Powered by Deep Web Technologies
Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam-system upgrades | Open Energy Information  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Steam-system upgrades Jump to: navigation, search TODO: Add description List of Steam-system...

2

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

3

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

4

Cool Roofs: An Easy Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade December 14, 2010 - 9:25am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Dark roofs can be 50 degrees hotter than light roofs. Combined with dark roads and parking lots, dark roofs lead to the 'urban heat island' effect: cities tend to be 2-5 degrees hotter. A cooler roof means energy bills that are up to 10-15% lower because your air conditioner doesn't have to work as hard. Check out Google Earth - the 'view from above' of your favorite American city. And look at the roofs of the office buildings, warehouses, shopping centers, and even the homes. Most of them are probably pretty dark in color - and this means they heat up a lot when the weather is warm -

5

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

6

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

7

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

8

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

9

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

10

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

11

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

12

Steam System Optimization : A Case Study  

E-Print Network (OSTI)

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two main sources of savings in steam systems. Increased competition no longer permits an industry to survive with energy waste that could be eliminated. This paper highlights the study findings of the steam system in a plant from the Food industry. The steam system operates with an annual budget of $1.9 million. Normal steam demand ranges between 80,000 to 85,000 lb/hr. The steam system analysis identified energy savings worth $270,000 per year. The optimization measures were in two categories: • No cost/low cost optimizations that can be done through a better maintenance and improved operating condition • Major improvements that require a significant investment, and includes the modification of the process and major equipment.

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

2002-04-01T23:59:59.000Z

13

Steam System Optimization: A Case Study  

E-Print Network (OSTI)

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars). Normal steam demand ranges from 500,000 to 600,000 lbs/hr. 380,000 lbs/hr is imported from an outside power plant and 170,000 lbs/hr is internally generated as waste heat recovery. The steam system analysis identified energy savings worth of $2,400,000 per year. The optimization measures were in two categories: • no cost / low cost that can be done through better maintenance and improvement of operating conditions. • major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Though the findings are specific to a single site, the basics of steam system analysis are applicable to any steam system. A critical review on any steam system always identifies controllable wastes. Improvements in steam system efficiency equal reduced energy consumption and saved environment.

Iordanova, N.; Venkatesan, V. V.

2000-04-01T23:59:59.000Z

14

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

15

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

Along with the shortage of conventional energy sources, efforts have been sought to use energy in a rational manner. Whereas the biggest energy consumption is in the industrial sector, various techniques to reduce energy have been searched. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy saving potential in industry. The optimization measures can be categorized into two methods, i.e. (1) no cost/low cost that can be done through a better maintenance and improvement of operating conditions, and (2) major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Since energy saving is an endless effort, new levels of energy efficiency standards are being set year after year. Therefore, repeated studies should be made to identify energy saving potential. Modern instruments allow the energy specialists to conduct an in-depth survey to identify energy performance. This paper highlights the findings of the study in a steam generation and distribution system of a crude oil stabilization unit. With the annual budget of $8.3 million, the unit is handling about 600,000 barrels crude oil per day from an offshore platform. The study identified an opportunity of annual saving amounting to $1,115,300. Though the finding is specific to a single site, the basics of steam system analysis are applicable to any steam system. The steam system should be reviewed year after year to identify more energy wastes and to improve efficiency of steam system, thus reducing the energy cost. At the same time this will also help save the environment.

Venkatesan, V. V.; Leigh, N.

1998-04-01T23:59:59.000Z

16

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

17

Savings in Steam Systems (A Case Study)  

E-Print Network (OSTI)

Armstrong Service Inc. (ASI) conducted an engineered evaluation at an Ammonium Nitrate Manufacturing facility during the Fall of 1999. This plant manufactures Nitric Acid and high and low density Ammonia Nitrate. The purpose of this evaluation is to identify energy losses and system improvements in the steam and condensate systems. Steam system improvements focus on lowering the cost of steam, wherever possible, with paybacks of 3 years or less. Overall, this ASI evaluation identifies six (6) steam savings proposals with an average simple payback of 2.9 years. This evaluation also identifies one system deficiency that will lead to unnecessary expenditures if allowed to continue, but would help to increase production if the suggested improvement was implemented. The following report details the individual findings and outlines the corrections needed. The savings generated from these improvements will more than pay for themselves in short order.

DeBat, R.

2001-05-01T23:59:59.000Z

18

Roof bolting improvements  

Science Conference Proceedings (OSTI)

Suppliers partner with mine operators to offer safer, more productive tools for roof bolting. 4 figs.

Fiscor, S.

2008-11-15T23:59:59.000Z

19

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

20

Using Green Roofs to Minimize Roof Runoff Pollution  

E-Print Network (OSTI)

comparison for new construction: ­­ Green roofGreen roof -- $10$10--$30 per square foot$30 per square foot ­­ Traditional roofTraditional roof -- $5$5--$15 per square foot$15 per square foot Roof load evaluation required Roof Design ConsiderationsGreen Roof Design Considerations Cost comparison for new construction:Cost

Clark, Shirley E.

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TY JOUR T1 Implementation and Rejection of Industrial Steam System...  

NLE Websites -- All DOE Office Websites (Extended Search)

recommended steam system energy efficiency measures Based on analyses implementation of steam system energy efficiency measures is driven primarily by cost metrics payback period...

22

Photovoltaic roof heat flux  

E-Print Network (OSTI)

many solar installations have basic weather stations. Withthe solar panels. Figure 6: Setup #1 on RIMAC roof. Weather

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

23

Implementation and Rejection of Industrial Steam System Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementation and Rejection of Industrial Steam System Energy Efficiency Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Title Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Publication Type Journal Article Refereed Designation Unknown LBNL Report Number LBNL-6288E Year of Publication 2013 Authors Therkelsen, Peter L., and Aimee T. McKane Journal Energy Policy Volume 57 Start Page 318 Date Published 06/2013 Publisher Lawrence Berkeley National Laboratory Keywords industrial energy efficiency, industrial energy efficiency barriers, steam system efficiency Abstract Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

24

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network (OSTI)

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a working fluid has fostered and perpetuated this dependency throughout industrial history. Many large process operations, however, have not developed their steam systems to keep pace with rapidly changing energy economics. As a result, the use of steam on industrial plants seldom approaches the optimum levels of first or second law efficiency. At each of many industrial complexes today, tens of millions of energy dollars per year are literally wasted. This paper describes some case histories comparing actual and optimum steam system configurations, and operational concepts. Highly effective steam system analytical techniques developed and used by the author are discussed. These include "energy level" mass balancing; the "three-branch" thermodynamic system; and powerful sophisticated digital computer steam system models. These latter are really "working models" on which development options can be tried and actively evaluated for economic and technical feasibility. The principal of steam as a plant-wide integrating energy system is explained and demonstrated with examples. These show how a properly structured and effectively operated steam system can increase operational flexibility and facilitate the practical implementation of many energy conservation opportunities in process and plant service areas.

Waterland, A. F.

1980-01-01T23:59:59.000Z

25

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

26

Roofing Moisture Tolerance  

NLE Websites -- All DOE Office Websites (Extended Search)

Moisture Control in Low-Slope Roofing: Moisture Control in Low-Slope Roofing: A New Design Requirement A.O. Desjarlais and J.E. Christian, Oak Ridge National Laboratory N. A. Byars, University of North Carolina Charlotte This calculator performs the calculations described in Moisture Control in Low-Slope Roofing: A New Design Requirement. This calculator allows the roofing practitioner to determine if a roofing system design requires a vapor retarder or if the system can be modified to enhance its tolerance for small leaks. To use the calculator, simply supply the following information and click on the "Check Roof" button at the bottom of the form. Insulation Type and Thickness (in inches): Fiberboard Polyisocyanurate 0.5 1.0 1.5 2.0 2.5 3.0 Layer 1 None Fiberboard Polyisocyanurate 0.5 1.0 1.5 2.0 2.5 3.0 Layer 2

27

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

28

Roof Photovoltaic Test Facility  

Science Conference Proceedings (OSTI)

... In addition measurements of diffuse and beam solar irradiance are made by an adjacent meteorological station. The nine PV roofing products ...

2011-11-15T23:59:59.000Z

29

Roof Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roof Renovations Roof Renovations Roof Renovations October 16, 2013 - 4:58pm Addthis The roof of a Federal building is a common placement for a number of renewable energy technologies, so they should be addressed anytime a roof renovation is undertaken, including roof-mounted photovoltaics (PV) and solar hot water (SHW) systems that consider structural loads, accessible wiring/plumbing, and available roof space; daylighting, including skylights, clerestories, and solar tubes; and energy-efficient roofing technologies such as vegetative roofs. Renewable Energy Options for Building Envelope Renovations Daylighting Photovoltaics Solar Water Heating (SWH) In a Federal building renovation, a variety of equipment may vie for roof space. Decisions about using roof space should involve a range of

30

Roof bolting equipment & technology  

SciTech Connect

Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

Fiscor, S.

2009-04-15T23:59:59.000Z

31

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

32

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality of steam is often taken for granted, even overlooked at times. When the recent global recession challenged companies to remain profitable as a first priority, the result was that maintenance budgets were cut and long term cost reduction initiatives for steam systems set aside due to more pressing issues. One of the regrettable results of such actions is that knowledgeable personnel are re-assigned, retired, or released when necessary steam system cost reduction programs are eliminated. When the time arrives to refocus on long term cost reduction by improving the steam system, some programs may have to start from the beginning and a clear path forward may not be evident. New personnel are often tasked with steam improvements when the programs restart, and they may experience difficulty in determining the true key factors that can help reduce system cost. The urgency for lowering long term fuel use and reducing the cost of producing steam is near for each plant. Population growth and resultant global demand are inevitable, so the global economy will expand, production will increase, more fossil fuel energy will be needed, and that fuel will become scarce and more costly. Although fuel prices are low now, energy costs can be expected to trend significantly upward as global production and demand increase. Now is the time for plants to make certain that they can deliver high quality steam to process equipment at lowest system cost. There are three stages to help optimize plant steam for best performance at a low system cost; Phase 1: Manage the condensate discharge locations (where the steam traps & valves are located), Phase 2: Optimize steam-using equipment, and Phase 3: Optimize the entire steam system. This presentation will focus primarily on management of the condensate discharge locations (CDLs) and show sites how to use readily available data to more efficiently achieve goals; but will also provide insight into how the three stages interact to reduce system cost and improve process performance.

Risko, J. R.

2011-01-01T23:59:59.000Z

33

AEDG Implementation Recommendations: Cool Roofs | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

section of the guide and focus on cool roofs, which are recommended for metal building roofs and roofs with insulation entirely above deck. Publication Date: Wednesday,...

34

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

35

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

NLE Websites -- All DOE Office Websites (Extended Search)

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

36

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

37

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

38

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

39

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet and a fluid outlet. Shingles are assembled in a normal overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive shingles to provide a fluid path through the complete array. An inlet manifold is contained in a cap used at the peak of the roof and an outlet manifold is connected to the lowest row of shingles.

Straza, G.T.

1984-01-31T23:59:59.000Z

40

Reduce Natural Gas Use in Your Industrial Steam Systems: Ten Timely Tips  

SciTech Connect

This DOE Industrial Technologies Program brochure provides 10 timely tips to help industrial manufacturing plants save money and reduce natural gas use in their steam systems.

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

42

Review of four DOE-sponsored low temperature steam systems  

SciTech Connect

The system characteristics and limited operating experience of four DOE-sponsored low temperature steam system field tests are described. The West Point Peperell (Honeywell) installation in Farifax, Alabama, has been operational for nine months but has experienced numerous minor equipment and system problems and a major problem with its shadow bar tracker. The other three installations are not operational yet. Johnson and Johnson (Acurex) in Sherman, Texas, is currently in the startup and checkout phase and will be operational in December, 1979. Home Laundry (Jacobs-Del) in Pasadena, California, and Tropicana Products (General Electric) in Bradenton, Florida, are both well into the construction phase and expect to be operational in February, 1980.

Gerich, J.W.

1979-11-20T23:59:59.000Z

43

Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)  

E-Print Network (OSTI)

The U.S. DOE BestPractices Steam "Steam System Assessment Tool" (SSAT) is a powerful tool for quantifying potential steam improvement opportunities in steam systems. However, all assessment tools are only as good as the validity of the modeling inputs.

Harrell, G.; Jendrucko, R.; Wright, A.

2004-01-01T23:59:59.000Z

44

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

45

Energy saving potential of various roof technologies  

E-Print Network (OSTI)

Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...

Ray, Stephen D. (Stephen Douglas)

2010-01-01T23:59:59.000Z

46

Green roofs: potential at LANL  

SciTech Connect

Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

Pacheco, Elena M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

47

Measuring mine roof bolt strains  

DOE Patents (OSTI)

A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

Steblay, Bernard J. (Lakewood, CO)

1986-01-01T23:59:59.000Z

48

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet socket at the upper end and a fluid outlet plug at the lower end with a skirt at the lower end overlapping the plug. Shingles are assembled in an overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive longitudinally positioned shingles to provide fluid paths through the complete array. An inlet manifold is positioned at the upper end of the array or in the alternative contained in a cap used at the peak of the roof and an outlet manifold is connected to the outlet of the lowest row of shingles.

Straza, G.T.

1981-01-13T23:59:59.000Z

49

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

50

OCR Solar Roofing Inc | Open Energy Information  

Open Energy Info (EERE)

Facebook icon Twitter icon OCR Solar Roofing Inc Jump to: navigation, search Name OCR Solar & Roofing Inc Place Vacaville, California Product US installer of turnkey PV...

51

Aging of reflective roofs: soot deposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Aging of reflective roofs: soot deposition Title Aging of reflective roofs: soot deposition Publication Type Journal Article Year of Publication 2002 Authors Berdahl, Paul, Hashem...

52

Energy Efficiency Upgrades  

Science Conference Proceedings (OSTI)

The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

Roby Williams

2012-03-29T23:59:59.000Z

53

Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant  

SciTech Connect

This DOE Save Energy Now case study describes how Dow Chemical Company saves 272,000 MMBtu and $1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana.

2007-11-01T23:59:59.000Z

54

Generating Electricity with your Steam System: Keys to Long Term Savings  

E-Print Network (OSTI)

The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings with relatively quick payback of capital. Carefully planned and executed projects are the key to unlocking the maximum value of generating electricity from an existing steam system. This paper illustrates the key concepts of generating onsite power with backpressure steam turbine generators along with practical considerations.

Bullock, B.; Downing, A.

2010-01-01T23:59:59.000Z

55

Green Roofs - Federal Technology Alert  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

roof of the 12- story Chicago City Hall building has been retrofitted with a 22,000-square-foot rooftop garden. The primary goal of this installation, which was completed in...

56

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

57

Advanced Energy Efficient Roof System  

SciTech Connect

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

58

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

59

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

60

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Green Roof Media Selection forGreen Roof Media Selection for the Minimization of Pollutantthe Minimization of Pollutant  

E-Print Network (OSTI)

-- $10$10--$30 per square foot$30 per square foot ­­ Traditional roofTraditional roof -- $5$5--$15 per square foot$15 per square foot Roof load evaluation required for retrofitsRoof load evaluation requiredPersonalize property Increased valueIncreased value Increased roof lifeIncreased roof life Decreased roofing costs

Clark, Shirley E.

62

Microsoft PowerPoint - Cool Roofs_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for: for: Quarterly Facilities and Infrastructure Meeting Presented by: The Office of Engineering and Construction Management Content Excerpted From Presentation of: Bob Schmidt - NNSA Kansas City Plant Cool Roofs - An Overview August 4, 2009 2 *The terms "white roof" and "cool roof" are often mistakenly used interchangeably. A white roof is not necessarily a cool roof and a cool roof is not necessarily white. *"Cool Roofs" come in many style as defined by industry standard and can include: Metal Single ply Modified bitumen Acrylic coated White Roof vs. Cool Roof 3 Solar reflectance alone can significantly influence surface temperature, with the white stripe on the brick wall about 5 to 10° F (3-5° C) cooler than the surrounding, darker

63

Roof screening for underground coal mines: recent developments  

Science Conference Proceedings (OSTI)

The use of screens to control falls of the immediate roof or roof skin (that is between the installed primary and secondary roof supports) is described. 5 figs.

Compton, C.S.; Gallagher, S.; Molinda, G.M.; Mark, C.; Wilson, G.

2008-06-15T23:59:59.000Z

64

DOE Solar Decathlon: 2005 Feature Article - The Green Roof: Thinking...  

NLE Websites -- All DOE Office Websites (Extended Search)

a leader in green roof research, technology and usage, where an estimated 10% of all flat roofs are green. MSU's Green Roof Research Program was initiated in collaboration...

65

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

66

Accelerated Aging of Roofing Surfaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated aging of roofing surfaces Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http://HeatIsland.LBL.gov April 4, 2013 Development of Advanced Building Envelope Surface Materials & Integration of Artificial Soiling and Weathering in a Commercial Weatherometer New York Times, 30 July 2009 2010 2012 Challenge: speed the development of high performance building envelope materials that resist soiling, maintain high solar reflectance, and save energy 2 | Building Technologies Office eere.energy.gov

67

Guidelines for Selecting Cool Roofs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

68

One Cool Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

69

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

70

SolarRoofs com | Open Energy Information  

Open Energy Info (EERE)

SolarRoofs com Jump to: navigation, search Name SolarRoofs.com Place Carmichael, California Zip 95608 Sector Solar Product California-based manufacturer of the patented Skyline...

71

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

roof when it came time to replace the roofing at our Washington, D.C. headquarters - an investment that's projected to cut thousands of dollars off our utility bills each year....

72

Aging and weathering of cool roofing membranes  

E-Print Network (OSTI)

and L.S. Rose. 2002. “Aging of reflective roofs: sootAging and Weathering of Cool Roofing Membranes HashemNRC), Canada ABSTRACT Aging and weathering can reduce the

2005-01-01T23:59:59.000Z

73

Passive solar roof ice melter  

Science Conference Proceedings (OSTI)

An elongated passive solar roof ice melter is placed on top of accumulated ice and snow including an ice dam along the lower edge of a roof of a heated building and is held against longitudinal movement with respect to itself. The melter includes a bottom wall having an upper surface highly absorbent to radiant solar energy; a first window situated at right angles with respect to the bottom wall, and a reflecting wall connecting the opposite side edges of the bottom wall and the first window. The reflecting wall has a surface facing the bottom wall and the window which is highly reflective to radiant solar energy. Radiant solar energy passes through the first window and either strikes the highly absorbent upper surface of the bottom wall or first strikes the reflecting wall to be reflected down to the upper surface of the bottom wall. The heat generated thereby melts through the ice below the bottom wall causing the ice dam to be removed between the bottom wall and the top of the roof and immediately adjacent to the ice melter along the roof. Water dammed up by the ice dam can then flow down through this break in the dam and drain out harmlessly onto the ground. This prevents dammed water from seeping back under the shingles and into the house to damage the interior of the house.

Deutz, R.T.

1981-09-29T23:59:59.000Z

74

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER  

E-Print Network (OSTI)

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

Bieber, Michael

75

Roofing shingle assembly having solar capabilities  

Science Conference Proceedings (OSTI)

A roofing shingle assembly having solar capabilities comprising a flat main portion having upper and lower surfaces, and curved segments integral with the upper and lower edges of said shingle. The roofing shingles are mounted in overlapping parallel array with the curved segments interconnected to define a fluid conduit enclosure. Mounting brackets for the shingles are secured on the roof rafters.

Murphy, J.A.

