National Library of Energy BETA

Sample records for roof cxs applied

  1. Roof Renovations

    Broader source: Energy.gov [DOE]

    The roof of a Federal building is a common placement for a number of renewable energy technologies, so they should be addressed anytime a roof renovation is undertaken, including roof-mounted...

  2. White Roofs

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Steven Chu discusses the benefits of switching to white roofs and light colored pavements.

  3. Cool Roofs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    strikes the roof it is either reflected or it is absorbed by the roof. The reflected radiation or solar reflectance is that fraction which is reflected. It's a scale of zero...

  4. Green Roofs

    SciTech Connect (OSTI)

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  5. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    SciTech Connect (OSTI)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-22

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  6. Promising Technology: Cool Roofs

    Broader source: Energy.gov [DOE]

    A cool roof increases the solar reflectance of the roof surface. By reflecting more sunlight, the roof surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the roof into the building below. During the cooling season, the addition of a cool roof can decrease the cooling load of the building.

  7. Roof bolting improvements

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-11-15

    Suppliers partner with mine operators to offer safer, more productive tools for roof bolting. 4 figs.

  8. One Cool Roof

    Broader source: Energy.gov [DOE]

    The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight.

  9. New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment April 24, 2015 - 4:21pm Addthis Berkeley Lab...

  10. Guide to Cool Roofs

    Energy Savers [EERE]

    beautify your home. The immediate and long-term benefits of roofs that stay cool in the sun have made cool roofing the fastest growing sector of the building industry. Studies...

  11. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (OSTI)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  12. Mine roof support

    SciTech Connect (OSTI)

    Bollmann, A.

    1981-02-24

    A mine roof support has a base and a roof shield pivoted to the base and carrying at its upper end a pivoted cap which is urged upwardly against the mine roof by a hydraulic pit prop reacting between the cap and the base. The lower end of the roof shield is connected to the base by two links each having a pivot cooperating with a pivot on the roof shield, and a pivot cooperating with a pivot on the base. In addition, the base and/or the lower end of the roof shield has an auxiliary for each link and each link has an auxiliary pivot which can be connected with one of the auxiliary pivots of the base or lower end.

  13. Cool Roofs: An Introduction

    Broader source: Energy.gov [DOE]

    I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar.

  14. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  15. Cool Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of 150F or more in the summer sun. A cool roof under the same conditions could stay more than 50F cooler. Benefits of Cool Roofs A cool roof can benefit a building and...

  16. Why Cool Roofs?

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  17. Guide to Cool Roofs

    SciTech Connect (OSTI)

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  18. Roof bolting equipment & technology

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  19. Mine roof support system

    SciTech Connect (OSTI)

    Culley, D.H.

    1982-01-26

    A mine roof support system is disclosed having sets of laterally spaced pairs of elongated support members adapted to be moved into and out of abutting relation with a mine roof. Wheel supported frames extend between and connect adjacent end portions of each pair of support members with adjacent wheel supported frames at the ends of the support members being in spaced tandem relation and connected to each other by connector members. Extensible prop members are connected to and move the wheel supported frames and the elongated support members connected thereto selectively toward and away from the mine roof.

  20. Cool Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Cool Roofs Cool Roofs Learn how switching to a cool roof can save you money and benefit the environment. A cool roof is one that has been designed to reflect more sunlight and absorb less heat than a standard roof. Cool roofs can be made of a highly reflective type of paint, a sheet covering, or highly reflective tiles or shingles. Nearly any type of building can benefit from a cool roof, but consider the climate and other factors before deciding to install

  1. Why Cool Roofs?

    Broader source: Energy.gov [DOE]

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple,...

  2. Mine roof support

    SciTech Connect (OSTI)

    Bollmann, A.

    1982-01-05

    A mine roof support has a base, a supporting prop extending upwardly from the base, an elongated roof-supporting element having one portion supported by the supporting prop and another portion telescopable relative to the one portion toward a mine face and having a free end formed as a housing with a width corresponding to the width of the one portion, and a thrust prop arranged to support the free end section of the telescopable portion of the roof-supporting element and having a roof-side end section which is forcedly displaceable in the housing in direction of elongation of a mine and pivotable in a substantially vertical plane about an axle arranged in the housing.

