National Library of Energy BETA

Sample records for rooftop solar challenge

  1. Sunshot Rooftop Solar Challenge | Department of Energy

    Energy Savers [EERE]

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  2. Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge Rooftop Solar Challenge The Rooftop Solar Challenge aims to reduce the cost of rooftop solar energy systems through improved permitting, financing, zoning, net metering, and interconnection processes for residential and small commercial photovoltaic (PV) installations. Launched in February 2012, the first round of the Rooftop Solar Challenge supported one-year projects for 22 regional teams. The aggregated efforts of Rooftop Solar Challenge I teams cut permitting time by

  3. Rooftop Solar Challenge Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge Award Winners Rooftop Solar Challenge Award Winners Select an Awardee Return to map Rooftop Solar Challenge II Award Winners Award Winner Headquarters

  4. Rooftop Solar Challenge to Cut Solar's Red Tape | Department...

    Energy Savers [EERE]

    Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor ...

  5. Final Report - Arizona Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Final Report - Arizona Rooftop Solar Challenge Awardee: Arizona Governor's Office of Energy Policy Location: Phoenix, AZ Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The Arizona Rooftop Solar Challenge (ARC) is a regional partnership of the Rooftop Solar Challenge. Funded through the U.S. Department of Energy's SunShot Initiative, this program is focused on streamlining processes and reducing costs to make solar more affordable for the

  6. Rooftop Solar Challenge: Empowering Innovators to Reach for the...

    Broader source: Energy.gov (indexed) [DOE]

    of the Rooftop Solar Challenge. | Infographic by Sarah ... converts complex aerial data into an easy-to-understand ...

  7. Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period December 1, 2011 ... Policy September 30, 2013 Arizona Rooftop Solar Challenge Final Report Table of Contents ...

  8. Rooftop Solar Challenge to Cut Solar's Red Tape | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The 22 teams will implement step-by-step actions throughout the next year to standardize solar permitting processes, update planning and zoning codes, improve standards for connecting solar power to the electric grid, and increase access to financing. Up to 40

  9. Final Report- Streamlining Solar Standards and Process: Southern California Rooftop Challenge

    Broader source: Energy.gov [DOE]

    The Southern California Rooftop Solar Challenge (RSC) supported the goals of the Department of Energy (DOE) Solar Energy Technologies Program and the SunShot Initiative, which seeks to make solar electricity cost competitive without subsidies by the end of the decade by reducing balance of system costs for Photovoltaics (PV). In order to achieve market transformation, the California Center for Sustainable Energy (CCSE) led a regional Southern California team that focused on expanding financing options for residential and commercial customers, streamlining permitting and interconnection processes, and standardizing net metering and interconnection standards across investor- and municipally-owned utilities in the region. These goals were achieved by fostering cross jurisdictional collaboration culminating in the development of a set of regional best practices. In subsequent phases of the project, the team will build on these best practices and integrate the lessons learned in Southern California with other successful Rooftop Solar Challenge teams in California and beyond.

  10. Rooftop Solar Challenge Round 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CONNECT (Congress of Neighboring Communities), and Solar Unified Network of Western ... The team also aims to implement a formal best practice solar zoning policy and develop ...

  11. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    SciTech Connect (OSTI)

    Ronk, Jennifer

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of addressing financial barriers to residential solar; Maintaining www.solarhoustontx.org; and Continuing meetings with stakeholders to get ongoing feedback from the solar community on their needs. The following sections provide a brief summary of the activities completed under each of the nine tasks specifically related to the RSC grant. Reports and other backup information are included in the appendices.

  12. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  13. SunShot Rooftop Challenge Awardees

    Broader source: Energy.gov [DOE]

    Awardees, partners, award amounts, estimated population, and project descriptions for the 2011 SunShot Rooftop Challenge.

  14. Residential and Commercial Property Assessed Clean Energy (PACE) Financing in California Rooftop Solar Challenge Areas

    Broader source: Energy.gov [DOE]

    This version of the report updates the original report published in March 2013. It identifies and describes the current state of residential and commercial property assessed clean energy (PACE) financing programs in California. The report discusses the Improvement Act of 1911, the Mello-Roos Act of 1982, the different philosophies cities have adopted in implementing PACE financing, and various PACE program structures. It also discusses the first implementation of PACE by cities that used their charter authority to create programs under the Mello-Roos Act of 1982 before the enactment of AB 811 and SB 555.1. This report focuses on PACE as a mechanism to increase the amount of rooftop solar systems installed, but also recognizes that these programs provide an effective means to finance energy and water efficiency projects. The updated report provides new information on California’s Residential PACE Loss Reserve Program, the Federal Housing Finance Agency, program requirements, and program performance.

  15. Phoenix American Rooftop Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    American Rooftop Solar Technologies Jump to: navigation, search Name: Phoenix American Rooftop Solar Technologies Place: Michigan Zip: 48168 Sector: Solar Product: Manufacturer of...

  16. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin ... from two Arizona utilities that have implemented utility owned rooftop solar programs. ...

  17. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  18. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  19. Solar access of residential rooftops in four California cities...

    Office of Scientific and Technical Information (OSTI)

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes ...

  20. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  1. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System ... Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection ...

  2. Washington: Putting More Solar on More Rooftops in Washington State

    Broader source: Energy.gov [DOE]

    EERE SunShot Initiative awardee Evergreen State Solar Partnership (ESSP) is working to reduce the costs of installing rooftop photovoltaics.

  3. Energy Department Finalizes Loan Guarantee for Transformational Rooftop Solar Project

    Broader source: Energy.gov [DOE]

    Largest rooftop project in U.S. history will enable wide distribution of solar power across country while funding at least a thousand jobs

  4. Rooftop Solar Photovoltaic Technical Potential in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC36-08GO28308 Rooftop Solar Photovoltaic ... Elmore National Renewable Energy Laboratory Technical ... Abbott-Whitley for their assistance in processing data. ...

  5. Department of Energy Commits Support for Landmark Rooftop Solar Project

    Broader source: Energy.gov [DOE]

    Largest Rooftop Project in U.S. History Will Enable Wide Distribution of Solar Power Across Country While Creating at Least a Thousand Jobs

  6. Unleashing Rooftop Solar Energy through More Efficient Government |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Unleashing Rooftop Solar Energy through More Efficient Government Unleashing Rooftop Solar Energy through More Efficient Government June 1, 2011 - 11:45am Addthis Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies

  7. Episode 1: Tackling the Hidden Costs of Rooftop Solar

    Broader source: Energy.gov [DOE]

    In the very first episode of Direct Current - An Energy.gov Podcast, we take you inside the hidden costs of rooftop solar, explore the history of the Energy Department, and more!

  8. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  9. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  10. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  11. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  12. Smart Solar Rooftops - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Solar panels, or photovoltaic panels, use photovoltaic cells to create energy. These cells create direct current through absorption of sunlight's ...

  13. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin; Gupta, Smita

    2009-12-15

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (author)

  14. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  15. Episode 1: Tackling the Hidden Costs of Rooftop Solar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Episode 1: Tackling the Hidden Costs of Rooftop Solar Episode 1: Tackling the Hidden Costs of Rooftop Solar Direct Current - An Energy.gov Podcast Energy.gov Digital Team Play audio Download File Join our hosts, Matt Dozier and Allison Lantero, as they investigate the sneaky "soft costs" driving up the price of rooftop solar, delve into the archives for a look at the turbulent times around the Energy Department's creation, and contemplate some alternatives to the name

  16. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  17. Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton

    Energy Savers [EERE]

    National Cemetery | Department of Energy Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing the proposed construction of a Photovoltaic System at the Calvertion National Cemetery (CNC) in Calverton, New York. PDF icon CX rulemaking files More Documents & Publications Department of

  18. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specificmore » characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.« less

  19. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  20. EERE Success Story-Washington: Putting More Solar on More Rooftops in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington State | Department of Energy Putting More Solar on More Rooftops in Washington State EERE Success Story-Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. EERE SunShot

  1. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power for U.S. Military Housing | Department of Energy Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected

  2. Rooftop Solar Photovoltaic Technical Potential in the United States

    SciTech Connect (OSTI)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- and populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.

  3. SunShot Rooftop Challenge Awardees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONNECT (Congress of Neighboring Communities), and Solar Unified Network of Western ... The team also aims to implement a formal best practice solar zoning policy and develop ...

  4. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge ...

  5. SunShot Rooftop Challenge Awardees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enable multiple financing options for community solar programs. City University of New York City University of New York, NYC Department of Buildings, Procemx, CUNY Ventures, IBM,...

  6. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Tucson Electric Power (TEP) The Real ... Context TEP Residential Solar Program Value to TEP and customer Tariff & bill Program Highlights ...

  7. Washington: Putting More Solar on More Rooftops in Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a ribbon cutting at the Auto-Spa car wash. Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  8. Ariz. Rooftops Key to Unlocking the Potential of Distributed Solar

    Broader source: Energy.gov [DOE]

    Nestled in the mountains of northern Arizona and just 75 miles from Grand Canyon National Park, the city of Flagstaff, Ariz. is an ideal city for the Arizona Public Service (APS) to pilot a high concentration of solar photovoltaic energy systems.

  9. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  10. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect (OSTI)

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  11. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  12. Final Report - Efficient Solar Market Partners of Northern California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon SolarTech RSC 5685.pdf More Documents & Publications SunShot Rooftop Challenge Awardees Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy ...

  13. Overcoming Solar Roadblocks: There's a Map for That

    Broader source: Energy.gov [DOE]

    Optony, through the Southwest Solar Transformation Initiative (SSTI), successfully launched their Solar Roadmap with support from the U.S. Department of Energy's Rooftop Solar Challenge. This...

  14. Chicago Region Solar Market Transformation Team SunShot Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2013 Chicago Region Solar Market Transformation Team SunShot Initiative - Rooftop Solar Challenge (RSC) I Final Report To: Josh Huneycutt, DOE Program Administrator This final ...

  15. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Bhaduri, Budhendra L; Kodysh, Jeffrey B

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  16. Final Report- Grow Solar Wisconsin Team

    Broader source: Energy.gov [DOE]

    Awardee: Midwest Renewable Energy AssociationLocation: Custer, WISubprogram: Soft CostsFunding Program: Rooftop Solar Challenge 1

  17. Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-05-01

    This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

  18. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    SciTech Connect (OSTI)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.