1982-03-16T23:59:59.000Z

76

Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling  

SciTech Connect

Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

Syd S. Peng

2005-10-01T23:59:59.000Z

77

Tips: Energy-Efficient Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Roofs Energy-Efficient Roofs Tips: Energy-Efficient Roofs April 24, 2012 - 4:29pm Addthis Tips: Energy-Efficient Roofs If you've ever stood on a roof on a hot summer day, you know how hot it can get. The heat from your roof makes your air conditioner work even harder to keep your home cool. Cool Roofs If you are building a new home, decide during planning whether you want a cool roof, and if you want to convert an existing roof, you can: Retrofit the roof with specialized heat-reflective material. Re-cover the roof with a new waterproofing surface (such as tile coating). Replace the roof with a cool one. A cool roof uses material that is designed to reflect more sunlight and absorb less heat than a standard roof. Cool roofs can be made of a highly reflective type of paint, a sheet covering, or highly reflective tiles or

78

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network (OSTI)

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol-air principles are covered and a simplified method of evaluation presented. A life cycle energy savings example is discussed. Benefits of roof life and roof top equipment efficiency and maintenance are covered as well as water consumption and performance trade-offs with alternate methods of roof heat gain control. Testimonials and case studies are presented. The gradual migration of business, industry, and populace to the southern United States was largely brought on by the advent of the practical air-conditioner, cheap electricity, and the harshness of northern winters. But while "wintering at Palm Beach" has been replaced by "Sun Belt industries" ; the compression-refrigeration cooling cycle is about the only thing separating millions of southerners (native and adopted) from August heat stroke and the Detroit News employment ads. This migration has been spurred by economic recessions which hit harder at the competitively populated northern centers than at the still growing industries of the south. These trends are important illustrations of the concern for efficient cooling strategies. Not only are homes in hot climates vulnerable to the now not-so-low cost of electricity but large, compact. and heavily occupied buildings (offices, schools, hospitals, theaters, etc.) often must air-condition year-around. In 1968. air-conditioning was 3% of U.S. end energy consumption compared to 18% for space heating and 25% for transportation. By 1980, according to Electric Power Research Institute's Oliver Yu, air-conditioning use was 12.5% of all electricity generated and by the year 2000 is projected to reach 16.7% "as migration slows and the GNP reaches a stable 3% growth rate" (EPRI 1982 to 1986 Overview and Strategy). Of further significance is the effect of air-conditioning loads on the peak generating requirements of electrical utilities. Because utilities must build generating capacity to meet peak requirements, they normally charge a higher summer kWh rate (for residential) and levy a peak kW demand charge on a monthly or even annual "ratchet" rate (for larger service customers). The June '83 cover of Houston City Magazine, in reference to future electrical rates, promised: "Pay or Sweat". Typical of many cooling or heat gain prevention strategies being employed on "innovative" buildings in warm climates, evaporative spray roof cooling (ESRC) systems (not to be confused with roof ponds) are not new. Like ventilated structures, ice house roofs, enhanced ventilation, masonry walls, night sky radiation and ground contact cooling, evaporative cooling in many forms has been around for centuries. (See Solar Age, July '82 and February '81 for related articles). Even the development of roof spray systems is not as newly founded as one might suspect.

Bachman, L. R.

1985-01-01T23:59:59.000Z

79

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why Cool Roofs? Why Cool Roofs? Why Cool Roofs? Addthis Description By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills. Speakers Secretary Steven Chu Duration 1:46 Topic Tax Credits, Rebates, Savings Commercial Weatherization Commercial Heating & Cooling Fossil Oil Credit Energy Department Video SECRETARY OF ENERGY STEVEN CHU: The reason we wanted the Department of Energy to take the lead in cool roofs is to demonstrate that this really saves money. If you have a roof and it's black, it's absorbing energy from the sun

80

Cool Roofs | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roofs Cool Roofs Cool Roofs Posted: July 18, 2012 - 1:59pm | Y-12 Report | Volume 9, Issue 1 | 2012 Hot, sunny days call for light-colored clothing to reflect the heat. As it turns out, the same principle works for roofs. Consider the results from a Lawrence Berkeley National Laboratory study in Austin, Texas, which measured a dark roof to average a whopping 43 degrees hotter than a light roof. The hotter the roof, the hotter the building becomes, and the more air-conditioning is needed - 11 percent, in that particular study. That in turn puts more carbon dioxide into the atmosphere. Higher atmospheric temperatures also affect atmospheric chemistry, causing higher ozone levels and more smog. Turning down the heat can be both inexpensive and simple, however: replace

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

82

Million Solar Roofs Flyer (Revision)  

SciTech Connect

The Million Solar Roofs Initiative, announced in June 1997, assists businesses and communities in installing solar energy systems on one million buildings across the United States by 2010. The US Department of Energy leads this trailblazing initiative by partnering with the building industry, local governments, state agencies, the solar industry, electric service providers, and non-governmental organizations to remove barriers and strengthen the demand for solar technologies.

Not Available

2000-11-01T23:59:59.000Z

83

NEPA CX Determination SS-SC-11-01 for SSRL Seismic Upgrade Phase 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 for SSRL Seismic Upgrade Phase 2 1 for SSRL Seismic Upgrade Phase 2 National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-11-01 B. Brief Description of Proposed Action: The Stanford Synchrotron Radiation Lightsource (SSRL) is proposing to upgrade a portion of the existing Stanford Positron-Electron Asymmetric Ring (SPEAR) to meet seismic standards. The proposed work includes : 1) the replacement of concrete roof blocks, placement of footings and new concrete walls, and installation of seismic connections at the old Beam Line 4; 2) the replacement of existing concrete roof blocks with precast roof blocks, placement of new footings, and installation of seismic anchors and connections at the northeast section of the

84

Recharge Elec. Upgrade Type  

E-Print Network (OSTI)

battery can be plugged in to an electric outlet to be recharged. Background: PHEVs 1. How many U" cost) · Variety of upgrade packages selected--some with zero upgrades · Most popular upgrade" Price Scenario ("home recharges" only) · "Base" PHEV=$3,000 premium · Added costs for upgrades (Full

California at Davis, University of

85

DETERMINATION OF MAXIMUM PERMISSIBLE LEAKAGE FROM THE HRT PROCESS STEAM SYSTEM  

SciTech Connect

Calculations were made to determine the radiation hazard to HRT personnel as a result of leakage to the atmosphere from the process steam system in the event of a heat exchanger tube rupture. These calculations show that with the present four-minute delay before dumping approximately 1020 lb of fuel solution may be transferred to the steam system. The radiation hazard from fission products in the atomosphere will be negligble if the steam killer blower is operating. If this blower is not operatin. a natural convection loop will be set up in the steam killer which will have a condensing capacity of 4 lb/min of steam at atmospheric pressure. In this latter case. the inhalation hazard will be negligible when the leak rate through the steam stop valves is less than 4lb/ min. (auth)

Gift, E.H.

1959-01-30T23:59:59.000Z

86

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

87

Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)  

Science Conference Proceedings (OSTI)

Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

Not Available

2012-10-01T23:59:59.000Z

88

Case history of industrial plant steam system layup for direct-fired gas operations  

Science Conference Proceedings (OSTI)

This paper presents the facts of an industrial plant steam system layup for direct fired gas operations. Fuel price savings indicated that gas firing a paper dryer, the largest steam user in the plant, would pay for itself in one year. Conversion work is detailed. Primary gas distribution was achieved by using one line of the steam loop. Machine water heating, power venting, space heating, and air makeup heating, among other conversions, are also specified.

Stacy, G.N.

1983-06-01T23:59:59.000Z

89

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about Ł28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

90

List of Roofs Incentives | Open Energy Information  

Open Energy Info (EERE)

List of Roofs Incentives List of Roofs Incentives Jump to: navigation, search The following contains the list of 178 Roofs Incentives. CSV (rows 1 - 178) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools State Government

91

LIGHTNING PROTECTION OF ROOF-MOUNTED SOLAR ...  

Science Conference Proceedings (OSTI)

Page 1. LIGHTNING PROTECTION OF ROOF-MOUNTED SOLAR CELLS ... Working paper developed for a NASA-sponsored study of solar cells ...

2013-05-17T23:59:59.000Z

92

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report  

Science Conference Proceedings (OSTI)

This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

Not Available

2002-10-01T23:59:59.000Z

93

Lightweight, self-ballasting photovoltaic roofing assembly  

DOE Patents (OSTI)

A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

Dinwoodie, T.L.

1998-05-05T23:59:59.000Z

94

Lightweight, self-ballasting photovoltaic roofing assembly  

DOE Patents (OSTI)

A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

Dinwoodie, Thomas L. (Berkeley, CA)

1998-01-01T23:59:59.000Z

95

Aging of reflective roofs: soot deposition  

Science Conference Proceedings (OSTI)

Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

Berdahl, Paul; Akbari, Hashem; Rose, Leanna S.

2001-05-01T23:59:59.000Z

96

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

classes of users: potential customersbuilding owners and roofing surface sellersinstallers. Input User selects location, enters the proposed roof's R-value, reflectance,...

97

Evolution of cool roof standards in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

& Standards, Heat Island Abstract Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally...

98

Terracotta and Cement Roofs Vulnerable in Wildfires, NIST ...  

Science Conference Proceedings (OSTI)

... that the embers—or firebrands—infiltrated gaps between certain types of roofing tiles and ... Of the four roof styles studied, the flat tile terracotta ...

2013-05-14T23:59:59.000Z

99

Application of Spray Foam Insulation Under Plywood and OSB Roof...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet) Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study:...

100

Accelerated Aging of Roofing Surfaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Aging of Roofing Surfaces Accelerated Aging of Roofing Surfaces Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Potential benefits of cool roofs on commercial buildings: conserving...  

NLE Websites -- All DOE Office Websites (Extended Search)

of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on...

102

New and Underutilized Technology: Green Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Roofs Green Roofs New and Underutilized Technology: Green Roofs October 8, 2013 - 2:53pm Addthis The following information outlines key deployment considerations for green roofs within the Federal sector. Benefits Green roofs place vegetation on the rooftop to reduce heat load and add insulation. It also reduces storm runoff from the roof. Application Green roofs are appropriate for deployment within most building categories with higher roof to conditioned floor area ratios and should be considered in building design, renovation, or during roof replacement projects. Climate and Regional Considerations Climate issues can affect the performance of green roofs. Key Factors for Deployment Green roofs have weight loading issues, which need to be considered prior to deployment.

103

Building Energy Software Tools Directory: Cool Roof Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

104

WIPP supplementary roof support system Room 1, Panel 1: Geotechnical field data analysis report  

SciTech Connect

The design of the Room 1, Panel 1, supplementary roof support system was finalized in September 1991, and the system successfully installed in the test bin area between the bulkheads by December 1991. Simultaneously with the support system installation, existing monitoring system was upgraded to meet the needs of the installed roof support. This included extensometers, closure stations, rockbolt load cells as well as survey measurements of roof sag and floor lift. A Project Control Group (PCG) was established in order to monitor room and support system performance. Weekly meetings of the PCG were held to review all monitored data against criteria set in the initial design, and to modify these where necessary. Records of these meetings have been kept, with copies of all data summaries and action notes. These data records are maintained in the Engineering data files. After more than ten months of monitoring and reviewing experience, several modifications have been made both to the way data has been reported as well as to the load adjustment criteria. The support system has performed as expected in the design, with no signs of instability developing considering the rates of roof deformation, the rock bolt loads and the observed fracture behavior in the roof. This is particularly true of the horizon in which the rockbolt anchors are located, the most critical part of the design. The distribution of load build-up, throughout the 286 rockbolt load cells installed, in the Room 1 has been found satisfactory, and the load increases as evaluated by the PCG on a weekly basis have been within the acceptable range. The minimum life of the installed support system is estimated at 15 years based on the highest roof expansion rate experienced to date. This report provides analysis of geotechnical field data collected up to December 1992.

1993-03-01T23:59:59.000Z

105

Modeling the effects of reflective roofing  

SciTech Connect

Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

Gartland, L.M.; Konopacki, S.J.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-08-01T23:59:59.000Z

106

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

107

what is a cool roof? what is the  

E-Print Network (OSTI)

samples the 2008 building energy efficiency standards for cool roofs: There are two approaches Building Energy Efficiency Standards California contact more about cool roof requirements for more to the building below The sun's heat hits the roof surface A non-residential cool roof Coating for a low

108

Million Solar Roofs: Partners Make Markets  

DOE Green Energy (OSTI)

Million Solar Roofs (MSR) Partners Make Markets Executive Summary is a summary of the MSR Annual Partnership Update, a report from all the partners and partnerships who participate in the MSR Initiative.

Not Available

2004-06-01T23:59:59.000Z

109

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

110

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Wind Turbines Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Chu at COP-16: Building a Sustainable Energy...

111

Next Generation Roofs and Attics for Homes  

SciTech Connect

Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

Miller, William A [ORNL; Kosny, Jan [ORNL

2008-01-01T23:59:59.000Z

112

Upgrading a Multifuncoid ?  

E-Print Network (OSTI)

I define the concepts of multifuncoid (and completary multifuncoid) and upgrading. Then I conjecture that upgrading of certain multifuncoids are multifuncoids (and that upgrading certain completary multifuncoids are completary multifuncoids). I have proved the conjectures for n ? 2. This short article is the first my public writing where I introduce the concept of multidimensional funcoid which I am investigating now. Refer to this Web site for the theory which I now attempt to generalize. 1

L {x Ai

2012-01-01T23:59:59.000Z

113

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network (OSTI)

The U.S. Department of Energy Office of Industrial Technology (DOE-OIT) BestPractice efforts aim to assist U.S. industry in adopting near-term energy-efficient technologies and practices through voluntary technical-assistance programs on improved system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System Scoping Tool. This paper describes how the tool was developed, how the tool works, and the status of efforts to improve the tool in the future.

Wright, A.; Hahn, G.

2001-05-01T23:59:59.000Z

114

Energy Performance Aspects of a Florida Green Roof Part 2  

E-Print Network (OSTI)

Green roof installation in the United States is growing at a significant rate. There are a number of reasons for this growth including rainwater runoff reduction and aesthetic benefits. Energy performance evaluations of green roofs, the subject of this study, are also becoming available. This monitored study is an evaluation of summer and winter energy performance aspects of a green roof on a 2-story central Florida university building addition that was completed in 2005. An earlier report on this study was published through the 2006 Symposium on Improving Building Systems in Hot and Humid Climates. This report reviews these earlier results and provides second-summer results which show significant performance improvements for the green roof compared with the first summer results. One half of the two-story project building’s 3,300 square foot project roof is a light-colored, conventional flat membrane roof, the other half being the same membrane roof covered with 6” to 8” of plant media and a variety of primarily native Florida vegetation up to approximately 2 feet in height to create an extensive green roof. Analysis of 2005 summer data from the first year the green roof was installed indicates significantly lower peak roof surface temperatures for the green roof compared with the conventional roof and a significant shift in when the peak green roof temperature occurs compared to the conventional roof. Data analysis of the same 2005 period also shows lower heat fluxes for the green roof. Calculations show the green roof to have an average heat flux of 0.39 Btu/ft2•hr or 18.3% less than the conventional roof’s average heat fluxrate of 0.48 Btu/ft2•hr. Analysis of 2006 summer data when the green roof was more established and conventional roof somewhat darker, shows even greater temperature and heat flux differences between the two roofs. The weighted average heat flux rate over the 2006 summer period for the green roof is 0.34 Btu/ft2•hr or 44.1% less than the conventional roof’s average heat flux rate of 0.60 Btu/ft2•hr. An additional heat flux analysis was performed for an April 1st 2006 through October 31st 2006 monitoring period to provide an estimate of heat flux for an extended cooling season. The weighted average heat flux rate over the period for the green roof is 0.25 Btu/ft2•hr or 45.7% less than the conventional roof’s average heat flux rate of 0.46 Btu/ft2•hr. Winter data again show substantially lower peak roof surface temperatures, higher nighttime surface temperatures and significantly lower heat flux rates for the green roof compared with the conventional roof. For periods during which the ambient air temperature was less than 55oF, the weighted average winter heat flux rate for the green roof is -0.40 Btu/ft2•hr or 49.5% less than the conventional roof’s average heat flux rate of -0.79 Btu/ft2•hr. Because of air conditioning zoning limitations, an extensive energy savings analysis was not possible for this project. However, an energy savings analysis was performed using the roof heat flux results and equipment efficiency assumptions. Based on this analysis the total estimated cooling and heating season savings for the green roof compared with the conventional roof, if the entire 3,300 square foot project roof were green, would be approximately 489 kWhr/yr.

Sonne, J.; Parker, D.

2008-12-01T23:59:59.000Z

115

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

116

Low-slope roofing research needs: An ORNL draft assessment  

Science Conference Proceedings (OSTI)

The Low-Slope Roofing Research Needs Agenda is a resource document prepared by the Roofing Industry Research Advisory Panel. The document will aid the Panel in developing recommended research priorities and schedules for the Roof Research Center established by the US Department of Energy at Oak Ridge National Laboratory (ORNL). The Roof Research Center provides the roofing industry with a unique test facility capable of careful, on-line measurements on whole roof systems under controlled, simulated in-service conditions. This type of systems testing, however, is not well-developed in the roofing industry where, customarily, careful measurements are not only made to assess individual material properties under design conditions and systems testing generally is limited to ''performance testing''; that is, exposing roof systems to typical or accelerated environments and observing or measuring the time intergrated effects on various components. This document discusses the capabilities of the center and roofing research issues.

Busching, H.W.; Courville, G.E.; Dvorchak, M.; McCorkle, J.

1987-08-01T23:59:59.000Z

117

Weathering of Roofing Materials-An Overview  

Science Conference Proceedings (OSTI)

An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

2006-03-30T23:59:59.000Z

118

Next Generation Attics and Roof Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Attics Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose & Objectives

119

SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Ballasted Flat Roof Innovative Ballasted Flat Roof Solar Photovoltaic Racking System to someone by E-mail Share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Facebook Tweet about SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Twitter Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Google Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Delicious Rank SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Digg Find More places to share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on AddThis.com... Concentrating Solar Power Photovoltaics

120

Pollution Impact on Cool Roof Efficacy Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Pollution Impact on Cool Roof Efficacy Emerging Technologies » Pollution Impact on Cool Roof Efficacy Research Project Pollution Impact on Cool Roof Efficacy Research Project The Department of Energy (DOE) is currently determining how pollution impacts the efficacy of cool roofs. The project specifically is focusing on the efficacy of white roofs in Northern India. The first phase of the project will take physical measurements to characterize the cooling and climate effects of white roofs. Results from this project will provide important guidance to policymakers and planners as they decide where cool roofs would have the greatest benefits. Project Description The project involves the development of advanced surfaces and next-generation materials to improve solar reflectance of roofs; the ability to reflect the visible, infrared and ultraviolet wavelengths of the

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cool Roofs Lead to Cooler Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities July 23, 2010 - 2:07pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofs and roadways create what is called the "urban heat island effect," meaning a city is significantly warmer than its surrounding rural areas. Light colored roofs reduce the heat island effect and improve air quality by reducing emissions. Lighter-colored roofing surfaces reflect more of the sun's heat, which helps to improve building efficiency by reducing cooling costs and offsetting carbon emissions. Roofs and road pavement cover 50 to 65 percent of urban areas. Because they absorb so much heat, dark-colored roofs and roadways create what is called

122

Status of cool roof standards in the United States  

E-Print Network (OSTI)

Cool roofs save energy. ASHRAE Transactions 104(1B):783-788.2000. Updates on revision to ASHRAE Standard 90.2: includingSSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B),

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

123

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B),Roofing Insulation and Siding. Mar/Apr, pp. 52-58. ASHRAE.1999. ASHRAE Standard 90.1-1999: Energy Standard for

Akbari, Hashem

2008-01-01T23:59:59.000Z

124

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

125

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

Konopacki. 1998b. "Measured Energy Savings of Light- coloredPeak Power and Cooling Energy Savings of High-Albedo Roofs,”Peak Power and Cooling Energy Savings of High-albedo Roofs,"

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

126

(DDBS) System Doubles Pot Suction, Reduces Roof Emission  

Science Conference Proceedings (OSTI)

... Suction (DDBS) System Doubles Pot Suction, Reduces Roof Emission .... Phase Change Materials in Thermal Energy Storage for Concentrating Solar Power ...