  3. Thrust bolting: roof bolt support apparatus

    DOE Patents [OSTI]

    Tadolini, Stephen C. (Lakewood, CO); Dolinar, Dennis R. (Golden, CO)

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  4. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect (OSTI)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  5. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  6. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect (OSTI)

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  7. Mine roof supporting system

    SciTech Connect (OSTI)

    Curry, P.F.

    1981-06-23

    A stabilizing arrangement for mine roof support systems of the type in which a series of support units, each including a transverse beam supported at opposite ends by extensible props, are interconnected by extensible struts in a manner to be selfadvancing by alternate retraction of support units from a roof supporting condition and extension of the struts to advance such retracted units relative to others of such units which are in an extended roof engaging condition. The connection of each prop to the beam in a given unit is pivotal to allow deflection of the beam and props of a supporting unit from a normal perpendicular relationship under load. The stabilizing means restores the props and beam to a normal perpendicular relationship for advancing movement of each support unit. The supporting units are further stabilized relative to the struts by prop supporting brackets permitting canting movement of the props from a perpendicular relationship with respect to the struts but maintaining the props in a generally upright position for unit advance.

  8. Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    power plant emissions, including carbon dioxide, sulfur dioxide, nitrous oxides, and mercury, by reducing cooling energy use in buildings. Types of Roofs and How They Can Be Made...

  9. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect (OSTI)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  10. Cool Roofs Webinar | Department of Energy

    Office of Environmental Management (EM)

    Cool Roofs Webinar Cool Roofs Webinar On April 11, 2011, Blaise Stoltenberg and Kosol Kiatreungwattana of the National Renewable Energy Laboratory presented a Webinar about roofs that are designed to maintain a lower roof temperature than traditional roofs do, in order to reduce energy bills by decreasing air conditioning needs, improve indoor thermal comfort, and decrease room operating temperature to try to extend roof service life. It's one of the presentations in a series of Sustainable

  11. Measuring mine roof bolt strains

    DOE Patents [OSTI]

    Steblay, Bernard J. (Lakewood, CO)

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  12. Solar Roofing Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Aurora, Ontario, Canada Zip: L4G 3S8 Product: Manufactures and develops photovoltaic roofing and portable products. References: Solar Roofing Systems Inc1 This...

  13. OCR Solar Roofing Inc | Open Energy Information

    Open Energy Info (EERE)

    OCR Solar Roofing Inc Jump to: navigation, search Name: OCR Solar & Roofing Inc Place: Vacaville, California Product: US installer of turnkey PV rooftops, focussing on the Northern...

  14. Energy 101: Cool Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Text Version Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money

  15. Accelerated Aging of Roofing Materials

    Broader source: Energy.gov [DOE]

    This project aims to reduce the time to rate aged materials from three years to a few days, which will speed next-generation cool roofing materials to market.

  16. Advanced Energy Efficient Roof System

    SciTech Connect (OSTI)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

  17. Unvented Roofs - Air Permeable Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of roof sheathing remaining below 20 percent over the service life of the assembly. ... to be informed of its significance with respect to reducing the risks of dense pack ...

  18. Roof Separation Highlights Bolting Priority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP UPDATE: January 21, 2015 Roof Separation Highlights Bolting Priority On January 15, Mining and Ground Control Engineers at WIPP discovered that a portion of the ceiling in the Panel 3 access drift had fallen in a restricted access area. The roof fall was discovered during routine ground control and bulkhead inspections conducted by WIPP geotechnical staff, and the section that fell was estimated to be approximately 8' long by 8'wide and 24" thick. Access to this area has been

  19. SCE Roof Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer...

  20. Roof screening for underground coal mines: recent developments

    SciTech Connect (OSTI)

    Compton, C.S.; Gallagher, S.; Molinda, G.M.; Mark, C.; Wilson, G.

    2008-06-15

    The use of screens to control falls of the immediate roof or roof skin (that is between the installed primary and secondary roof supports) is described. 5 figs.

  1. Accelerated Aging of Roofing Materials - 2013 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Accelerated Aging of Roofing Materials Stay-Clean and Durable White Elastomeric Roof Coatings New Cool Roof Coatings and Affordable Cool Color Asphalt...

