National Library of Energy BETA

Sample records for rooftop solar challenge

  1. Rooftop Solar Challenge to Cut Solar's Red Tape

    Broader source: Energy.gov [DOE]

    Today Secretary Chu announced $12 million in funding for 22 regional teams competing in the Energy Department’s Rooftop Solar Challenge. The teams will implement step-by-step actions throughout the next year to standardize permit processes, update planning and zoning codes, improve standards for connecting solar power to the electric grid, and increase access to financing. "Through this competition, the Energy Department is helping to unleash America’s solar potential by investing in projects that will make it faster, easier, and cheaper to finance and deploy solar power in communities across the country."

  2. Rooftop Solar Challenge: Empowering Innovators to Reach for the Sun |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A WholesaleRetrofitElectrical Equipment ToForewordRooftop

  3. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    SciTech Connect (OSTI)

    Ronk, Jennifer

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of addressing financial barriers to residential solar; Maintaining www.solarhoustontx.org; and Continuing meetings with stakeholders to get ongoing feedback from the solar community on their needs. The following sections provide a brief summary of the activities completed under each of the nine tasks specifically related to the RSC grant. Reports and other backup information are included in the appendices.

  4. Rooftop Solar PV & Firefighter Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  5. SunShot Rooftop Challenge Awardees

    Broader source: Energy.gov [DOE]

    Awardees, partners, award amounts, estimated population, and project descriptions for the 2011 SunShot Rooftop Challenge.

  6. Residential and Commercial Property Assessed Clean Energy (PACE) Financing in California Rooftop Solar Challenge Areas

    Broader source: Energy.gov [DOE]

    This version of the report updates the original report published in March 2013. It identifies and describes the current state of residential and commercial property assessed clean energy (PACE) financing programs in California. The report discusses the Improvement Act of 1911, the Mello-Roos Act of 1982, the different philosophies cities have adopted in implementing PACE financing, and various PACE program structures. It also discusses the first implementation of PACE by cities that used their charter authority to create programs under the Mello-Roos Act of 1982 before the enactment of AB 811 and SB 555.1. This report focuses on PACE as a mechanism to increase the amount of rooftop solar systems installed, but also recognizes that these programs provide an effective means to finance energy and water efficiency projects. The updated report provides new information on California’s Residential PACE Loss Reserve Program, the Federal Housing Finance Agency, program requirements, and program performance.

  7. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Energy Savers [EERE]

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

  8. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  9. Washington: Putting More Solar on More Rooftops in Washington...

    Office of Environmental Management (EM)

    Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island...

  10. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic...

  11. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  12. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  13. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  14. Solar Congeneration for Commercial Rooftops 

    E-Print Network [OSTI]

    Gupta, A.

    2013-01-01

    Storable Tubular Extendible Members (STEMs) are often used for deploying spacecraft subsystems such as flexible solar cell blankets, like those used on Hubble Telescope. Systems using long flexible appendages such as the ...

  15. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  16. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  17. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  18. Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption

    E-Print Network [OSTI]

    Vorobeychik, Eugene

    Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption Haifeng Zhang-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar forecasts solar adoption trends and provides a meaningful quantifi- cation of uncertainty about its

  19. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

    2010-05-14

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

  20. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin [Heat Island Group, Lawrence Berkeley National Laboratory (United States); Gupta, Smita [California Energy Commission, Sacramento, CA 95814 (United States)

    2009-12-15

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (author)

  1. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul

    E-Print Network [OSTI]

    Delaware, University of

    A review of the solar city concept and methods to assess rooftop solar electric potential potential Solar rooftop potential a b s t r a c t Energy economy restructuring at the city level the solar electric potential of an often neglected but vital city resource in energy matters ­ its rooftop

  2. Sunshot Rooftop Solar Challenge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuilding

  3. Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServicesRecoveryRhode IslandSoft Costs »

  4. SunShot Rooftop Challenge Awardees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enable multiple financing options for community solar programs. City University of New York City University of New York, NYC Department of Buildings, Procemx, CUNY Ventures, IBM,...

  5. Solar access of residential rooftops in four California cities

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    solar-energy systems, including photovoltaic panels and thermal collectors.solar-energy systems, including photovoltaic panels and thermal collectors.

  6. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Energy Savers [EERE]

    DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar...

  7. Solar access of residential rooftops in four California cities

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    to the installation of a solar collector on the property ofabsorption area upon that solar collector surface on thesolar-energy systems, including photovoltaic panels and thermal collectors.

  8. Solar access of residential rooftops in four California cities

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    solar-energy equipment. It can also be considered when designing programs to plantsolar-energy equipment. It can also be considered when designing programs to plant

  9. California Energy Commission "We have the largest rooftop solar

    E-Print Network [OSTI]

    solar system in the nation!" Matt Muniz, P.E. Energy Program Manager Alameda County "With the Energy Commission's Energy Efficiency Financing Program we installed our 1.18 MW solar project at Santa Rita Jail on Back of Flyer June 2006 #12;DON'T MISS THIS OPPORTUNITY Need Project Funding? You already know

  10. Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems

    SciTech Connect (OSTI)

    Kodysh, Jeffrey B [ORNL; Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL

    2013-01-01

    In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar radiation potential on individual buildings in a city/region using Light Detection and Ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions, that influence solar intensity on the earth s surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems.

  11. Ariz. Rooftops Key to Unlocking the Potential of Distributed Solar

    Broader source: Energy.gov [DOE]

    Nestled in the mountains of northern Arizona and just 75 miles from Grand Canyon National Park, the city of Flagstaff, Ariz. is an ideal city for the Arizona Public Service (APS) to pilot a high concentration of solar photovoltaic energy systems.

  12. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  13. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect (OSTI)

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  14. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  15. Rooftop Solar Challenge Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesA Token Requesting AQuestionsRevolvingRobert

  16. Rooftop Solar Challenge Round 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesA Token Requesting AQuestionsRevolvingRobertSoft

  17. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  18. Energy Department Loan Guarantee Would Support Large-Scale Rooftop...

    Energy Savers [EERE]

    Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

  19. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E. MoultonRooftopRTU

  20. Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-05-01

    This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

  1. 2005 the North American Solar Challenge

    SciTech Connect (OSTI)

    Dan Eberle

    2008-12-22

    In July 2005 the North American Solar Challenge (NASC) featured university built solar powered cars ran across the United States into Canada. The competition began in Austin, Texas with stops in Weatherford, Texas; Broken Arrow, Oklahoma; Topeka, Kansas; Omaha, Nebraska; Sioux Falls, South Dakota, Fargo, North Dakota; Winnipeg, Manitoba; Brandon, Manitoba; Regina, Saskatchewan; Medicine Hat, Alberta; mainly following U.S. Highway 75 and Canadian Highway 1 to the finish line in Calgary, Alberta, Canada, for a total distance of 2,500 miles. NASC major sponsors include the U.S. Department of Energy (DOE), Natural Resources Canada and DOEs National Renewable Energy Laboratory. The event is designed to inspire young people to pursue careers in science and engineering. NASCs predecessors, the American Solar Challenge and Sunrayce, generally have been held every two years since 1990. With each race, the solar cars travel faster and further with greater reliability. The NASC promotes: -Renewable energy technologies (specifically photovoltaic or solar cells) -Educational excellence in science, engineering and mathematics -Creative integration of technical and scientific expertise across a wide-range of disciplines -Hands-on experience for students and engineers to develop and demonstrate their technical and creative abilities. Safety is the first priority for the NASC. Each team put its car through grueling qualifying and technical inspections. Teams that failed to meet the requirements were not allowed participate. During the race, each team was escorted by lead and chase vehicles sporting rooftop hazard flashers. An official observer accompanied each solar car team to keep it alert to any safety issues.

  2. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect (OSTI)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto [Fluid Mechanics Group, University of Zaragoza and LITEC (CSIC), Maria de Luna 3, 50018 Zaragoza (Spain)

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  3. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  4. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    E-Print Network [OSTI]

    Levinson, Ronnen M

    2008-01-01

    solar-energy systems, including photovoltaic panels and thermal collectors.solar-energy systems, including photovoltaic panels and thermal collectors.

  5. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    E-Print Network [OSTI]

    Levinson, Ronnen M

    2008-01-01

    Data Center (NREL MIDC) Solar Position and Intensity (J.A. and Beckman, W. A.. 2006. Solar Engineering of ThermalOF ROOFING PLANES (%) IN SOLAR ACCESS VIOLATION BY MONTH AND

  6. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    E-Print Network [OSTI]

    Levinson, Ronnen M

    2008-01-01

    to the installation of a solar collector on the property ofabsorption area upon that solar collector surface on thesolar-energy systems, including photovoltaic panels and thermal collectors.

  7. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  8. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  9. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect (OSTI)

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  10. The solar energy challenge—Seth Darling

    SciTech Connect (OSTI)

    Seth Darling

    2012-08-08

    Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

  11. The solar energy challenge?Seth Darling

    ScienceCinema (OSTI)

    Seth Darling

    2013-06-05

    Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

  12. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power Plant |Projects |of EnergyEnergyPower

  13. Design & Engineering Services SPEAKMAN HYBRID ROOFTOP UNIT PERFORMANCE

    E-Print Network [OSTI]

    California at Davis, University of

    Design & Engineering Services SPEAKMAN HYBRID ROOFTOP UNIT PERFORMANCE: WESTERN COOLING CHALLENGE, and the National Renewable Energy Laboratory (NREL) conducted the physical laboratory tests at their facility for their contribution of the Air20 Quattro HCRS2500 hybrid rooftop unit used for evaluation, and is grateful to the US

  14. Design & Engineering Services AIRMAX HYBRID ROOFTOP UNIT PERFORMANCE: WESTERN

    E-Print Network [OSTI]

    California at Davis, University of

    Design & Engineering Services AIRMAX HYBRID ROOFTOP UNIT PERFORMANCE: WESTERN COOLING CHALLENGE. and the National Renewable Energy Laboratory (NREL) conducted the physical laboratory tests at their facility for their contribution of the Air20 Quattro HCRS2500 hybrid rooftop unit used for evaluation, and is grateful to the US

  15. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  16. Solar Water Heating System Maintenance and Repair | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at...