127

Cool Roof Resource Guide for Federal Agencies (Fact Sheet)  

Science Conference Proceedings (OSTI)

Resource guide containing information and links for the evaluation and installation of cool roofs within the Federal Government

Not Available

2009-07-01T23:59:59.000Z

128

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

model the complete heat transfer process through the roof,model the complete heat transfer process through the roof,

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

129

Boots on the Roof | Open Energy Information  

Open Energy Info (EERE)

Boots on the Roof Boots on the Roof Jump to: navigation, search Logo: Boots on the Roof Name Boots on the Roof Address 4670 Automall Parkway Place Fremont, California Zip 94538 Region Bay Area Number of employees 51-200 Year founded 1992 Phone number 888.893.0367 Website http://www.bootsontheroof.com/ Coordinates 37.498922°, -121.963028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.498922,"lon":-121.963028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Update on the Million Solar Roofs Initiative  

DOE Green Energy (OSTI)

The Million Solar Roofs Initiative, announced by the President in June of 1997, spans a period of twelve years and intends to increase domestic deployment of solar technologies. This paper presents an overview of the development of the initiative and significant activities to date.

Herig, C.

1999-05-09T23:59:59.000Z

131

Solar heater and roof attachment means  

Science Conference Proceedings (OSTI)

A solar heater includes an elongated solar collector having two fixedly connected solar panels of highly heat conductive material supported by a roof clamp on a shingled roof. The bottom edges of each of the solar panels include upturned gutter portions. One form of roof clamp for shingled roofs includes a J-shape shingle clamp member having a clamp bolt extending therethrough, and a solar collector clamp member assembled on the bolt and clamped to the bottom gutter portions of the solar panels. A bottom plate of the J-shape clamp member is slid under a shingle of a first shingle course and under a shingle of a second upper shingle course to carry the bolt into the top of the gap between adjacent shingle portions of the first course and to position a top plate of the shingle clamp member over parts of the shank portions of the first course and over a part of the one shingle of the second course. A clamp nut clamps the collector clamp member and the shingle clamp member firmly to the contacted shingles.

Howe, G.L.; Koutavas, S.G.

1984-02-21T23:59:59.000Z

132

Covered Product Category: Cool Roof Products  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

133

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

134

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Desjarlais, Andre Omer [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

135

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Design concepts for flash steam systems for use with medium temperature geothermal water  

SciTech Connect

Medium temperature water can be utilized for production of electrical energy when it is available in massive quantities. The design concepts herein are to provide a base for feasibility studies and evaluate processes with consideration of the economics of developing this electrical energy on a commercial scale. Two methods of producing electrical energy with geothermal water are being considered. The methods discussed in this document are by the flashing process of producing steam for driving turbine-generators. Flash steam systems were evaluated for use with 300/sup 0/F water. Single and multiflash systems were evaluated and component size sensitivity to operating pressures were studied. It was determined that a double flash system is the most practical system. Net power production of approximately 2.4 megawatts/million pounds per hour of brine is estimated for the double flash system which operates at an initial flash pressure of 30 psia and a second stage pressure of 13 psia. Flash pressures below atmospheric are not recommended due to oxygen leakage into the system. Sensitivity analysis has indicated that the power output is not highly sensitive to the first stage flash pressure. A significant loss in power output occurs if the second stage pressure is increased significantly.

Whitbeck, J.F.

1975-07-01T23:59:59.000Z

137

T10 SND UPGRADE  

E-Print Network (OSTI)

The program of upgrade of the Spherical Neutral Detector for future experiments at a new VEPP-2000 e + e ? collider is presented. Modernization includes upgrades of electromagnetic calorimeter, tracking system, detector electronics, data acquisition system, and offline software. It is also planned to equip the detector with two new subsystems: particle identification system based on aerogel ?erenkov counters and external electron tagging system for ?? physics. 1

unknown authors

2001-01-01T23:59:59.000Z

138

Optics upgrade for switchyard  

SciTech Connect

An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

Kobilarcik, Thomas R.; /Fermilab

2005-08-01T23:59:59.000Z

139

Evolution of cool-roof standards in the United States  

SciTech Connect

Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

2008-07-11T23:59:59.000Z

140

Bio-based Thermochromic Intelligent Roof Coating Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

based Thermochromic Intelligent Roof based Thermochromic Intelligent Roof Coating Research Project Bio-based Thermochromic Intelligent Roof Coating Research Project The Department of Energy is conducting research into bio-based thermochromic intelligent roof coatings. The coatings are developed from waste cooking oil. Project Description This project seeks to develop and demonstrate a waste cooking oil-based thermochromic smart roof coating technology that will adjust light transmission in response to temperature changes. This will reduce energy demands for temperature regulation. The project will also study the effects of different oil sources on coating properties. Project Partners This project is being undertaken between the Department of Energy and United Environment & Energy. Project Goals

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Status of cool roof standards in the United States  

SciTech Connect

Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

Akbari, Hashem; Levinson, Ronnen

2007-06-01T23:59:59.000Z

142

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

143

Would You Consider Installing a Cool Roof? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? August 12, 2010 - 7:30am Addthis On Monday, Erin discussed cool roof technologies and how they can improve the comfort of buildings while reducing energy costs. Would you consider installing a cool roof? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Installing a Cool Roof? Tips: Energy-Efficient Roofs How Do You Save Water When Caring for Your Lawn?

144

Building Technologies Office: Pollution Impact on Cool Roof Efficacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution Impact on Pollution Impact on Cool Roof Efficacy Research Project to someone by E-mail Share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Facebook Tweet about Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Twitter Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Google Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Delicious Rank Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Digg Find More places to share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

145

Composite synthetic roofing structure with integral solar collector  

Science Conference Proceedings (OSTI)

A form-molded synthetic foam roofing section or structure is described, having a solar-collecting insert or panel incorporated therein with a relatively broad undersurface and an exposed surface configured to resemble interlocked and overlapping roofing shingles which are united to support a surface such as wood, metal, etc. During the molding process. The roofing structure may be affixed by any conventional means, such as nails or adhesives, to roof boards, rafters or over old existing roof structures with adjacent roofing sections interconnected by appropriate inlets and outlets for the solar panel insert. Solar heat-collecting fluid may be circulated through the solar panel inserts in a conventional manner. Connecting tubes are provided for connecting the solar panel inserts in adjacent roofing sections and terminal connectors are compatible with all circulating systems.

Gould, W.M.

1981-06-16T23:59:59.000Z

146

Aging and weathering of cool roofing membranes  

Science Conference Proceedings (OSTI)

Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

2005-08-23T23:59:59.000Z

147

Upgrading Below Grade Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patrick H. Huelman, Sam Breidenbach, Steve Schirber Patrick H. Huelman, Sam Breidenbach, Steve Schirber NorthernSTAR Building America Partnership Upgrading Below Grade Spaces Residential Energy Efficiency Stakeholder March 1, 2012 Austin, TX * Act 1: Technical Challenges & Opportunities - Pat Huelman, University of Minnesota * Act 2: Assessing Homeowner Priorities & Risks - Sam Breidenbach, TDS Custom Construction * Act 3: An Industry Perspective - Steve Schirber, Cocoon Act 1. Upgrade Below Grade * Basement Remodeling: It Doesn't Get Any Riskier! - Combustion safety - Foundation moisture - Radon (& other soil gases) - Biologicals (mold, dust mites, etc.) - Garage gases (if attached) * And front and center are uncontrolled... - negative pressures in basements (beyond stack)

148

AGS intensity upgrades  

SciTech Connect

After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10{sup 13} protons per pulse accelerated to 24 GeV was achieved. The high intensity slow-extracted beam program at the AGS typically serves about five production targets and about eight experiments including three rare Kaon decay experiments. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of four.

Roser, T.

1995-12-01T23:59:59.000Z

149

DOE Cool Roof Calculator for Low-Slope or Flat Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Calculator Cool Roof Calculator Estimates Cooling and Heating Savings for Flat Roofs with Non-Black Surfaces - Developed by the U.S. Department of Energy's Oak Ridge National Laboratory (Version 1.2) - This version of the calculator is for small and medium-sized facilities that purchase electricity without a demand charge based on peak monthly load. If you have a large facility that purchases electricity with a demand charge, run the CoolCalcPeak version in order to include the savings in peak demand charges from using solar radiation control. - What you get out of this calculator is only as good as what you put in. If you CLICK HERE , you'll find help in figuring out the best input values. Some things, such as the weathering of the solar radiation control properties and the effects of a plenum, are especially important. You'll

150

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

151

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

152

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

153

Cool Roofs: Your Questions Answered | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: Your Questions Answered Roofs: Your Questions Answered Cool Roofs: Your Questions Answered January 6, 2011 - 2:58pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Last month Secretary Chu announced that the Department of Energy had installed a "cool roof" atop the west building of our Washington, DC headquarters. The announcement elicited a fair number of questions from his Facebook fans, so we decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice. Jim Bullis (Facebook): So what is the percentage saving of energy bills for this building? Answer: The West Building cool roof is estimated to save about $2,000 per

154

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

155

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

156

The upgrade of GEO600  

E-Print Network (OSTI)

The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.

Harald Lück; Christopf Affeldt; Jerome Degallaix; Andreas Freise; Hartmut Grote; Martin Hewitson; Stefan Hild; Jonathan Leong; Mirko Prijatelj; Kenneth A. Strain; Benno Willke; Holger Wittel; Karsten Danzmann

2010-04-02T23:59:59.000Z

157

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10 19%. With the assumption of an annual increase...

158

Cool roofs as an energy conservation measure for federal buildings  

SciTech Connect

We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

Taha, Haider; Akbari, Hashem

2003-04-07T23:59:59.000Z

159

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

160

Thermal Properties of Green Roofs in Cold Climates.  

E-Print Network (OSTI)

??Green roofs have, in the past 15 years or so, gained increasing acceptance as a means of replacing or offsetting the lost of green space… (more)

Lanham, Johnnel Kiera

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings  

SciTech Connect

This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

Choi, J.; Ludwig, P.; Brand, L.

2013-04-01T23:59:59.000Z

162

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

163

Cool roof Q+A 011.doc 29 July 2009 Cool Roof Q & A (draft)  

E-Print Network (OSTI)

thermal radiation. Thus, a cool roof should have both high "solar reflectance" (ability to reflect, also measured on a scale of 0 to 1). The solar reflectance and thermal emittance of a surface are called its "radiative" properties because they describe its abilities to reflect solar radiation and emit

164

Solar energy collector and associated methods adapted for use with overlapped roof shingles on the roof of a building  

Science Conference Proceedings (OSTI)

A method and apparatus are disclosed for collecting solar energy adapted for use with overlapped roof shingles on the roof or side of a building comprising thin flexible metal plates interposed between the overlapped shingles in heat transfer relation therewith such that heat absorbed by the shingles is transferred to the metal plates. The plates extend through the roof via slots provided therein and are affixed in heat transfer relation with pipes containing a fluid.

Nevins, R.L.

1980-04-15T23:59:59.000Z

165

CRYOGENICS IN BEPCII UPGRADE.  

SciTech Connect

THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

JIA,L.; WANG,L.; LI,S.

2002-07-22T23:59:59.000Z

166

Visual Analytics for Roof Savings Calculator Ensembles  

SciTech Connect

The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.

Jones, Chad [University of California, Davis; New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Ma, Kwan-Liu [University of California, Davis

2012-01-01T23:59:59.000Z

167

The LHCb VELO Upgrade  

E-Print Network (OSTI)

LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the microstrip silicon detector surrounding the interaction point, providing tracking and vertexing measurements. The upgrade of the LHCb experiment, planned for 2018, will increase the luminosity up to $\\rm 2\\times10^{33}\\ cm^{-2}s^{-1}$ and will perform the readout as a trigger-less system with an event rate of 40 MHz. Extremely non-uniform radiation doses will reach up to $\\rm 5 \\times 10^{15}$ 1 MeV$\\rm n_{eq}/cm^2$ in the innermost regions of the VELO sensors, and the output data bandwidth will be increased by a factor of 40. An upgraded detector is under development based in a pixel sensor of the Timepix/Medipix family, with 55 x 55 $\\rm \\mu m^2$ pixels. In addition a microstrip solution with finer pitch, higher granularity and thinner than the current detector is being developed in parallel. The current status of the VELO upgrade program will be described together with recent testbeam results.

Rodriguez Perez P.; LHCb VELO Group

2013-02-25T23:59:59.000Z

168

Improving Our Environment One Roof at a Time | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time June 27, 2013 - 12:10pm Addthis Improving Our Environment One Roof at a Time How does it work? Green roofs are ideal for urban buildings with flat or shallow-pit roofs, and can include anything from basic plant cover to a garden. The primary reasons for using this type of roof include managing storm water and enjoying a rooftop open space. Green roofs also provide insulation, lower the need for heating and cooling, and can reduce the urban heat island effect. This roof type can be much more expensive to implement than other efficient roof options, so you should carefully assess your property and consult a professional before deciding to install a green roof. Click here for more information on energy-efficient roofs

169

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

170

Improving Our Environment One Roof at a Time | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time Improving Our Environment One Roof at a Time June 27, 2013 - 12:10pm Addthis Improving Our Environment One Roof at a Time How does it work? Green roofs are ideal for urban buildings with flat or shallow-pit roofs, and can include anything from basic plant cover to a garden. The primary reasons for using this type of roof include managing storm water and enjoying a rooftop open space. Green roofs also provide insulation, lower the need for heating and cooling, and can reduce the urban heat island effect. This roof type can be much more expensive to implement than other efficient roof options, so you should carefully assess your property and consult a professional before deciding to install a green roof. Click here for more information on energy-efficient roofs

171

Million Solar Roofs: Become One In A Million  

SciTech Connect

Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

2003-11-01T23:59:59.000Z

172

Status of cool roof standards in the United States  

E-Print Network (OSTI)

roofs (Table 5.5 of ASHRAE 90.2- Climate Zone Roof U-FactorASHRAE 2004a) tabulates thermal transmittance multipliers by U.S. climate zones (ASHRAE 2007). ceilings with attics wood frame steel frame climate conventional cool conventional cool zone

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

173

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

174

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

175

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

176

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

177

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

178

Oklahoma Tribe to Install Solar Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof Oklahoma Tribe to Install Solar Roof March 22, 2010 - 6:10pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start of a green initiative," says Theda McPheron-Keel, president of Wind Hollow Foundation, a nonprofit organization aimed at helping American Indians improve their lives. "It provides economic

179

Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies.  

E-Print Network (OSTI)

??With such a vast quantity of space, commercial low-slope roofs offer significant potential for sustainable roofing technology deployment. Specifically, building energy performance can be improved… (more)

Nagengast, Amy L.

2013-01-01T23:59:59.000Z

180

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

can also reduce peak electricity demand. Cool roofs transferthe cool roof on peak electricity demand, we inspected theEstimate of Peak Electricity Demand Use and Savings Using

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Become One In A Million: Partnership Updates -- Million Solar Roofs and Interstate Renewable Energy Council  

DOE Green Energy (OSTI)

The Million Solar Roofs Partnership Update is an annual report from all the Partnership and Partners who participate in the Million Solar Roofs Initiative.

Not Available

2004-06-01T23:59:59.000Z

182

Regional climate consequences of large-scale cool roof and photovoltai...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials)...

183

Regional climate consequences of large-scale cool roof and photovoltai...  

NLE Websites -- All DOE Office Websites (Extended Search)

roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and...

184

Effectiveness of Cool Roof Coatings with Ceramic Particles  

SciTech Connect

Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

Brehob, Ellen G [ORNL; Desjarlais, Andre Omer [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

185

Global Scratch Upgrade in Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Scratch Gets Global Scratch Gets an Upgrade Global Scratch Gets an Upgrade Improvements Will Include Higher Data Output Rates, Connection to PDSF October 29, 2013 The most used file system at the National Energy Research Scientific Computing Center (NERSC)-global scratch-just got an upgrade. As a result, some users may see their data output to global scratch reach up to 80 gigabytes per second. Although users will probably not see their 20-terabyte storage quotas increase, the upgrade ensures that global scratch remains flexible and paves the way for PDSF to eventually use the file system Because of the upgrade, users will also be able to better access their temporary data files or "scratch data" from any NERSC system, not just the one that generated it. Prior to the upgrade, Global scratch typically

186

Upgrading of TREAT experimental capabilities  

Science Conference Proceedings (OSTI)

The TREAT facility at the Argonne National Laboratory site in the Idaho National Engineering Laboratory is being upgraded to provide capabilities for fast-reactor-safety transient experiments not possible at any other experimental facility. Principal TREAT Upgrade (TU) goal is provision for 37-pin size experiments on energetics of core-disruptive accidents (CDA) in fast breeder reactor cores with moderate sodium void coefficients. this goal requires a significant enhancement of the capabilities of the TREAT facility, specifically including reactor control, hardened neutron spectrum incident on the test sample, and enlarged building. The upgraded facility will retain the capability for small-size experiments of the types currently being performed in TREAT. Reactor building and crane upgrading have been completed. TU schedules call for the components of the upgraded reactor system to be finished in 1984, including upgraded TREAT fuel and control system, and expanded coverage by the hodoscope fuel-motion diagnostics system.

Dickerman, C.E.; Rose, D.; Bhattacharyya, S.K.

1982-01-01T23:59:59.000Z

187

Flexible shaft and roof drilling system  

DOE Patents (OSTI)

A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

Blanz, John H. (Carlisle, MA)

1981-01-01T23:59:59.000Z

188

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

189

Energy Star Building Upgrade Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

program helping businesses and individuals fight global warming through superior energy efficiency. ENERGY STAR Building Upgrade Manual United States Environmental Protection...

190

Cool roofs as an energy conservation measure for federal buildings  

SciTech Connect

We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

Taha, Haider; Akbari, Hashem

2003-04-07T23:59:59.000Z

191

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

192

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

193

Ethernet-Based Computer Monitoring the Roof Abscission Layer With Experts Forecasting System  

Science Conference Proceedings (OSTI)

China is a coal accident-prone country. In all coal accidents, the most serious incident is roof accident. Roof accidents are account for over 45% of the total mortality in coal enterprises. Roof accident is threatening the lives and safety of miners, ... Keywords: the roof abscission layer, on-line monitoring, displacement, Ethernet, expert system

Yong Zhan; Xianghong Yan; Hongmei Zhu; Yang Song

2008-10-01T23:59:59.000Z

194

Tenneco upgrades natural gasoline  

SciTech Connect

Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

O'Gorman, E.K.

1986-08-01T23:59:59.000Z

195

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

Science Conference Proceedings (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

196

Maui County - Solar Roofs Initiative Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Local Loan Program Rebate Amount Zero-interest loans Provider Maui Electric Company, LTD In September 2002, Maui Electric Company (MECO) and the County of Maui teamed up to launch the Maui Solar Roofs Initiative to increase the use of renewable energy in Maui County. MECO administers the loan program and, through the Hawaii Energy Program, offers a $750 rebate for installations through its approved independent solar contractors. Residential homeowners with existing electric water heaters are eligible and must provide a down payment equal to 35% of the system cost after

197

SCE Roof Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SCE Roof Project Solar Power Plant SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer First Solar Location California Coordinates 36.778261°, -119.4179324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Developing Energy Efficient Roof Systems DEERS | Open Energy Information  

Open Energy Info (EERE)

Roof Systems DEERS Roof Systems DEERS Jump to: navigation, search Name Developing Energy Efficient Roof Systems (DEERS) Place Ripon, California Zip 95366 Sector Solar Product Developer of roof top solar PV projects. Coordinates 43.84582°, -88.837054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.84582,"lon":-88.837054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

solar absorptance, attic, and duct insulation on cooling and heating energy use in single-family new residential buildings.solar- reflective roof on the heating- and cooling-energy uses of a residential-building

Akbari, Hashem

2008-01-01T23:59:59.000Z

200

Status of cool roof standards in the United States  

E-Print Network (OSTI)

Updates on revision to ASHRAE Standard 90.2: including roof104(1B), pp. 984-995. ASHRAE. 1999. ASHRAE Standard 90.1-1999: Energy Standard for Buildings Except Low-Rise

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

995. Evolution of cool roof standards in the United StatesMar/Apr, pp. 52-58. ASHRAE. 1999. ASHRAE Standard 90.1-1999: Energy Standard for Buildings Except Low- Rise

Akbari, Hashem

2008-01-01T23:59:59.000Z

202

Countries Commit to White Roofs, Potentially Offsetting the Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

when the building is air-conditioned.1 On buildings without air conditioning, a white roof can reduce inside temperatures by 2 to 3 degrees Celsius (4 to 5 degrees Fahrenheit),...