  19. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect (OSTI)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  20. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  1. 2005 the North American Solar Challenge

    SciTech Connect (OSTI)

    Dan Eberle

    2008-12-22

    In July 2005 the North American Solar Challenge (NASC) featured university built solar powered cars ran across the United States into Canada. The competition began in Austin, Texas with stops in Weatherford, Texas; Broken Arrow, Oklahoma; Topeka, Kansas; Omaha, Nebraska; Sioux Falls, South Dakota, Fargo, North Dakota; Winnipeg, Manitoba; Brandon, Manitoba; Regina, Saskatchewan; Medicine Hat, Alberta; mainly following U.S. Highway 75 and Canadian Highway 1 to the finish line in Calgary, Alberta, Canada, for a total distance of 2,500 miles. NASC major sponsors include the U.S. Department of Energy (DOE), Natural Resources Canada and DOEs National Renewable Energy Laboratory. The event is designed to inspire young people to pursue careers in science and engineering. NASCs predecessors, the American Solar Challenge and Sunrayce, generally have been held every two years since 1990. With each race, the solar cars travel faster and further with greater reliability. The NASC promotes: -Renewable energy technologies (specifically photovoltaic or solar cells) -Educational excellence in science, engineering and mathematics -Creative integration of technical and scientific expertise across a wide-range of disciplines -Hands-on experience for students and engineers to develop and demonstrate their technical and creative abilities. Safety is the first priority for the NASC. Each team put its car through grueling qualifying and technical inspections. Teams that failed to meet the requirements were not allowed participate. During the race, each team was escorted by lead and chase vehicles sporting rooftop hazard flashers. An official observer accompanied each solar car team to keep it alert to any safety issues.

  2. Computational Challenges for Nanostructure Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy...

  3. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect (OSTI)

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  4. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  5. EERE Success Story-Washington: Putting More Solar on More Rooftops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with a ribbon cutting at the Auto-Spa car wash. Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  6. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge | Department of Energy Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge December 1, 2011 - 3:18pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, today Energy Secretary Steven Chu was joined by Lynn Jurich, the president and co-founder of the solar power company SunRun, and Saint Paul Mayor Chris

  7. Rooftop Unit Network Project - 2013 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Technical Meeting: Software Framework for Transactive ...

  8. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  10. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and Businesses

    Broader source: Energy.gov [DOE]

    Rooftop Solar Challenge helped cut permitting time by 40 percent and reduce fees by over 10 percent, opening the door to make it faster and easier for more than 47 million Americans to install solar.

  11. The solar energy challengeSeth Darling

    SciTech Connect (OSTI)

    Seth Darling

    2012-08-08

    Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

  12. The solar energy challenge?Seth Darling

    ScienceCinema (OSTI)

    Seth Darling

    2013-06-05

    Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

  13. Breakout Session: Solar Securitization: Opportunities and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Securitization: Opportunities and Challenges Breakout Session: Solar Securitization: Opportunities and Challenges May 21, 2014 6:30PM to 7:30PM PDT Avila A & B The U.S. solar ...

  14. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  15. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

  16. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging ... Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU ...

  17. Workplace Charging Challenge Partner: CFV Solar Test Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. Joined ...

  18. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events ...

  19. Rooftop Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Diagnostician Pacific Northwest National Laboratory Contact PNNL About This Technology The diagnostician is a self-contained unit that can be installed in any rooftop package unit. The diagnostician is a self-contained unit that can be installed in any rooftop package unit. Once powered up, results are available and can be viewed at the device's web site. Once powered up, results are available and can be viewed at the device's web site. Technology Marketing Summary The Rooftop

  20. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Partner: Hannah Solar, LLC Joined the Challenge: June 2014 Headquarters: Atlanta, GA Charging Location: Atlanta, GA Domestic Employees: 25 Hannah Solar ...

  1. Final Report - Efficient Solar Market Partners of Northern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successes | Department of Energy Efficient Solar Market Partners of Northern California Successes Final Report - Efficient Solar Market Partners of Northern California Successes Awardee: SolarTech Location: San Jose, CA Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The SolarTech Efficient Solar Market Partners of Northern CaliforniaRSC 1 program and team comprised of Solar Sonoma County, East Bay Green Corridor, Clean Coalition and the City and County of San Francisco

  2. Modeling the U.S. Rooftop Photovoltaics Market

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2010-09-01

    Global rooftop PV markets are growing rapidly, fueled by a combination of declining PV prices and several policy-based incentives. The future growth, and size, of the rooftop market is highly dependent on continued PV cost reductions, financing options, net metering policy, carbon prices and future incentives. Several PV market penetration models, sharing a similar structure and methodology, have been developed over the last decade to quantify the impacts of these factors on market growth. This study uses a geospatially rich, bottom-up, PV market penetration model--the Solar Deployment Systems (SolarDS) model developed by the National Renewable Energy Laboratory--to explore key market and policy-based drivers for residential and commercial rooftop PV markets. The identified drivers include a range of options from traditional incentives, to attractive customer financing options, to net metering and carbon policy.

  3. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As ... One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop ...

  4. The solar energy challenge-Seth Darling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The solar energy challenge-Seth Darling Share Description Argonne researcher Seth Darling talks about the solar energy challenge. Topic Energy Energy sources Renewable energy Solar energy Programs Materials science Nanoscience

  5. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  6. Emerging Opportunities and Challenges in Financing Solar | Department of

    Office of Environmental Management (EM)

    Energy Financing Solar Emerging Opportunities and Challenges in Financing Solar Emerging Opportunities and Challenges in Financing Solar Financial innovations-independent of technology-cost improvements-could cut the cost of solar energy to customers and businesses by 30%-60% (see Feldman and Bolinger 2016). Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by

  7. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  8. Energy Department and GSA Assist in Capital Solar Challenge Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and GSA Assist in Capital Solar Challenge Industry Day Energy Department and GSA Assist in Capital Solar Challenge Industry Day October 21, 2014 - 4:43pm Addthis The White House ...

  9. Fundamental Challenges in Solar to Fuel Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ager, NERSC, 2/4/14 - 1 Fundamental Challenges in Solar to Fuel Conversion aka Improving on Photosynthesis Joel Ager Joint Center for Artificial Photosynthesis Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA February 4, 2014 NERSC User Meeting Berkeley, CA The Joint Center for Artificial Photosynthesis is a DOE Energy Innovation Hub, supported by the Office of Science of the U.S. Department of Energy Ager, NERSC, 2/4/14 - 2 What is "artificial

  10. Million Solar Strong | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This rooftop solar array in Connecticut was built thanks to a Solarize campaign, which helps to make solar energy more affordable by aggregating customer demand to lower prices. ...

  11. Emerging Opportunities and Challenges in U.S. Solar Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy U.S. Solar Manufacturing Emerging Opportunities and Challenges in U.S. Solar Manufacturing Emerging Opportunities and Challenges in U.S. Solar Manufacturing Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over

  12. Broward County Online Solar Permitting

    Broader source: Energy.gov [DOE]

    Broward County now offers Go SOLAR Online Permitting*, for rooftop solar photovoltaic system permitting. This online permitting system may be used for residential or low commercial properties that...

  13. Namaste Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Namaste Solar Place: Colorado Product: Namaste has 60 employees and installs rooftop PV systems in Colorado. References: Namaste Solar1 This article is a stub. You...

  14. Solar Hot Water Heater Industry in Barbados | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water Heater Industry in Barbados Solar Hot Water Heater Industry in Barbados Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. <em>Photo from iStock 6923507</em> Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. Photo from iStock 6923507 Barbados is addressing the challenge of offsetting high fossil fuel costs by using its

  15. Sandia Rooftop PV Structural Report Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid ... Sandia Rooftop PV Structural Report Webinar A roof structure is made ...

  16. Text-Alt Sekaric Ready to Tackle Solar Challenges

    Broader source: Energy.gov [DOE]

    Lidija Sekaric is an award-winning physicist and the new acting director of the Solar Energy Technologies Office. She ready to utilize her background in nanoscale science and engineering to tackle the current challenges facing solar.

  17. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault ... and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Rooftop Unit ...

  18. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics - 2014 BTO Peer Review Demonstrations of Integrated Advanced Rooftop Unit...

  19. Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Presenter: Jim Braun, Purdue University (The ...

  20. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  1. City of Chicago- Solar Express Permit Program

    Broader source: Energy.gov [DOE]

    In 2013, the City of Chicago streamlined and standardized the permitting and zoning process for rooftop solar photovoltaic (PV) systems. Small and large rooftop PV generators can now access the...

  2. Shared Solar Programs: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The third webinar in the Solar Technical Assistance Team (STAT) 2013 webinar series, this webinar provides an overview of issues related to shared solar, the critical elements of a program to make it successful, and examples of locations that have implemented a shared solar or community-based solar program.

  3. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Solve Solar's Big Challenge Help Solve Solar's Big Challenge December 2, 2013 - 1:00pm Addthis Soft costs now account for more than 60% of the total price of installing residential solar energy systems. <a href="http://www.energy.gov/eere/articles/infographic-lets-get-work-solar-soft-costs">View the full infographic to learn more</a>. Soft costs now account for more than 60% of the total price of installing residential solar energy systems. View the full infographic to

  4. OCR Solar Roofing Inc | Open Energy Information

    Open Energy Info (EERE)

    OCR Solar Roofing Inc Jump to: navigation, search Name: OCR Solar & Roofing Inc Place: Vacaville, California Product: US installer of turnkey PV rooftops, focussing on the Northern...

  5. Denver Public Schools Get Solar Energy System

    Broader source: Energy.gov [DOE]

    Main Street Power, a solar development company based in Boulder, is installing solar photovoltaic systems on the rooftops of 12 Denver Public Schools.

  6. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops June 17, ...

  7. Breakout Session: Solar Securitization: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The U.S. solar industry is soaring – deployment has increased tenfold in six years. But despite this growth, low cost solar financing remains a major market barrier to rapid deployment. The...

  8. Emerging Opportunities and Challenges in Financing Solar

    Broader source: Energy.gov [DOE]

    Financial innovations—independent of technology-cost improvements—could cut the cost of solar energy to customers and businesses by 30%–60% (see Feldman and Bolinger 2016). Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by the government incentives designed to accelerate solar deployment. This is particularly true for federal tax incentives, which have spawned complex tax-equity structures that monetize tax benefits for project sponsors who otherwise could not use them efficiently. Although these structures have helped expand solar deployment, they are relatively costly and inefficient. This has spurred solar stakeholders to develop lower-cost financing solutions such as securitization of solar project portfolios, solar-specific loan products, and methods for incorporating residential PV’s value into home values. To move solar further toward an unsubsidized SunShot future, additional financial innovation must occur. Development of a larger, more mature U.S. solar industry will likely increase financial transparency and investor confidence, which in turn will enable simpler, lower-cost financing methods. Utility-scale solar might be financed more like conventional generation assets are today, non-residential solar might be financed more like a new roof, and residential solar might be financed more like an expensive appliance. Assuming a constant, SunShot-level installed PV system price, such financing innovations could reduce PV’s LCOE by an estimated 30%–60% (depending on the sector) compared with historical financing approaches.