  17. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops   

  18. Community Shared Solar with Solarize

    Office of Energy Efficiency and Renewable Energy (EERE)

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  19. Modeling the U.S. Rooftop Photovoltaics Market

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2010-09-01

    Global rooftop PV markets are growing rapidly, fueled by a combination of declining PV prices and several policy-based incentives. The future growth, and size, of the rooftop market is highly dependent on continued PV cost reductions, financing options, net metering policy, carbon prices and future incentives. Several PV market penetration models, sharing a similar structure and methodology, have been developed over the last decade to quantify the impacts of these factors on market growth. This study uses a geospatially rich, bottom-up, PV market penetration model--the Solar Deployment Systems (SolarDS) model developed by the National Renewable Energy Laboratory--to explore key market and policy-based drivers for residential and commercial rooftop PV markets. The identified drivers include a range of options from traditional incentives, to attractive customer financing options, to net metering and carbon policy.

  20. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  1. Legal Protection of Solar Access under Japanese Law

    E-Print Network [OSTI]

    Bennett Jr., Frank G.

    1986-01-01

    window than to a rooftop solar collector. See Osofsky, supralong before mod- em solar collectors had been developed. In

  2. Webinar: Evaluating Roof Structures for Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  3. The challenges of organic polymer solar cells

    E-Print Network [OSTI]

    Saif Addin, Burhan K. (Burhan Khalid)

    2011-01-01

    The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

  4. Breakout Session: Solar Securitization: Opportunities and Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    works to convene and cultivate progress within the solar industry. Moderated by solar securitization expert Michael Mendelsohn from the National Renewable Energy...

  5. Solar Workshop: Terawatt Challenge!!? Sponsored by UD Energy Institute

    E-Print Network [OSTI]

    Firestone, Jeremy

    Solar Workshop: Terawatt Challenge!!? Sponsored by UD Energy Institute February 28, 2014 Clayton for a High Efficiency Silicon Based Solar Cells Henri Chevrel Air Liquide 3:30 ­ 4:00 pm Recent Advances-Efficiency Silicon Solar Cells Zak Holman Arizona State University 4:30 ­ 5:00 pm Upconversion and Related Approaches

  6. Shared Solar Programs: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The third webinar in the Solar Technical Assistance Team (STAT) 2013 webinar series, this webinar provides an overview of issues related to shared solar, the critical elements of a program to make it successful, and examples of locations that have implemented a shared solar or community-based solar program.

  7. Breakout Session: Solar Securitization: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The U.S. solar industry is soaring – deployment has increased tenfold in six years. But despite this growth, low cost solar financing remains a major market barrier to rapid deployment. The...

  8. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    thermal model for photovoltaic systems, Solar Energy, Vol.  benefits of rooftop photovoltaic (PV) systems for building 

  9. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics - 2014 BTO Peer Review Demonstrations of Integrated Advanced Rooftop Unit...

  10. Estimating Rooftop Suitability for PV: A Review of Methods, Patents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For researchers looking to understand the market potential of rooftop-installed photovoltaics (PV) in particular, understanding the amount and characteristics of rooftop space...

  11. Energy Department and GSA Assist in Capital Solar Challenge Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regarding the current contracting strategy. Event Details The Captial Solar Challenge Industry Day will be held on November 13, 2014, from 9:30 a.m. to 11:30 a.m. at: GSA...

  12. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular...

  13. Argonne OutLoud presents: The Solar Energy Challenge

    ScienceCinema (OSTI)

    Seth Darling

    2013-06-05

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  14. Rooftop Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein Structures PrintRooftop Diagnostician Pacific

  15. Shared Solar Projects Powering Households Throughout America...

    Broader source: Energy.gov (indexed) [DOE]

    Shared solar projects allow consumers to take advantage of solar energys myriad benefits, even though the system is not located on the consumers own rooftop. | Photo...

  16. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops June 17,...

  17. Solar Market Analytics, Roadmapping, and Tracking NY (SMART NY) Final Report

    SciTech Connect (OSTI)

    Case, Tria; Reilly, Laurie; Kling, Alison

    2014-05-15

    This is the final report, including links to Working Group reports and an attached Working Group report for SunShot Initiative Rooftop Solar Challenge I, from Sustainable CUNY of the City University of New York, on behalf of New York City

  18. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  19. Startups Tackle Solar Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolarSpace-BasedFact Sheet |StanfordStartups

  20. Protecting Solar Rights in California Through an Exploration of the California Water Doctrine

    E-Print Network [OSTI]

    Fedman, Anna

    2011-01-01

    Issue  While both water and solar energy share many similar to make rooftop solar energy capture a substantial Nevertheless water and solar energy share many similar 

  1. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Broader source: Energy.gov (indexed) [DOE]

    rooftop solar systems. This project is part of the Department's larger effort to make solar energy more accessible and affordable, increase domestic solar deployment, and...

  2. SUBSIDIZING SOLAR ENERGY: THE ROLE OF TAX CREDITS, LOANS, AND WARRANTIES

    E-Print Network [OSTI]

    Berman, S. M.

    2011-01-01

    the form of rooftop solar collectors for the generation ofinstallation of solar collectors? alternatives. sources, Inare aware of, built with solar collectors? 3/ In California

  3. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    million acres of ideal solar potential, mostly west of thethe potential issues facing rooftop solar installations.investigate the potential conflicts of floating solar PV on

  4. Computational Challenges for Nanostructure Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefault Changes fromCompositionalChallenges for

  5. Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  6. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques

    SciTech Connect (OSTI)

    Melius, J.; Margolis, R.; Ong, S.

    2013-12-01

    A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and California to compare modeled results to actual on-the-ground measurements.

  7. Top 5 Reasons to Attend the SunShot Grand Challenge Solar Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Reasons to Attend the SunShot Grand Challenge Solar Summit Top 5 Reasons to Attend the SunShot Grand Challenge Solar Summit May 5, 2014 - 12:16pm Addthis

  8. Solar Community Comes Out in Full Force for SunShot Grand Challenge...

    Energy Savers [EERE]

    Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 9:58am Addthis...

  9. Smart Solar Rooftops - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmallGrid EVDepartment ofSmartSmart

  10. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  11. Obama Administration Expands Better Buildings Challenge to Multifamily...

    Office of Environmental Management (EM)

    strategies to boost energy efficiency, including lighting improvements, heating and cooling system upgrades, installing rooftop solar systems and supporting new financing for...

  12. SunShot Grand Challenge Highlights Ambitious Efforts along the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    implement a range of novel approaches. For example, one awardee is using remotely sensed data to provide a suitability score for rooftop solar installations, while another is...

  13. Better Buildings Alliance, Advanced Rooftop Unit Campaign: Rooftop Unit Measurement and Verification (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This document provides facility managers and building owners an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects to estimate paybacks or to justify future projects.

  14. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  15. Rooftop Photovoltaic Panels at Premier Gardens

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOE’s Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  16. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  17. American Institute of Aeronautics and Astronautics Prospects and Challenges of Particulate Solar Sail

    E-Print Network [OSTI]

    Peck, Mason A.

    solar sails. This investigation assesses the value of fractionating a solar sail one step furtherAmerican Institute of Aeronautics and Astronautics Prospects and Challenges of Particulate Solar Sail Propulsion Laura L. Jones1 Cornell University, Ithaca, NY, 14850 Traditional solar sail

  18. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  19. Making Strides to Boost the Use of Solar Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of...

  20. SunShot Catalyst: New Prize Challenge Aims to Accelerate Solar Solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department's SunShot Initiative kicks off new prize challenge to find solutions to the solar energy industry’s most pressing problems.

  1. Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project aims to develop and validate cost-effective methods for rooftop air conditioning unit (RTU) coordination and diagnostics in small commercial buildings. To this...

  2. ENERGY - Rooftop A/C retrofit ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Through some nifty system coordination that limits the number of commercial rooftop air conditioning units that run simultaneously, a technique developed by Oak Ridge National...

  3. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect (OSTI)

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  4. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  5. Rooftop Unit Comparison Calculator User Manual

    SciTech Connect (OSTI)

    Miller, James D.

    2015-04-30

    This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.

  6. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    SciTech Connect (OSTI)

    Halsey, Jeffery D.

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices to make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.

  7. Solar Industry Scorches Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Solar Industry Scorches Records March 6, 2014 - 5:24pm Addthis Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More than 4,751...

  8. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs...

    Energy Savers [EERE]

    officials, installers, and engineers the information they need to support safe and cost-effective solar rooftop installations. Learn more about the study by visiting...

  9. CREATING A SOLAR CITY Determining the Potential of Solar Rooftop

    E-Print Network [OSTI]

    Delaware, University of

    FINAL REPORT A Renewable Energy Applications for Delaware Yearly (READY) Project Center for Energy and development, environmental justice, conservation and renewable energy options, integrated resource planning comparative energy and environmental policy, sustainable development, political economy of energy, environment

  10. Energy Department and GSA Assist in Capital Solar Challenge Industry...

    Energy Savers [EERE]

    on aggregated solar purchases and power purchases agreements to help lower their cost of electricity and increase renewable energy consumption percentages. GSA is planning an...