203

Cool roofs as an energy conservation measure for federal buildings  

E-Print Network (OSTI)

of Ľ” asphalt shingle, ˝” plywood, with an attic cavity andbuilt-up roofs with ˝ inch plywood, attic space, and an R-11a combination of stucco, plywood, insulation and gypsum, or

Taha, Haider; Akbari, Hashem

2003-01-01T23:59:59.000Z

204

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

Locations of the eight ASHRAE-defined climate zones in the5.5.3.1 of ASHRAE 90.1-2004). climate zone roof U-factorASHRAE Figure 2. Locations of the 16 California climate zones (

Akbari, Hashem

2008-01-01T23:59:59.000Z

205

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

roof provisions. Hawaii Building energy codes in Hawaii areadopted from the Hawaii Model Energy Code (Eley AssociatesHawaii; and Charles Eley, Architectural Energy Corporation for clarifying building codes.

Akbari, Hashem

2008-01-01T23:59:59.000Z

206

Status of cool roof standards in the United States  

E-Print Network (OSTI)

multipliers by U.S. climate zones (see Table 2). Table 1.5.5 of ASHRAE 90.2- Climate Zone Roof U-Factor Multiplierthermal resistances in climate zones 1 – 3 for ceilings

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

207

A Climatological Measure of Extreme Snowdrift Loading on Building Roofs  

Science Conference Proceedings (OSTI)

A physical model of snow transport and deposition is used in combination with historical climatological data to derive a climatological measure of extreme snowdrift loads on building roofs. The snowdrift metric used relies on hourly wind speed, ...

Arthur T. DeGaetano; Michael J. O'Rourke

2004-01-01T23:59:59.000Z

208

The effects of roof reflectance on air temperatures surrounding...  

NLE Websites -- All DOE Office Websites (Extended Search)

the heating of condenser inlet air by the roof, and to assess the effects of condenser fan operation on the potential recirculation of hot discharge air from the condenser. The...

209

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

require a sub-roof radiant barrier for residential buildings4, and 8 - 15), radiant barriers are not usually installedIn climates zones where radiant barriers are prescriptively

Akbari, Hashem

2008-01-01T23:59:59.000Z

210

Status of cool roof standards in the United States  

E-Print Network (OSTI)

requires a sub-roof radiant barrier in some climate zones (4, and 8 - 15), radiant barriers are not usually installedroofs. Without a radiant barrier, total savings—initial cost

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

211

Countries Commit to White Roofs, Potentially Offsetting the Emissions of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Countries Commit to White Roofs, Potentially Offsetting the Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants April 8, 2011 - 4:26pm Addthis Dr. Art Rosenfeld Distinguished Scientist Emeritus at Lawrence Berkeley National Laboratory What does this project do? Builds energy savings. Promotes heat island mitigation and public health benefits. Encourages global cooling. I am delighted to learn that India, Mexico, and the United States have signed up to join the Cool Roofs Working Group, announced yesterday at the second Clean Energy Ministerial in Abu Dhabi. This working group was offered as part of the Clean Energy Ministerial, which is a high-level global forum to promote policies and programs that advance clean energy

212

NSLS control system upgrade status  

SciTech Connect

The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

1993-07-01T23:59:59.000Z

213

Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements  

SciTech Connect

Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2002-12-15T23:59:59.000Z

214

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

215

Rooftop Membrane Temperature Reductions with Green Roof Technology in South-Central Texas  

E-Print Network (OSTI)

Early green roof cooling and energy reduction research in North America took place in Canada and the northern latitudes of the United States, where green roofs reduced rooftop temperatures by 70% to 90%. Less is known about green roof technology in the southern Untied States; where energy demand for cooling buildings is high, and the urban heat island effect is more pronounced. This paper reports early findings for rooftop membrane temperature reductions from 11.6-cm-deep modular green roof trays, typical of large-scaled, low-maintenance applications. Measurements observed during May, 2010 reveal that temperatures below the modular planted green roof units were 82% to 91.6% cooler compared to the surface temperatures of the control roof membrane. These findings on low-input modular green roof trays reinforce other research findings that indicate green roof technology can dramatically reduce and modify temperatures on roof deck surfaces during peak energy demand periods in hot sunny climates.

Dvorak, B.

2010-08-01T23:59:59.000Z

216

Potential benefits of cool roofs on commercial buildings: conserving  

NLE Websites -- All DOE Office Websites (Extended Search)

cool roofs on commercial buildings: conserving cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., and Hashem Akbari Journal Energy Efficiency Volume 3 Pagination 53-109 Publisher Springer Netherlands ISSN 1570-646X Keywords cool roof, Heat Island Abstract Cool roofs-roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission-lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes-new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980)-were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m2 in Alaska to 7.69 kWh/m2 in Arizona (5.02 kWh/m2 nationwide); a heating energy penalty ranging from 0.003 therm/m2 in Hawaii to 0.14 therm/m2 in Wyoming (0.065 therm/m2 nationwide); and an energy cost saving ranging from $0.126/m2 in West Virginia to $1.14/m2 in Arizona ($0.356/m2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m2 in Alaska to 4.97 kg/m2 in Hawaii (3.02 kg/m2 nationwide); an NOx reduction ranging from 1.70 g/m2 in New York to 11.7 g/m2 in Hawaii (4.81 g/m2 nationwide); an SO2 reduction ranging from 1.79 g/m2 in California to 26.1 g/m2 in Alabama (12.4 g/m2 nationwide); and an Hg reduction ranging from 1.08 ÎĽg/m2 in Alaska to 105 ÎĽg/m2 in Alabama (61.2 ÎĽg/m2 nationwide). Retrofitting 80% of the 2.58 billion square meters of commercial building conditioned roof area in the USA would yield an annual cooling energy saving of 10.4 TWh; an annual heating energy penalty of 133 million therms; and an annual energy cost saving of $735 million. It would also offer an annual CO2 reduction of 6.23 Mt, offsetting the annual CO2 emissions of 1.20 million typical cars or 25.4 typical peak power plants; an annual NOx reduction of 9.93 kt, offsetting the annual NOx emissions of 0.57 million cars or 65.7 peak power plants; an annual SO2 reduction of 25.6 kt, offsetting the annual SO2 emissions of 815 peak power plants; and an annual Hg reduction of 126 kg.

217

User and Performance Impacts from Franklin Upgrades  

SciTech Connect

The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

He, Yun (Helen)

2009-05-10T23:59:59.000Z

218

Top-of-atmosphere radiative cooling with white roofs: experimental  

NLE Websites -- All DOE Office Websites (Extended Search)

Top-of-atmosphere radiative cooling with white roofs: experimental Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Title Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Publication Type Journal Article Year of Publication 2012 Authors Salamanca, Francisco, Shaheen R. Tonse, Surabi Menon, Vishal Garg, Krishna P. Singh, Manish Naja, and Marc L. Fischer Journal Environmental Research Letters Volume 7 Issue 4 Abstract We evaluate differences in clear-sky upwelling shortwave radiation reaching the top of the atmosphere in response to increasing the albedo of roof surfaces in an area of India with moderately high aerosol loading. Treated (painted white) and untreated (unpainted) roofs on two buildings in northeast India were analyzed on five cloudless days using radiometric imagery from the IKONOS satellite. Comparison of a radiative transfer model (RRTMG) and radiometric satellite observations shows good agreement (R2 = 0.927). Results show a mean increase of ~50 W m-2 outgoing at the top of the atmosphere for each 0.1 increase of the albedo at the time of the observations and a strong dependence on atmospheric transmissivity.

219

Analytical study of residential building with reflecting roofs  

SciTech Connect

This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

Zarr, R.R.

1998-10-01T23:59:59.000Z

220

Daylighter Daily Solar Roof Light | Open Energy Information  

Open Energy Info (EERE)

Daylighter Daily Solar Roof Light Daylighter Daily Solar Roof Light Jump to: navigation, search Name Daylighter Daily Solar Roof Light Address 1991 Crocker Road, Suite 600 Place Cleveland, Ohio Zip 44145 Sector Solar Product Installation; Manufacturing Phone number 440-892-3312 Website http://www.SolarLightisFree.co Coordinates 41.4648875°, -81.9506519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4648875,"lon":-81.9506519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solare Cell Roof Tile And Method Of Forming Same  

SciTech Connect

A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

1999-11-16T23:59:59.000Z

222

Plain Talk About Condensation and Radiation Below Metal Roof Assemblies  

E-Print Network (OSTI)

During recent decades an increasing number of users have chosen metal roofing for various commercial, industrial and institutional buildings. Because of several advantages, construction of new pre-engineered and "hybrid" buildings has outpaced low-rise, nonresidential conventional construction since 1984. Unfortunately, some of these advantages may give rise to certain disadvantages in comfort, durability and operating costs (7). This paper provides a brief historical overview of common metal roof insulation methods as well as recent innovations for low cost/no cost performance enhancements. Following is a discussion of current industry trends and design considerations for those seeking to control the combined effects of conduction, convection, radiation and moisture migration in individual roof assemblies.

Ward, L.

1992-05-01T23:59:59.000Z

223

Building integrated photovoltaic (BIPV) roofs for sustainability and energy  

NLE Websites -- All DOE Office Websites (Extended Search)

integrated photovoltaic (BIPV) roofs for sustainability and energy integrated photovoltaic (BIPV) roofs for sustainability and energy efficiency Title Building integrated photovoltaic (BIPV) roofs for sustainability and energy efficiency Publication Type Report Year of Publication 2013 Authors Ly, Peter, George Ban-Weiss, Nathan Finch, Craig Wray, Mark de Ogburn, William W. Delp, Hashem Akbari, Scott Smaby, Ronnen Levinson, and Bret Gean Corporate Authors SEI Group Inc. Document Number ESTCP EW-200813 Pagination 156 pp. Date Published 09/2013 Publisher Naval Facilities Engineering Command - Engineering and Expeditionary Warfare Center Type Technical Report Report Number TR-NAVFAC-EXWC-PW-1303 Keywords Buildings Energy Efficiency, energy efficiency, Energy Usage, renewable energy, Renewable Energy: Policy & Programs Abstract

224

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report and Appendices (CD-ROM)  

SciTech Connect

The main report on this CD assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performace and efficiency improvements. The Appendices on this CD provide supporting information for the analyses and provides and recommendations for assessing the effectiveness of the U.S. Department of Energy BestPractices Steam Program.

Not Available

2002-10-01T23:59:59.000Z

225

Preliminary Analysis of Energy Consumption for Cool Roofing Measures  

SciTech Connect

The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

Mellot, Joe [The Garland Company; Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-01-01T23:59:59.000Z

226

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

227

upgrade | OpenEI Community  

Open Energy Info (EERE)

4 4 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235354 Varnish cache server upgrade Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 October, 2012 - 07:23 Semantic Mediawiki Semantic Forms update developer Incentives and Policies Semantic Mediawiki upgrade Utility Rates We have just updated Semantic Forms on OpenEI to version 2.4 to enable some upgrades to the utility rate forms (thanks Teresa!). If you see any problems in forms you use on OpenEI, please notify us by commenting on this

228

The D0 detector upgrade  

SciTech Connect

The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector.

Bross, A.D.

1995-02-01T23:59:59.000Z

229

Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements  

Science Conference Proceedings (OSTI)

Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2003-07-01T23:59:59.000Z

230

Energy Saving 'Cool Roofs' Installed at Y-12 | Y-12 National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving 'Cool ... Saving 'Cool ... Energy Saving 'Cool Roofs' Installed at Y-12 Posted: October 17, 2012 - 4:08pm The Y-12 National Security Complex has taken additional steps to reduce its energy costs by installing almost 100,000 square feet of new heat reflective "cool" roofs at the Oak Ridge, Tennessee facility. The latest Y-12 cool roofs were added to Buildings 9204-2E and 9103. Fifteen percent of roofs at Y-12 are currently equipped with cool roof technology. This technology is expected to be applied to the majority of the roofs at Y-12. "Replacing older, heat-absorbing roofs with the heat-reflective cool roofs is part of NNSA's strategy to achieve energy and cost efficiencies," said Robert "Dino" Herrera, Facilities and Infrastructure Recapitalization Program Manager. "We strive to lead the

231

Blasting practices as they affect the roof of coal mines in Ohio, Pennsylvania, and West Virginia  

SciTech Connect

Coal beds and roof in the various States are described, State blasting regulations are noted, and methods of protecting roof and advantages gained by improved blasting practices are considered.

Geyer, J.N.

1933-01-01T23:59:59.000Z

232

A meeting of the minds when NYC °CoolRoofs visits PPPL | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

visits PPPL By Jeanne Jackson DeVoe January 28, 2013 Tweet Widget Facebook Like Google Plus One Two visitors representing NYC CoolRoofs got a tour of PPPL's cool roof above...

233

Section 7.1.4 Low-Slope Roofing: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

rigid-foam roof insulation is loose-laid on top, and the insulation is protected by ballast. This configuration both in- creases the roof membrane life by protecting it from UV...

234

ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling Upgrades The Building Upgrade...

235

More durable roof coverings such as steel and fiber cement  

E-Print Network (OSTI)

- heating equipment saves money. Tankless water heaters provide hot water on demand at a preset temperature. Lighter colors absorb less heat, reducing cooling costs in warm climates. Now, solar roofing products- cement siding is termite- and water-resistant and warrantied to last 50 years. Increasing the amount

236

ManualforEvaluatingtheThermalPerformanceofthe HamerschlagHallGreenRoof  

E-Print Network (OSTI)

maintenance costs. Reduced heating and cooling costs ­ Provides extra roof insulation. And reduction in the building's overall heating and cooling costs. Aesthetics ­ Makes the building attractive from aerial view, and provides building users a green space. Improved air quality ­ Plants can absorb carbon dioxide and other

Andrews, Peter B.

237

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network (OSTI)

Preliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use of commonly available calculators, one can analyze the potential energy savings based on environmental

Tennessee, University of

238

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

239

A whole building demonstration of re-cover over an existing wet roof  

SciTech Connect

Roof re-cover, the practice of installing a new roof over an existing failed roof, has become commonplace. The 1994 National Roofing Contractors Annual Roofing Survey reported that approximately 33% of current reroofing activity is re-cover. Market trends suggest that re-cover will become an increasingly more popular option. Moisture in the failed roof complicates the decision whether or not to re-cover and how to do the recover if that is the decision. If the root to be re-covered contains moisture that will not be removed during reroofing, this moisture must be able to escape from the roof system. Otherwise, moisture entrapped in the roofing system may eventually lead to the mechanical failure of fasteners and the roof deck, especially if it is metal. In 1991, the Oak Ridge National Laboratory (ORNL) surveyed its own roofing inventory and found that 164 buildings or 70% of the laboratory roof area needed reroofing. Because of the high cost of tear off and replacement, an alterative was sought. This paper describes the procedure employed to determine the suitability of a particular roof system on a laboratory building for re-covering. The procedure involves the use of field diagnostics, laboratory experiments and numerical simulations that demonstrate that the particular roof type can be re-covered. Furthermore, the building and roof system have been monitored for approximately 16 months after re-cover. The monitoring results are compared to the numerical simulations and demonstrate that the roof system is drying and that the reroofing strategy that they used is cost-effective.

Desjarlais, A.O.; Petrie, T.W.; Christian, J.E.; McLain, H.A.; Childs, P.W. [Oak Ridge National Lab., TN (United States). Energy Div.

1995-12-31T23:59:59.000Z

240

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

AS, Marnay, C. Distributed generation investment by aand Upgrade in Distributed Generation under Uncertaintyand Upgrade in Distributed Generation under Uncertainty ?

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Load test of the 277W Building high bay roof deck and support structure  

SciTech Connect

The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-12-02T23:59:59.000Z

242

Load test of the 277W Building high bay roof deck and support structure  

Science Conference Proceedings (OSTI)

The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-12-02T23:59:59.000Z

243

Load test of the 3701U Building roof deck and support structure  

SciTech Connect

The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-09-14T23:59:59.000Z

244

Load test of the 3701U Building roof deck and support structure  

Science Conference Proceedings (OSTI)

The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-09-14T23:59:59.000Z

245

A Review of Methods for the Manufacture of Residential RoofingMaterials  

DOE Green Energy (OSTI)

Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

2003-06-01T23:59:59.000Z

246

The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems  

Science Conference Proceedings (OSTI)

Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

247

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Cool roofs, cool research, at DOE Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network National Library of Energy OSTIblog Science.gov Science Accelerator

248

Measured energy savings of light colored roofs: Results from three California demonstration sites  

SciTech Connect

Measured data and computer simulations have demonstrated the impact of roof albedo in reducing cooling energy use in buildings. Savings are a function of both climate and the amount of roof insulation. The cooling energy savings for reflective roofs are highest in hot climates. A reflective roof may also lead to higher heating energy use. Reflective coatings are also used in commercial buildings to protect the roofing membrane, and hence, maintain and prolong the useful life of the roof. Reflectivity of coatings changes with weathering and aging which in turn could have an effect on building cooling-energy savings. For that reason, reflective roof coatings are not primarily marketed for their energy savings potential. To monitor the field performance of reflective coatings, the authors initiated a demonstration project where three commercial buildings in California were painted with light-colored roof coatings. The buildings are two medical care centers and one drug store. At all sites, the roof reflectance, both fresh and aged, and cooling energy use were monitored. In addition, they measured temperature throughout the roof systems and inside the conditioned space. In the monitored buildings, increasing the roof reflectance from an initial value of about 20% to 60%, dropped the roof temperature on hot summer afternoons by about 45 F. Summertime standard-weekday average daily air-conditioning savings were 18% (198 kWh) in the first medical office building, 13% (86 kWh) in the second medical office building, and 2% (13 kWh) in the drug store. The overall u-value of the roofs had dictated the impact of roof reflectance.

Akbari, H.; Gartland, L.; Konopacki, S.

1998-06-01T23:59:59.000Z

249

Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles  

E-Print Network (OSTI)

This paper presents an overview of results from experimental research conducted at FSEC's Flexible Roofing Facility in the summer of 2002. The Flexible Roof Facility (FRF) is a test facility in Cocoa, Florida designed to evaluate a combination of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems, both finished and unfinished, might compare with other more traditional roofing types. All of the test cells had R-19 insulation installed on the attic floor except in the double roof configuration which had R-19 of open cell foam blown onto the underside of the roof decking. The test results were used to determine relative thermal performance of various roofing systems under typical Florida summer conditions. Measured impacts included changes to ceiling heat flux and attic air temperature which influences loads from unintended attic air leakage and duct heat gain. We also develop an analysis method to estimate total cooling energy benefits of different roofing systems considering the various impacts. The results show that all the options perform better than dark composition shingles. White metal performs best with an estimated cooling energy reduction of about 15%, but the spectrally selective metal shingles (12%) and unfinished Galvalume roofs (11%) do surprisingly well. Galvanized roofing did less well than Galvalume (7% reduction) and worse performance in the second year of exposure was observed due to corrosion of the zinc surface. The sealed attic with a double roof produced an estimated cooling energy reduction of only 2% -- largely due to increases in ceiling flux.

Parker, D. S.; Sherwin, J.; Sonne, J.