  9. Workplace Charging Challenge Partner: SolarWorld

    Broader source: Energy.gov [DOE]

    Joined the Challenge: June 2014Headquarters: Hillsboro, ORCharging Location: Hillsboro, ORDomestic Employees: 700

  10. Startups Tackle Solar Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's SunShot Catalyst prize winners are taking aim at solar energy's "soft costs." | Photo Courtesy of NREL. Matt Dozier Matt Dozier Digital Content Specialist, ...

  11. Solar Market Analytics, Roadmapping, and Tracking NY (SMART NY) Final Report

    SciTech Connect (OSTI)

    Case, Tria; Reilly, Laurie; Kling, Alison

    2014-05-15

    This is the final report, including links to Working Group reports and an attached Working Group report for SunShot Initiative Rooftop Solar Challenge I, from Sustainable CUNY of the City University of New York, on behalf of New York City

  12. Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

    Broader source: Energy.gov [DOE]

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  13. EERE Success Story-SolarBridge Technologies: Helping Solar Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolarBridge Technologies is collaborating with the University of Illinois at Urbana-Champaign to develop an innovative solution to make rooftop photovoltaic (PV) systems easier to ...

  14. Energy Department and GSA Assist in Capital Solar Challenge Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regarding the current contracting strategy. Event Details The Captial Solar Challenge Industry Day will be held on November 13, 2014, from 9:30 a.m. to 11:30 a.m. at: GSA...

  15. Finding Solutions to Solar's Soft Cost Dilemma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions to Solar's Soft Cost Dilemma Finding Solutions to Solar's Soft Cost Dilemma January 8, 2013 - 1:22pm Addthis Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to streamline rooftop solar installations so that its faster, easier and cheaper for Americans to go solar. | Photo courtesy of Dennis Schroeder, NREL. Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to

  16. Argonne OutLoud presents: The Solar Energy Challenge

    ScienceCinema (OSTI)

    Seth Darling

    2013-06-05

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  17. Argonne OutLoud presents: The Solar Energy Challenge

    SciTech Connect (OSTI)

    Seth Darling

    2012-07-13

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  18. Energy Department Announces $102 Million to Tackle Solar Challenges, Expand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Access to Clean Electricity | Department of Energy $102 Million to Tackle Solar Challenges, Expand Access to Clean Electricity Energy Department Announces $102 Million to Tackle Solar Challenges, Expand Access to Clean Electricity September 16, 2015 - 7:04am Addthis NEWS MEDIA CONTACT 202-586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - Building on President Obama's Climate Action Plan to cut climate-changing carbon pollution and continue building a clean energy economy in the United States,

  19. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques

    SciTech Connect (OSTI)

    Melius, J.; Margolis, R.; Ong, S.

    2013-12-01

    A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and California to compare modeled results to actual on-the-ground measurements.

  20. Solar Water Heating System Maintenance and Repair | Department...

    Energy Savers [EERE]

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | ...

  1. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

  2. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  3. University of Michigan Wins North American Solar Challenge - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL University of Michigan Wins North American Solar Challenge July 27, 2005 Calgary, Alberta, Canada - The University of Michigan won a highly-competitive 2005 North American Solar Challenge (NASC) today, crossing the finish line at 11:27 a.m. Mountain Daylight Time using only the energy of the sun. Unofficial results show the University of Michigan's car, Momentum, made the trip from Austin, Texas, to Calgary, Alberta, in a cumulative time of 53 hours, 59 minutes and 43 seconds, for an

  4. All Day Solar | Open Energy Information

    Open Energy Info (EERE)

    stage company planning to manufacture flexible thin-film PV modules for vehicular rooftop applications. References: All Day Solar1 This article is a stub. You can help...

  5. Better Buildings Alliance, Advanced Rooftop Unit Campaign: Rooftop Unit Measurement and Verification (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This document provides facility managers and building owners an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects to estimate paybacks or to justify future projects.

  6. EERE Success Story-Chicago Solar Express Reduces Costs, Wait Times |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chicago Solar Express Reduces Costs, Wait Times EERE Success Story-Chicago Solar Express Reduces Costs, Wait Times October 28, 2014 - 10:48am Addthis The Solar Express program in Chicago, Illinois-funded through a SunShot Initiative Rooftop Solar Challenge (RSC) I award of $750,000-is making it faster, easier, and cheaper for residents to go solar by cutting long wait times and fees for solar permits. Residents of Chicago can now acquire permits for their residential

  7. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOEs Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  8. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOE’s Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  9. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  10. Energy Department and GSA Assist in Capital Solar Challenge Industry Day

    Broader source: Energy.gov [DOE]

    The Energy Department and GSA are charged with assisting agencies in leading the Capital Solar Challenge with the goal of developing solar renewable power on Federal sites.

  11. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  12. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  13. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  14. Energy Department Recognizes Organizations for Leadership in Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Recognizes Organizations for Leadership in Rooftop Unit Efficiency Energy Department Recognizes Organizations for Leadership in Rooftop Unit Efficiency April 26, 2016 - 12:00pm Addthis As part of the Administration's strategy to increase energy productivity and cut energy waste in our nation's buildings, today the U.S. Department of Energy recognized six organizations for their leadership in replacing and upgrading rooftop units as part of the Better

  15. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. ...

  16. Making Strides to Boost the Use of Solar Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of...

  17. Tauber Solar GmbH | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 97941 Product: Arranges planning permissions and third party finance for rooftop installations, including some over 1MW. References: Tauber-Solar GmbH1 This...

  18. NREL-Optimizing Rooftop Space with SolOpt Presentation | Open...

    Open Energy Info (EERE)

    Optimizing Rooftop Space with SolOpt Presentation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Optimizing Rooftop Space with SolOpt AgencyCompany Organization:...

  19. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  20. Rooftop Unit Comparison Calculator User Manual

    SciTech Connect (OSTI)

    Miller, James D.

    2015-04-30

    This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.

  1. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wooden Rooftops | Department of Energy You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops June 17, 2015 - 3:42pm Addthis You Don’t Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops Stephen F. Dwyer Stephen F. Dwyer PhD., Physical Engineer, Sandia National Laboratory As solar energy becomes a more affordable choice to power our lives, hardware

  2. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar ...

  3. SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum

    Broader source: Energy.gov [DOE]

    Today at the SunShot Grand Challenge Summit in Denver, Energy Secretary Steven Chu lauded progress in driving down the cost of solar.

  4. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

    Broader source: Energy.gov [DOE]

    A packed crowd of leaders across the solar community gathered in Anaheim, California, for the 2014 SunShot Grand Challenge Summit.

  5. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    SciTech Connect (OSTI)

    Halsey, Jeffery D.

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices to make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.

  6. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect (OSTI)

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  7. White House Solar Panels Are a Symbol of Solar's Progress | Department...

    Broader source: Energy.gov (indexed) [DOE]

    An insider look at the White House rooftop solar panels. | Video courtesy of the White ... Last week, the White House released a new video highlighting the installation of solar ...

  8. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Did you know that rooftop unit (RTU) air conditioners serve cooling to 60% of U.S. commercial building floor space? Odds are high that you've worked from, shopped at, or eaten in ...

  9. Control and Diagnostics for Rooftop Units- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Jim Braun, Purdue University (The Pennsylvania State University Consortium for Building Energy Innovation) This project aims to develop and validate cost-effective methods for rooftop air conditioning unit (RTU) coordination and diagnostics in small commercial buildings.

  10. NREL Raises Rooftop Photovoltaic Technical Potential Estimate - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Raises Rooftop Photovoltaic Technical Potential Estimate New analysis nearly doubles previous estimates and shows U.S. building rooftops could generate close to 40 percent of national electricity sales March 24, 2016 Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) have used detailed light detection and ranging (LiDAR) data for 128 cities nationwide, along with improved data analysis methods and simulation tools, to update its estimate of

  11. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology (Journal Article) | SciTech Connect Journal Article: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of

  12. Argonne OutLoud: The Solar Energy Challenge (June 14, 2012) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory The Solar Energy Challenge (June 14, 2012) Share Description To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's

  13. Energy Department Announces New Prize Challenge to Drive Down Solar Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Department Announces New Prize Challenge to Drive Down Solar Costs Energy Department Announces New Prize Challenge to Drive Down Solar Costs May 20, 2014 - 12:07pm Addthis SunShot Grand Challenge Summit Opening Session 1 of 35 SunShot Grand Challenge Summit Opening Session Anaheim Mayor Tom Tait with SunShot Director Minh Le Credit: SunShot Initiative Date taken: 2014-05-19 16:01 SunShot Grand Challenge Summit Opening Session 2 of 35 SunShot Grand Challenge Summit

  14. Energy Department Announces New Prize Challenge to Drive Down Solar Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Prize Challenge to Drive Down Solar Costs Energy Department Announces New Prize Challenge to Drive Down Solar Costs May 20, 2014 - 12:34pm Addthis To kick off the SunShot Initiative's Grand Challenge Summit and Peer Review, the Energy Department today announced SunShot Catalyst, a new prize competition to spur the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar marketplace. Intended to tackle market barriers

  15. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  16. DEVELOPMENT OF A HYDRONIC ROOFTOP UNIT -- HYPAK

    SciTech Connect (OSTI)

    Eric Lee; Dick Bourne; Mark Berman

    2004-03-25

    The majority of US commercial floor space is cooled by rooftop HVAC units (RTU's). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTU's are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. Existing RTU's in the U.S. consume an estimated 2.4 quads annually. Inefficient RTU's create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming. Also, RTU's often fail to maintain adequate ventilation air and air filtration. This project was developed to evaluate the feasibility of a radically new ''HyPak'' RTU design that significantly and cost-effectively increases RTU performance and delivered air quality. The objective of the HyPak Project was to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit.

  17. CTS Solar GmbH | Open Energy Information

    Open Energy Info (EERE)

    CTS Solar GmbH Jump to: navigation, search Name: CTS-Solar GmbH Place: Germany Product: Germany-based project developer provides service of installation of roof-top and...