  11. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  12. Challenges to Overcurrent Protection Devices under Line-line Faults in Solar Photovoltaic Arrays

    E-Print Network [OSTI]

    Lehman, Brad

    Challenges to Overcurrent Protection Devices under Line-line Faults in Solar Photovoltaic Arrays Ye-MA, LLC Newburyport, MA, US Abstract--Solar photovoltaic (PV) arrays behave distinctively from remain undetected, which could lead to reduced system efficiency, reduced system reliability, and even

  13. Challenges and Prospects of Nanopillar-Based Solar Cells Zhiyong Fan1,2,3

    E-Print Network [OSTI]

    Javey, Ali

    ], and solar energy into electricity [20 33]. In this review article, we summarize the continuous progress own advantages and disadvantages. The device structures utilizing radial NPL junctions (i.e., coreChallenges and Prospects of Nanopillar-Based Solar Cells Zhiyong Fan1,2,3 , Daniel J. Ruebusch1

  14. The renaissance of hybrid solar cells: progresses, challenges, and perspectives

    E-Print Network [OSTI]

    Feng, Gao; Ren, Shenqiang; Jianpu, Wang

    2013-06-12

    Solution-processed hybrid solar cells, a blend of conjugated polymers and semiconducting nanocrystals, are a promising candidate for next-generation energy-conversion devices. The renaissance of this field in recent years ...

  15. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  16. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Environmental Management (EM)

    on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from...

  17. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  18. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  19. On the threshold of the political: The sonic performativity of rooftop chanting in Iran

    E-Print Network [OSTI]

    Kheshti, R

    2015-01-01

    of Rooftop Chanting in Iran Roshanak Kheshti Inja kojast? TPoem for the Rooftops of Iran: ‘Where Is This Place’,”Poema para las azoteas de Irán — 19 de junio de 2009,”

  20. DEVELOPMENT OF A HYDRONIC ROOFTOP UNIT -- HYPAK

    SciTech Connect (OSTI)

    Eric Lee; Dick Bourne; Mark Berman

    2004-03-25

    The majority of US commercial floor space is cooled by rooftop HVAC units (RTU's). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTU's are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. Existing RTU's in the U.S. consume an estimated 2.4 quads annually. Inefficient RTU's create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming. Also, RTU's often fail to maintain adequate ventilation air and air filtration. This project was developed to evaluate the feasibility of a radically new ''HyPak'' RTU design that significantly and cost-effectively increases RTU performance and delivered air quality. The objective of the HyPak Project was to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit.

  1. ON THE ORIGIN OF MID-LATITUDE FAST WIND: CHALLENGING THE TWO-STATE SOLAR WIND PARADIGM

    E-Print Network [OSTI]

    Stakhiv, Mark

    The bimodal paradigm of solar wind describes a slow solar wind situated near the heliospheric current sheet while a fast wind overexpands from the poles to fill in the remainder of the heliosphere. In this paper, we challenge ...

  2. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  3. SunShot Rooftop Challenge Awardees | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority forPerk | Department ofSunShot NewsSunShot

  4. An Overview of Solar Cell Technology Mike McGehee

    E-Print Network [OSTI]

    McGehee, Michael

    An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate;Primary Photovoltaic (PV) Markets Residential Rooftop Commercial Rooftop Ground mounted (Usually 2 utility scale) #12;How cheap does PV need to be to compete w/ coal? June 2008 #12;Installed System Price

  5. Durable innovative solar optical materials: the international challenge

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-01-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well known coatings such as heat mirrors, selective absorbers, and reflective films are covered briefly. Emphasis is placed on the materials limitations and design choices for various lesser known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, fluorescent concentrator materials, holographic films, cold mirrors, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials research is only now being considered, and various design and durability issues must be addressed.

  6. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  7. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for PVcwdd2015-09-30T16:55:16+00:00 Confirming the Strength of Residential Roof Structures for Solar Installations Test Setup Photo Test Setup The solar photovoltaic (PV)...

  8. Overview and Challenges of Thin Film Solar Electric Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumption (MillionOther airborneand Challenges of Thin

  9. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  10. Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission

    E-Print Network [OSTI]

    Schrijver, Karel

    geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in CanadaDid geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from addresses whether geomagnetic activity challenged power system reliability during Solar Cycle 23. Operations

  11. Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners

    E-Print Network [OSTI]

    . Figure 1 illustrates a typical rooftop (NREL Pix 06451) installation. Building Industry Trends - 10 performance of this equipment has remained relatively constant, close to the minimum standard over this period. An evaluation of data on currently available models from theAirConditioning andRefrigerationInstitute (ARI2000

  12. Light incoherence theory revisited by Heisenberg time-energy uncertainty challenges solar cell optimization

    E-Print Network [OSTI]

    Herman, Aline; Deparis, Olivier

    2014-01-01

    Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.

  13. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  14. The Bright Lights in New York Could Be Solar | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a solar potential of 5,800 megawatts peak output-more that 40 percent of the city's electrical demand at peak times if all the rooftops were fully outfitted with solar. About...

  15. Utility-Scale Wind & Solar Power in the U.S.: Where it stands...

    Energy Savers [EERE]

    solar market has been dominated in recent years by Feed-in-Tariffs (FiT) in Western Europe * At year-end 2013, just over 70 GW of utility-scale and rooftop solar PV was...

  16. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect (OSTI)

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to provide individual sensible and latent loads required by an occupied space without over-cooling and reheating air. The product was developed using a housing construction similar to that of a conventional packaged rooftop unit. The resulting integrated active desiccant rooftop (IADR) is similar in size to a currently available conventional rooftop unit sized to provide an equivalent total cooling capacity. Unlike a conventional rooftop unit, the IADR can be operated as a dedicated outdoor air system processing 100% outdoor air, as well as a total conditioning system capable of handling any ratio of return air to outdoor air. As part of this R&D program, a detailed investigation compared the first cost and operating cost of the IADR with costs for a conventional packaged approach for an office building located in Jefferson City, MO. The results of this comparison suggest that the IADR approach, once commercialized, could be cost-competitive with existing technology--exhibiting a one-year to two-year payback period--while simultaneously offering improved humidity control, indoor air quality, and energy efficiency.

  17. Project Profile: Deployable Commercial Rooftop Solar Electric System

    Broader source: Energy.gov [DOE]

    Individual PV modules are mechanically interconnected using flexible hinges that allow a string of modules to be folded for transportation and storage into a compact form and then unfolded for...

  18. Phoenix American Rooftop Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, New York: Energy Resources Jump

  19. Department of Energy Commits Support for Landmark Rooftop Solar Project |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory |Education at U.S.DevelopmentRadiation Protection

  20. Unleashing Rooftop Solar Energy through More Efficient Government |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear Energy ResearchKansasDepartment of Energy

  1. Washington: Putting More Solar on More Rooftops in Washington State |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department ofIntroduction ofWHITEWardingPond

  2. Planning and Implementing a Solarize Initiative: A Guide for State Program Managers

    Broader source: Energy.gov [DOE]

    Solarize is a PV group purchasing program that aims to lower acquisition costs for rooftop solar installations. This Solarize guide features detailed case studies of two particularly well-developed and successful Solarize programs from New England— Solarize Connecticut and Solarize Mass —to help program managers in states across the country develop Solarize programs.

  3. Some Technological Challenges for Sustainability

    E-Print Network [OSTI]

    Das, Suman

    ), 70% in place Jacobson and Delucchi, 2009 #12;Installed Renewable Energy Capacity ( in GW), 2009 In 2009, China is second in the world for installed renewable energy capacity of 52.5 GW, just behind.8% in place ­ 40% by solar (4.6 TW) · 1.7 billion rooftop PV systems (0.003 MW each),

  4. Using Maps to Predict Solar Futures | Department of Energy

    Office of Environmental Management (EM)

    data, and real-time bids from installers to assist customers in how to best incorporate solar energy into their lives. If you want to get a basic idea of whether your rooftop is...

  5. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Kim, Woohyun; Lutes, Robert G.; Underhill, Ronald M.

    2015-09-30

    This report documents the development, testing and field validation of the integrated AFDD and advanced rooftop unit (RTU) controls using a single controller in buildings.

  6. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authority’s control and reliability performance can be compromised. These operating hours are considered as “challenging” hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index Terms—Solar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  7. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel 

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  8. Page 1 of 15 Market Study for Residential Solar Panels

    E-Print Network [OSTI]

    Lavaei, Javad

    May 23rd 2014 Page 1 of 15 Market Study for Residential Solar Panels Columbia University ELEN E4511 for a homeowner. All that is left is solar energy. Building solar panels on rooftops is a great way to make use.......................................................................................................................... 3 2 Understanding Solar Cells

  9. Solar in Remote Applications in the U.S.: Challenges & Implications for Local Policy

    Broader source: Energy.gov [DOE]

    Since the landfall of Hurricane Sandy in October 2012, municipalities and jurisdictions in the United States have been increasingly focused on the vulnerability of their electricity infrastructure and enhancing resilience to extreme events. Renewable energy and distributed generation resources have a critical role to play in increasing the resilience of electric grids. In remote areas and on islands, these issues have risen to the forefront because remote electric grids function in near isolation, making grid reliability, electricity supply, cost controls, and stability essential. The integration of such resources into smaller, isolated grids poses unique challenges given the relatively high penetration rates of solar photovoltaics (PV). In the U.S. these remote locations include Hawaii, Puerto Rico, Guam, Marianas, and the U.S. Virgin Islands, communities off the coast of Maine and Massachusetts, mainland communities in Alaska, and even U.S. government installations such as national parks and military bases. This paper explores how policy makers and planners interested in furthering grid resilience and increasing reliance on renewable energy resources can learn from the opportunities and challenges facing remote communities as they work to shift their generation mix to higher levels of solar PV.

  10. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  11. Suburban New York home with Solar Panels When are Solar Panels

    E-Print Network [OSTI]

    Menke, William

    States, with approximately 16 GW of installed capacity that produced, in 2014, about one half of one, this percentage is increasing every year; furthermore, solar panels are being installed at a growing rate. Solar,700 kWh of electricity3 . A typical rooftop solar installation on a suburban house can produce about

  12. Property:PotentialRooftopPVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3PotentialOnshoreWindArea Jump to:PotentialRooftopPVCapacity

  13. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01

    Workshop on Renewable Energy Costs for the 2012 Integrated renewable portfolio standards (RPS) and energy efficiency goals in a costcost of installing rooftop solar panels. While the renewable energy

  14. Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system. The Supercomputing Challenge is open to any New Mexico high-school or middle- school student. More than 330 students from 33 schools around the state spent - 2 - the...