2004-01-01T23:59:59.000Z

250

About: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades Two photos side by side showing energy loss through the use of infrared technology. As part of a home energy evaluation, an energy professional can use an infrared camera to pinpoint where air leaks and drafts are occurring in your home or building. Although normally difficult to see, these infrared photos clearly show in color where energy losses are occurring in a typical house. How We Use Energy in Our Buildings How We Use Energy in Our Homes (% of Energy Consumption) A pie chart illustrating the following breakdown: Space heating 43%, space cooling 9.7%, water heating 17.1%, lighting 6.2%, refrigeration 3.9%, electronics 3%, wet cleaning 3.2%, cooking 3.1%, computers 1.6%. Source: 2010 Buildings Energy Data Book, Table 2.1.6

251

MIPP Plastic Ball electronics upgrade  

SciTech Connect

An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

Baldin, Boris; /Fermilab

2009-01-01T23:59:59.000Z

252

The FNAL Injector Upgrade Status  

SciTech Connect

The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A; Scarpine, V.E.; Tomlin, R.E.; /Fermilab

2012-05-14T23:59:59.000Z

253

Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies  

Science Conference Proceedings (OSTI)

In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

254

Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof  

SciTech Connect

Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

2009-10-15T23:59:59.000Z

255

Energy Upgrade California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrade California Upgrade California Energy Upgrade California < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Manufacturing Heating Windows, Doors, & Skylights Program Info Funding Source The American Reinvestment and Recovery Act of 2009, ratepayer funds State California Program Type State Rebate Program Rebate Amount Basic Upgrade Package: 1,000 Advance Upgrade Package: 1,500 - 4,000 The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified contractors, and helps homeowners find all the available incentives from their local

256

Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Implement Cool Roofs at DOE and Steps to Implement Cool Roofs at DOE and Across the Federal Government Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the Federal Government July 19, 2010 - 12:00am Addthis Washington - U.S. Department of Energy Secretary Steven Chu today announced a series of initiatives underway at the Department of Energy to more broadly implement cool roof technologies on DOE facilities and buildings across the federal government. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency by reducing cooling costs and offsetting carbon emissions. President Obama and Secretary Chu have made clear that the federal government should play a leading role in moving the nation toward a more

257

Main Generator Excitation System Upgrade/Retrofit  

Science Conference Proceedings (OSTI)

Upgrading or replacing even a portion of the excitation system of a generator can provide increased reliability and availability while simultaneously decreasing operational and maintenance costs. However, the upgrade or retrofit of an excitation system is a major cost involving some degree of implementation, installation, or performance risk. This report provides lessons learned, experiences, practices and solutions from plants that have installed excitation system retrofits and upgrades. This informatio...

2005-11-07T23:59:59.000Z

258

The Upgraded D0 detector  

Science Conference Proceedings (OSTI)

The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

2005-07-01T23:59:59.000Z

259

Better Buildings Neighborhood Program: Energy Efficiency Upgrades...  

NLE Websites -- All DOE Office Websites (Extended Search)

PYC made the recommended energy efficiency upgrades, which included new insulation and air sealing, a new hot water heater, programmable thermostats, improved lighting, and new...

260

ENERGY STAR Building Upgrade Manual | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

DOE Green Energy (OSTI)

Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-07-01T23:59:59.000Z

262

Load test of the 272E Building high bay roof deck and support structure  

SciTech Connect

The 272E Building high bay roof area was load tested according to the approved load-test procedure. The 272E Building is located in the 200 East Area of the Hanford Site and has the following characteristics: Roof deck -- wood decking supported by 4 x 14 timber purlins; Roof membrane -- tar and gravel; Roof slope -- flat (<10 deg); and Roof elevation -- maximum height of about 63 ft. The 272 Building was visited in August 1992 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determine to be the best way to qualify the roof. The pre-test briefing consisted of filling out the pre-test checklist, discussing proper lifting techniques, reviewing the fall-protection plan, reviewing the job hazards analysis, and reviewing the robot travel path. The load-test results consist of visual observations and the test engineer`s conclusions. Visual observations found no adverse conditions such as large deflections or permanent deformations. No deflection measurements were recorded because the tar and gravel on roof get displaced by the robot tracks; the result is large variations in deflection measurements. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-11-01T23:59:59.000Z

263

Advances in Measuring Solar Reflectance-or, Why That Roof isn...  

NLE Websites -- All DOE Office Websites (Extended Search)

reflectance is often used to estimate the solar heat gain and rate the "coolness" of roofs and pavements. A solar reflectance property measured by two popular ASTM standard...

264

Performance Comparison of a BIPV Roofing Tile System in Two Mounting Configurations (Poster)  

DOE Green Energy (OSTI)

This work examined the thermal and power characteristics of a building-integrated photovoltaic (BIPV) roofing system using two installation techniques, counter-batten and direct-mount.

Muller, M.; Rodriquez, J.; Marion, B.

2009-06-01T23:59:59.000Z

265

Green Roof Implementation in Washington, DC: A Stormwater Management Tool for an Impervious Urban Environment.  

E-Print Network (OSTI)

??Green roofs have potential environmental and economic benefits of great consequence for our major cities if implemented at a broad scale. These benefits are beginning… (more)

Zipp, Harriet

2008-01-01T23:59:59.000Z

266

Geomechanical and weathering properties of weak roof shales in coal mines.  

E-Print Network (OSTI)

??Many coal seams have weak shale immediate roofs that cause ground control problems. Therefore, it is important to know the properties of these shales so… (more)

Gurgenli, Hakan.

2006-01-01T23:59:59.000Z

267

Sensitivity of Low Sloped Roofs Designs to Initial Water and Air Leakage  

E-Print Network (OSTI)

Liquid water in low sloped roofs almost always causes problems. Roofs are designed only to control the migration of vapor, if at all. Small amounts of water leakage/penetration, may cause mold growth or catastrophic corrosion in current roofs systems. In a recent paper by the authors the effect of exterior surface emissive and absorptive properties was found to have a significant effect on the moisture performance of a roof that had a leak. Depending on the surface characteristics, roof systems can be designed to effectively manage water penetration, but at an energy cost. In the roofs system examined previously, air leakage was not included. In the present study, the authors reinvestigated the effect of water penetration and the influence of air leakage on the hygrothermal performance of a few selected roofs. The drying potential of a groove ventilated roof is examined. The performance concept is based on the fact that warming up of air in the groove increases it's ability to transport moisture to the outside. Solar radiation raises the temperature of air in the grooves and on average, during a sunny summer day 0.5 L of water can be ventilated out of the roof per 1m width of the roof. In this paper, one climatic condition was investigated; a hot and humid Climate representative of Houston, TX. The specific questions that the paper addresses are: What are the vapor and liquid control dynamic involved in the moisture migration of a roof in Houston TX? and how does airflow influence the performance of a roof that is initially wet ? A state-of-the-art numerical model was used to address these issues. Results showed that the drying potential depends on the ventilation rates. The roof system with ventilation grooves dried out faster from the initially wet stage than the roof without the ventilation grooves. The total increase in heat loss of the roof was found to be between 0 - 5 % depending on the thickness of the insulation. The ventilation can cool down the temperature of the roof in the middle of a hot and sunny day thus reducing the heat load to the inside.

Karagiozis, A.; Desjarlais, A.; Salonvaara, M.

2002-01-01T23:59:59.000Z

268

Radiative cooling and solar heating potential by using various roofing materials  

Science Conference Proceedings (OSTI)

The results of testing over twenty typical and potential roofing materials such as: corrugated galvanized steel, corrugated clear fiberglass, 90number black roll roofing, 90number green roll roofing, 90number red roll roofing, 90number brown roll roofing, 90number white roll roofing, 240number brown asphalt shingles, anodized aluminum, etc. under exposure to solar and nocturnal sky radiation are presented. Some cadmium sulfite solar cells and silicon solar cells are being tested as potential future roofing panels. Graphs showing the temperature variation of each material versus testing time are given for a heating and a cooling cycle. The environmental conditions of testing such as: solar insolation, apparent sky temperature, ambient air temperature, relative humidity and wind speed are also given. On the basis of preliminary results obtained during the testing of roofing materials, several mini-modules of an integrated collector/radiator/ roof element with the dimensions 0.6 m x 0.6 m (2 ft x 2 ft) were constructed and tested. The thermal response of the mini-modules under solar and nocturnal sky radiation is shown and the testing results are discussed. The spectral transmittance curves for nine transparent cover materials are also presented. The preliminary results indicate that solar radiation and nocturnal sky radiation could be used effectively by employing an integrated collector/radiator structure.

Pytlinski, J.T.; Connell, H.L.; Conrad, G.R.

1980-12-01T23:59:59.000Z

269

Performance Comparison of a BIPV Roofing Tile System in Two Mounting Configurations: Preprint  

DOE Green Energy (OSTI)

This work examined the thermal and power characteristics of a building-integrated photovoltaic (BIPV) roofing system using two installation techniques, counter-batten and direct-mount.

Muller, M. T.; Rodrigeuz, J.; Marion, B.

2009-06-01T23:59:59.000Z

270

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

Post: Pyranometer: Radiant barrier: Roof underside: RTD:w/mineral capsheet, multi-year radiant barrier White coatingMulti-layer radiant barrier (R-7 equivalent) San Marcos

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

271

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

E-Print Network (OSTI)

Radiant barrier: Roof underside: RTD: RTU: SDREO: SEER: SkyType T thermocouple AD592 RTD in Gill radiation shieldwere measured with Minco RTD thermal ribbon sensors

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-01-01T23:59:59.000Z

272

Analysis Efforts Supporting NSTX Upgrades  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

2010-11-29T23:59:59.000Z

273

Asphalt Roofing Shingles Into Energy Project Summary Report  

DOE Green Energy (OSTI)

Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

Jameson, Rex, PE

2008-04-28T23:59:59.000Z

274

Attic or Roof? An Evaluation of Two Advanced Weatherization Packages  

SciTech Connect

This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

Neuhauser, K.

2012-06-01T23:59:59.000Z

275

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

276

MMCR Upgrades: Present Status and Future Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

MMCR Upgrades: Present Status and Future Plans MMCR Upgrades: Present Status and Future Plans K. B. Widener and A. S. Koontz Pacific Northwest National Laboratory Richland, Washington K. P. Moran and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chander STC xxxxxxxxx M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York Abstract In September 2003, the Southern Great Plains (SGP) millimeter wave cloud radar (MMCR) was upgraded to a new digital signal processor that significantly increases the temporal resolution and the processing capability of the MMCR. The Barrow MMCR upgrade will be completed in early 2004. We will discuss the hardware and software C40 upgrade to the MMCRs at SGP and Barrow and the plans

277

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

278

Future Upgrades | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Upgrades Future Upgrades Magnetic field inside a Nb3Sn quadropole magnet Magnetic field inside a Nb3Sn quadropole magnet. Brookhaven leads various technical coordination efforts for the upgrade of the ATLAS detector, including constructing the new silicon tracker, liquid argon electronics, and the new muon chambers. Brookhaven also contributes to the commissioning and future upgrade of the LHC itself in two areas: accelerator physics and superconducting magnets. This work is carried out as part of the U.S. LHC Accelerator Research Program (LARP) in collaboration with Fermilab, Lawrence Berkeley National Lab, and the Stanford Linear Accelerator Center. The ultimate goal of the upgrade program is to increase the rate and efficiency of particle collisions, a measure known as luminosity.

279

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

280

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Higher energies allow x-rays to penetrate deeper inside materials to reveal crucial information about a material's structure and function. The combination of high brightness and high energy allows the observation and imaging - in real time - of fast and ultrafast technologically important processes, including fuel sprays, magnetic switching, and biological processes in living organisms. The APS Upgrade project will increase the brightness of the APS high-energy (hard) x-ray beams. This will equip researchers for the groundbreaking

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on new science opportunities provided by a multi-bend achromat lattice at the APS APS-U MBA Lattice Workshop Registration is now closed. Please contact Diane Wilkinson ext. 7810 or a member of the Workshop Organizing Committee for changes or modifications to your registration. Submit Comments, Suggestions, and Ideas for MBA Lattice Workshop October 21-22 Advanced Photon Source Argonne National Lab The Advanced Photon Source Upgrade is focused on delivering a powerful, versatile facility for science using high-brightness, high-energy X-rays. At APS, and around the light source community, scientists have been developing storage ring designs that push closer to the ultimate diffraction limit for X-ray sources. A recent report by the Basic Energy Sciences Advisory Committee, which advises the Director of the U.S.

282

Energy Efficiency Through Lighting Upgrades  

Science Conference Proceedings (OSTI)

Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year�¢����s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

Kara Berst; Maria Howeth

2010-06-01T23:59:59.000Z

283

Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Facebook Tweet about Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Twitter Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Google Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Delicious Rank Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Digg Find More places to share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades

284

Using QECBs for Public Building Upgrades: Reducing Energy Bills...  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Title Using QECBs for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia...

285

EA-1321: Proposed Upgrade and Improvement of The National Synchrotron...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York EA-1321: Proposed Upgrade and Improvement of...

286

ENERGY STAR Building Upgrade Manual Chapter 13: Retail Stores...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 13: Retail Stores The Building Upgrade Manual is a...

287

ENERGY STAR Building Upgrade Manual Chapter 7: Supplemental Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 7: Supplemental Load Reduction The Building Upgrade...

288

ENERGY STAR Building Upgrade Manual Chapter 6: Lighting | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 6: Lighting The Building Upgrade Manual is a...

289

ENERGY STAR Building Upgrade Manual Chapter 5: Retrocommissioning...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 5: Retrocommissioning The Building Upgrade Manual is...

290

ENERGY STAR Building Upgrade Manual Chapter 12: Hotels and Motels...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 12: Hotels and Motels The Building Upgrade Manual is...

291

ENERGY STAR Building Upgrade Manual Chapter 10: K-12 Schools...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 10: K-12 Schools The Building Upgrade Manual is a...

292

ENERGY STAR Building Upgrade Manual Chapter 4: Financing | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 4: Financing The Building Upgrade Manual is a...

293

Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint  

DOE Green Energy (OSTI)

The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection.

Colon, C. J. (Florida Solar Energy Center); Merrigan, T. (National Renewable Energy Laboratory)

2001-10-19T23:59:59.000Z

294

Effects of Urban Surfaces and White Roofs on Global and Regional Climate  

Science Conference Proceedings (OSTI)

Land use, vegetation, albedo, and soil-type data are combined in a global model that accounts for roofs and roads at near their actual resolution to quantify the effects of urban surface and white roofs on climate. In 2005, ~0.128% of the ...

Mark Z. Jacobson; John E. Ten Hoeve

2012-02-01T23:59:59.000Z

295

A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme  

SciTech Connect

Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

Not Available

1994-02-01T23:59:59.000Z

296

Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial  

Open Energy Info (EERE)

Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Details Activities (1) Areas (1) Regions (0) Abstract: A full-waveform inversion of two-ship, wide-aperture, seismic reflection data from a ridge-crest seismic line at the southern East Pacific Rise indicates that the axial magma chamber here is about 50 m thick, is embedded within a solid roof, and has a solid floor. The 50-60-m-thick roof is overlain by a 150-200-m-thick low-velocity zone that may correspond to a fracture zone that hosts the hydrothermal circulation,

297

An office building used as a federal test bed for energy-efficient roofs  

SciTech Connect

The energy savings benefits of re-covering the roof of an existing federal office building with a sprayed polyurethane foam system are documented. The building is a 12,880 ft{sup 2} (1,197 m{sup 2}), 1 story, masonry structure located at the Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Prior to re-covering, the roof had a thin fiberglass insulation layer, which had become partially soaked because of water leakage through the failed built-up roof membrane. The average R-value for this roof measured at 2 hr{center_dot}ft{sup 2}{center_dot}{degrees}F/Btu (0.3 m{sup 2} {center_dot}K/W). After re-covering the roof, it measured at 13 hr{center_dot}ft{sup 2}{degrees}F/Btu (2.3 m{sup 2}{center_dot}K/W). The building itself is being used as a test bed to document the benefits of a number of energy efficiency improvements. As such, it was instrumented to measure the half-hourly energy consumption of the whole building and of the individual rooftop air conditioners, the roof heat fluxes and the interior air and roof temperatures. These data were used to evaluate the energy effectiveness of the roof re-covering action. The energy savings analysis was done using the DOE-2.lE building simulation program, which was calibrated to match the measured data. The roof re-covering led to around 10% cooling energy savings and around 50% heating energy savings. The resulting energy cost reductions alone are not sufficient to justify re-covered roofs for buildings having high internal loads, such as the building investigated here. However the energy savings do contribute significantly to the measure`s Savings-to-Investment Ratio (SIR).

McLain, H.A.; Christian, J.E.

1995-08-01T23:59:59.000Z

298

Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions  

Science Conference Proceedings (OSTI)

Three passive cooling methods (e.g. roof pond, reflective roof cooling and using insulation over the roof) have been experimentally evaluated using an experimental test structure. The objective of this work is to train an artificial neural network (ANN) ... Keywords: Artificial neural network, Energy saving, India, Passive cooling, Thermal comfort

Shrikant Pandey; D. A. Hindoliya; Ritu Mod

2012-03-01T23:59:59.000Z

299

Pilot aerial infrared roof top survey. Final report  

SciTech Connect

A summary is presented of a pilot aerial infrared roof top study conducted by the Minnesota Energy Agency. Infrared surveys of 27 Minnesota cities were conducted during the fall and winter of the 1976-1977 heating season. In addition, conventional daytime color photographs were taken of several cities. Film processing was done by the Environmental Protection Agency. The University of Minnesota conducted ground tests to verify the aerial infrared imagery. Thermograph dissemination centers were established in each city and training seminars and materials were prepared and delivered to dissemination center staff. A survey of homeowners who viewed their thermograph at a dissemination center were used to determine the energy savings resulting from the program. An Aerial Infrared Program Users Manual was prepared by the Energy Agency and the Remote Sensing Institute of Brookings, South Dakota.

1979-10-15T23:59:59.000Z

300

Quantum Fisher Information as the Convex Roof of Variance  

E-Print Network (OSTI)

Quantum Fisher information places the fundamental limit to the accuracy of estimating an unknown parameter. Here we shall provide the quantum Fisher information an operational meaning: a mixed state can be so prepared that a given observable has the minimal averaged variance, which equals exactly to the quantum Fisher information for estimating an unknown parameter generated by the unitary dynamics with the given observable as Hamiltonian. In particular we shall prove that the quantum Fisher information is the convex roof of the variance, as conjectured by Toth and Petz based on numerical and analytical evidences, by constructing explicitly a pure-state ensemble of the given mixed state in which the averaged variance of a given observable equals to the quantum Fisher information.

Sixia Yu

2013-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

302

Upgrading of light Fischer-Tropsch products  

SciTech Connect

The upgrading of Fischer-Tropsch (F-T) light ends was studied at UOP in a program sponsored by the Pittsburgh Energy Technology Center of the US Department of Energy. The goal of the program was to increase the overall yield of marketable transportation fuels from the F-T upgrading complex by focusing on liquefied petroleum gas (LPG) and naphtha. An overview of the entire light-ends program is presented in this paper. Although this contract is specifically concerned with light products (C{sub 3}-C{sub 11}), a separate DOE-sponsored program at UOP investigated the characterization and upgrading of the heavy end of the F-T product spectrum: F-T wax. An economic analysis of the light and heavy ends upgrading was performed to evaluate the conversion of F-T products to marketable transportation fuels. 9 refs., 7 figs., 9 tabs.

Shah, P.P.

1990-11-30T23:59:59.000Z

303

Pricing and Market Segmentation with Software Upgrades.  

E-Print Network (OSTI)

it selects and the number of customers attracted by theseincrease in the number of upgrading customers. Thus, p ? = ?is because: (1) the number of total customers is F c (?) in

Bala, R.; Carr, S. C.

2005-01-01T23:59:59.000Z

304

User and Performance Impacts from Franklin Upgrades  

E-Print Network (OSTI)

J. Lebens. Post- Mortem of the NERSC Franklin XT4 Upgrade toCray User Group Meeting NERSC Franklin Home Page: http://planning from both Cray and NERSC, service interruptions

He, Yun Helen

2009-01-01T23:59:59.000Z

305

Commissioning Results of the Upgraded Neutralized Drift Compression Experiment  

E-Print Network (OSTI)

COMMISSIONING RESULTS OF THE UPGRADED NEUTRALIZED DRIFTexperiments. We report on commissioning results of the

Lidia, S.M.