  18. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  19. SunShot Catalyst: New Prize Challenge Aims to Accelerate Solar Solutions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: New Prize Challenge Aims to Accelerate Solar Solutions SunShot Catalyst: New Prize Challenge Aims to Accelerate Solar Solutions May 20, 2014 - 11:05am Addthis Watch the video above to learn more about SunShot Catalyst. Michael Contreras Michael Contreras AAAS Science & Technology Policy Fellow KEY FACTS SunShot Initiative kicks off new prize challenge to find solutions to the solar energy industry's most pressing problems. SunShot Catalyst is an open

  20. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  1. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  2. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  3. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

    Broader source: Energy.gov [DOE]

    This week in sunny Anaheim, California, more than 800 solar industry leaders gathered for the 2014 SunShot Grand Challenge Summit. The Summit, launched by the Energy Department’s SunShot Initiative...

  4. Solar Community Comes Out in Full Force for SunShot Grand Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packed House Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit Ali Zaidi, Deputy Director for Energy Policy, The White House Domestic Policy Council ...

  5. Emerging Issues and Challenges with Integrating High Levels of Solar into

    Office of Environmental Management (EM)

    the Electrical Generation and Transmission Systems | Department of Energy Electrical Generation and Transmission Systems Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable

  6. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  7. Help Solve Solar's Big Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative is working to lower soft costs in order to make solar energy fully cost-competitive with traditional energy sources by 2020. How You Can Help In the most...

  8. Sekaric Ready to Tackle Solar Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Footage of a woman in an office appears on the screen. Hi, I'm Lidija Sekaric and I'm the Acting Director for Solar Energy Technologies Office. Footage of Sekaric sitting at a ...

  9. Challenge Accepted: Reducing the Soft Costs of Going Solar

    Broader source: Energy.gov [DOE]

    Every year, it becomes even more affordable to go solar. However, one thing remains consistent: the non-hardware, or soft costs related to permitting, installation, and maintenance account for...

  10. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quadsyear * The target market is all existing packaged ... of advanced controls * constant supply speed fan and ... Environment, Transformative Wave Technologies BPA cost-share ...

  11. Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    Broader source: Energy.gov [DOE]

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV that can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and innovation are needed in every area to realize the potential of this integrated vision.

  12. SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid

    Broader source: Energy.gov [DOE]

    SolarBridge Technologies is collaborating with the University of Illinois at Urbana-Champaign to develop an innovativesolution to make rooftop photovoltaic (PV) systems easier to install and more...

  13. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  14. The Energy Challenge: The Current and Future Role of Solar Energy

    SciTech Connect (OSTI)

    Darling, Seth

    2011-08-10

    This talk begins by framing the outlook for global energy supply and demand over the next 40 years, examining the potential energy mix from a feasibility and sustainability perspective. In this context, the promise and challenges of solar energy utilization are discussed. An overview of solar energy research programs at Argonne is provided, and focuses specifically on research in Seth Darling's group in the areas of organic and hybrid organic/inorganic photovoltaics.

  15. Solar access of residential rooftops in four California cities...

    Office of Scientific and Technical Information (OSTI)

    of surface height were used to create a digital elevation model of all trees and ... (the flat elements of roofs) was computed geometrically from the digital elevation model. ...

  16. Project Profile: Deployable Commercial Rooftop Solar Electric System

    Broader source: Energy.gov [DOE]

    Individual PV modules are mechanically interconnected using flexible hinges that allow a string of modules to be folded for transportation and storage into a compact form and then unfolded for...

  17. Lease Option Increases Rooftop Solar's Appeal, Study Says - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensate Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 178 224 231 274 311 326 1979-2014 Alabama 2 2 2 2 2 1 1979-2014 Alaska 0 0 20 20 16 0 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 0 0 0 0 0 1 1979-2014 Coastal Region Onshore 0 0 0 0 0 0 1979-2014 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2014 San Joaquin Basin Onshore 0 0

  18. Episode 1: Tackling the Hidden Costs of Rooftop Solar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Well, I thought those were great, and frankly, we can just let the public be the judge. LANTERO: How about you keep brainstorming. WOOD: I understand. I'll get back to the drawing ...

  19. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  20. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Broader source: Energy.gov [DOE]

    Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over the past 5 years, the returns on such incremental improvements appear to be diminishing, and more dramatic innovations in module design and manufacturing are required to continue along the path of rapid progress. At the same time, major opportunities exist for innovation to unlock the potential of CSP technologies. This need for innovation could benefit U.S. PV and CSP manufacturers. The United States has been rated one of the world’s most competitive and innovative countries as well as one of the best locations for PV manufacturing. It is a global leader in PV and CSP R&D and patent production, and U.S. PV manufacturers are already pursuing highly differentiated innovations.

  1. 2014 SunShot Initiative Portfolio Book: Tackling Challenges in Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Tackling Challenges in Solar Energy 2014 SunShot Initiative Portfolio Book: Tackling Challenges in Solar Energy The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot's five subprogram areas, as well as a description of every active project in the SunShot's project portfolio as of May 2014. PDF icon 2014_SunShot_Initiative_Portfolio8.13.14.pdf More Documents

  2. "Fundamental Challenges in Solar Energy Conversion" workshop hosted by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LMI-EFRC | U.S. DOE Office of Science (SC) Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.02.10 "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Print Text Size: A A A Subscribe FeedbackShare Page July 7, 2010 :: The Light-Material

  3. Planning and Implementing a Solarize Initiative: A Guide for State Program Managers

    Broader source: Energy.gov [DOE]

    Solarize is a PV group purchasing program that aims to lower acquisition costs for rooftop solar installations. This Solarize guide features detailed case studies of two particularly well-developed and successful Solarize programs from New England— Solarize Connecticut and Solarize Mass —to help program managers in states across the country develop Solarize programs.

  4. Plug and Play: Purchase, Install, and Connect Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo Credit: Fraunhofer CSE Consumers may soon have the option of purchasing a do-it-yourself rooftop solar photovoltaic (PV) system at their local home improvement store that can ...

  5. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Kim, Woohyun; Lutes, Robert G.; Underhill, Ronald M.

    2015-09-30

    This report documents the development, testing and field validation of the integrated AFDD and advanced rooftop unit (RTU) controls using a single controller in buildings.

  6. What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaks | Department of Energy What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks February 16, 2016 - 4:50pm Addthis What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks What are the key facts? Rooftop units over 15 years old can waste substantial energy and money, while providing less-than-quality service. The Advanced RTU Campaign published a business case for

  7. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Advanced RTU Campaign | Department of Energy What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign November 10, 2015 - 11:40am Addthis What’s on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign By Marta Schantz This is the first in a series of upcoming blogs on DOE's Advanced Rooftop Unit

  8. Cost reduction of the Sun Challenger batch solar water heater: Final report

    SciTech Connect (OSTI)

    Stickney, B.L.

    1987-05-01

    A variety of materials and methods were investigated as a means to reduce the cost of the Sun Challenger Solar Collector. Three prototypes were constructed and tested using lower-cost methods. Test results are summarized, including heat gain, heat loss, and collection efficiency. Costs and benefits are also presented and summarized.

  9. The Final 40%: SunShot charges forward to tackle solar challenges!

    Broader source: Energy.gov [DOE]

    At the peak of the SunShot Grand Challenge Summit, an all-star lineup of speakers kicked off the third day, jam-packed with discussions and idea-generating activities to help solve some of the toughest problems in solar energy.

  10. Solar Oven, Take One: FAIL | Department of Energy

    Energy Savers [EERE]

    Industry Scorches Records Solar Industry Scorches Records March 6, 2014 - 5:24pm Addthis Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More than 4,751 megawatts of solar power was installed in the United States last year, an increase of 41%. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More than 4,751 megawatts of solar power was installed in the United

  11. Solar Energy for All: How-To Guides Encourage Growth of Solar Communities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy for All: How-To Guides Encourage Growth of Solar Communities Solar Energy for All: How-To Guides Encourage Growth of Solar Communities August 21, 2012 - 10:58am Addthis An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems. Rachel Tronstein Deputy Program Manager, SunShot Initiative What is Community Shared Solar? Residents join together

  12. Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours

    Broader source: Energy.gov [DOE]

    Consumers may soon have the option of purchasing a do-it-yourself rooftop solar photovoltaic (PV) system at their local home improvement store that can be installed and connected to the grid in...

  13. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  14. Would-Be Solar Electric Homeowners Sought For Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Would-Be Solar Electric Homeowners Sought For Project For more information contact: Kerry Masson, 275-4083 Golden, Colo., Oct. 2, 1996 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the Colorado Office of Energy Conservation are seeking homeowners interested in becoming part of a market assessment project to evaluate the potential market for rooftop photovoltaic power systems connected to local utility grids. A grid-tied rooftop photovoltaic system

  15. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  16. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  17. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  18. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  19. EERE Success Story-SolarBridge Technologies: Helping Solar Modules Speak

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Language of the Energy Grid | Department of Energy SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid EERE Success Story-SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid June 5, 2015 - 4:20pm Addthis SolarBridge Technologies is collaborating with the University of Illinois at Urbana-Champaign to develop an innovative solution to make rooftop photovoltaic (PV) systems easier to install and more affordable for

  20. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  1. Solar in Remote Applications in the U.S.: Challenges & Implications for Local Policy

    Broader source: Energy.gov [DOE]

    Since the landfall of Hurricane Sandy in October 2012, municipalities and jurisdictions in the United States have been increasingly focused on the vulnerability of their electricity infrastructure and enhancing resilience to extreme events. Renewable energy and distributed generation resources have a critical role to play in increasing the resilience of electric grids. In remote areas and on islands, these issues have risen to the forefront because remote electric grids function in near isolation, making grid reliability, electricity supply, cost controls, and stability essential. The integration of such resources into smaller, isolated grids poses unique challenges given the relatively high penetration rates of solar photovoltaics (PV). In the U.S. these remote locations include Hawaii, Puerto Rico, Guam, Marianas, and the U.S. Virgin Islands, communities off the coast of Maine and Massachusetts, mainland communities in Alaska, and even U.S. government installations such as national parks and military bases. This paper explores how policy makers and planners interested in furthering grid resilience and increasing reliance on renewable energy resources can learn from the opportunities and challenges facing remote communities as they work to shift their generation mix to higher levels of solar PV.