  15. Solar Community Comes Out in Full Force for SunShot Grand Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of breakout sessions where Summit attendees discussed everything from the future of solar photovoltaics to disruptive solar technologies. Image: SunShot Initiative, Energy...

  16. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  17. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  18. Testing and Economic Evaluation of a High Efficiency 10-ton Rooftop Air Conditioner 

    E-Print Network [OSTI]

    O'Neal, D. L.; Davis, M. A.

    2006-11-09

    In 1993, the U.S. Environmental Protection Agency initiated a project to design, build and demonstrate a high efficiency commercial rooftop air conditioning unit. The unit was designed by Hibberd Consulting of Westminster, Colorado, and was built...

  19. Rooftop Membrane Temperature Reductions with Green Roof Technology in South-Central Texas 

    E-Print Network [OSTI]

    Dvorak, B.

    2010-01-01

    Early green roof cooling and energy reduction research in North America took place in Canada and the northern latitudes of the United States, where green roofs reduced rooftop temperatures by 70% to 90%. Less is known about green roof technology...

  20. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  1. Boston, Massachusetts: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

  2. Solar Means Business: Top U.S. Corporate Solar Users

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  3. Development of a Hydronic Rooftop Unit-HyPak-MA

    SciTech Connect (OSTI)

    Eric Lee; Mark Berman

    2009-11-14

    The majority of U.S. commercial floor space is cooled by rooftop HVAC units (RTUs). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTUs are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. 36% percent of annual U.S. energy, and two-thirds of electricity, is consumed in and by buildings. Commercial buildings consume approximately 4.2 quads of energy each year at a cost of $230 billion per year, with HVAC equipment consuming 1.2 quads of electricity. More than half of all U.S. commercial floor space is cooled by packaged HVAC units, most of which are rooftop units (RTUs). Inefficient RTUs create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming5. Also, RTUs often fail to maintain adequate ventilation air and air filtration, reducing indoor air quality. This is the second HyPak project to be supported by DOE through NETL. The prior project, referred to as HyPak-1 in this report, had two rounds of prototype fabrication and testing as well as computer modeling and market research. The HyPak-1 prototypes demonstrated the high performance capabilities of the HyPak concept, but made it clear that further development was required to reduce heat exchanger cost and improve system reliability before HyPak commercialization can commence. The HyPak-1 prototypes were limited to about 25% ventilation air fraction, limiting performance and marketability. The current project is intended to develop a 'mixed-air' product that is capable of full 0-100% modulation in ventilation air fraction, hence it was referred to as HyPak-MA in the proposal. (For simplicity, the -MA has been dropped when referencing the current project.) The objective of the HyPak Project is to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit, and reduction in peak energy consumption of 50% and 33% respectively. In addition to performance targets, our goal is to develop a production-ready design with durability, reliability and maintainability similar to air-cooled packaged equipment, and that can be commercialized immediately following the conclusion of this project.

  4. Solar Applications to Multiple County Buildings Feasibility Study

    Broader source: Energy.gov [DOE]

    This study was requested by Salt Lake County in an effort to obtain a cursory overview of solar electric and solar thermal application possibilities on the rooftops of existing county buildings. The subject buildings represent various County Divisions: Aging Services, Community Services, County Health, County Library, Parks & Recreation, Public Works, County Sheriff and Youth Services. There are fifty two buildings included in the study.

  5. The Final 40%: SunShot charges forward to tackle solar challenges...

    Office of Environmental Management (EM)

    and entrepreneurs - to "develop innovative approaches to help achieve the final 40% to cost competitive solar in the U.S." Final 40.png Several government leaders, from...

  6. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into New SUB Rooftop Garden Irrigations Systems

    E-Print Network [OSTI]

    of which needs to be pumped through the irrigation system to supply the entire crop water needs" (Whiffen SUB Rooftop Garden Irrigations Systems Seungmin Lee Alexandra Nan Meredith Kealty Kevin Pan University INVESTIGATION OF ROOFTOP GARDEN IRRIGATION SYSTEMS APSC 262 Instructor: Ms. Carla Paterson University of British

  7. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    SciTech Connect (OSTI)

    Olis, D.; Mosey, G.

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  8. Solar energy research at Princeton University Universities today bear the same responsibility to confront environmental challenges

    E-Print Network [OSTI]

    Solar energy research at Princeton University Universities today bear the same responsibility, campus- based research projects are increasingly being integrated into courses, the results of which, but they can make unique contributions through research, teaching, and student initiatives. Universities also

  9. Green Roofs: Optimizing the Water Quality of Rooftop Runoff Brett Long1

    E-Print Network [OSTI]

    Clark, Shirley E.

    Green Roofs: Optimizing the Water Quality of Rooftop Runoff Brett Long1 , Shirley E. Clark1 roofing is an accepted stormwater control technology, little is known about the quality of the roof runoff. In Phase I of this research, several green roof media (formed from commonly-used expanded minerals

  10. A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS

    E-Print Network [OSTI]

    conditioning (HVAC), and process heat. The system can be modularly configured for hybrid concentrating PVA 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter of America ABSTRACT A unique, linear, low-concentration, hybrid `micro- concentrator' (MCT) system concept

  11. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergy Small|Energy Solar Among7Solar||

  12. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  13. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review...

  14. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  15. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShaleEnergyValleySolarJanuary|

  16. Energy Department Finalizes Loan Guarantee for Transformational Rooftop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power Plant | Department of EnergyEnergySolar

  17. Geostellar: Remote Solar Energy Assessments Personalized

    SciTech Connect (OSTI)

    2015-10-01

    Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. In addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.

  18. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject DevelopsforReportingResourcesDepartmentDepartment of

  19. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  20. Rooftop Unit Network Project - 2013 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E. MoultonRooftop

  1. Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008

    Broader source: Energy.gov [DOE]

    Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

  2. Challenges in forming the solar system's giant planet cores via pebble accretion

    SciTech Connect (OSTI)

    Kretke, K. A.; Levison, H. F., E-mail: kretke@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-12-01

    Though ?10 M {sub ?} mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  3. High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint

    SciTech Connect (OSTI)

    Noufi, R.; Zweibel, K.

    2006-05-01

    Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

  4. Energy Department Announces New Initiative to Remove Barriers...

    Office of Environmental Management (EM)

    access to the Energy Department's thousands of unlicensed patents at a greatly reduced cost and paperwork. Last week, the Department also announced the Rooftop Solar Challenge,...

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Waste Heat Recovery for Usage by a Rooftop Greenhouse

    E-Print Network [OSTI]

    into Waste Heat Recovery for Usage by a Rooftop Greenhouse Rohit Singla, Jeremy Lord, Jorden Hetherington Investigation into Waste Heat Recovery for Usage by a Rooftop Greenhouse April 4, 2013 Dr. Naoko Ellis APSC 262 of this waste heat recovery method. Constraints that are taken into this investigation include various factors

  6. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  7. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    E-Print Network [OSTI]

    Levinson, Ronnen M

    2008-01-01

    days: March 21, the spring equinox; June 21, the summerSeptember 21, the autumn equinox; and December 21, the

  8. Literature review : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-03-01

    Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure a simple and basic determinate beam. That is, instead of considering the composite action of the entire roof structure, the engineer evaluates only a single beam that is deemed conservatively to represent an affected rafter or top chord of a truss. This simplification based on assumptions of a complex problem is where significant conservatism can be introduced. Empirical data will be developed to evaluate this issue. Simple wood beams will be tested to failure. More complex and complete sections of roof structures that include composite action will also be tested to failure. The results can then be compared. An initial step in this process involves a literature review of any work that has been performed on roof structure composite action. The following section summarizes the literature review that was completed.

  9. Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theK APolicyon December|EMPLOYEEpower

  10. Assessment of Wind/Solar Co-Located Generation in Texas

    Broader source: Energy.gov [DOE]

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  11. Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work

    Broader source: Energy.gov [DOE]

    Grocery shoppers in Burlington, Vt., are picking up much more than food and household items these days. Strolling the aisles of community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars.

  12. An investigation of the air flow structure over a rooftop in the turbulent atmospheric boundary layer

    E-Print Network [OSTI]

    Hayes, William Joseph

    2010-01-01

    DEMROES data for Wind Direction (left) and Solar Radiation (for wind speed and solar radiation (Figure 15: StandardDirection (left) and Solar Radiation (right).Figure 15).

  13. An investigation of the air flow structure over a rooftop in the turbulent atmospheric boundary layer

    E-Print Network [OSTI]

    Hayes, William Joseph

    2010-01-01

    DEMROES data for Wind Direction (left) and Solar Radiation (DEMROES data for Wind Direction (left) and Solar Radiation (DEMROES data for Wind Direction (left) and Solar Radiation (

  14. Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations

    SciTech Connect (OSTI)

    Sabnani, L.; Skumanich, A.; Ryabova, E.; Noufi, R.

    2011-01-01

    There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics, and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.

  15. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  16. Supply Chain Integration, Product Modularity, and Market Valuation: Evidence from the Solar Energy Industry

    E-Print Network [OSTI]

    Davies, Jane; Joglekar, Nitin

    2013-07-17

    of the solar modules that are ultimately installed as panels on rooftops to Page 15 convert solar energy to electricity. The supply chain for the production of thin-film cells involves a subset of these processes: the production of solar cells... provided by investment analysts’ reports or is estimated based on the known production capacity for the firm compared to the size of the solar PV market. Given the lack of a readily available representation of the solar PV supply chain network, we...