  2. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Applications for the 2016 summer school are now closed. Applications were due on February 5, 2016. PLEASE NOTE: After the 2016 session, the program will not be offered again until 2018. Before applying Check your

  3. Rehab guide: Roofs. Volume 3

    SciTech Connect (OSTI)

    1999-03-01

    Nine volumes will eventually make up The Rehab Guide in its entirety, and they are listed on the back cover of this volume. Each one is devoted to distinct elements of the house, and within each volume is a range of issues that are common to that element of home rehabilitation work. This volume, Roofs, for example, covers the major roofing systems including framing and sheathing; protective strategies such as underlayments and flashing; energy and air infiltration issues; roofing materials; and gutters and down-spouts. Each volume addresses a wide range techniques, materials, and tools, and recommendations based on regional differences around the country. Throughout The Rehab Guide, special attention is given to issues related to energy efficiency, sustainability, and accessibility.

  4. Self advancing mine roof supports

    SciTech Connect (OSTI)

    Seddon, J.; Jones, F.

    1985-03-19

    A self-advancing mine-roof-support for use in or aligned with a main roadway or gate has a floor-engaging part and a roof engaging part spaced apart by extensible load-bearing prop or jack means, and engagement means for a face-conveyor and a transversely acting transfer conveyor whereby their relative positions are constrained to facilitate discharge of mineral from one conveyor to the other. The engagement means for the face conveyor comprises sliding anchor beams that assure maintenance of the relative attitudes of the support and the face conveyor and the transfer conveyor is held fore and aft of the support.

  5. Guidelines for Selecting Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    Selecting Cool Roofs Guidelines for Selecting Cool Roofs Guide covers how to understand, evaluate, and implement cool roof technologies. PDF icon coolroofguide.pdf More Documents & Publications Green Roofs - Federal Technology Alert Microsoft PowerPoint - Cool Roofs_090804 Accelerated Aging of Roofing Materials - 2013 BTO Peer Review

  6. Energy 101: Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored,

  7. Tips: Energy-Efficient Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Roofs Tips: Energy-Efficient Roofs Tips: Energy-Efficient Roofs If you've ever stood on a roof on a hot summer day, you know how hot it can get. The heat from your roof makes your air conditioner work even harder to keep your home cool. Cool Roofs If you are building a new home, decide during planning whether you want a cool roof, and if you want to convert an existing roof, you can: Retrofit the roof with specialized heat-reflective material. Re-cover the roof with a new

  8. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http://HeatIsland.LBL.gov April 4, 2013 Development of Advanced Building Envelope Surface Materials & Integration of Artificial Soiling and Weathering in a Commercial Weatherometer New York Times, 30 July 2009 2010 2012 Challenge: speed the development of high performance building envelope materials that resist soiling, maintain high solar reflectance, and

  9. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect (OSTI)

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  10. Flexible shaft and roof drilling system

    DOE Patents [OSTI]

    Blanz, John H. (Carlisle, MA)

    1981-01-01

    A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

  11. List of Roofs Incentives | Open Energy Information

    Open Energy Info (EERE)

    Central Air conditioners CustomOthers pending approval Heat pumps Lighting Roofs Photovoltaics Yes Electric Efficiency Standard (Indiana) Energy Efficiency Resource...

  12. Lafarge Roofing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: RH4 1TG Product: Distributes and installs roofing tiles, including photovoltaic ones. Coordinates: 48.231575, -101.134114 Show Map Loading map......

  13. Cool Roof Calculator | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Cool Roof Calculator AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online...

  14. Energy 101: Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces

  15. Tips: Energy-Efficient Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy-Efficient Roofs If you've ever stood on a roof on a hot summer day, you know how hot it can get. The heat from your roof makes your air conditioner work even harder to keep...

  16. Installation of Cool Roofs on Department of Energy Buildings...

    Office of Environmental Management (EM)

    Installation of Cool Roofs on Department of Energy Buildings Installation of Cool Roofs on Department of Energy Buildings PDF icon 2010.06.01 S-1 memo, Installation of Cool Roofs...

  17. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  18. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Berkeley, CA)

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  19. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  20. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar...

  1. Daylighter Daily Solar Roof Light | Open Energy Information

    Open Energy Info (EERE)

    Daylighter Daily Solar Roof Light Jump to: navigation, search Name: Daylighter Daily Solar Roof Light Address: 1991 Crocker Road, Suite 600 Place: Cleveland, Ohio Zip: 44145...

  2. Tips: Energy-Efficient Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    carefully assess your property and consult a professional before deciding to install a green roof. Learn More Energy-Efficient Home Design Cool Roofs Financing Energy-Efficient...