  2. Boston, Massachusetts: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

  3. Solar Means Business: Top U.S. Corporate Solar Users

    Broader source: Energy.gov [DOE]

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  4. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions Emerson Reiter, Kristen Ardani, and Robert Margolis National Renewable Energy Laboratory Ryan Edge Solar Electric Power Association Technical Report NREL/TP-7A40-65063 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This

  5. Development of a Hydronic Rooftop Unit-HyPak-MA

    SciTech Connect (OSTI)

    Eric Lee; Mark Berman

    2009-11-14

    The majority of U.S. commercial floor space is cooled by rooftop HVAC units (RTUs). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTUs are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. 36% percent of annual U.S. energy, and two-thirds of electricity, is consumed in and by buildings. Commercial buildings consume approximately 4.2 quads of energy each year at a cost of $230 billion per year, with HVAC equipment consuming 1.2 quads of electricity. More than half of all U.S. commercial floor space is cooled by packaged HVAC units, most of which are rooftop units (RTUs). Inefficient RTUs create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming5. Also, RTUs often fail to maintain adequate ventilation air and air filtration, reducing indoor air quality. This is the second HyPak project to be supported by DOE through NETL. The prior project, referred to as HyPak-1 in this report, had two rounds of prototype fabrication and testing as well as computer modeling and market research. The HyPak-1 prototypes demonstrated the high performance capabilities of the HyPak concept, but made it clear that further development was required to reduce heat exchanger cost and improve system reliability before HyPak commercialization can commence. The HyPak-1 prototypes were limited to about 25% ventilation air fraction, limiting performance and marketability. The current project is intended to develop a 'mixed-air' product that is capable of full 0-100% modulation in ventilation air fraction, hence it was referred to as HyPak-MA in the proposal. (For simplicity, the -MA has been dropped when referencing the current project.) The objective of the HyPak Project is to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit, and reduction in peak energy consumption of 50% and 33% respectively. In addition to performance targets, our goal is to develop a production-ready design with durability, reliability and maintainability similar to air-cooled packaged equipment, and that can be commercialized immediately following the conclusion of this project.

  6. Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today’s Price

    Broader source: Energy.gov [DOE]

    As part of the SunShot Initiative, the Energy Department announced the start of a new competition to make it faster, easier, and cheaper to install rooftop solar energy systems

  7. PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Solar Market Pathways) PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) Title: Local Energy Matters: Solar Market Development in Duluth, MN Ecolibrium3.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Duluth, MN Amount Awarded: $209,005 Awardee Cost Share: $52,266 Ecolibrium3's "Local Energy Matters" Solar Market Pathways project is working with state and local stakeholders to further develop residential rooftop, community, and

  8. Supply Curves for Solar PV-Generated Electricity for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2008-11-01

    Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

  9. Solar Applications to Multiple County Buildings Feasibility Study

    Broader source: Energy.gov [DOE]

    This study was requested by Salt Lake County in an effort to obtain a cursory overview of solar electric and solar thermal application possibilities on the rooftops of existing county buildings. The subject buildings represent various County Divisions: Aging Services, Community Services, County Health, County Library, Parks & Recreation, Public Works, County Sheriff and Youth Services. There are fifty two buildings included in the study.

  10. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    SciTech Connect (OSTI)

    Olis, D.; Mosey, G.

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  11. Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trio wins Supercomputing Challenge April 21, 2009 Erika DeBenedictis wins for third time LOS ALAMOS, New Mexico, April 21, 2009- Erika DeBenedictis, Tony Huang, and Chris Hong from La Cueva High School in Albuquerque captured the top prize Tuesday in the 2009 New Mexico Supercomputing Challenge hosted by Los Alamos National Laboratory. This is DeBenedictis' third first-place win in the Challenge and Huang's second. The winning team's project, "A Novel Approach to Asteroid Identification

  12. Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    duo wins Supercomputing Challenge April 22, 2008 Modeled spacecraft's re-entry into the atmosphere LOS ALAMOS, New Mexico, April 22, 2008- Budding scientists from Albuquerque, Erika DeBenedictis of St. Pius X High School and Tony Huang of La Cueva, captured the top prize Tuesday during the 2008 New Mexico Supercomputing Challenge award ceremony hosted by Los Alamos National Laboratory. The team's project, "An Analysis of Direct Simulation Monte Carlo and Its Application to Simulating

  13. Solar Decathlon

    Broader source: Energy.gov [DOE]

    The Energy Department's Solar Decathlon challenges collegiate teams to design, build and operate solar-powered houses that are cost effective, energy efficient and attractive.

  14. Final Report - Streamlined and Standardized Permitting and Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes for Rooftop PV in Puerto Rico | Department of Energy Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Final Report - Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Awardee: Puerto Rico Energy Affairs Administration Location: San Juan, Puerto Rico Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The plan to transform the rooftop photovoltaic (PV) market in Puerto

  15. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Office of Environmental Management (EM)

    Processes for Rooftop PV in Puerto Rico | Department of Energy Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Final Report - Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Awardee: Puerto Rico Energy Affairs Administration Location: San Juan, Puerto Rico Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The plan to transform the rooftop photovoltaic (PV) market in Puerto

  16. Doing Time Under the Sun: Rooftop Photovoltaics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The battery storage system, enclosed behind transparent plastic, is integral to the solar panel project on Alcatraz Island. Sitting in the middle of the often-foggy San Francisco ...

  17. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  18. SunShot Catalyst Innovators Take on Software Challenges to Deploy Solar Technology Across America

    Broader source: Energy.gov [DOE]

    New program aims to leverage powerful datasets and use innovative software, information technology, and automation solutions to make it faster, easier, and cheaper than ever before to deploy solar energy technologies.

  19. Solar Panels to Help Iowa Students Learn About Renewable Energy

    Broader source: Energy.gov [DOE]

    Learning about the sun’s power is just as important as harnessing it. New solar panels to be installed on the rooftops of five Iowa middle schools will give students hands-on experience with the technology and help offset some energy costs.

  20. Geostellar: Remote Solar Energy Assessments Personalized

    SciTech Connect (OSTI)

    2015-10-01

    Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. In addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.

  1. Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008

    Broader source: Energy.gov [DOE]

    Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

  2. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  3. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  4. Testing at NREL Aids Solar Power in Hawaii - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing at NREL Aids Solar Power in Hawaii Utility poised to double solar rooftop capacity based on tests of inverter reliability February 12, 2015 Inverter load rejection overvoltage (LRO) tests completed by the Energy Department's National Renewable Energy Laboratory as part of a cooperative research agreement with SolarCity have proven so successful that a testing partner, Hawaiian Electric Companies (HECO), has proposed to double its hosting capacity for solar energy. The inverter testing at

  5. Top 5 Reasons to Attend the SunShot Grand Challenge Solar Summit

    Broader source: Energy.gov [DOE]

    Anticipation for the SunShot Grand Challenge Summit is heating up. Register now for the event, which is taking place May 19 to May 22 in Anaheim, California.

  6. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  7. Atomic layer deposition grown MO{sub x} thin films for solar water splitting: Prospects and challenges

    SciTech Connect (OSTI)

    Singh, Trilok; Lehnen, Thomas; Leuning, Tessa; Mathur, Sanjay

    2015-01-15

    The magnitude of energy challenge not only calls for efficient devices but also for abundant, inexpensive, and stable photoactive materials that can enable efficient light harvesting, charge separation and collection, as well as chemical transformations. Photoelectrochemical systems based on semiconductor materials have the possibility to transform solar energy directly into chemical energy the so-called “solar hydrogen.” The current challenge lies in the harvesting of a larger fraction of electromagnetic spectrum by enhancing the absorbance of electrode materials. In this context, atomically precise thin films of metal oxide semiconductors and their multilayered junctions are promising candidates to integrate high surface areas with well-defined electrode–substrate interface. Given its self-limited growth mechanism, the atomic layer deposition (ALD) technique offers a wide range of capabilities to deposit and modify materials at the nanoscale. In addition, it opens new frontiers for developing precursor chemistry that is inevitable to design new processes. Herein, the authors review the properties and potential of metal oxide thin films deposited by ALD for their application in photoelectrochemical water splitting application. The first part of the review covers the basics of ALD processes followed by a brief discussion on the electrochemistry of water splitting reaction. The second part focuses on different MO{sub x} films deposited by atomic layer deposition for water splitting applications; in this section, The authors discuss the most explored MO{sub x} semiconductors, namely, Fe{sub 2}O{sub 3}, TiO{sub 2}, WO{sub 3}, and ZnO, as active materials and refer to their application as protective coatings, conductive scaffolds, or in heterojunctions. The third part deals with the current challenges and future prospects of ALD processed MO{sub x} thin films for water splitting reactions.

  8. PROJECT PROFILE: Aurora Solar Inc. (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aurora Solar Inc. (Incubator 10) PROJECT PROFILE: Aurora Solar Inc. (Incubator 10) Project Title: Using Computer Vision for Automated Rooftop Modeling and Shading Analysis Funding Opportunity: SunShot Technology to Market (Incubator 10) SunShot Subprogram: Technology to Market Location: Palo Alto, CA Amount Awarded: $400,000 Awardee Cost Share: $100,000 Project Investigator: Chris Hopper As part of the Department of Energy's SunShot Incubator program, Aurora will be developing a web-based

  9. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  10. Influence of architectural screens on rooftop concentrations due to effluent from short stacks

    SciTech Connect (OSTI)

    Petersen, R.L.; Carter, J.J.; Ratcliff, M.A.

    1999-07-01

    This paper describes the wind tunnel study conducted on behalf of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) to evaluate and quantify the effect of architectural screens on rooftop concentration levels due to effluent from short stacks. An equivalent stack height (ESH) concept is introduced, which is used to develop a stack height reduction (SHR) factor that may be used in conjunction with existing stack design procedures found in the 1997 ASHRAE Handbook--Fundamentals to account for the presence of architectural screens.

  11. Literature review : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-03-01

    Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure a simple and basic determinate beam. That is, instead of considering the composite action of the entire roof structure, the engineer evaluates only a single beam that is deemed conservatively to represent an affected rafter or top chord of a truss. This simplification based on assumptions of a complex problem is where significant conservatism can be introduced. Empirical data will be developed to evaluate this issue. Simple wood beams will be tested to failure. More complex and complete sections of roof structures that include composite action will also be tested to failure. The results can then be compared. An initial step in this process involves a literature review of any work that has been performed on roof structure composite action. The following section summarizes the literature review that was completed.