  17. Solar Energy Generation in Three Dimensions

    E-Print Network [OSTI]

    Bernardi, Marco; Wan, Jin H; Villalon, Rachelle; Grossman, Jeffrey C

    2011-01-01

    Optimizing the conversion of solar energy to electricity is central to the World's future energy economy. Flat photovoltaic panels are commonly deployed in residential and commercial rooftop installations without sun tracking systems and using simple installation guidelines to optimize solar energy collection. Large-scale solar energy generation plants use bulky and expensive sun trackers to avoid cosine losses from photovoltaic panels or to concentrate sunlight with mirrors onto heating fluids.[1,2] However, none of these systems take advantage of the three-dimensional nature of our biosphere, so that solar energy collection largely occurs on flat structures in contrast with what is commonly observed in Nature.[3,4] Here we formulate, solve computationally and study experimentally the problem of collecting solar energy in three-dimensions.[5] We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate ...

  18. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect (OSTI)

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  19. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  20. White House Solar Champions of Change - Watch Now | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House Champions of Change Recognizes Solar Innovator SunShot Grand Challenge Summit Opening Session Energy Department Announces New Prize Challenge to Drive Down Solar Costs...

  1. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    SciTech Connect (OSTI)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William; Harper, Alan

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  2. Green Roofs: Optimizing the Water Quality of Rooftop Runoff Brett Long, Dr. Shirley E. Clark, Dr. Katherine Baker, Dr. Robert Berghage

    E-Print Network [OSTI]

    Clark, Shirley E.

    Green Roofs: Optimizing the Water Quality of Rooftop Runoff Brett Long, Dr. Shirley E. Clark, Dr, Middletown, PA 17057 and Center for Green Roof Research at University Park, PA 16802 Introduction Green roofs (vegetative roof covers) are a relatively-new stormwater management practice for urban areas where land

  3. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell...

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

  5. The Water-Energy Nexus: Challenges and Opportunities Overview...

    Office of Environmental Management (EM)

    Nexus: Challenges and Opportunities 216 Solar (0.1 Quads year, 2011) Definition: Solar is photovoltaic electricity net generation (EIA 2012) and includes photovoltaic...

  6. DOE NSF Partnership to Address Critical Challenges in Hydrogen...

    Office of Environmental Management (EM)

    NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from...

  7. Energy Department Announces New Prize Challenge to Drive Down...

    Office of Environmental Management (EM)

    Prize Challenge to Drive Down Solar Costs Energy Department Announces New Prize Challenge to Drive Down Solar Costs May 20, 2014 - 12:34pm Addthis To kick off the SunShot...

  8. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  9. Solar Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    covenant, restriction or condition attached to a property deed that restricts the use of solar energy. This law sustained a legal challenge in 2000. A Maricopa County Superior...

  10. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    Chemical Challenges in Solar Energy Utilization. Proc. Natl.Generation from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.

  11. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    Photoelectrochemistry and Solar-Energy - Progress, PromiseChemical Challenges in Solar Energy Utilization. Proc. Natl.Generation from Water Using Solar Energy. Materials-Related

  12. Challenges in Integrating Renewable Technologies

    E-Print Network [OSTI]

    costs and improving energy efficiencies of the various types of renewable resources, such as wind, solar reliability and econ- omy. The challenges of integrating high penetrations of renewable energy technologiesChallenges in Integrating Renewable Technologies into an Electric Power System White Paper Power

  13. Online short-term solar power forecasting

    SciTech Connect (OSTI)

    Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

    2009-10-15

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

  14. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    SciTech Connect (OSTI)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  15. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy, andfor efficient energy production. Solar thermal plants, such

  16. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  17. Energy Department Finalizes Loan Guarantee for Transformational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Transformational Rooftop Solar Project Energy Department Finalizes Loan Guarantee for Transformational Rooftop Solar Project September 30, 2011 - 3:37pm Addthis Washington D.C....

  18. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBestI) April 2012 1 I.Rooftop Solar

  19. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This poster does not contain any proprietary or confidential information. Introduction PV system arc faults have led to a number of rooftop fires which have caused significant...

  20. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  1. Review Article Solar-Thermal Powered Desalination: Its Significant

    E-Print Network [OSTI]

    Reif, John H.

    1 Review Article Solar-Thermal Powered Desalination: Its Significant Challenges and Potential John@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy. With the goal of identifying the key technical challenges and potential opportunities solar-desalination, we

  2. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into...

  3. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

  5. SunShot Grand Challenge Highlights Ambitious Efforts along the...

    Office of Environmental Management (EM)

    Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the...

  6. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  7. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle. Solar Thermochemical Hydrogen Production Research (STCH):...

  8. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio...

  9. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies...

  10. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  11. Rooftop package unit diagnostician

    DOE Patents [OSTI]

    Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA

    2004-08-17

    A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.

  12. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegisterLithium-basedNuclear ReactorServices

  13. Rooftop Unit Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E. Moulton

  14. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon PollutionZealand JoinsJune

  15. SunShot Grand Challenge Summit Breakout Sessions Announced |...

    Broader source: Energy.gov (indexed) [DOE]

    solar topics, including the impact of disruptive emerging technologies on the PV and CSP landscapes to overcoming the challenges of financing and access to capital. Plus, join...

  16. Driving in Force: The Influence of Workplace Peers on Commuting Decisions on U.S. Military Bases1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    such as vehicle purchases (Grinblatt et al., 2008) or the adoption of rooftop solar panels (Graziano

  17. Progress Report "The Grand Challenges

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    : With Grand Challenges project funding to develop sustainable technologies for Africa, faculty member Winston Soboyejo designed a solar-powered refrigeration system for camel transport of vaccines to remote areas fellowships on campus with well over 100 students working on projects annually in 35 countries. It has given

  18. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3rd New Mexico Supercomputing Challenge April 23, 2013 Clustering algorithms to find correlations, "meaningful" words, topics LOS ALAMOS, N.M., April 23, 2013-A trio of Albuquerque...

  19. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th New Mexico Supercomputing Challenge April 22, 2014 Modeling Tree Growth and Resource Use with Applications LOS ALAMOS, N.M., April 22, 2014-The dynamic duo of Eli Echt-Wilson...

  20. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    award for its emergency egress model. To read all the student reports, see the New Mexico Super Computing Challenge website.Nearly 42,000 in individual scholarships, including...

  1. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  2. 2012 State Fair 4-H Energy Robotics Challenge Level A Groups attempt tasks 1-4

    E-Print Network [OSTI]

    Keinan, Alon

    . When placed on the roof of the 4-H Facility, the solar panel with be tilted for efficiency. 3. WIND is completely "off-the-grid" with its solar installation. CHALLENGE: Your robot will place a solar panel on a local 4-H facility. a. Solar panel (Lego brick solar panel) must be placed on top of house for total

  3. The Challenge Domestic solar panels produce electricity

    E-Print Network [OSTI]

    Crowther, Paul

    of lower electricity costs and reduced dependence on fossil fuels. The Collaboration Brooks Devlin University of Sheffield `Building for the Future' Innovation Awards, designed to give SMEs the opportunity to access research expertise and facilities. Projects were aimed at developing innovative products

  4. Reliability Challenges for Solar Energy (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-04-27

    PV industry can benefit from reliability testing experience of microelectronics industry . Si modules perform well in field; CdTe/CIGS must be sealed to moisture; CPV in product development stage.

  5. Reliability Challenges for Solar Energy (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-12-08

    Presentation that reviews reliability issues related to various types of photovoltaic tecnnologies, including crystalline silicon, thin films, and concentrating PV.

  6. Fundamental Challenges in Solar to Fuel Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1Assessment of ErasureAger,

  7. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  8. 53119782000 Solar Energy Conversion

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    or degrade of the photocatalyst) The Challenges: Cost + Efficiency Earth ultimate recoverable resource of oil Solar Cells Work Operation of a PV cellThe effect of the electric field in a PV cell General schematic of a residential PV system with battery storage Basic structure of a generic silicon PV cell #12;-2 (photo courtesy

  9. EECBG Success Story: Police Station Triples Solar Power - and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the North Community Police Substation in Henderson, Nevada installed new, roof-top photovoltaic panels that provide almost 40% of the station's electricity, up from 12.5%....

  10. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect (OSTI)

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  11. The 2005 Solar D House 

    E-Print Network [OSTI]

    Garrison, M.

    2006-01-01

    Structural Insulated Panels (SIPs) are an innovative green-engineered material system used to construct the UT SolarD House. SIPs replace conventional stud or "stick frame" construction. They were made in a factory and shipped to our job site where..., and operated a totally solar-powered home with a home office and their transportation needs using a solar-charged vehicle. Organized by the U.S. Department of Energy and the National Renewable energy Laboratory, the Solar Decathlon competition challenges...

  12. Hanford Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚—34October 2014 OctoberChallenge 219 tst Ave S,

  13. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  14. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  15. Funding Opportunity Announcement: Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways funding opportunity announcement (FOA) seeks to support regional, state, tribal, and locally-driven efforts to develop multi-year solar deployment plans that will help provide business certainty and establish a clear path for the next five to ten years of solar deployment. Specifically, this FOA is intended to enable replicable multi-year strategies that spur significant solar deployment, drive down solar soft costs, support local economic development efforts, and address the potential challenges arising from increased solar penetration on the electrical grid.

  16. 2015MIT SOLAR ELECTRICVEHICLETEAM The MIT Solar Electric Vehicle Team (SEVT)

    E-Print Network [OSTI]

    Williams, Brian C.

    2015MIT SOLAR ELECTRICVEHICLETEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student was founded in 1985 and since 1993 has worked under the auspices of MIT's Edgerton Center. We build each the 2014 American Solar Challenge in the United States. We are currently constructing our newest race

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  18. New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panel Presentations New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentations Download the speaker presentations from the 2014 SunShot Grand Challenge Summit and...