  3. Energy Department Completes Cool Roof Installation on DC Headquarters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save ...

  4. Secretary Chu Announces Steps to Implement Cool Roofs at DOE...

    Broader source: Energy.gov (indexed) [DOE]

    ... Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy

  5. New Cool Roof Coatings and Affordable Cool Color Asphalt | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Cool Roof Coatings and Affordable Cool Color Asphalt New Cool Roof Coatings and Affordable Cool Color Asphalt Emerging Technologies Project for the 2013 Building Technologies...

  6. Next Generation Attics and Roof Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications New Cool Roof Coatings and Affordable Cool Color Asphalt Accelerated Aging of Roofing Materials - 2013 BTO Peer Review This graphic...

  7. SolarRoofs com | Open Energy Information

    Open Energy Info (EERE)

    95608 Sector: Solar Product: California-based manufacturer of the patented Skyline solar water heating systems. References: SolarRoofs.com1 This article is a stub. You can help...

  8. Cool Roofs | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been estimated to have the potential to offset the carbon emissions of 300 million automobiles." Y-12 began installing cool roofs in 2008, which was well before Secretary of...

  9. Next Generation Attics and Roof Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose

  10. CX-012563: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof repairs at 735-A CX(s) Applied: B1.3Date: 41870 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  11. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  13. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    SciTech Connect (OSTI)

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  14. Cool Roofs: An Easy Upgrade | Department of Energy

    Office of Environmental Management (EM)

    Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade December 14, 2010 - 9:25am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Dark roofs can be 50 degrees hotter than light roofs. Combined with dark roads and parking lots, dark roofs lead to the 'urban heat island' effect: cities tend to be 2-5 degrees hotter. A cooler roof means energy bills that are up to 10-15% lower because your air conditioner doesn't have to work

  15. Weathering of Roofing Materials-An Overview

    SciTech Connect (OSTI)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  16. MSR Innovations Modular Solar Roofing | Open Energy Information

    Open Energy Info (EERE)

    search Name: MSR Innovations (Modular Solar Roofing) Place: Burnaby, British Columbia, Canada Zip: V5J 5H8 Product: British Columbia-based PV roofing systems maker. Coordinates:...

  17. Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Energy Saving "Cool Roofs" Installed at Y-12 Energy Saving "Cool Roofs" Installed at Y-12 The ...

  18. CX-010655: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Repair on Crane Maintenance Area Roof CX(s) Applied: B1.3 Date: 06/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. Solar Domestic Water Heating: a Roof-Integrated Evaluation

    SciTech Connect (OSTI)

    2009-09-03

    This fact sheet describes an evaluation of the performance of a roof-integrated solar water heating system.

  20. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  1. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    SciTech Connect (OSTI)

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  2. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  3. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  4. Project Overcoat An Exploration of Exterior Insulation Strategies for 1- Story Roof Applications in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat; Schirber, Tom; Yost, Peter; Murry, Tessa

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied band-aids such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an overcoat of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  5. Status of cool roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  6. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Office of Environmental Management (EM)

    Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But

  7. Cool Roofs Lead to Cooler Cities | Department of Energy

    Office of Environmental Management (EM)

    Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities July 23, 2010 - 2:07pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofs and roadways create what is called the "urban heat island effect," meaning a city is significantly warmer than its surrounding rural areas. Light colored roofs reduce the heat island effect and improve air quality by reducing emissions. Lighter-colored roofing surfaces reflect

  8. A Cool Roof for the Iconic Cyclotron | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab

  9. Improving Our Environment One Roof at a Time

    Broader source: Energy.gov [DOE]

    Known by a variety of names, green roofs – which are built on top of a conventional roof and are partially or completely covered by vegetation – have been around for thousands of years and are popular in many European countries. Scientists at the Department of Energy’s National Energy Technology Laboratory are using green roofs as laboratories to investigate alternative growth media for plants that make use of waste materials generated by the fossil fuel industry.