  12. Using Maps to Predict Solar Futures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Maps to Predict Solar Futures Using Maps to Predict Solar Futures June 19, 2015 - 1:43pm Addthis Using Maps to Predict Solar Futures Dr. Lidija Sekaric Dr. Lidija Sekaric Solar Energy Technologies Office Director When first exploring the possibility of going solar, many consumers have questions: How many panels will I need for my rooftop? What is this going to cost me? How much will I save on my electricity bills? Awardees of the Energy Department's SunShot Initiative are working to help

  13. Revving up Energy Efficiency at the Cummins Plant in Jamestown, NY

    Broader source: Energy.gov [DOE]

    Better Buildings, Better Plants Challenge partner, Cummins Inc., is recognized for achieving 33% energy savings as a result of infrastructure upgrades and a new 2 MW solar rooftop

  14. FOURTH SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transforming U.S. energy markets. Technologies such as rooftop solar, energy storage, smart grid technology, and methane capture for oil and gas wells, solve key energy challenges. ...

  15. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  16. Cost reduction of the Sun Challenger (trade mark) batch solar water heater. Final report, 31 March 1986-30 April 1987

    SciTech Connect (OSTI)

    Stickney, B.L.

    1987-05-01

    A variety of materials and methods were investigated as a means to reduce the cost of the Sun Challenger Solar Collector. Three prototypes were constructed and tested using lower-cost methods. Test results are summarized, including heat gain, heat loss, and collection efficiency. Costs and benefits are also presented and summarized.

  17. Assessment of Wind/Solar Co-Located Generation in Texas

    Broader source: Energy.gov [DOE]

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  18. Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work

    Broader source: Energy.gov [DOE]

    Grocery shoppers in Burlington, Vt., are picking up much more than food and household items these days. Strolling the aisles of community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars.

  19. Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Srinivas Katipamula, Pacific Northwest National Laboratory This multiyear research and development project aims to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioner units (RTUs) with advanced control strategies not ordinarily used for packaged units.

  20. High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint

    SciTech Connect (OSTI)

    Noufi, R.; Zweibel, K.

    2006-05-01

    Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

  1. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  4. Final Report- Chicago Region Solar Market Transformation Team

    Broader source: Energy.gov [DOE]

    The goal of Chicago’s RSC I grant program was to induce a scaled rooftop solar PV market in Chicago. The principal motives driving this project were economic growth and increasing local clean energyresources.To buttress the City’s commitment to the RSC I project, the City released a 2015 Sustainable Chicago Action Agenda that announced the City’s goal is to create an additional 20 megawatts of renewable energy by 2015.

  5. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration Hawaii and Guam Energy Improvement Technology Demonstration Project I. Doebber, J. Dean, J. Dominick, and G. Holland Produced under direction of Naval Facilities Engineering Command (NAVFAC) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement 11-01829 Technical Report

  6. Flexible Thin-Film Silicon Solar Cells

    SciTech Connect (OSTI)

    Vijh, Aarohi; Cao, Simon; Mohring, Brad

    2014-01-11

    High fuel costs, environmental concerns and issues of national energy security have brought increasing attention to a distributed generation program for electricity based on solar technology. Rooftop photovoltaic (PV) systems provide distributed generation since the power is consumed at the point of production, thus eliminating the need for costly additional transmission lines. However, most current photovoltaic modules are heavy and require a significant amount of labor and accessory hardware such as mounting frames for installation on rooftops. This makes rooftop systems impractical or cost prohibitive in many instances. Under this project, Xunlight has advanced its manufacturing process for the production of lightweight, flexible thin-film silicon based photovoltaic modules, and has enhanced the reliability and performance of Xunlights products. These modules are easily unrolled and adhered directly to standard commercial roofs without mounting structures or integrated directly into roofing membrane materials for the lowest possible installation costs on the market. Importantly, Xunlight has now established strategic alliances with roofing material manufacturers and other OEMs for the development of building integrated photovoltaic roofing and other PV-enabled products, and has deployed its products in a number of commercial installations with these business partners.

  7. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  8. Largest On-Campus Solar Facility Being Installed at William Paterson |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Largest On-Campus Solar Facility Being Installed at William Paterson Largest On-Campus Solar Facility Being Installed at William Paterson March 29, 2010 - 10:57am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs What does this project do? Solar arrays at parking lots and photovoltaic cells on the rooftops of campus buildings should provide about 15 to 20 percent of our energy needs on the campus. Cranes place solar panels on roofs and

  9. Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to

    Broader source: Energy.gov (indexed) [DOE]

    1 of 5 More than 15,000 solar energy professionals from 75 countries were on hand at Solar Power International (SPI) in Anaheim, CA to network, share ideas, and participate in educational programming related to growing the American solar energy market. 2 of 5 SPI 2015 was held at the Anaheim Convention Center, which features a 2.4 MW solar PV system on its rooftop. The system generates an estimated 3.6 million kilowatt-hours of electricity annually - enough energy to power 600 homes for a year.

  10. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  11. SunShot Grand Challenge Summit Breakout Sessions Announced |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives * The Next Frontier for Solar Deployment: The Mid-Size Market * Solar Securitization: Opportunities and Challenges * Bringing Solutions to the Solar Industry: ...

  12. 2014 SunShot Initiative Portfolio Book: Tackling Challenges in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tackling Challenges in Solar Energy 2014 SunShot Initiative Portfolio Book: Tackling Challenges in Solar Energy The 2014 SunShot Initiative Portfolio Book outlines the progress ...

  13. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System- 2013 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  14. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect (OSTI)

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  15. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    SciTech Connect (OSTI)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William; Harper, Alan

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  16. CX-007854: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Streamlining Solar Standards & Processes: The Southern California Rooftop Solar Challenge CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  17. Final Report- Developing Solar Friendly Communities

    Broader source: Energy.gov [DOE]

    With soft costs now representing more than half the cost of an average rooftop solar energy system, the need to target cost reductions in these areas is critical. Local jurisdictions have a big role to play in the permitting and inspection realm which was the focus of our program. Especially in Colorado, a state with a strong tradition of local control, cities and counties are resistant to outside entities dictating or even suggesting changes. That's why the Solar Friendly Communities program provided a positive incentive for participating in streamlining solar costs. This proved to be the most powerful aspect of the project. The branding, materials and format were developed into a turn-key product that can be scaled nationally.

  18. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. | Department of Energy Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. December 17, 2015 - 10:26am Addthis The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar energy across 18 federal buildings in Washington, D.C. The

  19. OUT Success Stories: Solar Roofing Shingles

    DOE R&D Accomplishments [OSTI]

    Johnson, N.

    2000-08-01

    Thin-film photovoltaic (PV) cells are now doubling as rooftop shingles. PV shingles offer many advantages. The energy generated from a building's PV rooftop shingles can provide power both to the building and the utility's power grid.

  20. Solar Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    Provides an overview of solar power purchase agreements including how they work, benefits and challenges and eligibility. Author: United States Environmental Protection Agency (EPA)

  1. DOE Challenge Home Student Competition

    Broader source: Energy.gov [DOE]

    This document outlines plans for the DOE Challenge Homes Student Competition, which will complement the Solar Decathlon, and launch in 2014.

  2. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly ...

  3. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell...

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption....

  5. Seattle, Washington: Solar in Action (Brochure), Solar America Cities,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency & Renewable Energy (EERE) | Department of Energy Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community.

  6. Cyrus Wadia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Clean Energy and Materials R&D, The White House Office of Science and Technology Policy Most Recent Rooftop Solar Challenge: Empowering Innovators to Reach for the Sun November

  7. CX-007877: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rooftop Solar Challenge: Inducing Photovoltaic Market Transformation in Tennessee CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Tennessee Offices(s): Golden Field Office

  8. CX-007868: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Initiative: Rooftop Solar Challenge to Induce Market Transformation CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Minnesota Offices(s): Golden Field Office

  9. CX-007883: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Initiative: Rooftop Solar Challenge to Induce Market Transformation CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): West Virginia Offices(s): Golden Field Office

  10. Final Report - Transforming PV installations toward dispatchable,

    Broader source: Energy.gov (indexed) [DOE]

    Colorado Solar Energy Industry Association Location: Boulder, CO Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 With soft costs now representing more than half the cost of an average rooftop solar energy system, the need to target cost reductions in these areas is critical. Local jurisdictions have a big role to play in the permitting and inspection realm which was the focus of our program. Especially in Colorado, a state with a strong tradition of local control, cities and

  11. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    SciTech Connect (OSTI)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  12. SUNSHOT GRAND CHALLENGE SUMMIT AND PEER REVIEW EVENT PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Next Frontier for Solar Deployment: The Mid-Size Market Solar Securitization: ... Wednesday, May 21 17 SOLAR SECURITIZATION: OPPORTUNITIES AND CHALLENGES 2:30 PM to 3:30 PM ...

  13. Sandia Energy - SunShot Grand Challenge: Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Regional Test Centers Home Videos Renewable Energy Energy Events News SunShot News & Events Photovoltaic Solar SunShot Grand Challenge: Regional Test Centers Previous...

  14. NREL: Technology Deployment - Solar Decathlon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon Photo of a woman assembling the Team Alberta solar-powered house at the Solar Decathlon, with the U.S. Capitol Building in the background. Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. NREL has provided technical expertise for this U.S. Department of Energy (DOE) event since its conception in 1999. Considered one of DOE's most successful

  15. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  16. NREL: State and Local Governments - Solar Hot Topics STAT Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following sessions are available: Shared Solar Programs: Opportunities and Challenges Solar Finance for Residential and Commercial Customers and Potential Roles of State and ...

  17. Solar Regional Test Center in Vermont Achieves Milestone Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Installation HomeConcentrating Solar Power, Energy, Facilities, National Solar ... Meeting the last 40% without compromising quality will be challenging. To help US industry ...

  18. DrexelSolar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 18974 Product: US-based PV rooftop installer. Coordinates: 40.208935, -75.074099 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  19. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  20. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Flexible Research Platform - March 2014 DLL Hardware-based HPDMModelica model library to support RTU design, building control strategy development, fault diagnosis, etc.

  1. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... platform or in the Cloud * Embedded automated diagnostics and advanced controls in the RTU platform and the controller * Applications running in the Cloud in cases where RTU ...

  2. Rooftop package unit diagnostician

    DOE Patents [OSTI]

    Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA

    2004-08-17

    A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.

  3. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  4. Rooftop Unit Campaign

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  5. Rooftop Unit Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... was completed, including components for financing, M&V, and marketing * Key industry partners reviewed the plan, including CEE, RILA, ASHRAE, BOMA International and other key ...