  19. University of Colorado-Boulder Researches Solar-Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    temperature quenching or in an electrolysis step. The conversion of solar radiation into chemical fuel, such as hydrogen, is an engineering challenge; however, unlike...

  20. Solar Decathlon 2013

    SciTech Connect (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  1. Solar Decathlon 2013

    ScienceCinema (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard;

    2014-01-10

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  2. SunShot Grand Challenge Summit

    Broader source: Energy.gov [DOE]

    The SunShot Initiative at the U.S. Department of Energy (DOE) will host the second SunShot Grand Challenge Summit and Peer Review from May 19-22, 2014 at the Hilton Anaheim, California. The 2014 SunShot Summit brings together 800 esteemed members of the solar energy community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America.

  3. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Solar Data a. SOLAR RADIATION Solar radiation data provide aAppendix C - Appendix 0 - Solar Radiation Glossary. Convers

  4. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  5. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    the Solar Deployment System, or SolarDS, model 14 to generate a projection of rooftop solar photovoltaic (PV) deployment. Rooftop PV deployment is then input to ReEDS. All...

  6. Rational design of hybrid organic solar cells

    E-Print Network [OSTI]

    Lentz, Levi (Levi Carl)

    2014-01-01

    In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

  7. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  8. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  10. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  11. Solar Physics A Journal for Solar and Solar-Stellar

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    investigated in the build-up to one of the deepest solar minima expe- rienced in the past 100 years1 23 Solar Physics A Journal for Solar and Solar-Stellar Research and the Study of Solar-013-0335-3 Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum

  12. Houston, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Austin, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. San Antonio, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Tucson, Arizona: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  16. Knoxville, Tennessee: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. Ann Arbor, Michigan: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Pittsburgh, Pennsylvania: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. San Diego, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Orlando, Florida: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Milwaukee, Wisconsin: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Madison, Wisconsin: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. Berkeley, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Seattle, Washington: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Portland, Oregon: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. Denver, Colorado: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. Santa Rosa, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. San Francisco, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  9. Philadelphia, Pennsylvania: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Sacramento, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. San Jose, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Jose, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. New Orleans, Louisiana: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. ICT powered by Energy Research, Trends and Challenges

    E-Print Network [OSTI]

    Frean, Marcus

    energy from wind, solar, vibration, etc. · Daytime ­ harvest & store enough energy for high user traffic energy like solar, wind, vibration, heat, and even radio waves ­Convert the energy into a form that canICT powered by Energy Harvesting Research, Trends and Challenges Winston Seah School of Engineering

  14. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  15. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    network approach of solar potential in Turkey,” Renewabledue to the high solar resource potential. However, the solar

  16. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Coggeshall, C.

    2008-05-01

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  17. Solar cell efficiency enhancement via light trapping in printable resonant

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  19. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    data records. 1, Solar Data Solar energy is a general termin obtaining reliable data for solar energy applications,data and analyzed the consequences of designing solar energy

  20. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    a characteristic solar potential is expected to prevail, Theso many sites of potential solar energy applications will besun creates a high potential for solar energy use. Solar-

  1. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  2. ABOUT THE SOLAR DECATHLON The U.S. Department of Energy Solar Decathlon is an award-winning program

    E-Print Network [OSTI]

    Sze, Lawrence

    ABOUT THE SOLAR DECATHLON The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges collegiate teams to design, build and operate solar-powered houses that are cost-effective, energy-efficient and attractive. The competition shows consumers how to save money and energy with affordable clean energy

  3. DOE Challenge Home Case Study: e2 Homes – Winter Park, Florida

    SciTech Connect (OSTI)

    None

    2013-01-01

    This Challenge Home case study describes the first certified DOE Challenge Home as constructed by e2 Homes. Completed in May 2012, the “Wilson Residence” in Winter Park, Florida, is a 4,305-ft2 custom home that scores a HERS 57 without solar and a better than zero net-energy HERS -7 with solar.

  4. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values ...

  5. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  6. Solar Physics A Journal for Solar and Solar-

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article's request, provided it is not made publicly available until 12 months after publication. #12;Solar Phys

  7. Photovoltaics at DOE's National Renewable Energy Laboratory License...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOLAR ROOF-TOP LICENSE AGREEMENT KEY TERMS (Non-Recordable) FOR INSTALLATION AND OPERATION OF A SOLAR ROOF-TOP ELECTRIC GENERATING SYSTEM AT THE NATIONAL RENEWABLE ENERGY...

  8. SCENARIO ANALYSES OF CALIFORNIA'S ELECTRICITY SYSTEM

    E-Print Network [OSTI]

    ......................................................................................F-12 APPENDIX G: Solar Technology Analyses G-1. Rooftop PV Penetration Assessments.......................................................G-1 G-2. Rooftop PV Production Profiles ................................................................G-2 G-3. Solar Parabolic Production Profiles

  9. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  10. Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009

    E-Print Network [OSTI]

    Lee, Dongwon

    . Larson PA Transportation Institute Automotive challenge features advanced vehicles, solar home Imagine you live in a solar home with a high-power energy capturing capacity. Now imagine you can choose any vehicle technology you need to match your lifestyle ­ electric, solar electric, hybrid, pluggable hybrid

  11. Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  16. Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. Sacramento, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Salt Lake City, Utah: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  9. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Petrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION

    E-Print Network [OSTI]

    Petrovay, Kristóf

    where = T(P0/P) ad (potential temperature) #12;Petrovay: Solar physics Helioseismology Group velocity Helioseismology Global helioseismology: Determine set of nlm's infer global mean solar structure. LocalPetrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION Small departures from

  11. CHALLENGE 2015 WALL OF WIND MITIGATION CHALLENGE

    E-Print Network [OSTI]

    Chen, Shu-Ching

    with the development of the building model. Is wind mitigation being addressed by your solution? What is wind science, sociology, and urban planning when discussing wind mitigation and your solution. WrittenW W! CHALLENGE 2015 WALL OF WIND MITIGATION CHALLENGE Competition at FIU's Engineering & Computing

  12. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon...

    Energy Savers [EERE]

    of Energy (DOE) Solar Decathlon Program challenges teams of college students to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and...

  13. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by

    E-Print Network [OSTI]

    : Three of central challenges in solar cells are high light coupling into solar cell, high light trapping electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average

  14. Solar | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar SHARE Solar ORNL's Solar Technologies program supports the U.S. Department of Energy (DOE) Solar Energy Technologies Office - SunShot Initiative goal to make solar energy...

  15. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Techniques for Daily Solar Radiation Data. Proceedings ofa. SOLAR RADIATION Solar radiation data provide a measure ofMonthly Solar Data Latitude: Jan SOLAR RADIATION (kWhJm2 per

  16. Financing Solar Thermal Power Plants

    SciTech Connect (OSTI)

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  17. Financing solar thermal power plants

    SciTech Connect (OSTI)

    Kistner, R.; Price, H.

    1999-07-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  18. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  19. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  20. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  1. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  2. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  3. Integrating Solar PV into Energy Services Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can use performance contracts to finance the purchase of a commercial-scale rooftop PV system with limited to no upfront cost, and a series of suggested best practices for...

  4. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System

    Broader source: Energy.gov [DOE]

    A 2010 Rocky Mountain Institute report estimated that structural systems alone cost about $0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking...

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: BIOfuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  6. Dallas Challenge Final Report 

    E-Print Network [OSTI]

    Medina, Gabriella; Leichtle, Stephanie; Garraway, Charlotte

    2015-05-20

    .............................................................................................. 45 Appendix ..................................................................................................................................................................... 54 List of Figures... Summary The project is an analysis of Dallas Challenge’s current image through a stakeholder assessment. Following the assessment, we will provide strategies and tactics that...

  7. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  8. Sustainability Engineering Challenge Camp

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Towers Cafeteria 1:00 p.m. Build your Own Solar Cell G-3 Matt Asher 3:00 p.m. Build a Solar Oven ESB.m. Design Project- Build Boats ESB Atrium 12:00 p.m. Lunch Towers Cafeteria 1:00 p.m. Boat Race Courtyard Evening Counselors 11:00 p.m. Lights Out Brooke Tower Tuesday, July 9, 2013 SOLAR ENERGY DAY Time Activity

  9. The Energy Impact of Urban Form: An Approach to Morphologically Evaluating the Energy Performance of Neighborhoods

    E-Print Network [OSTI]

    Ko, Ye Kang

    2012-01-01

    Urban form, density and solar potential. Paper presented at2008. Assessing the solar potential of low-density urbansmaller than rooftop solar potential, changes as vehicle and

  10. Solar and Wind Easements & Rights Laws & Local Option Solar Rights...

    Broader source: Energy.gov (indexed) [DOE]

    Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  11. Solar Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Daylighting Solar Pool...

  12. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    will enable optimal solar cell efficiencies in multiple bandlow cost, high efficiency hybrid solar cells. 4.6 Conclusioncosts and improving efficiencies of solar photovoltaic

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  14. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the limits of solar photovoltaics (PV) in traditionalthe limits of solar photovoltaics (PV) in electric powertechnologies is that of solar photovoltaics due to the high

  15. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  16. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and M. Cony, “Prediction of global solar irradiance based onand C. K. Chan, “Prediction of hourly solar radiation usingand K. C. Chee, “Prediction of hourly solar radiation using

  17. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    of these errors on solar design is discussed. To facilitateone of the simplified solar design methods discussed inWisconsin Interactive Solar Heating Design Program, , , , c,

  19. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  1. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the cloud index,” Solar Energy, vol. 81, no. 2, pp. 280 –Cover Indices,” ASME Journal of Solar Energy Engineering (inHorizontal Irradiance,” submitted to Solar Energy, 2012.