2009-01-01T23:59:59.000Z

306

Research on the Effect of a Planting Roof on the Thermal Load of a Business Building  

E-Print Network (OSTI)

A pair of comparative testing rooms (one with an ordinary roof and the other with a planting roof) was established in our laboratory, and in- situ measurement (in summer) data have been collected and treated. The indoor thermal environment was analyzed and the thermal load within each room was calculated Comparative analysis of thermal loads of these two rooms was done. Reduction of thermal load by the planting roof is clearly shown from our research work. A theoretical analysis of the effect of the planting roof on the room's thermal load was done, and theoretical relations between outdoor air temperature and indoor thermal load within certain region were established. The feasibility analysis of the application of our research work to the business building was also completed. The summer cooling load reduction characteristics, the energy saving characteristics on air conditioning system, the yearly electricity consumption reduction, the yearly consumption amount reduction of “Primary Energy”, the discharge amount reduction of sensible heat to outdoor atmosphere in summer, and the yearly discharge amount reduction of greenhouse gases to the outdoor atmosphere from air conditioning system due to the planting roof are also predicted. A corresponding economic analysis is also presented in this paper. The results show the advantages of the planting roof, and also promote the widespread application of the planting roof to business buildings.

Zhang, W.; Wu, J.; Wei, Y.; Gao, X.

2006-01-01T23:59:59.000Z

307

Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in  

NLE Websites -- All DOE Office Websites (Extended Search)

Honeymoons Honeymoons Lead to Upgrades in Western Vermont to someone by E-mail Share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Facebook Tweet about Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Twitter Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Google Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Delicious Rank Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Digg Find More places to share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on AddThis.com... Better Buildings Residential Network Progress

308

Design, effectiveness, and construction of passive-thermal-control roofing shingles. Technical final report  

Science Conference Proceedings (OSTI)

The concept of a passive thermal control roofing shingle, which is a shingle that reflects the summer sun and absorbs the winter sun, is discussed. Such a shingle will reduce summer cooling and winter heating costs and conserve electricity and natural gas or heating oil. Design calculations indicate that it is possible to design shingles for particular latitudes and styles of roof which absorb nearly all of the winter solar energy and reflect nearly all of the summer solar energy. Calculations of the energy savings and cost effectiveness of the passive thermal control roofing shingle indicate that it is most cost effective on all south facing pitched roofs regardless of heating fuel type, and on flat or east or west facing roofs that are heated with costly fuels such as electricity or heating oil. The shingle is most effective on poorly insulated structures. If the cost of the shingle is about one dollar per square foot it will be cost effective in these applications. Additional calculations demonstrate the feasibility of using the passive thermal control roofing shingle in conjunction with a heat pump to pump heat absorbed by the shingle into a well insulated structure. Construction of a variety of models of the passive thermal control roofing shingle illustrate numerous alternate methods of manufacture. A profile extruded, plastic, glazed shingle appears to be the most promising approach. Additionally, extruded plastic reflector assemblies of various kinds could be added to existing shingled roofs. Use of a glazed shingle can increase the effectiveness of the passive thermal control roofing shingle by reducing convective heat losses.

Wolf, L. Jr.

1982-09-01T23:59:59.000Z

309

Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing  

SciTech Connect

Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

Grin, A.; Smegal, J.; Lstiburek, J.

2013-10-01T23:59:59.000Z

310

The Advanced Light Source Upgrade  

SciTech Connect

The ALS, a third-generation synchrotron light source at Berkeley Lab, has been operating for almost a decade and is generating forefront science by exploiting the high brightness of a third-generation source in three areas: (1) high resolving power for spectroscopy; (2) high spatial resolution for microscopy and spectromicroscopy; and (3) high coherence for experiments such as speckle. However, the ALS was one of the first third-generation machines to be designed, and accelerator and insertion-device technology have significantly changed since its conception. As a result, its performance will inevitably be outstripped by newer, more advanced sources. To remain competitive and then set a new standard, the performance of the ALS, in particular its brightness, must be enhanced. Substantial improvements in brightness and current have always been feasible in principle, but they incur the penalty of a much reduced lifetime, which is totally unacceptable to our users. Significant brightness improvements can be realized in the core soft x-ray region by going to top-off operation, where injection would be quasi-continuous and the lifetime objections disappear. In top-off mode with higher average current, a reduced vertical emittance and beta function, and small-gap permanent-magnet or superconducting insertion devices, one to two orders of magnitude improvement in brightness can be had in the soft x-ray range. These improvements also extend the high energy range of the undulator radiation beyond the current limit of 2000 eV. Descriptions of the upgrade and the important new science achievable are presented.

Chemla, Daniel S.; Feinberg, Benjamin; Hussain, Zahid; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

2003-11-04T23:59:59.000Z

311

The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs  

Science Conference Proceedings (OSTI)

Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

Miller, William A [ORNL

2006-01-01T23:59:59.000Z

312

Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones  

Science Conference Proceedings (OSTI)

A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

Pallin, Simon B [ORNL

2013-01-01T23:59:59.000Z

313

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool  

NLE Websites -- All DOE Office Websites (Extended Search)

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool as You Thought it Was Speaker(s): Ronnen Levinson Date: June 30, 2009 - 12:00pm Location: LBNL Bldg. 66 Auditorium Solar reflectance is often used to estimate the solar heat gain and rate the "coolness" of roofs and pavements. A solar reflectance property measured by two popular ASTM standard test methods (E903, C1549) can underestimate the peak solar heat gain of a spectrally selective "cool colored" surface by nearly 100 W m-2 because it assumes that sunlight contains an unrealistically high fraction of near-infrared (invisible) energy. Its use in building energy simulations can overestimate cool-roof annual energy savings by more than 20%. I define a new and simple solar

314

Income Tax Deduction for Solar-Powered Roof Vents or Fans (Indiana...  

Open Energy Info (EERE)

1232012 References DSIRE1 Summary Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home...

315

Green Roof Mitigation Potential for a Proxy Future Climate Scenario in Chicago, Illinois  

Science Conference Proceedings (OSTI)

The Advanced Research version of the Weather Research and Forecasting Model (ARW) coupled with an urban canopy model is used to investigate the potential of vegetative (green) roof technology to mitigate against ongoing climate warming and ...

Kathryn R. Smith; Paul J. Roebber

2011-03-01T23:59:59.000Z

316

Income Tax Deduction for Solar-Powered Roof Vents or Fans  

Energy.gov (U.S. Department of Energy (DOE))

Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home that the taxpayer owns or leases. The deduction is for 50%...

317

Procedure for measuring the solar reflectance of flat or curved roofing assemblies  

E-Print Network (OSTI)

effects of cool roofs on California commercial buildings.ASHRAE 2004, 2007). California’s current (year 2005) “TitleBuildings. CEC-400-2006-015. California Energy Commission,

Akbari, Hashem

2008-01-01T23:59:59.000Z

318

Climate balance of biogas upgrading systems  

SciTech Connect

One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

2010-01-15T23:59:59.000Z

319

Laboratory measurements of the drying rates of low-slope roofing systems  

Science Conference Proceedings (OSTI)

The service life of a roofing system typically ends when excessive amounts of water have entered the system. Roofing professionals determine whether the existing failed roofing system can be repaired or salvaged by recovering. A key element in this decision is whether the accumulated water will be able to leave the roofing system in a time frame that will prevent irreparable structural damage. There are several combined heat and mass transfer models that can be used to predict drying times for low-slope roofing systems. Very little experimental data exists that can be used to validate the performance of these models. To satisfy these needs, a series of laboratory experiments has been performed. Five test panels, comprised of a plywood deck, four types of roofing insulation, and a single ply membrane were installed in a climate simulator. The test panels were outfitted with temperature sensors and heat flux transducers, and were mounted on load cells. Water was added to the test panels and they were subjected to external diurnal cycles representative of summer and winter conditions for a southern US continental climate. The load cells supplied continuous records of the weights of the test panels; these data were used to compute the drying rates of the test panels. When these experiments were completed, the test panels were ``recovered`` with different thicknesses of insulation and the environmental conditions were reapplied to the test panels. This paper reports on the design and performance of these experiments. The data compiled during these tests supply insight into the effects of meteorological conditions, insulation R-value, insulation water vapor permeance, and roof recover on the rate that water will be removed from low-slope roofing systems.

Desjarlais, A.O.; Kyle, D.M.; Childs, P.W.; Christian, J.E.

1994-05-01T23:59:59.000Z

320

Evaluation of Vegetative Roofs' Performance on Energy Consumption in Hot and Humid Climates  

E-Print Network (OSTI)

Green roofs have been widely used in Europe proved to be beneficial. However, in the US they are not widespread. Previous studies have concluded that the main obstacle that makes architects, developers, etc. reluctant to introduce vegetative roofs is their preference for the traditional roofing since it is a tried-and-true technology. A positive feedback on the performance of vegetative roofs will encourage developers and possibly government authorities to invest more in them. Therefore, a survey was conducted to determine the performance of green roofs in existing buildings in hot and humid climates. This paper presents the results of this survey of around 40 buildings. The methodology and pertinent questions are also presented. Due to the many parameters involved in determining the rate of energy consumption in a building, a definite conclusion regarding how much exactly they can effect on saving can not be drawn, however, the results showed that green roofs can result in saving in the annual energy consumption and using shrubs as well as increasing soil thickness were found to be most effective in reducing building energy consumption.

Anderson, J.; Azarbayjani, M.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

322

Metal roofing Shingle roofing  

E-Print Network (OSTI)

of electricity for air-conditioning. One of the causes for the high usage of air-conditioning is a hot attic because the thermal energy is retained due to poor ventilation. Objective Reduce the high usage of air to the attic and lower the temperature of the attic space. 2. Lower attic temperatures will correlate to lower

Hutcheon, James M.

323

HERA Upgrade Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HERA Upgrade Project HERA Upgrade Project As part of the HERA luminosity upgrade, 6 superconducting Interaction Region quadrupoles were delivered, accepted, and are in service. These 6 layer magnets were designed to include the main quadrupole focus, a skew quad, a normal and skew dipole, and a final sextupole layer. Because of the physical space constraints imposed by the existing detector region components, the DESY magnets were of necessity designed to be very compact. In addition, they are also are required to operate within the solenoidal detector fields at the collision points, so all construction materials had to be non magnetic. Two types of DESY magnets were fabricated. The first, designated as G0, was a two meter long, constant radius magnet. The second, designated GG, is a

324

ATLAS upgrade June09_v3  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS efficiency and intensity upgrade ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it offers to its Users. ATLAS currently provides beams of essentially all stable isotopes at energies in the vicinity of the Coulomb barrier. These can be used in conjunction with a suite of state-of-the-art instruments such as Gammasphere, the Fragment Mass Analyzer (FMA), the Canadian Penning Trap mass spectrometer (CPT), the split-pole spectrograph, an in-flight radioactive beam line, and the recently commissioned HELIOS spectrometer. At present, these capabilities are being augmented by (1) the addition of the CARIBU upgrade, which will provide low-intensity, neutron-rich radioactive beams from Californium fission fragments in both low-energy and re-

325

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

326

Energy Upgrade of the Siam Photon Source  

SciTech Connect

The energy upgrade of the storage ring is part of the plans to develop x-ray production capability of the Siam Photon Source. Simulations have been carried out. The bending magnet power supply has been replaced. Energy of the injected 1 GeV beam from the injector is then ramped up 20% in the storage ring. Studies for modification of bending magnet poles have been done to evaluate possibility of further increasing the beam energy to 1.4 GeV in the future. Studies of the energy upgrade plan and details of energy ramping process, together with beam measurements are presented.

Rugmai, S.; Rujirawat, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Hoyes, G. G.; Prawanta, S.; Kwankasem, A.; Siriwattanapitoon, S.; Suradet, N.; Pimol, P.; Junthong, N.; Boonsuya, S.; Janpuang, P.; Prawatsri, P.; Klysubun, P. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand)

2007-01-19T23:59:59.000Z

327

Upgrading of light Fischer-Tropsch products  

SciTech Connect

Work during this quarter concentrated on Task 4 of the study. The objective of this task is to evaluate the application of the UOP/BP Cyclar* process to the upgrading of Fischer-Tropsch LPG products into aromatics. Results from pilot plant studies were translated into commercial yield estimates as described in Quarterly Report No. 7. This quarterly report documents an economic evaluation of the Cyclar process for converting LPG into aromatics in a Fischer-Tropsch upgrading complex. 1 ref., 11 figs., 9 tabs.

1989-07-11T23:59:59.000Z

328

Advanced Manufacturing Office: Steam Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

a Condensing Economizer PDF , January 2012 Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators PDF , January 2012 Consider Installing...

329

Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky)  

E-Print Network (OSTI)

Thermal performance for any building in hot dry region depend on the external climatic factor, the ability of the construction materials used in gained heat through day time and loss this heat through night time through the nocturnal radiation. Roof is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go towards from north to south. This study evaluate the thermal performance of different test rooms with different roofs construction; uninsulated concrete, insulated concrete, double, plant, and active concrete roofs, constructed under the effect of external climatic condition of very hot and dry region in Egypt (Toshky region). The external climatic conditions and the temperature distribution inside the roof construction and the indoor air temperature were measured. The results of this study recognized that the thermal transmittance (UValue) has a major role in chosen the constructed materials. Also the thermal insulation considered the suitable manner for damping the thermal stresses through day time and makes the interior environment of the building near the comfort zone during most months of the year. Natural night and forced ventilation are more important in improving the internal conditions. The construction roof systems show that the indoor air temperature thermal damping reach to 96%, 90%, 89%, and 76% for insulated concrete, double, planted and uninsulated concrete roofs. The results also investigate the importance of using the earth as a cooling source through the active concrete system. Evaporative cooling and movable shading which are an integrated part of the guidelines for building design in hot dry region must be using.

Khalil, M. H.; Sheble, S.; Morsey, M. S.; Fakhry, S.

2010-01-01T23:59:59.000Z

330

Energy Upgrades to Save Small Arizona Town Big Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Upgrades to Save Small Arizona Town Big Money Energy Upgrades to Save Small Arizona Town Big Money July 19, 2010 - 1:00pm Addthis An aerial shot of Oro Valley, Ariz.'s town...

331

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are almost 30...

332

How to Save Energy, Money with Home Energy Upgrades | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to Save Energy, Money with Home Energy Upgrades How to Save Energy, Money with Home Energy Upgrades November 1, 2013 - 4:38pm Addthis Tammara Thayer thanks Steve Lemaire (left)...

333

Better Buildings Neighborhood Program: Energy Upgrade California Drives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Upgrade Energy Upgrade California Drives Demand From Behind the Wheel to someone by E-mail Share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Facebook Tweet about Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Twitter Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Google Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Delicious Rank Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Digg Find More places to share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on

334

NSTX Upgrade Armor Plate Backing Plate  

E-Print Network (OSTI)

NSTX Upgrade Armor Plate Backing Plate NSTXU-CALC-24-02-00 Rev 0 February 17, 2011 Prepared By # NSTXU_CALC-24-02-00 Revision # 00 WP #: 1508 (ENG-032) Purpose of Calculation: 1.) To qualify the Armor backing plate calculation 2.) Build and evaluate a Finite Element Model for The Armor Eddy Current

Princeton Plasma Physics Laboratory

335

CMS: Present status, limitations, and upgrade plans  

SciTech Connect

An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

Cheung, H.W.K.; /Fermilab

2011-09-01T23:59:59.000Z

336

Upgrade of a Scara robot using Orocos  

Science Conference Proceedings (OSTI)

This paper presents a bottom-up approach that permits the integration of new devices and functionalities into a robotic cell. Although there are currently notable efforts from the scientific community toward this goal, the initiative presented here combines ... Keywords: Orocos, RTAI, free software, real time systems, robot design and architecture, robot upgrade

Dalton Matsuo Tavares; Rafael Vidal Aroca; Glauco Augusto de Paula Caurin

2007-08-01T23:59:59.000Z

337

Preparation for upgrading western subbituminous coal  

SciTech Connect

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

338

MR LLRF VXI upgrade beam study period  

Science Conference Proceedings (OSTI)

AD/RFI/LLRF group personnel performed several studies with the MR LLRF VXI upgrade system during the evening of 7/29/95. The study period lasted about 4 hours. The MR operating conditions were a mixture of $29 and $2B cycles, with beam injected only on the $29. The author believes the $2B cycles were present for reasons unrelated to the study. The basic study period goal was to test the initial VXI version of MR LLRF finite state machine (FSM) execution. This goal represents what has been called MR LLRF VXI Upgrade Implementation Stage No.2 throughout presentations and documentation on the upgrade project. The test includes control of MR LLRF NIM hardware, the MR RF cavities, and beam via XVI TTL FSM outputs. Numerous MR LLRF VXI system objects, or components, must work together correctly for a successful test. Very briefly, the required objects include VXI Front End hardware, the ACNET/Front End interface code, and the VXI/NIM Interface chassis (the chassis solves VXI-CAMAC-NIM RF and FSM output connectivity and development problems). Though this initial FSM does not yet fully support Upgrade Implementation Stage 2 functionality, all code and hardware for the following basic functionality is tested.

Mesiner, K.; /Fermilab

1995-01-01T23:59:59.000Z

339

The BABAR Detector: Upgrades, Operation and Performance  

E-Print Network (OSTI)

The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

The BABAR Collaboration

2013-05-15T23:59:59.000Z

340

UPGRADES TO Monteburns, VERSION 3.0  

SciTech Connect

Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

Galloway, Jack D [Los Alamos National Laboratory; Trellue, Holly R [Los Alamos National Laboratory

2012-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing  

Science Conference Proceedings (OSTI)

General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

Not Available

1993-05-01T23:59:59.000Z

342

Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

Not Available

2011-08-01T23:59:59.000Z

343

Financing Energy Upgrades for K-12 School Districts  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Upgrades for K-12 School Districts Financing Energy Upgrades for K-12 School Districts Page 2 Table of Contents Introduction................................................................................................................................................................................................................... 4 What This Guide Covers .................................................................................................................................................................................. 6 Chapter 1: Principles of Financing Energy Upgrades for Schools .................................................................................................. 7 Principle 1. Start with Clear Project Objectives.......................................................................................................................................... 7

344

Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)  

SciTech Connect

Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

Not Available

2013-11-01T23:59:59.000Z

345

Effects of temperature and humidity variations on the stability of coal mine roof rocks. Final report  

SciTech Connect

A high degree of correlation between strain developed in samples of roof rock and humidity changes was obtained in the laboratory. The strain developed across bedding planes was greater than strain developed parallel to bedding. In tests conducted underground, strain values were much lower and the data more scattered for similar humidity variations. Roof rock specimens reacted to a 10 pct change in humidity throughout a 7 to 10 day period before stabilizing, which seems to rule out daily humidity cycles as a factor in roof deterioration and indicates seasonal variations as a major cause. Very low annual temperature variations were recorded in active sections of the mine. At a 6 F annual variation developed strain would be only 10.5 microinches per inch, far below the strain magnitude for humidity variations and probably too low to be a factor in problems of roof deterioration. Laboratory strain tests on drill core samples were shown to be indicators of moisture sensitivity of roof rock, but neither chemical nor physical properties of the samples correlated with the strain data. (Portions of this document are not fully legible.)

Haynes, C.D.

