery of the b quark at Fermilab in 1977: The experiment coordinator`s story

    SciTech Connect (OSTI)

    Yoh, J.

    1997-12-01T23:59:59.000Z

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  16. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect (OSTI)

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; /Fermilab; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01T23:59:59.000Z

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  17. Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment

    E-Print Network [OSTI]

    Douglas P. Benjamin

    2008-10-20T23:59:59.000Z

    The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

  18. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  19. Operation of the intensity monitors in beam transport lines at Fermilab during Run II

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crisp, J; Fellenz, B; Fitzgerald, J; Heikkinen, D; Ibrahim, M A.

    2011-10-01T23:59:59.000Z

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. During Run II, much effort was made to continually improve the resolution and accuracy of the system.

  20. Charm-sea Contribution to High-p_T ?Production at the Fermilab Tevatron

    E-Print Network [OSTI]

    Cong-Feng Qiao

    2003-03-26T23:59:59.000Z

    The direct production of $J/\\psi(\\psi')$ at large transverse momentum, $p_T \\gg M_{J/\\psi}$, at the Fermilab Tevatron is revisited. It is found that the sea-quark initiated processes dominate in the high-$p_T$ region within the framework of color-singlet model, which is not widely realized. We think this finding is enlightening for further investigation on the charmonium production mechanism.

  1. Prospects for Searching for Excited Leptons during RunII of the Fermilab Tevatron

    E-Print Network [OSTI]

    E. Boos; A. Vologdin; D. Toback; J. Gaspard

    2001-11-05T23:59:59.000Z

    This letter presents a study of prospects of searching for excited leptons during RunII of the Fermilab Tevatron. We concentrate on single and pair production of excited electrons in the photonic decay channel in one CDF/DO detector equivalent for 2 fb^{-1}. By the end of RunIIa, the limits should be easily extended beyond those set by LEP and HERA for excited leptons with mass above about 190 GeV.

  2. TC corrections to the single-top-quark production at the Fermilab Tevatron

    E-Print Network [OSTI]

    Gongru Lu; Yigang Cao; Jinshu Huang; Junde Zhang; Zhenjun Xiao

    1997-01-29T23:59:59.000Z

    We calculate one-loop corrections to the single-top-quark production via $q\\overline{q}' \\to t\\overline b$ at the Fermilab Tevatron from the Pseudo-Goldstone bosons ( PGBs ) in the framework of one generation technicolor model. The maximum correction to the total cross section for the single-top-quark production is found to reach -2.4% relative to the tree-level cross section, which may be observable at a high-luminosity Tevatron.

  3. Studying W+W- production at the Fermilab Tevatron with SHERPA

    E-Print Network [OSTI]

    T. Gleisberg; F. Krauss; A. Schaelicke; S. Schumann; J. Winter

    2005-04-05T23:59:59.000Z

    The merging procedure of tree-level matrix elements with the subsequent parton shower as implemented in SHERPA will be studied for the example of W boson pair production at the Fermilab Tevatron. Comparisons with fixed order calculations at leading and next-to-leading order in the strong coupling constant and with other Monte Carlo simulations validate once more the impact and the quality of the merging algorithm and its implementation.

  4. Strategy for discovering a low-mass Higgs boson at the Fermilab Tevatron Pushpalatha C. Bhat

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    Strategy for discovering a low-mass Higgs boson at the Fermilab Tevatron Pushpalatha C. Bhat Fermi-mass standard model Higgs boson, during run II, via the processes pp¯WHl bb¯, pp¯ZH l l bb¯ and pp¯ZH ¯bb¯. We conventional analysis, in the integrated luminosity required to find a standard model Higgs boson in the mass

  5. Proposal for Fermilab remote access via ISDN (Ver. 1.0)

    SciTech Connect (OSTI)

    Lidinsky, W.P.; Martin, D.E.

    1993-07-02T23:59:59.000Z

    Currently, most users at remote sites connect to the Fermilab network via dial-up over analog modems using a dumb terminal or a personal computer emulating a dumb terminal. This level of connectivity is suitable for accessing a single, character-based application. The power of personal computers that are becoming ubiquitous is under-utilized. National HEPnet Management (NHM) has been monitoring and experimenting with remote access via the integrated services digital network (ISDN) for over two years. Members of NHM felt that basic rate ISDN had the potential for providing excellent remote access capability. Initially ISDN was not able to achieve this, but recently the situation has improved. The authors feel that ISDN can now provide, at a remote site such as a user`s home, a computing environment very similar to that which is available at Fermilab. Such an environment can include direct LAN access, windowing systems, graphics, networked file systems, and demanding software applications. This paper proposes using ethernet bridging over ISDN for remote connectivity. With ISDN remote bridging, a remote Macintosh, PC, X-terminal, workstation, or other computer will be transparently connected to the Fermilab LAN. Except for a slight speed difference, the remote machine should function just as if it were on the LAN at Fermilab, with all network services-file sharing, printer sharing, X-windows, etc. - fully available. There are two additional reasons for exploring technologies such as ISDN. First, by mid-decade environmental legislation such as the Federal Clean Air Act of 1990 and Illinois Senate Bill 2177 will likely force increased remote-worker arrangements. Second, recent pilot programs and studies have shown that for many types of work there may be a substantial cost benefits to supporting work away from the site.