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  3. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    nanocrystal-polymer solar cells The full potential of hybridto reach the full potential of polymer blend solar cells.solar cells described here offer several potential

  4. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  5. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)synthetic hourly radiation,” Solar Energy, vol. 49, pp. 67–for supplementing solar radiation network data,” Final

  6. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  7. Solar paint: From synthesis to printing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2014-11-13

    Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. We review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology.

  8. New Ideas for Seeding Your Solar Marketplace Workshop Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    presentation by Adam Cohen, fellow for the SunShot Initiative, for the 2014 SunShot Grand Challenge Summit and Peer Review Workshop, "New Ideas for Seeding Your Solar Marketplace:...

  9. New Ideas for Seeding Your Solar Marketplace Workshop Preread

    Broader source: Energy.gov [DOE]

    This is the preread memo by Adam Cohen for the 2014 SunShot Summit Grand Challenge and Peer Review Workshop, New Ideas for Seeding Your Solar Marketplace: Program Pilots and Embedded Experiments.

  10. New Ideas for Seeding Your Solar Marketplace Workshop Worksheet

    Broader source: Energy.gov [DOE]

    This is a worksheet by Adam Cohen, fellow for the SunShot Initiative, for the 2014 SunShot Grand Challenge Summit and Peer Review Workshop, "New Ideas for Seeding Your Solar Marketplace: Program Pilots and Embedded Experiments."

  11. New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentations

    Broader source: Energy.gov [DOE]

    Download the speaker presentations from the 2014 SunShot Grand Challenge Summit and Peer Review Workshop, "New Ideas for Seeding Your Solar Marketplace: Program Pilots and Embedded Experiments."

  12. Big and Small Ideas: How to Lower Solar Financing Costs

    Broader source: Energy.gov [DOE]

    DOE hosted the "Big & Small Ideas: How to Lower Solar Financing Costs" breakout session during the SunShot Grand Challenge Summit and Technology Forum. This session explored a range of...

  13. Theoretical investigation of solar energy conversion and water oxidation catalysis

    E-Print Network [OSTI]

    Wang, Lee-Ping

    2011-01-01

    Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

  14. New Ideas for Seeding Your Solar Marketplace Workshop Agenda

    Broader source: Energy.gov [DOE]

    This is the agenda for the 2014 SunShot Summit Grand Challenge and Peer Review Workshop, New Ideas for Seeding Your Solar Marketplace: Program Pilots and Embedded Experiments.

  15. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    of solar- radiation data,” Solar Energy, vol. 19, no. 6, pp.16 independent data banks,” Solar Energy, vol. 80, no. 4,data,” Final Report of International Energy Agency Solar

  16. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Radiation in Canada. Solar Energy ~, p.153. Threlkeld, J.L.pool. As the use of solar energy becomes more widespread,a high potential for solar energy use. Solar-heated swimming

  17. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  18. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clients meet those criteria. Congratulations to both companies. Webinars: Tech talks on ducts and comprehensive building science DOE Challenge Home is a blueprint for zero energy...

  19. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  20. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  1. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  2. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Beckman, Solar Energy Thermal Processes (John Wiley & Sons,New York. Solar Energy Thermal Processes. John Duncan, C,

  5. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and operation of solar power plants and the model- ing offor application to solar ther- mal power plants energy

  6. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by la

  7. Sustainability Focused Engineering Challenge Camp

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    .m. Solar Power Introduction 211 ESB Day Time Counselors 9:30 a.m. Solar Tracker Build 211 ESB Dakota Kirby:00 p.m. Lunch Towers Cafeteria 1:00 p.m. Solar Oven Design and Build G-84 ESB Daytime Counselors 2:30 p.m. Presentation from Solar House Team G-84 ESB Solar House Team 3:00 p.m. Passive Solar Heater Build Courtyard

  8. Exploratory Research for New Solar Electric Technologies

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2005-01-01

    We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

  9. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  10. A solar concentrating photovoltaic / thermal collector J.S. Coventry

    E-Print Network [OSTI]

    solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban in this area are summarised. The Combined Heat and Power Solar (CHAPS) collector, under development collector. Some of the technical challenges in the design of the CHAPS collector are discussed

  11. New York City, New York: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of New York City, NY, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. Multi-Exciton Generation in Nanostructured Solar Cells

    E-Print Network [OSTI]

    Multi-Exciton Generation in Nanostructured Solar Cells 1 G.T. Zimanyi UC Davis The energy challenge is one of the greatest moral and intellectual imperatives of our age The science of energy I. Why study Solar Energy Conversion? II. Entry points for physicists into Energy Science III. Multi

  13. Salt Lake City, Utah: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Strongly Correlated Electron Systems Functionalized for Solar Cells and Memristors

    E-Print Network [OSTI]

    Demand total industrial developing US ee/fsu Energy source World Capacity Solar Geothermal Biomass HydroStrongly Correlated Electron Systems Functionalized for Solar Cells and Memristors 1 G.T. Zimanyi" #12;Grand Energy Challenge Gap between production and demand: ~14TW by 2050 Install one 1GW new power

  16. SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

  17. U.S. Department of Energy Solar Decathlon

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. In addition to showcasing the cost savings and environmental benefits of market-ready solar technologies, the event encourages participating students to think in new ways about incorporating practical, affordable clean-energy solutions into residential applications.

  18. Prospects of solar magnetometry - from ground and in space

    E-Print Network [OSTI]

    Kleint, Lucia

    2015-01-01

    In this review we present an overview of observing facilities for solar research, which are planned or will come to operation in near future. We concentrate on facilities, which harbor specific potential for solar magnetometry. We describe the challenges and science goals of future magnetic measurements, the status of magnetic field measurements at different major solar observatories, and provide an outlook on possible upgrades of future instrumentation.

  19. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  20. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  1. New York City, New York: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure provides an overview of the challenges and successes of New York City, NY, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Builders Challenge High Performance Builder Spotlight - Martha Rose Construction, Inc., Seattle, Washington

    SciTech Connect (OSTI)

    2008-01-01

    Building America/Builders Challenge fact sheet on Martha Rose Construction, an energy-efficient home builder in marine climate using the German Passiv Haus design, improved insulation, and solar photovoltaics.

  3. Builders Challenge High Performance Builder Spotlight - Rural Development Inc., Turner Falls, Massachusetts

    SciTech Connect (OSTI)

    2008-01-01

    Building America/Builders Challenge fact sheet on Rural Development Inc, an energy-efficient home builder in cold climate using radiant floor heat, solar hot water, and PV. Examines cost impacts.

  4. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  6. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShaleEnergyValleySolar Access

  7. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

  8. San Francisco, California: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities,...

  9. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  10. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  11. SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE...

    Office of Scientific and Technical Information (OSTI)

    SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM Citation Details In-Document Search Title: SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR...

  12. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities,...

  13. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America...

  14. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  15. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  16. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Environmental Management (EM)

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  17. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities,...

  18. Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006

    E-Print Network [OSTI]

    -8 September 2006 A COST AND ENVIRONMENTAL IMPACT COMPARISON OF GRID-CONNECTED ROOFTOP AND GROUND-BASED PV for roof-top and ground-based crystalline silicon PV systems by using environmental and cost life cycle, small grid-connected PV systems, large grid-connected PV systems 1 INTRODUCTION In cost

  19. Optical excitations of metallic nanoclusters buried in TiO2 for solar photochemistry

    E-Print Network [OSTI]

    the absorption of the solar spectrum by through utilizing their plasmon resonances. One challengeOptical excitations of metallic nanoclusters buried in TiO2 for solar photochemistry Fei WangV range, a much better match to the solar spectrum than the 3.8 eV Ag plasmon. AFM measurements indicate

  20. A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems

    E-Print Network [OSTI]

    California at Berkeley, University of

    9 A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems DAVID CULLER, University of California, Berkeley Building a micro-solar power system is challenging because it must address long-term system behavior under highly variable solar energy and consider a large design space. We

  1. Opportunities and Challenges in the Development of Smart PV Systems

    SciTech Connect (OSTI)

    Deline, Chris

    2015-06-25

    An update is presented on the background of distributed maximum power point tracking (DMPPT) products, including sub-module power converters, and the performance advantages of distributed (module-level) electronics. Some opportunities and challenges in the field are presented. This presentation was given at the 2015 Trina Solar 'state key laboratory' annual meeting.

  2. APEC Regional Workshop on Measurement Challenges in Renewable Energy

    E-Print Network [OSTI]

    on Energy Efficiency 09:30 - 09:45 New Developments in the Field of Primary Calibrations of Reference SolarAPEC Regional Workshop on Measurement Challenges in Renewable Energy and Climate Science APEC the umbrella of the APEC Policy Partnership in Science, Technology & Innovation (PPSTI) APEC PPSTI #12;Agenda

  3. Challenges with SMUD’s Community Renewable Energy Project Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Elaine Sison-Lebrilla, Sacramento Municipal Utility District (SMUD) on technical challenges confronting local solar energy programs in California.

  4. Digital Libraries - Meeting the Challenges

    E-Print Network [OSTI]

    Warner, Beth Forrest

    2001-02-27

    Digital Libraries – Meeting the Challenges Beth Forrest Warner Digital Library Challenges Are … … not just Digital Library challenges They are many of the same challenges facing libraries and scholarly communication in general... learning contexts In short, change … … leading to new organizational structures Challenges of Definition and Purpose What are Digital Libraries?? What’s their purpose?? A Digital Library Is: Selected and managed...

  5. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L. (Cedar Crest, NM); Pace, Thomas L. (Albuquerque, NM)

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  7. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  8. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  9. DOE Responses to DOE Challenge Home (formerly Builders Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Responses to Draft Specification Comments 1 Updated 492012 DOE Responses to DOE Challenge Home (formerly Builders Challenge) National Program Requirements Public Comments DOE...

  10. DOE Responses to DOE Challenge Home (formerly Builders Challenge...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Responses to DOE Challenge Home (formerly Builders Challenge) National Program Requirements Public Comments, a publication of the U.S. Department of Energy's Office of Energy...