  10. Energy Department Completes Cool Roof Installation on DC Headquarters

    Energy Savers [EERE]

    Building to Save Money by Saving Energy | Department of Energy Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding

  11. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  12. Covered Product Category: Cool Roof Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Roof Products Covered Product Category: Cool Roof Products The Federal Energy Management Program (FEMP) provides acquisition guidance for cool roof products, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label,

  13. Flourescent Pigments for High-Performance Cool Roofing and Facades |

    Office of Environmental Management (EM)

    Department of Energy Flourescent Pigments for High-Performance Cool Roofing and Facades Flourescent Pigments for High-Performance Cool Roofing and Facades Addthis 1 of 3 PPG Industries and Lawrence Berkeley National Laboratory are partnering to develop a new class of dark-colored pigments for cool metal roof and façade coatings that incorporate near-infrared fluorescence and reflectance to improve energy performance. Image: PPG Industries 2 of 3 Berkeley Lab Heat Island Group physicist Paul

  14. Airtightness Results of Roof-Only Air Sealing Strategies on 1 -Story Homes in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01

    In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.

  15. Comparison of Software Models for Energy Savings from Cool Roofs...

    Office of Scientific and Technical Information (OSTI)

    RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic ... Comparison to previous simulation-based studies, analysis on the force multiplier of RSC ...

  16. Indirect Benefits (Increased Roof Life and HVAC Savings) from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a decision on the PV installation, the Department of Energy Tiger Team has investigated potential indirect benefits of installing a solar PV system on the Convention Center roof. ...

  17. Cool Roofs and Heat Islands | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: Cool Roofs AgencyCompany Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource...

  18. Self advancing mine roof supports (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Self advancing mine roof supports Citation Details In-Document Search Title: Self advancing mine roof supports A self-advancing mine-roof-support for use in or aligned with a main roadway or gate has a floor-engaging part and a roof engaging part spaced apart by extensible load-bearing prop or jack means, and engagement means for a face-conveyor and a transversely acting transfer conveyor whereby their relative positions are constrained to facilitate discharge of mineral from one conveyor to the

  19. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  20. Developing Energy Efficient Roof Systems DEERS | Open Energy...

    Open Energy Info (EERE)

    (DEERS) Place: Ripon, California Zip: 95366 Sector: Solar Product: Developer of roof top solar PV projects. Coordinates: 43.84582, -88.837054 Show Map Loading map......

  1. New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

    Broader source: Energy.gov [DOE]

    A collaboration led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has established a method to simulate soiling and weathering processes in the lab, reproducing in only a few days the solar reflectance of roofing products naturally aged for three years.

  2. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  3. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  4. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. Last updated on Wednesday 12 February 2014

  5. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat; Schirber, Tom; Yost, Peter; Murry, Tessa

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  6. Cool Roofs: Your Questions Answered | Department of Energy

    Office of Environmental Management (EM)

    Roofs: Your Questions Answered Cool Roofs: Your Questions Answered January 6, 2011 - 2:58pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Last month Secretary Chu announced that the Department of Energy had installed a "cool roof" atop the west building of our Washington, DC headquarters. The announcement elicited a fair number of questions from his Facebook fans, so we decided to reach out to the people behind the project for their insight

  7. Repairing Roofs and Ceilings: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-01

    This brochure provides handy homeowners with tips on how to properly repair roofs and ceilings in their homes that sustained damage during a hurricane. This publications is a part of the How To's for the Handy Homeowner Series.

  8. Flourescent Pigments for High-Performance Cool Roofing and Facades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop a new class of dark-colored pigments for cool metal roof and faade coatings that incorporate near-infrared fluorescence and reflectance to improve energy performance. ...

  9. Secretary Chu Announces Steps to Implement Cool Roofs at DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    395 Kb . Cool roofs are one of the quickest and lowest cost ways we can reduce our global carbon emissions and begin the hard work of slowing climate change, said Secretary...

  10. Energy Department Completes Cool Roof Installation on DC Headquarters...

    Broader source: Energy.gov (indexed) [DOE]

    replacement project and it will save taxpayers 2,000 every year in building energy costs. ... As a result of the new cool roof installations on both buildings, taxpayers will save a ...

  11. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Roof Infrastructure Urban Heat Islands: Cool Roof Infrastructure Lead Performer: Lawrence Berkeley National Laboratory - U.S.-China Clean Energy Research Center Project Partners: -- Guangdong Provincial Academy of Building Research - Guangdong, China -- Chongqing University - Chongqing, China -- Research Institute of Standards and Norms - China -- Chinese Academy of Sciences - Beijing, China DOE Funding: $795,000 Project Term: Jan. 2011 - Dec. 2015 Project Objective The U.S.-China Clean

  12. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

  13. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect (OSTI)

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  14. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect (OSTI)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  15. Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01

    In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.