  6. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12T23:59:59.000Z

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  7. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    SciTech Connect (OSTI)

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01T23:59:59.000Z

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  8. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect (OSTI)

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01T23:59:59.000Z

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  9. Understanding the cosmic web

    E-Print Network [OSTI]

    Cautun, Marius; Jones, Bernard J T; Frenk, Carlos S

    2015-01-01T23:59:59.000Z

    We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the very intricate and hierarchical pattern that is the cosmic web. In particular, we characterize filaments (walls) in terms of their linear (surface) mass density. This is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We also show that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expandin...

  10. arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider at the Fermilab Tevatron Collider are s-channel, which involve the exchange of a time-like W boson, and t be created in association with an an on-shell W boson, but this process is negligible at the Fermilab

  11. Semantic Web enabled Information Systems: Personalized Views on Web Data

    E-Print Network [OSTI]

    Henze, Nicola

    Semantic Web enabled Information Systems: Personalized Views on Web Data Robert Baumgartner1@math.uni-hannover.de Abstract. In this paper a methodology and a framework for personal- ized views on data available describe the Web data extraction task (Section 2), and an approach for personalized content presentation

  12. Web Mining: Pattern Discovery from World Wide Web Transactions

    E-Print Network [OSTI]

    Kumar, Vipin

    ­based organizations often generate and collect large volumes of data in their daily operations. Analyzing such data access logs. We propose a framework for Web mining, the applications of data mining and knowledge from the Web data. We also present a Web mining system, WEBMINER, which has been implemented based upon

  13. Big picture Ads Duplicate detection Spam Web IR Size of the web Web Search and Text Mining

    E-Print Network [OSTI]

    Gray, Alexander

    Big picture Ads Duplicate detection Spam Web IR Size of the web Web Search and Text Mining http://www.cc.gatech.edu/~agray/6240spr11 IIR 19: Web Search Basics Alexander Gray Georgia Institute of Technology, College of Computing 2011 Gray: Web Search Basics 1 / 117 #12;Big picture Ads Duplicate detection Spam Web IR Size

  14. Versioning of Web service interfaces

    E-Print Network [OSTI]

    Agarwal, Anamika, 1981-

    2004-01-01T23:59:59.000Z

    This thesis investigates the problem of "design for change" in the context of Web Service based information systems. It describes the current status of architecting Web Services, an implementation of the Service Oriented ...

  15. A Stateful Web Augmentation Toolkit

    E-Print Network [OSTI]

    Webber, Matthew J. (Matthew James)

    2010-01-01T23:59:59.000Z

    This thesis introduces the Stateful Web Augmentation Toolkit (SWAT), a toolkit that gives users control over the presentation and functionality of web content. SWAT extends Chickenfoot, a Firefox browser scripting environment ...

  16. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications

    E-Print Network [OSTI]

    Shiltsev, V

    2014-01-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  17. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  18. EDUCATIONAL REVIEW Photosynthesis Web resources

    E-Print Network [OSTI]

    Govindjee

    EDUCATIONAL REVIEW Photosynthesis Web resources Larry Orr · Govindjee Published online: 25 May 2013 and the World Wide Web has become important for public awareness and for educating the world's population information. After a brief Introduction, rele- vant information found on photosynthesis-related Web sites

  19. 77JANUARY 2010 WEB TECHNOLOGIES

    E-Print Network [OSTI]

    Bystroff, Chris

    77JANUARY 2010 WEB TECHNOLOGIES Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE Web 3.0: The Dawn of Semantic Search I n the past two January edi- tions of this Computer column, I've had the pleasure of writ- ing about the status of the Semantic Web, and particularly of its

  20. Ontologies for Web Service Annotations

    E-Print Network [OSTI]

    Kissinger, Jessica

    Ontologies for Web Service Annotations OBI & EDAM Dr. Jessica Kissinger Department Of Genetics Role of Enriching OBI for Web Service Annotations EDAM Similarities Between EDAM and OBI, working for Web Service Annotations EDAM Similarities Between EDAM and OBI, working towards the same GOAL Our