1975-06-01T23:59:59.000Z

346

Energy Star Building Upgrade Value Calculator | Open Energy Information  

Open Energy Info (EERE)

Energy Star Building Upgrade Value Calculator Energy Star Building Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) Agency/Company /Organization: ENERGY STAR Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Spreadsheet Website: www.energystar.gov/index.cfm?c=comm_real_estate.building_upgrade_value The Building Upgrade Value Calculator allows practitioners to analyze the

347

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

348

Regional climate consequences of large-scale cool roof and photovoltaic array deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic array deployment climate consequences of large-scale cool roof and photovoltaic array deployment This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Environ. Res. Lett. 6 034001 (http://iopscience.iop.org/1748-9326/6/3/034001) Download details: IP Address: 98.204.49.123 The article was downloaded on 01/07/2011 at 12:38 Please note that terms and conditions apply. View the table of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 6 (2011) 034001 (9pp) doi:10.1088/1748-9326/6/3/034001 Regional climate consequences of large-scale cool roof and photovoltaic array deployment Dev Millstein and Surabi Menon Lawrence

349

Radical Thinkers Needed to Help Get a Solar Panel on Every Roof |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radical Thinkers Needed to Help Get a Solar Panel on Every Roof Radical Thinkers Needed to Help Get a Solar Panel on Every Roof Radical Thinkers Needed to Help Get a Solar Panel on Every Roof January 9, 2012 - 5:00pm Addthis This solar powered residence was commissioned by Boston Edison as a demonstration of future trends in design and technology that would become commonplace in the early decades of the next millennium. Today, the Energy Department's SunShot Initiative is seeking to accelerate innovation and aggressively drive down cost through various funding opportunities. | Photo courtesy of Solar Design Associates. This solar powered residence was commissioned by Boston Edison as a demonstration of future trends in design and technology that would become commonplace in the early decades of the next millennium. Today, the Energy

350

Monitoring the energy-use effects of cool roofs on Californiacommercial buildings  

Science Conference Proceedings (OSTI)

Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such 'cool' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas. Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33-42 K. In the retail store building in Sacramento, for the monitored period of 8 August-30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m{sup 2}/day (52%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak demand for peak hours (noon-5 p.m.) was about 10 W/m{sup 2} of conditioned area. In the school building in San Marcos, for the monitored period of 8 July-20 August 2002, the estimated savings in average air conditioning energy use was about 42-48 Wh/m{sup 2}/day (17-18%). On hot days, when the afternoon temperature exceeded 32 C, the measured savings in average peak demand for hours 10 a.m.-4 p.m. was about 5 W/m{sup 2} of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July-14 September 2002, and 11 July-18 August 2003, the estimated savings in average chiller energy use was about 57-81 Wh/m{sup 2}/day (3-4%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon-6 p.m.) was about 5-6 W/m{sup 2} of conditioned area. Using the measured data and calibrated simulations, we estimated savings for similar buildings installing cool roofs in retrofit applications for all 16 California climate zones. For similar retail stores in climate zones 2 and 4-16, installing a cool roof can save about 6-15 kWh/m{sup 2}/year of conditioned area. In climate zones 2-16, estimates of average peak demand savings for hours noon-5 p.m. range from 2.9 to 5.8 W/m{sup 2}. For similar school buildings in climate zones 2-16, installing a cool roof can save from 3 to 6 kWh/m{sup 2}/year of conditioned roof area. For all 16 climate zones estimates of average peak demand savings for hours noon-5 p.m. range from 2.6 to 3.8 W/m{sup 2}. In similar cold storage buildings in all 16 climate zones, installing a cool roof can save about 4.5-7.4 kWh/m{sup 2}/year of conditioned roof area. In all 16 climate zones, estimates of average peak demand savings for hours noon-5 p.m. range from 3.9 to 6.6 W/m{sup 2}.

Akbari, Hashem; Levinson, Ronnen; Rainer, Leo

2004-07-14T23:59:59.000Z

351

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

352

SOLAR RADIATION ESTIMATION ON BUILDING ROOFS AND WEB-BASED SOLAR CADASTRE  

E-Print Network (OSTI)

The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform. 1.

G. Agugiaro A; Commission Ii Wg

2012-01-01T23:59:59.000Z

353

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

Science Conference Proceedings (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

354

ATU Advanced Technology Upgrading Ltd | Open Energy Information  

Open Energy Info (EERE)

ATU Advanced Technology Upgrading Ltd ATU Advanced Technology Upgrading Ltd Jump to: navigation, search Name ATU (Advanced Technology Upgrading) Ltd Place Israel Product Focused on development of rechargeable magnesium battery. References ATU (Advanced Technology Upgrading) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ATU (Advanced Technology Upgrading) Ltd is a company located in Israel . References ↑ "ATU (Advanced Technology Upgrading) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=ATU_Advanced_Technology_Upgrading_Ltd&oldid=342420" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

355

Impact of Reflective Roofing on Cooling Electrical Use and Peak Demand in a Florida Retail Mall  

E-Print Network (OSTI)

Architects in hot climates have long recognized that reflective roof colors can reduce building cooling load. Experimentation spanning nearly three decades has shown that white roofing surfaces can significantly reduce surface temperatures and cooling loads (Givoni and Hoffmann, 1968; Reagan and Acklam, 1979; Griggs and Shipp, 1988; Anderson, 1989; Anderson et al., 1991 and Bansal et al., 1992). More importantly, measured cooling energy savings of white surfaces have been significant in California's climate (Akbari et al., 1991, 1992, 1997). In Florida, field research by the Florida Solar Energy Center (FSEC) since 1993 has quantified the impact of reflective roof coatings on sub-metered air conditioning (AC) consumption in tests in a dozen occupied homes (Parker et al., 1993; 1994; 1995; 1997). The coatings were applied to the roofs of each home in mid-summer after a month-long period of monitoring during which meteorological conditions, building temperatures and AC energy use were recorded. Using weather periods with similar temperatures and solar insolation, air conditioning energy use was reduced by 10% - 43% in the homes. The average drop in space cooling energy use was about 7.4 kWh/day or 19% of the pre-application air conditioning consumption. Unfortunately, until this project there has been little objective testing of the impact of roof whitening on the AC load of commercial buildings in Florida. Two demonstration sites have been monitored. The first was an elementary school in Cocoa Beach, Florida, which was monitored for a year before and after a white roof coating was applied. A final report on this project was published in the CADDET Newsletter (Parker et al., 1996a, b). The project demonstrated a 10% annual savings in chiller energy with a 30% reduction in peak cooling electrical demand. This paper summarizes the findings from the second demonstration at a commercial strip mall.

Parker, D. S.; Sonne, J. K.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

356

An Upgrade for the Advanced Light Source  

SciTech Connect

One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz,Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson,Arthur L.; Smith, Neville V.

2004-08-05T23:59:59.000Z

357

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

358

Idaho Chemical Processing Plant product denitrator upgrade  

SciTech Connect

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation.

Rindfleisch, J.A.; Durst, P.C.; Dahl, C.A.; Casterline, C.E.; Petig, A.V.

1982-05-01T23:59:59.000Z

359

CHALLENGES FOR THE SNS RING ENERGY UPGRADE  

Science Conference Proceedings (OSTI)

The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

Plum, Michael A [ORNL; Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Hunter, W Ted [ORNL; Roseberry, Jr., R Tom [ORNL; Wang, Jian-Guang [ORNL

2012-01-01T23:59:59.000Z

360

Upgrade of the Proton West secondary beamline  

SciTech Connect

As originally designed and operated, protons entering PW6 were steered by a series of EPB dipoles into a single interaction length beryllium target, some 43 feet from the enclosure wall. Ensuing secondary beams, either p{sup +}/{pi}{sup +} or p{sup -}/{pi}{sup -}, were collected by a string of quadrupoles following the target, steered westward, away from the Proton Center line, through PW6 and PW7, and ultimately focussed on experiment production targets located within the large PW8 hall. Around the Spring of 1988 it was decided to upgrade the existing Proton West secondary beamline to allow for transport of a primary proton beam, anticipated to be either 800 or 900 GeV/c, through PW8. This upgrade project, which is now nearing completion, was largely motivated by the then recent approval of E-771, a hadronic beauty production experiment located in PW8. E-771 represents the third in a series of experiments for the large-acceptance dimuon spectrometer presently located at the end of the Proton West beamline. This Technical Memo is a summary of the upgrade --- an explanation of the underlying strategy and a documentation of the final locations of the secondary beamline elements. 6 refs., 2 figs., 2 tabs.

Spiegel, L.

1989-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system  

E-Print Network (OSTI)

Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain

Jiao, Jiu Jimmy

362

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

program in Mexico City, and contacts in energy efficiencyenergy savings due to cool roofs for the median climate in Brazil, India, and Mexico ..energy savings due to cool roofs for the median climate in Brazil, India, and Mexico

Akbari, Hashem

2011-01-01T23:59:59.000Z

363

A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING  

E-Print Network (OSTI)

Tex. , 3rd Ann. Solar Heating & Cooling R&D Contractors'Proceedings, Passive Solar Heating & Cooling~'-~&-l~orkshop,Solar Jubilee, Phoenix, AZ, June 2-6, 1980 A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING

Tavana, Medhi

2011-01-01T23:59:59.000Z

364

Laying the Foundation for a Solar America: The Million Solar Roofs Initiative  

DOE Green Energy (OSTI)

As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

Strahs, G.; Tombari, C.

2006-10-01T23:59:59.000Z

365

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State University  

E-Print Network (OSTI)

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State of photovoltaic technology to generate electricity. Various innovative systems incorporating photovoltaic panels and Fluids Laboratory (WEFL) at Colorado State University (CSU, www.windlab.colostate.edu) have been involved

366

TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING  

Science Conference Proceedings (OSTI)

Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the d

Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

2010-03-01T23:59:59.000Z

367

GPU-based roofs' solar potential estimation using LiDAR data  

Science Conference Proceedings (OSTI)

Solar potential estimation using LiDAR data is an efficient approach for finding suitable roofs for photovoltaic systems' installations. As the amount of LiDAR data increases, the non-parallel methods take considerable time to accurately estimate the ... Keywords: CUDA, GPU, LiDAR, Solar potential

Niko Luka?, Borut Alik

2013-03-01T23:59:59.000Z

368

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

369

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

370

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

371

County Aims to Save with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Aims to Save with Upgrades County Aims to Save with Upgrades County Aims to Save with Upgrades August 5, 2010 - 6:50pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Fulton County, Georgia is an example of how large-scale energy upgrades can save local governments millions of dollars and develop a new green workforce. A retrofit program, funded by an $814,300 Energy Efficiency and Conservation Block Grant (EECBG) through the American Recovery and Reinvestment Act, was the topic of a recent video. Under the program, more than a dozen county facilities are being upgraded with equipment such as occupancy sensors, digital thermostats and LED exit signs. County workers will also be trained on how to conduct the upgrades and keep buildings energy efficient.

372

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

373

Energy Efficiency Upgrades: Benefiting Homeowners and the Environment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrades: Benefiting Homeowners and the Upgrades: Benefiting Homeowners and the Environment Energy Efficiency Upgrades: Benefiting Homeowners and the Environment May 10, 2013 - 4:37pm Addthis Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Looking for ways to save energy? Learn how to do a DIY home energy audit to help you identify and prioritize some energy efficiency upgrades. Check out Energy Saver for tips and advice on ways to save energy and money. When Margie Garmey and her partner bought their newly constructed two-story

374

County Aims to Save with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aims to Save with Upgrades Aims to Save with Upgrades County Aims to Save with Upgrades August 5, 2010 - 6:50pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Fulton County, Georgia is an example of how large-scale energy upgrades can save local governments millions of dollars and develop a new green workforce. A retrofit program, funded by an $814,300 Energy Efficiency and Conservation Block Grant (EECBG) through the American Recovery and Reinvestment Act, was the topic of a recent video. Under the program, more than a dozen county facilities are being upgraded with equipment such as occupancy sensors, digital thermostats and LED exit signs. County workers will also be trained on how to conduct the upgrades and keep buildings energy efficient.

375

Upgrade of the ALICE Inner Tracking System  

E-Print Network (OSTI)

The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavour production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 $\\mu$m. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and a material budget of 1.1% X0 per layer. %In particular, the properties of the two innermost layers define the ITS performance in measuring the displaced vertex of such short-lived particles. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavour detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last ten years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of: the impact parameter resolution, standalone tracking efficiency at low $p_{t}$, momentum resolution and readout capabilities. The Conceptual Design Report, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

Stefan Rossegger

2012-11-22T23:59:59.000Z

376

Emergency Diesel Generator Digital Control System Upgrade Requirements  

Science Conference Proceedings (OSTI)

This interim report documents the development of system requirements for a digital control system upgrade to the station emergency diesel generators (EDGs). Operators of nuclear power plants (NPPs) must be able to replace and upgrade equipment in a cost-effective manner while continuing to meet safety and reliability requirements and controlling modification costs. Upgrades to plant equipment—especially instrumentation and control (I&C) systems—typically involve replacement of analog ...

2013-12-18T23:59:59.000Z

377

Methods and apparatuses for preparing upgraded pyrolysis oil  

SciTech Connect

Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

2013-10-01T23:59:59.000Z

378

Economic Options for Upgrading Waste Heat  

E-Print Network (OSTI)

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat pump; and (6) waste heat driven compressor heat pump. Some of these are not widely known, and there has been a tendency to ascribe the characteristics and limitations of the most well-known member to all members of the group. This paper demonstrates the wide variation that actually exists between the different options, and highlights the considerations necessary to ensure the most economic choice for a particular application.

Erickson, D. C.

1983-01-01T23:59:59.000Z

379

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

380

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Upgrade Your Refinery for Energy Conservation  

E-Print Network (OSTI)

Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test runs to accurately define actual performance of each piece of equipment. A complete simulation model of the facility is developed and tested. Future operations are evaluated using the model to define heat and material balance requirements for all projected operations. Energy conservation projects are evaluated with the model to define energy savings over the life of each project. A discounted cash flow analysis is formulated and an optimum set of projects yielding maximum rates of return are selected for implementation.

Johnnie, D. H., Jr.; Klooster, H. J.

1983-01-01T23:59:59.000Z

382

N reactor safety upgrades final status report  

Science Conference Proceedings (OSTI)

This document describes the requirements, objectives, work completed, and issues resolved for all safety upgrades recommended by the various expert panels (e.g., Roddis), National Academy of Sciences (NAS), and Westinghouse Independent Safety Appraisal (WISA) team. This report reflects the status of the recommendations at the time of publication, while the reactor is being placed in cold standby. Each recommendation required a resolution, a closure process if closed, and a punchlist reference if open and required for restart. These recommendations are maintained on databases that were updated periodically as work was completed or punchlisted. The databases and files are to be retained with the N Reactor Standby files.

Foreman, S.K.; Rainey, T.E.; Erpenbeck, E.G.

1990-02-01T23:59:59.000Z

383

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: AstraZeneca - Newark This profiles explains how Astrazeneca's Newark...

384

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Allergan - Westport This profiles explains how Allergan's Westport facility...

385

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Boeing Philadelphia This profiles explains how Beoing's Philadelphia plant...

386

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Cargill Krefeld This profiles explains how Cargill's Krefeld mill saved...

387

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: GM Marion & Orion This profiles explains how GM's Marion & Orion facilities...

388

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

389

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project...

390

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho...

391

Income Tax Deduction for Energy Efficiency Upgrades (Idaho) ...  

Open Energy Info (EERE)

Facebook icon Twitter icon Income Tax Deduction for Energy Efficiency Upgrades (Idaho) This is the approved revision of this page, as well as being the most recent. Jump...

392

Energy Upgrade Program Revitalizing Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act. The program tapped nonprofit Energy Trust of Oregon to provide free energy audits for the participating businesses. Two-year payback When the energy upgrades are...

393

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT PROPOSAL FOR NEW OR UPGRADED TRANSMISSION LINE PROJECTS UNDER SECTION 1222 OF THE ENERGY POLICY ACT OF 2005 JULY 2010 TABLE OF CONTENTS INTRODUCTION 1. The Challenge...

394

SRI2013 | Workshop 3 - Facility Upgrades and High ...  

Science Conference Proceedings (OSTI)

... 11:45 — 12:15, Christoph Steier (LBNL) DL-ALS, a potential soft x-ray, diffraction-limited upgrade of the Advanced Light Source. ...

395

Energy Upgrades Pay Off for Taxpayers and Feds  

Science Conference Proceedings (OSTI)

... savings from the energy upgrades, based on 2007 energy prices, came to ... software to figure in a three percent annual energy price escalation rate. ...

2011-07-19T23:59:59.000Z

396

Community based outreach strategies in residential energy upgrade programs  

E-Print Network (OSTI)

Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

McEwen, Brendan (Brendan Carl Francis)

2012-01-01T23:59:59.000Z

397

ALS control system IP I/O module upgrade  

E-Print Network (OSTI)

the Fast Orbit Feedback at the ALS, Proceedings of PAC 2003,ALS Control System IP I/O Module Upgrade* J. M . Weber, M .

Weber, Jonah M.; Chin, Michael

2004-01-01T23:59:59.000Z

398

FRN Request for Proposals for New or Upgraded Transmission Line...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Administration Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 AGENCY:...

399

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer,...

400

ENERGY STAR Building Upgrade Manual Chapter 11: Supermarkets...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 11: Supermarkets and Grocery Stores The Building...

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ENERGY STAR Building Upgrade Manual Chapter 1: Introduction ...  

NLE Websites -- All DOE Office Websites (Extended Search)

STAR Building Upgrade Manual Chapter 1: Introduction Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

402

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

403

ENERGY STAR Building Upgrade Manual Chapter 2: Benchmarking ...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency upgrades presented in an easy-to-understand framework designed especially for ENERGY STAR partners. This 12-page chapter defines benchmarking, what successful...

404

Sandia upgrades hardware for NNSA training course | National...  

National Nuclear Security Administration (NNSA)

upgrades hardware for NNSA training course | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

405

Ribbon cutting marks chemistry laboratory upgrades at Northern...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2013 Ribbon cutting marks chemistry laboratory upgrades at Northern New Mexico College Community Connections: Our link to Northern New Mexico Communities Latest...

406

Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by...

407

ATLAS Upgrade Instrumentation in the US  

E-Print Network (OSTI)

Planned upgrades of the LHC over the next decade should allow the machine to operate at a center of mass energy of 14 TeV with instantaneous luminosities in the range 5--7e34 cm^-2 s^-1. With these parameters, ATLAS could collect 3,000 fb^-1 of data in approximately 10 years. However, the conditions under which this data would be acquired are much harsher than those currently encountered at the LHC. For example, the number of proton-proton interactions per bunch crossing will rise from the level of 20--30 per 50 ns crossing observed in 2012 to 140--200 every 25 ns. In order to deepen our understanding of the newly discovered Higgs boson and to extend our searches for physics beyond that new particle, the ATLAS detector, trigger, and readout will have to undergo significant upgrades. In this whitepaper we describe R&D necessary for ATLAS to continue to run effectively at the highest luminosities foreseen from the LHC. Emphasis is placed on those R&D efforts in which US institutions are playing a leading role.

Gustaaf Brooijmans; Hal Evans; Abe Seiden

2013-07-22T23:59:59.000Z

408

Gulf Shale Oil Upgrading Process technology  

SciTech Connect

A description of the Gulf Shale Oil Hydrotreating Process, which is designed for upgrading full range shale oil to premium quality synthetic crude, is presented. The process consists of two sections: a low severity pretreating section which stabilizes the raw oil, removes iron, arsenic, trace metals and particulates, and sulfur; and a twostage, high severity hydrotreating section which completes the upgrading. The second section hydrotreats the bulk oil to a specified nitrogen content, allowing for a quality FCC feedstock in the 650F+ (343C+) residue. The main reactor effluent is flashed with subsequent hydrotreating of the flash vapor oil to achieve a low nitrogen level in the naphtha and middle distillate. The benefit of this flash configuration is hydrogen addition selectivity which maximizes syncrude quality while minimizing overall hydrogen consumption; this selectivity relationship is detailed. Finally, the product quality of the syncrudes produced with the Gulf Shale Oil Hydrotreating Process using shale oils derived from three different retort technologies and for Western and Eastern shales are discussed.

Jones, W.; Antezana, F.J.; Cugini, A.V.; Lyzinski, D.; Miller, J.B.