  6. Next Generation Rooftop Unit

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: Trane Company, Ingersoll Rand Inc. - Davidson, NC

  7. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  8. Innovation and Success in Solar Financing

    Broader source: Energy.gov [DOE]

    This webinar, "Innovation and Success in Solar Financing," was originally presented on July 10, 2013 as part of the DOE SunShot Initiative's Solar Action Webinar Series. After a brief presentation about the SunShot Initiative's overarching goals, three solar coordinators discuss their strategies for solving the financial challenges associated with their state- and local-level solar energy projects.

  9. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

  10. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  11. Solyndra | Open Energy Information

    Open Energy Info (EERE)

    area and producing more electricity per rooftop on an annual basis than a conventional panel installation. The result is significantly more solar electricity per rooftop per...

  12. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenges Grand Challenges Our goals to live a sustainable future LANL stakeholders TA-21 cleanup activities water on LANL land Collaborate with our stakeholders and tribal...

  13. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  14. Crossword Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crossword National Security Science Latest Issue:April 2016 past issues All Issues » submit Crossword Challenge How closely did you read this issue of NSS? Find out by attempting our crossword puzzle.. March 22, 2016 Crossword Challenge Crossword Challenge Contact Managing Editor Clay Dillingham Email DOWNLOAD THE CROSSWORD CHALLENGE PDF ICON ANSWER SHEET PDF ICON

  15. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and identifies the critical path challenges to the commercial potential of each cycle. PDF icon Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical ...

  16. Revitalizing American Competitiveness in Solar Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Competitiveness in Solar Technologies Revitalizing American ... was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum. ...

  17. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  18. Concentrating Solar Power Thermal Storage System Basics

    Broader source: Energy.gov [DOE]

    One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge.

  19. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  20. Solar Decathlon 2015: Nation’s Leading Sustainable Home Design Competition on the Horizon

    Broader source: Energy.gov [DOE]

    The teams are set for this year's Solar Decathlon, which challenges students from around the world to design, build and operate highly energy efficient solar-powered houses.

  1. United Solar Ovonic LLC Unisolar | Open Energy Information

    Open Energy Info (EERE)

    US-based manufacturer of flexible amorphous silicon PV laminates; the main division of Energy Conversion Devices, aka ECD Ovonics. Leading supplier of flexible PV for rooftop...

  2. Expanding Solar Access to Nonprofits

    Broader source: Energy.gov [DOE]

    The Solar Foundation is leading a team that developed the CivicPACE program through an award from the SunShot Initiative. CivicPACE addresses the underwriting and access challenges of solar financing for tax-exempt organizations, such as churches, nonprofit affordable housing, community clinics, and education institutions.

  3. Roosting Spot for These Nocturnal Mammals is Just Batty | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Checkout the infogaphic for an overview of the first round of the Rooftop Solar Challenge. | Infographic by <a href="http://energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>. Checkout the infogaphic for an overview of the first round of the Rooftop Solar Challenge. | Infographic by Sarah Gerrity. Minh Le Minh Le Deputy Director, Solar Energy Technologies Office Cyrus Wadia Assistant Director for Clean Energy and Materials R&D, The White

  4. Solar Easements

    Broader source: Energy.gov [DOE]

    New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

  5. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWhsq meter power production potential As the ...

  6. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in

  7. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, ... The system will be monitored and tested to collect a range of data ...

  8. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and workforce development opportunity for ... around the world: Solar Decathlon China 2013, Solar Decathlon ... and two-way power flow for operation of ...

  9. Pitch for Solar Instructions

    Broader source: Energy.gov [DOE]

    SunShot invites visionaries, entrepreneurs, and innovators to share their big ideas to propose solutions that will enable greater solar energy deployment. If you have an idea and would like to present during the SunShot Grand Challenge Summit 2014, submit it now.

  10. Subsurface Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finding and effectively exploiting these resources while mitigating impacts of their use constitute major technical and socio-political challenges. Still, the opportunities are ...

  11. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect (OSTI)

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  12. NREL: Technology Deployment - Solar Deployment and Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with

  13. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  14. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  15. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  16. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  17. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  18. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  19. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  20. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Biomimetic Dye Molecules for Solar Cells Print Wednesday, 28 April 2010 00:00 Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most

  1. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  2. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  3. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  4. Biomimetic Dye Molecules for Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal

  5. Reliability Challenges for Solar Energy (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-12-08

    Presentation that reviews reliability issues related to various types of photovoltaic tecnnologies, including crystalline silicon, thin films, and concentrating PV.

  6. Reliability Challenges for Solar Energy (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-04-27

    PV industry can benefit from reliability testing experience of microelectronics industry . Si modules perform well in field; CdTe/CIGS must be sealed to moisture; CPV in product development stage.

  7. Funding Opportunity Announcement: Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways funding opportunity announcement (FOA) seeks to support regional, state, tribal, and locally-driven efforts to develop multi-year solar deployment plans that will help provide business certainty and establish a clear path for the next five to ten years of solar deployment. Specifically, this FOA is intended to enable replicable multi-year strategies that spur significant solar deployment, drive down solar soft costs, support local economic development efforts, and address the potential challenges arising from increased solar penetration on the electrical grid.

  8. Save the Date: 2014 SunShot Grand Challenge Summit, May 19-22...

    Broader source: Energy.gov (indexed) [DOE]

    2014 SunShot Grand Challenge Summit and Peer Review SunShot Grand Challenge Summit Opening Session Energy Department Announces New Prize Challenge to Drive Down Solar Costs

  9. SunShot Grand Challenge Summit and Peer Review 2014

    Broader source: Energy.gov [DOE]

    The 2014 SunShot Grand Challenge Summit and Peer Review brought together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America. Download the Summit conference presentations here.

  10. Mojave Solar Park Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power...

  11. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power...

  12. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar...

  13. Hanford Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge 219 tst Ave S, Suite 120 Seattle, WA 98104 2013.292.2850 hanfordchallenge.org June 1,2010 Dorothy Riehle FOlA Office U.S. Department of Energy P. O. Box 550 Richland, WA...

  14. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  15. EERE SunShot's SHINES Program: Enabling a Rapidly Solarizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SunShot Shines On Packed House Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit SunShot Installs Solar Energy System on Local Habitat for Humanity Home

  16. U.S. Department of Energy Solar Decathlon 2015

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive.

  17. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenges Grand Challenges Our goals to live a sustainable future LANL stakeholders TA-21 cleanup activities water on LANL land Collaborate with our stakeholders and tribal governments to ensure that LANL's impact on the environment is as low as reasonably achievable Remove or stabilize pollutants from the Manhattan Project and Cold War eras Protect water resource quality and reduce water use Stormwater drainage at LANL LANL land waste workers at LANL Eliminate industrial emissions,

  18. Solar Decathlon 2013

    ScienceCinema (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard;

    2014-01-10

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  19. Solar Decathlon 2013

    SciTech Connect (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  20. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  1. ImagineSolar | Open Energy Information

    Open Energy Info (EERE)

    Workforce training, Corporate consulting - Solar projects, Solar sales, Solar marketing, Solar business development, Solar policy, Solar advocacy, Solar government...

  2. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  3. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  4. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96426 Solar Blog en Solar Energy Jobs Outpace U.S. Economy http:energy.govarticlessolar-energy-jobs-outpace-us-economy

  5. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  6. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  7. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  8. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  9. Solar Easements

    Broader source: Energy.gov [DOE]

    In addition, the state’s local zoning ordinances must address access to air and light, views, and solar access.

  10. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar ...

  11. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  12. High Volume Method of Making Low Cost, Lightweight Solar Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Volume Method of Making Low Cost, Lightweight Solar Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA critical challenge for solar energy is the high cost (>$1/W) of quality solar materials. Researchers at ORNL have invented an approach for producing large volumes of solar cell material at a fraction of the cost of today's solar cells.

  13. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  14. The Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Because the complex network of electrical infrastructure that stretches across the United States is critical to our economic well-being and quality of life, grid owners and operators work hard to ensure the system is reliable. However, strengthening grid resilience, or its ability to minimize the consequences of one or more threats, requires understanding the consequences of specific threats to the systems that rely on the grid. For example, an operator that has purchased a spare

  15. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  16. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  17. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  18. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  19. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  20. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power...

  1. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  2. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  3. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  4. U.S. Solar Manufacturing Rising on the Horizon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Manufacturing Rising on the Horizon U.S. Solar Manufacturing Rising on the Horizon January 29, 2015 - 2:35pm Addthis Solar demand in the U.S. is growing, and U.S. solar manufacturing is rising to meet the challenge.| Graphic courtesy of SunShot. Solar demand in the U.S. is growing, and U.S. solar manufacturing is rising to meet the challenge.| Graphic courtesy of SunShot. Dr. Lidija Sekaric Dr. Lidija Sekaric Solar Energy Technologies Office Director It's been a great year for the solar

  5. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Coggeshall, C.

    2008-05-01

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  6. Reaching New Limits with Solar Storage

    Broader source: Energy.gov [DOE]

    One of the biggest challenges of large-scale deployment of solar energy is figuring out how to use it after the sun sets. SunShot Initiative awardees continuously work to explore new energy storage...

  7. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  8. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  9. Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th New Mexico Supercomputing Challenge April 22, 2014 Modeling Tree Growth and Resource Use with Applications LOS ALAMOS, N.M., April 22, 2014-The dynamic duo of Eli Echt-Wilson and Albert Zuo from La Cueva High in Albuquerque, proposed a unique model that simulates deciduous tree growth at the level of individual branches and leaves based on underlying biological processes. Their project, called Modeling Tree Growth and Resource Use with Applications won the top award at the 24th New Mexico

  10. Ann Arbor, Michigan: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. San Francisco, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. San Diego, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Austin, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Knoxville, Tennessee: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Milwaukee, Wisconsin: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  16. Pittsburgh, Pennsylvania: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. San Jose, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Jose, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Houston, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Berkeley, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Madison, Wisconsin: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Sacramento, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. New Orleans, Louisiana: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. Seattle, Washington: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Philadelphia, Pennsylvania: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Portland, Oregon: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. San Antonio, Texas: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. Tucson, Arizona: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. Denver, Colorado: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  9. Santa Rosa, California: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Orlando, Florida: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  12. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values (...

  13. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  14. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  15. SunShot Grand Challenge Summit

    Broader source: Energy.gov [DOE]

    The SunShot Initiative at the U.S. Department of Energy (DOE) will host the second SunShot Grand Challenge Summit and Peer Review from May 19-22, 2014 at the Hilton Anaheim, California. The 2014 SunShot Summit brings together 800 esteemed members of the solar energy community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America.