  11. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth BromeBuildings |Solar PoolU.S. Department

  12. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft0 Soils SoilSolar

  13. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, BySoft Solar Power

  14. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),layer,? Solar Energy Materials and Solar Cells, 2013, 113,thickness,? Solar Energy Materials and Solar Cells, 2013,

  15. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),thickness,? Solar Energy Materials and Solar Cells, 2013,analysis,? Solar Energy Materials and Solar Cells, [130] J.

  16. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info...

  17. Endurance Energies | Open Energy Information

    Open Energy Info (EERE)

    Endurance Energies Jump to: navigation, search Name: Endurance Energies Place: Paris, France Zip: 75009 Sector: Solar Product: Paris-based developer of solar PV rooftop projects....

  18. CX-001319: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hall project including new demand-based building controls (variable-frequency drives), boiler replacement, solar water heating, rooftop solar photovoltaic panels, regenerative...

  19. Energy Department Announces $102 Million to Tackle Solar Challenges...

    Energy Savers [EERE]

    the success of previous Energy Department investments in this technology and leading to lower cost, higher efficiency, and more reliable CSP systems 13 Million for Two Projects to...

  20. The solar energy challenge-Seth Darling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. Jeffrey publication of the GroupofBTheTheThe

  1. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢Help Design the HydrogenHelp

  2. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy Safely TearEnergy BiogenEnergy

  3. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergy SafelyEnergyEnergy SystemsEnergy

  4. Help Solve Solar's Big Challenge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy Facilities ByDepartmentOfficeThe newRadiators are usedofSoft

  5. Energy Department Announces $102 Million to Tackle Solar Challenges, Expand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation Form Employee Information FormJuly 8,EfficiencyAccess

  6. Workplace Charging Challenge Partner: SolarWorld | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind(NREL) |Department of

  7. Sekaric Ready to Tackle Solar Challenges | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOfficeImplementation andCommodityPublic Safety

  8. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C. (Osprey La., Rumson, NJ 07760)

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  9. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  10. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    basic bilayer CdTe/CdSe solar cells described above. Figurecomplete CdTe/CdSe nanocrystal solar cell (B). gap variationlength for CdSe-P3HT hybrid solar cells. (b) Current-voltage

  11. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    and William A. Beckman, Solar Energy Thermal Processes (JohnWiley, Inc" New York. Solar Energy Thermal Processes. John1977): SOLCOST, Solar Energy Design Program for Non-Thermal

  12. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Users in a zone with one solar measurement location shouldin California where solar data of one kind or another havelifetime of the solar heating system: one can expect to pay

  13. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recent

  14. Solar Energy Entrepreneurs

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

  15. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    to create low-cost solar cells with performance andachieving stable and low-cost solar energy conversion.of large-scale solar power at low costs (1). The most

  16. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    to be supplied by solar, A cost analysis is not included.predict the performance and cost of solar energy systems forthe performance and costs of solar energy systems for

  17. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    inorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish themThe organic donor-acceptor solar cell relies on a type II

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  19. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  20. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirinorganic nanocrystal solar cells 5.1 Introduction In recentNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional

  1. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  3. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  5. Solar | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sources Renewables Solar Solar July 13, 2015 The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction...

  6. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  7. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  8. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  10. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  11. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    from industries or solar collectors 1.2.2 Multi-stage FlashWilliams Large area solar collector Desalination Process

  12. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  13. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre Søren Østergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

  14. Ris Energy Report 6 Energy challenges 3 Energy challenges

    E-Print Network [OSTI]

    Risø Energy Report 6 Energy challenges 3 Energy challenges POUL ERIk MORTHORsT, RIsø DTU; JøRgEN HENNINgsEN, FORMER PRINCIPAL ADVIsER, Dg FOR ENERgY AND TRANsPORT, EUROPEAN COMMIssION 3.1 Danish and European energy challenges The European Community faces three major energy challenges [1]: · Sustainability

  15. Challenges facing production grids

    SciTech Connect (OSTI)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  16. Banff Challenge 2

    SciTech Connect (OSTI)

    Junk, Thomas R.; /Fermilab

    2011-08-01

    Experimental particle physics collaborations constantly seek newer and better ideas for improving the sensitivity of their searches for new particles and phenomena. Statistical techniques are the last step in interpreting the results of an experiment; they are used to make discoveries (hypothesis testing), and to measure parameters (point estimation). They are also used in the first step - experiment and analysis design. Banff Challenge 2 asks participants to test their methods of discovering hidden signals in simulated datasets and of measuring the properties of these signals. The Challenge problems are described, and the performances of the submitted entries is summarized, for datasets with and without simulated signals present.

  17. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  19. Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies

    SciTech Connect (OSTI)

    Jones, E.; Eto, J.

    1997-09-01

    Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

  20. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    Solar Energy Materials and Solar Cells 93(10): 1728-1723,Solar Energy Materials and Solar Cells 92(8) 39. Sima, C.Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (

  1. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    glass contact Solar Energy Materials and Solar Cells 93(10):cells. Solar Energy Materials and Solar Cells 92(8) 39.potential of these materials for solar energy conversion,

  2. First solar models with OPAS opacity tables

    E-Print Network [OSTI]

    Pennec, Maëlle Le; Salmon, Sébastien; Blancard, Christophe; Cossé, Philippe; Faussurier, Gérald; Mondet, Guillaume

    2015-01-01

    Stellar seismology appears more and more as a powerful tool for a better determination of the fundamental properties of solar-type stars. However the particular case of Sun is still challenging. The helioseismic sound speed determination continues to disagree with the Standard Solar Model (SSM) prediction for about a decade, questioning the reliability of this model. One of the sources of uncertainty could be in the treatment of the transport of radiation from the solar core to the surface. In this letter, we use the new OPAS opacity tables, recently available for solar modelling, to address this issue. We discuss first the peculiarities of these tables, then we quantify their impact on the solar sound speed and density profiles using the reduced OPAS tables taken on the grids of the OPAL ones. We use the two evolution codes MESA and CLES that led to similar conclusions in the solar radiative zone. In comparison to commonly used OPAL opacity tables, the new solar models computed, for the most recent photosphe...

  3. CN ENGINEERING CHALLENGES David Ferryman

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Railway Engineering Challenges Weakest component in track is thermite welds ­ Half the impact strength

  4. Services Breakout: Expressiveness Challenges

    E-Print Network [OSTI]

    Polz, Martin

    industry standards? a) What to accomplish? b) How? 5. Address specific DAML+OIL challenges for DAML. · Make sure SSDL is compatible with industry standards. Actions: · Analyze requirements: impact Action Items #12;4. How do we align "DAML-S" with emerging industry standards? a) What to accomplish? b

  5. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  6. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  7. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  8. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    Solar Energy Center USA, Blythe, CA Solar electric power plant,Solar Wind Total Northwest Imports Southwest Imports Total Energy System Table 1.18: Largest PV Power PlantsPlants……………………………………………………32 Table 1.19: Solar Desalination Systems…………………………………………………34 Table 1.20: Energy

  9. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    North Lexington Massachusetts Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc...

  10. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  11. Grid Integration of Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Grid Integration of Solar Energy workshop on October 29, 2015 identified critical challenges and opportunities associated with integrating hundreds of gigawatts of solar energy into the electric grid, assessed state of the art technologies, and to proposed a set of solutions that will address near- and long-term research and development needs. Participants included experts in the areas of power systems, controls, communications, data analytics, and sensors from academia, industry, government, electric utilities, and national laboratories. The SunShot team collected ideas, opinions, and comments from this workshop that will serve as valuable inputs to the development of research roadmaps and potential future funding opportunities.

  12. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  13. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    colorants. Solar Energy Materials and Solar Cells, [30]materials. Solar Energy Materials and Solar Cells, [31] NRELmeasurements. Solar Energy Materials & Solar Cells, 89:319–

  14. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  15. Solar collector array

    DOE Patents [OSTI]

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  16. Solar Collector: A Novel Way of Harnessing the Sun's Energy The team analysed the prototype and different design alternatives.The goal of the Solar Collector is to better

    E-Print Network [OSTI]

    Demirel, Melik C.

    Solar Collector: A Novel Way of Harnessing the Sun's Energy Overview The team analysed the prototype and different design alternatives.The goal of the Solar Collector is to better harness the solar energy by focusing the sun's energy through a series of curved reflective fins. A challenge the team

  17. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  18. Parasol: A Solar-Powered Datacenter Ricardo Bianchini, I~nigo Goiri, Kien Le, Thu D. Nguyen

    E-Print Network [OSTI]

    Bianchini, Ricardo

    electricity or draw di- rectly from a nearby renewable power plant. Solar and wind are two of the most energy. Moreover, they can be deployed in small increments for small/medium datacenters. Although solar]. The challenge with solar or wind energy is that, unlike "brown" energy drawn from the grid, it is not always

  19. Solar Geoengineering and Climate Risks 1:00 pm -2:00 pm | TUESDAY, APRIL 28, 2015

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Solar Geoengineering and Climate Risks 1:00 pm - 2:00 pm | TUESDAY, APRIL 28, 2015 Guggenheim 101 prompted a debate over solar geoengineering. Reflecting some sunlight back to space, e.g. by adding, to ecosystem responses, to societal feedbacks. I will talk about progress and challenges in evaluating solar

  20. ZnO Nanostructures for Dye-Sensitized Solar Cells By Qifeng Zhang,* Christopher S. Dandeneau, Xiaoyuan Zhou, and

    E-Print Network [OSTI]

    Cao, Guozhong

    , such as solar cells, fuel cells, and biofuels. However, although these alternative energy sources have been energy sources. Solar energy is considered to be the ultimate solution to the energy and environmental challenge as a carbon-neutral energy source. The conversion from solar energy to electricity is fulfilled