1984-04-01T23:59:59.000Z

409

BIG Energy Upgrade: Procurement and Supply Chain report  

E-Print Network (OSTI)

BIG Energy Upgrade: Procurement and Supply Chain report ­ Green Deal and Energy Efficiency. Cover Image © Yorkshire Energy Services #12;BIG Energy Upgrade: Procurement and Supply Chain report ­ Green Deal and Energy Efficiency Retrofitting Supply Chains Delivery Professor S.C. Lenny Koh Dr Andrea

Wrigley, Stuart

410

Operational test report integrated system test (ventilation upgrade)  

Science Conference Proceedings (OSTI)

Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

HARTY, W.M.

1999-10-05T23:59:59.000Z

411

Antecedents of consumers' intentions to upgrade their mobile phones  

Science Conference Proceedings (OSTI)

The fourth generation (4G) mobile phone will soon be launched. Marketers need to know which factors determine whether customers choose to upgrade their mobile phones, as this will affect the diffusion of third generation (3G), 4G, and Worldwide Interoperability ... Keywords: Mobile phone, Technology acceptance model (TAM), Upgrade, WiMAX

Fang-Mei Tseng; Hui-Yi Lo

2011-02-01T23:59:59.000Z

412

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

413

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

414

Energy Efficiency Upgrades Help Retired Military Officers Save Money |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Upgrades Help Retired Military Officers Save Efficiency Upgrades Help Retired Military Officers Save Money Energy Efficiency Upgrades Help Retired Military Officers Save Money May 7, 2013 - 12:50pm Addthis A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? A retirement community in San Antonio worked with a local Better

415

Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Upgrades Help Build Better Neighborhoods Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

416

The 12 GeV Energy Upgrade at Jefferson Laboratory  

SciTech Connect

Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

Pilat, Fulvia C. [JLAB

2012-09-01T23:59:59.000Z

417

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho National Engineering Laboratory Sewer System Upgrade 7: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1994 EA-0907: Finding of No Significant Impact Idaho National Engineering Laboratory Sewer System Upgrade Project

418

Energy Efficiency Upgrades Help Retired Military Officers Save Money |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Upgrades Help Retired Military Officers Save Energy Efficiency Upgrades Help Retired Military Officers Save Money Energy Efficiency Upgrades Help Retired Military Officers Save Money May 7, 2013 - 12:50pm Addthis A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? A retirement community in San Antonio worked with a local Better

419

Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

420

Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings  

Science Conference Proceedings (OSTI)

Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Maxey, L Curt [ORNL; Gehl, Anthony C [ORNL; Hurt, Rick A [ORNL; Boehm, Robert F [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Barrel-shaped solar roofing element and method for its assembly  

Science Conference Proceedings (OSTI)

This patent describes a solar roofing system. It comprises a set of shingle comprising lower and upper flat plastic sheet members of extruded plastic spaced apart and sealed together to form fluid flow paths forming solar energy conversion means, the upper sheet of which is transparent to solar energy, interconnecting and overlapping structure for joining shingles together including structure for nailing through overlapped shingles into a roof surface, and means for interconnecting the solar energy conversion means comprising a flow path between the lower and upper plastic sheets for circulation of a liquid that may store heat when subjected to solar energy from a plurality of the shingles into a network for collecting accumulated solar energy.

Allegro, J.

1991-06-11T23:59:59.000Z

422

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

423

Neural Network Based on Ant Colony Clustering Algorithm Applied to Predict the Stability of the Roof in Coal Mining  

Science Conference Proceedings (OSTI)

The colliery roof collapse accident is one of the mine disasters .The influence factors have the characteristic of variety, non-linear, incertitude, etc., which make traditional neural prediction have to process a large amount of convoluted data. This ...

Xiaoyue Liu; Jiping Sun; Sumin Feng

2006-10-01T23:59:59.000Z

424

Categorical Exclusion 4598: Security Upgrade Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Form Determination Form Proposed Action Title: Security Upgrade Project (4598) Program or Field Office~ Y·12 Site Office LocationCs) CCjty/County/State): Oak Ridge. Anderson County, Tennessee Proposed Action Description: PAGE 04 / 04 r~:·:~~s ·'-u ~'irllO:.'~~b ., .. y " ~e ··· ., ;:;;,il ,;: ; I·;;;:;;,; ;I ,' .: :~~. ,U,Illll\;: , "':ll ,l3~ . ~~~~ 1 ~; The proposed action is to add fence posts and run razor wire in various fence locations throughout the site. This project will not require excavation. This activity will disturb gravel but will not remove gravel and soil from post holes which will be placed back in the same area. Cat.eg,orieal Exc!usion(s) ,Mp!i.cd: 81.3- Routine maintenance

425

Transverse instability analysis for the IPNS Upgrade  

SciTech Connect

The proposed 1-MW spallation neutron source upgrade calls for a 2-GeV rapidly-cycling synchrotron (RCS) with an intensity of 1.04{times}10{sup 14} protons per pulse. The potential exists for the excitation of collective, intensity-dependent transverse instabilities. These can normally be controlled by introducing a betatron tune shift or spread, where care is exercised to avoid single-particle resonance effects. Adjusting the chromaticity using sextupoles to vary the head-to-tail phase shift is compared to introducing Landau damping by octupoles. An option for a feedback system is also examined. The momentum spread used for the transverse analysis was obtained from the requirements for longitudinal stability.

Harkay, K.; Cho, Y.

1995-07-01T23:59:59.000Z

426

Steam turbine upgrading: low-hanging fruit  

Science Conference Proceedings (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

427

Economic enhancement of Western shale oil upgrading  

DOE Green Energy (OSTI)

A proof-of-concept study for a novel shale oil refining process was undertaken. This project promises reduced upgrading costs, thereby making shale oil development more feasible for commercialization. The process consists of distillation of raw shale oil into a distillate and residue portion, cracking of the residue by hydropyrolysis, and selective hydrotreating of narrow boiling cuts from the total distillate. Based on models and experimental data, the end product slate is projected to be 34% naphtha, 57% middle distillate, and 10.3% atm residue + coke. Hydrogen addition is 1.3% or 800 scf/bbl. These results are considerably improved over conventional processing, which gives 14% naphtha, 41% middle distillate, and 48.2% residue + coke and hydrogen addition of 3.2% or 2000 scf/bbl. More quantitative data and preliminary economics will be obtained in the next phase of study. 13 refs., 3 figs., 6 tabs.

Bunger, J. W.; Ryu, H.; Jeong, S. Y.

1989-07-01T23:59:59.000Z

428

UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES  

SciTech Connect

The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

S.A.Stern; P.A. Rice; J. Hao

2000-03-01T23:59:59.000Z

429

Predicting Current Serviceability And Residual Service Life Of Plywood Roof Sheathing Using  

E-Print Network (OSTI)

This report presents the findings and implications of a 10-year research program, carried out at the USDA Forest Service, Forest Products Laboratory, to develop kinetics-based service-life models for untreated and fire-retardant- (FR) treated plywood roof sheathing exposed to elevated in-service temperatures. This program was initiated because some FR-treated sheathing products were experiencing significant thermal degrade and needed to be replaced. This 10-year research program systematically identified the cause of the degradation and has resulted in new acceptance and performance standards and revisions to U.S. building codes. The strength loss was cumulatively related to FR chemistry, thermal exposure during pretreatment, treatment, and post-treatment processing, and in-service exposure. Quantitatively, a kinetics-based approach could be used to predict strength loss of plywood based on its time-- temperature exposure history. The research program then developed models to assess current condition, predict future hazard based on past service life, and predict residual serviceability of untreated and FR-treated plywood used as structural roof sheathing. Findings for each of these subjects are briefly described in this report. Results of research programs like this one can be used to extend the service life of wood by providing engineers with an estimate of residual serviceability and thereby avoiding premature removal. Many of the approaches in these kinetics-based servicelife models for plywood roof sheathing are directly applicable to the development of predictive durability models for wood and wood composite roof and wall sheathing that has been exposed to moisture and has eventually decayed. When those models are developed, they will help building code officials, ...

Kinetics-Based Models Je; Je Win; Y Pk Lebow; Jf Murphy; Usda Forest; Service Madison; Wisconsin Usa

2002-01-01T23:59:59.000Z

430

Laying the Foundation for a Solar America: The Million Solar Roofs Initiative  

SciTech Connect

As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

Strahs, G.; Tombari, C.

2006-10-01T23:59:59.000Z

431

The DIII-D cryogenic system upgrade  

SciTech Connect

The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

1993-10-01T23:59:59.000Z

432

Upgraded HFIR Fuel Element Welding System  

Science Conference Proceedings (OSTI)

The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

Sease, John D [ORNL

2010-02-01T23:59:59.000Z

433

A Neutral Beam Injector Upgrade for NSTX  

Science Conference Proceedings (OSTI)

The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

2002-01-18T23:59:59.000Z

434

Roof and Attic Design Guidelines for new and retrofit Construction of Homes in Hot and Coild Climates  

SciTech Connect

Some guidelines for improving the energy efficiency of roofs and attics are presented and are based on the research of the DOE Building Technology. The results of combined analytical and experimental studies were used to benchmark computer tools, which in turn, were used to simulate homes in hot and cold climates. Adding floor and roof insulation, above deck ventilation, radiant barriers, cool color shingle, metal or tile roofs, sealing the attic floor, sealing the duct system and sealing the attic were simulated to compute the cost of energy savings. Results are prioritized to help building owners make an informed economic decision when contemplating roof and attic retrofits. Sealing the attic floor is a top retrofit option. The sealed attic approach and a new prototype roof assembly an insulated and ventilated roof are good options for retrofit work but have paybacks ranging from 15 to 25 years. A new sealed attic concept was simulated and computations show its simple payback is about 10 to 12 years in hot and cold climates; its first cost is significantly reduced from that of a spray foam approach. For new construction the best option is to keep the ducts out of the attic, make sure the attic floor is sealed and add at least code level of insulation to the ceiling.

Desjarlais, Andre Omer [ORNL] [ORNL; LaFrance, Marc [International Energy Agency] [International Energy Agency

2013-01-01T23:59:59.000Z

435

EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmissio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line, Benton and Yakima Counties, Washington EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade...

436

U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative December 23, 2008 - 9:18am...

437

PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA  

Science Conference Proceedings (OSTI)

Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

Biswas, Kaushik [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Kosny, Jan [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL

2011-01-01T23:59:59.000Z

438

The Jefferson Lab 12 GeV Upgrade  

Science Conference Proceedings (OSTI)

A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

R.D. McKeown

2011-10-01T23:59:59.000Z

439

Cascade Natural Gas - Commercial Efficiency Rebate Program (Washington...  

Open Energy Info (EERE)

Boilers, Building Insulation, Clothes Washers, Dishwasher, Doors, Furnaces, Steam-system upgrades, Water Heaters, Commercial Cooking Equipment, Food Service Equipment,...

440

Columbia Gas of Massachusetts - Commercial Energy Efficiency...  

Open Energy Info (EERE)

Heat recovery, Processing and Manufacturing Equipment, Programmable Thermostats, Steam-system upgrades, Water Heaters, Commercial Cooking Equipment, Tankless Water Heaters...

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

442

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

443

Screening of processing and upgrading schemes  

DOE Green Energy (OSTI)

The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

Not Available

1991-10-01T23:59:59.000Z

444

Find Financing for Energy Efficiency Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Find Financing for Energy Efficiency Upgrades Find Financing for Energy Efficiency Upgrades Find Financing for Energy Efficiency Upgrades Photo of a block in lower downtown Denver that is part of Living City Block, a DOE Commercial Building Partnerships participant. Financing need not be a barrier to improving energy efficiency in your commercial building. There are federal, state, and local and tax incentives for energy efficiency upgrades, and other financial opportunities to help you meet your energy goals. The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, for example, offers financial assistance opportunities to business, industry, universities, and others for the development and demonstration of energy efficiency strategies and technologies. Other methods of financing energy efficiency improvements

445

Federal Finance Facilities Available for Energy Efficiency Upgrades and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Finance Facilities Available for Energy Efficiency Upgrades Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment "Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment" is a resource guide that lists the various federal financing programs for which energy efficiency and clean energy qualify - meant to make it easier for state, local and tribal leaders, along with their partners in the private sector, to find capital for energy efficiency and clean energy projects. This first-edition guide is a product of a cooperative effort among seven federal agencies, including the U.S. Departments of Agriculture, Energy, Housing and Urban Development, Transportation and Treasury, along with the

446

Federal Finance Facilities Available for Energy Efficiency Upgrades and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Finance Facilities Available for Energy Efficiency Upgrades Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment "Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment" is a resource guide that lists the various federal financing programs for which energy efficiency and clean energy qualify - meant to make it easier for state, local and tribal leaders, along with their partners in the private sector, to find capital for energy efficiency and clean energy projects. This first-edition guide is a product of a cooperative effort among seven federal agencies, including the U.S. Departments of Agriculture, Energy, Housing and Urban Development, Transportation and Treasury, along with the

447

Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study - Energy Efficiency Upgrades for Fermilab Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure October 7, 2013 - 3:29pm Addthis Utility energy service contracting provides needed plant improvements. Photo of Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Overview The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments - a "comfort system" to cool the employee office

448

Energy Efficiency Upgrades Part of Winning Formula for Oregon School  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrades Part of Winning Formula for Oregon Upgrades Part of Winning Formula for Oregon School District Energy Efficiency Upgrades Part of Winning Formula for Oregon School District August 27, 2012 - 9:45am Addthis The community of Vernonia, OR, celebrates the opening of a new energy efficient school. | Photo courtesy of April Baer, OPB. The community of Vernonia, OR, celebrates the opening of a new energy efficient school. | Photo courtesy of April Baer, OPB. Todd G. Allen Project Officer, Golden Field Office What are the key facts? Energy efficiency upgrades will reduce the Vernonia school district's energy usage by 43 percent and save taxpayers more than $62,000 a year. The school will also serve as a laboratory for forest technologies

449

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

450

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC's Franklin NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability July 20, 2009 OCEAN EDDIES: This image comes from a computer simulation modeling eddies in the ocean. An interesting feature is the abundance of eddies away from the equator, which is shown in the center of the image at y=0. This research collaboration led by Paola Cessi of the Scripps Institute of Oceanography performed over 15,000 years worth of deep ocean circulation simulations with 1.6 million processor core hours on the upgraded Franklin system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer, providing the facility's 3,000 users with twice

451

Builder Brings Tradition to Efficient Home Upgrades | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

home. However, Artistic Homes calculates that the 49,550 price tag to upgrade a 2,157-square-foot home shrinks to about 811 after applying incentives and tax credits. And because...

452

Retrofit Upgrade of Center Break Cell Technology to Point Feeding ...  

Science Conference Proceedings (OSTI)

... been a few attempts worldwide to upgrade these cells so as to implement the newer ... The results show that this project has decreased the energy consumption and ... Production Application Study on Magneto-Hydro-Dynamic Stability of a ...

453

Thomson scattering diagnostic upgrade on DIII-D  

Science Conference Proceedings (OSTI)

The DIII-D Thomson scattering system has been upgraded. A new data acquisition hardware was installed, adding the capacity for additional spatial channels and longer acquisition times for temperature and density measurements. Detector modules were replaced with faster transimpedance circuitry, increasing the signal-to-noise ratio by a factor of 2. This allows for future expansion to the edge system. A second phase upgrade scheduled for 2010-2011 includes the installation of four 1 J/pulse Nd:YAG lasers at 50 Hz repetition rate. This paper presents the first completed phase of the upgrade and performance comparison between the original system and the upgraded system. The plan for the second phase is also presented.

Ponce-Marquez, D. M.; Bray, B. D.; Deterly, T. M.; Liu, C. [General Atomics, P.O. Box 85608, San Diego, California 092186-5608 (United States); Eldon, D. [University of California-San Diego, La Jolla, California 92093-0417 (United States)

2010-10-15T23:59:59.000Z

454

Office of Science Approves Critical Decision 1 for APS Upgrade...  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Office of Science Approves Critical Decision 1 for APS Upgrade Project SEPTEMBER 15, 2011...

455

Energy Star Building Upgrade Manual Lighting Chapter 6  

NLE Websites -- All DOE Office Websites (Extended Search)

O&M Manual 34 Dispose of Lamps Properly 35 6.9 Summary 36 Bibliography 36 Glossary G-1 ENERGY STAR Building Manual 2 6. Lighting 6.1 Overview A lighting upgrade is the second...

456

Request for Proposals for New or Upgraded Transmission Line Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012...

457

San Antonio Small Businesses "Seeing the Light" with Energy Upgrades...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Energy Upgrades March 21, 2012 - 2:27pm Addthis KBK to the Trade 1 of 5 KBK to the Trade Thanks to the City Lights program, this design shop is saving an estimated 25,500...

458

SRS upgrades helium recovery system | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

upgrades helium recovery system | National Nuclear Security upgrades helium recovery system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > SRS upgrades helium recovery system SRS upgrades helium recovery system Posted By Office of Public Affairs Savannah River Site (SRS) Tritium Programs recently completed a project to design, build and relocate a new system for separating and capturing

459

J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant  

SciTech Connect

This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

Not Available

2005-09-01T23:59:59.000Z

460

Commissioning results from the recently upgraded RHIC LLRF system  

Science Conference Proceedings (OSTI)

During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "roofs steam-system upgrades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products  

SciTech Connect

The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

2009-11-20T23:59:59.000Z

462

Three-dimensional analysis of AP600 standard plant shield building roof  

SciTech Connect

The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design adequacy. The results demonstrated that provided area of steal on each face of several sections of the AP600 SBR was inadequate. This was also noticed when comparing the total provided area of steel per section, i.e., the area of steel on both faces. The discrepancy between Westinghouse results and these reported herein could have resulted from the different finite element mesh sizes and the assumption used in Westinghouse design.

Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

1999-06-01T23:59:59.000Z

463

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network (OSTI)

Society's growing demands for energy results in rapid increase in oil consumption and motivates us to make unconventional resources conventional resources. There are enormous amounts of heavy oil reserves in the world but the lack of cost effective technologies either for extraction, transportation, or refinery upgrading hinders the development of heavy oil reserves. One of the critical problems with heavy oil and bitumen is that they require large amounts of thermal energy and expensive catalysts to upgrade. This thesis demonstrates that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam processing lowers the thermal energy requirements and could sharply reduce the investment in catalysts. The design of the facilities can be simpler and will contribute to lowering the costs of transporting and processing heavy oil and bitumen. E-Beam technology uses the high kinetic energy of fast electrons, which not only transfer their energy but also interact with hydrocarbons to break the heavy molecules with lower thermal energy. In this work, we conducted three major stages to evaluate the applicability of E-Beam for heavy oil upgrading. First, we conducted laboratory experiments to investigate the effects of E-Beam on hydrocarbons. To do so, we used a Van de Graff accelerator, which generates the high kinetic energy of electrons, and a laboratory scale apparatus to investigate extensively how radiation effects hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional upgrading. The results of our study are very encouraging. From the experiments we found that E-Beam effect on hydrocarbon is significant. We used less thermal energy for distillation of n-hexadecane (n-C16) and naphtha with E-Beam. The results of experiments with asphaltene indicate that E-Beam enhances the decomposition of heavy hydrocarbon molecules and improves the quality of upgraded hydrocarbon. From the study of energy transfer mechanism, we estimated heat loss, fluid movement, and radiation energy distribution during the reaction. The results of our economic evaluation show that E-Beam upgrading appears to be economically feasible in petroleum industry applications. These results indicate significant potential for the application of E-Beam technology throughout the petroleum industry, particularly near production facilities, transportation pipelines, and refining industry.

Yang, Daegil

2009-12-01T23:59:59.000Z

464

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Insulation Maximum Rebate Up to 100,000 per site per year. Program Info Funding Source Conservation Program Funding Charge State Oregon Program Type Utility Rebate Program Rebate Amount A/C or Heat Pumps: $25-$100/ton Economizer Control Addition: $75/ton Air-Side Economizer Repair: $250 Evaporative Coolers: $100-$300/ton