  16. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic ...

  17. On the Path to SunShot- Community Solar

    Broader source: Energy.gov [DOE]

    In the On the Path to SunShot report series, the Emerging Opportunities and Challenges in Financing Solar report highlights how community solar has the ability to greatly expand solar access to the general public and which states currently have legislation to support it.

  18. Solar Energy Education. Home economics: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 10:13am Addthis Packed House 1 of 12 Packed House An energetic crowd of hundreds of leaders throughout the solar community gathered for the 2014 SunShot Grand Challenge Summit to work together to reduce the costs of solar energy technologies. Image: SunShot Initiative, Energy Department. Solar Tech Forum 2 of 12

  19. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  20. EERE Success Story-Challenge Accepted: Reducing the Soft Costs of Going

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar | Department of Energy Challenge Accepted: Reducing the Soft Costs of Going Solar EERE Success Story-Challenge Accepted: Reducing the Soft Costs of Going Solar January 7, 2016 - 11:03am Addthis Solar installers dressed up as superheroes to complete the installation on the KidsQuest Children’s Museum in Washington as part of the Solarize Bellevue campaign. Photo by Allison DeAngelis. Solar installers dressed up as superheroes to complete the installation on the KidsQuest Children's

  1. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  2. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  3. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  4. Buying and Selling Electric Power in the West

    Broader source: Energy.gov [DOE]

    The 21st Annual Conference on Buying & Selling Electric Power in the Southwest is a two-day conference to address the EPA greenhouse rules and how they will impact the industry. Attendees will learn about the challenges of integrating rooftop solar into the electric grid, the changing energy market in the west, and efforts to police that market.

  5. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect (OSTI)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  6. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  7. 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot Initiative Concentrating Solar Power Program Manager Dr. Ranga Pitchumani at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA. This presentation is an overview of the SunShot Initiative's concentrating solar power (CSP) research portfolio. PDF icon

  8. PROJECT PROFILE: Solar Electric Power Association (Solar Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Electric Power Association (Solar Market Pathways) PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) Title: Community Solar Design Models for ...

  9. Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type...

  10. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  11. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  12. NREL: Solar Research - NREL Solar Technical Assistance Team to Partner with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois, Nevada, and New York NREL Solar Technical Assistance Team to Partner with Illinois, Nevada, and New York April 21, 2016 Three organizations were selected to receive expertise from the Solar Technical Assistance Team (STAT) Network to address critical questions and challenges to making their states more solar friendly. The National Renewable Energy Laboratory (NREL), as a member of the STAT Network, will be partnering with the Illinois Office of Energy & Recycling, the New York

  13. Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  16. Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Sacramento, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Salt Lake City, Utah: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  9. Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System

    Broader source: Energy.gov [DOE]

    A 2010 Rocky Mountain Institute report estimated that structural systems alone cost about $0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking...

  13. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time: 4 to 5 class periods Summary: Students will learn how the solar cell changes light energy to electrical energy. Students will work in small groups and construct different ...

  14. solar energy

    National Nuclear Security Administration (NNSA)

    8%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  15. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  16. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  17. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  18. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  19. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  20. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  1. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  2. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  3. Software Dedication May 2012 EFCOG Las Vegas | Department of Energy

    Energy Savers [EERE]

    Soft Costs Competitive Awards Soft Costs Competitive Awards Open Funding Opportunities State Energy Evolution and Diffusion Studies II - State Energy Strategies (SEEDSII-SES) Full application due May 2, 2016 Current Awards Funding Program Year Announced Amount Awarded Solar Powering America by Recognizing Communities (SPARC) 2015 $13M SunShot Prize 2015 $10M Solar Market Pathways 2015 $16.5M Catalyst Energy Innovation Prize 2014 $1M Rooftop Solar Challenge II 2013 $12M Grid Engineering for

  4. Final Report - Sun Rise New England - Open for Buisness | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sun Rise New England - Open for Buisness Final Report - Sun Rise New England - Open for Buisness Awardee: Connecticut Green Bank (Formerly Clean Energy Finance Investment Authority) Location: Rocky Hill, CT Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 CEFIA is currently working to develop and implement innovative financing products for residential and commercial solar installations while reducing non-hardware or soft costs to make solar PV systems more affordable

  5. NREL: Solar STAT Blog -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Policy Basics Publications Request Assistance Technical Assistance Project Map Solar STAT Blog The Solar STAT blog discusses state and local efforts to develop solar...

  6. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  7. U.S. Department of Energy Solar Decathlon 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and...

  8. Solar Smart Grid Startup NovoMoto Wins Cleantech University Prize...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Smart Grid Startup NovoMoto Wins Cleantech University Prize at Clean Energy Trust Challenge Solar Smart Grid Startup NovoMoto Wins Cleantech University Prize at Clean Energy ...

  9. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  10. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd; Jackson, Nick; Dupont, Luc; Moser, Jeff

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $$1 per watt for photovoltaic systems would be equivalent to 5-6¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $ .50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics;Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules; Topic 2: Roof and Ground Mount Innovations; Topic 3: Transformational Photovoltaic System Designs; and Topic 4: Development of New Wind Load Codes for PV Systems.The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included; 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations; 2) The development of a composite pultruded rail to replace traditional racking materials; 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs; and 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  11. DOE Challenge Home Case Study: e2 Homes – Winter Park, Florida

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Challenge Home case study describes the first certified DOE Challenge Home as constructed by e2 Homes. Completed in May 2012, the “Wilson Residence” in Winter Park, Florida, is a 4,305-ft2 custom home that scores a HERS 57 without solar and a better than zero net-energy HERS -7 with solar.

  12. Highlights from the 2014 SunShot Grand Challenge Summit | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Highlights from the 2014 SunShot Grand Challenge Summit Highlights from the 2014 SunShot Grand Challenge Summit Addthis Packed House 1 of 12 Packed House An energetic crowd of hundreds of leaders throughout the solar community gathered for the 2014 SunShot Grand Challenge Summit to work together to reduce the costs of solar energy technologies. Image: SunShot Initiative, Energy Department. Solar Tech Forum 2 of 12 Solar Tech Forum Attendees enter the SunShot Summit Technology forum --

  13. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  14. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  15. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  16. SunShot Grand Challenge | Department of Energy

    Energy Savers [EERE]

    Announces 24-Hour Solar Data Hackathon SunShot Announces 24-Hour Solar Data Hackathon May 8, 2014 - 11:45am Addthis SunShot will host a 24-hour solar data hackathon at the 2014 SunShot Grand Challenge Summit. Learn more over at the EERE blog and register here. Addthis Related Articles Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The SunShot

  17. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  18. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  19. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provision is similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  20. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights...

    Office of Scientific and Technical Information (OSTI)

    High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges Acknowledgement: Work performed at NREL for US DOE under contract No....

  2. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer...

  3. Workplace Charging Challenge Partner: Alliant Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Joined the Challenge: March 2016 Headquarters: Madison, WI Charging Locations: Madison, WI Domestic Employees: 4,000 Alliant Energy is excited to offer electric vehicle charging at their office in Madison, WI. The charging stations are one component of an innovative energy education and research initiative that also includes a variety of solar components and battery energy

  4. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  5. Solar paint: From synthesis to printing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2014-11-13

    Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. We review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology.

  6. Department of Energy Considers New Venue for Solar Decathlon 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Considers New Venue for Solar Decathlon 2013 Department of Energy Considers New Venue for Solar Decathlon 2013 August 1, 2011 - 3:29pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that the Department of Energy is considering offers for a new site for Solar Decathlon 2013. The U.S. Department of Energy Solar Decathlon is a competition that challenges collegiate students from across the globe to design, build, and operate solar-powered houses that

  7. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  8. Field Evaluation of the Performance of the RTU Challenge Unit. Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.

    2015-03-31

    This report documents the testing of a state-of-art packaged rooftop unit (RTU) (HVAC) and a standard reference unit in the field and compares the seasonal efficiency of the two unit.

  9. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  10. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  11. San Francisco, California: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar ...

  12. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  13. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  14. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America ...

  15. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities, ...

  16. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, ...

  17. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  18. Willard Kelsey Solar Group WK Solar | Open Energy Information

    Open Energy Info (EERE)

    Willard Kelsey Solar Group WK Solar Jump to: navigation, search Name: Willard & Kelsey Solar Group (WK Solar) Place: Perrysburg, Ohio Zip: 43551 Product: Manufacturer of CdTe...

  19. Innotech Solar AS formerly known as Solar Cell Repower | Open...

    Open Energy Info (EERE)

    Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name: Innotech Solar AS (formerly known as Solar Cell Repower) Place: Narvik, Norway Zip: 8512...

  20. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  1. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    Open Energy Info (EERE)

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  2. First Solar Electric LLC formerly DT Solar | Open Energy Information

    Open Energy Info (EERE)

    Electric LLC formerly DT Solar Jump to: navigation, search Name: First Solar Electric LLC (formerly DT Solar) Place: Branchburg, New Jersey Zip: 8876 Sector: Solar Product: PV...

  3. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  4. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  5. Creative Energy Solar Investments SA formerly Hellenic Solar...

    Open Energy Info (EERE)

    Solar Investments SA formerly Hellenic Solar Jump to: navigation, search Name: Creative Energy Solar Investments SA (formerly Hellenic Solar) Place: 18538 Piraeus, Greece Product:...

  6. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  7. Siemens Solar formerly ARCO Solar Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar formerly ARCO Solar Corporation Jump to: navigation, search Name: Siemens Solar (formerly ARCO Solar Corporation) Place: Arizona Product: Built a 6MW CPV project in 1984,...

  8. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems...

    Open Energy Info (EERE)

    Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name: Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place:...

  9. Guodian Jintech Solar Energy formerly Yixing Jintech Solar Energy...

    Open Energy Info (EERE)

    Jintech Solar Energy formerly Yixing Jintech Solar Energy Co Ltd Jump to: navigation, search Name: Guodian Jintech Solar Energy (formerly Yixing Jintech Solar Energy Co Ltd) Place:...

  10. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  11. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  12. ET Solar Group Formerly CNS Solar Industry | Open Energy Information

    Open Energy Info (EERE)

    Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name: ET Solar Group (Formerly CNS Solar Industry) Place: Nanjing, Jiangsu Province, China Zip: 210009 Sector:...

  13. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  14. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449: ...

  15. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: ...

  16. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  17. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  18. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan ...

  19. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  20. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...