  16. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  17. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  18. Solare Cell Roof Tile And Method Of Forming Same

    DOE Patents [OSTI]

    Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  19. New Cool Roof Coatings and Affordable Cool Color Asphalt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for

  20. Oklahoma Tribe to Install Solar Roof | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? The new fully functioning roof and solar energy production plant will save the tribe about $20,000 a year. The Delaware Nation, a federally-recognized tribe of about 1,400 people in Anadarko, Okla., will install solar panel roofs on two tribal government buildings as part of a larger effort to become more sustainable and bring new jobs to an area struggling with high unemployment. "It's the start

  1. Fluorescent Pigments for High-Performance Cool Roofing

    Office of Environmental Management (EM)

    Zalich, Ph.D. mzalich@ppg.com PPG Industries, Inc. Fluorescent Pigments for High-Performance Cool Roofing 2014 Building Technologies Office Peer Review Paul Berdahl, Ph.D. phberdahl@lbl.gov LBNL 2 Project Summary Timeline: Start date: October 1, 2013 (NEW PROJECT) Planned end date: September 30, 2014 Key Milestones 1. 200g Dark Red Pigment, End Q1 2. Additional Pigments Identified, End Q2 3. 500g of 2 New Pigments, End Q3 4. ESR Measured on New Cool Roof Coating, End Q4 Budget: Total DOE $ to

  2. Fluorescent Pigments for High-Performance Cool Roofing

    Office of Environmental Management (EM)

    Fluorescent Pigments for High-Performance Cool Roofing 2015 Building Technologies Office Peer Review Michael Zalich, Ph.D. Paul Berdahl, Ph.D. mzalich@ppg.com phberdahl@lbl.gov PPG Industries, Inc. LBNL Project Summary Timeline: Start date: October 1, 2013 Planned end date: September 30, 2015 Key Milestones 1. Additional Pigments Identified, End Q2 and Q6 2. 500g of 2 New Pigments, End Q3 and Q7 3. ESR Measured on New Cool Roof Coating, End Q4 and Q8 4. Potential Manufacturing Partner, Q3 and

  3. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect (OSTI)

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  4. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  5. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops June 17, ...

  6. Load test of the 272W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-28

    This reports the results of the Load Test of the 272W Building High Bay Roof Deck and Support Structure.

  7. NNSA Commitment to Energy Efficiency: Promoting Cool Roof Technologies |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Commitment to Energy Efficiency: Promoting Cool Roof Technologies | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  8. CX-008629: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Remove Roof Over the North-east Spill Basin 235-F CX(s) Applied: B1.23 Date: 06/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-012388: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Repair of Roof Leaks 108-1K CX(s) Applied: B1.3 Date: 05/13/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-007875: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ambler Boiler House Geothermal Wells, Cool Roof and Photovoltaic installation CX(s) Applied: B5.1, B5.16, B5.19 Date: No date. Location(s): Pennsylvania Offices(s): Golden Field Office

  11. CX-012732: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Convert BMT-2 to External Floating Roof Tank CX(s) Applied: B1.3Date: 41878 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  12. CX-010129: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    707-C Roof Replacement CX(s) Applied: B1.3 Date: 03/15/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-007952: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  14. CX-008978: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parking Garage Gutter Replacement and Installation of Roof Ice Melt System CX(s) Applied: B2.3, B2.5 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  15. CX-010452: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 64 and 92 Roof Replacement CX(s) Applied: B1.23, B2.1, B2.5 Date: 06/17/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  16. CX-009320: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    B17 Roof Replacement & Painting CX(s) Applied: B1.23, B2.1, B2.5 Date: 08/30/2012 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  17. CX-009548: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Summit County 8-Small Projects-Safety Building White Thermoplastic Polyolefin Roof Retrofit CX(s) Applied: B5.1 Date: 11/02/2012 Location(s): Ohio Offices(s): Golden Field Office

  18. CX-012058: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Removal and Replacement at +34 and +38, K-Area Materials Storage Building CX(s) Applied: B1.3 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-009063: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Installation of Roofing System on L Area Complex Building, Sections +91 and +148 CX(s) Applied: B1.3 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-008650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Install a New Roof, Building 735-A CX(s) Applied: B1.3 Date: 05/21/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-012061: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 709-1G CX(s) Applied: B1.3 Date: 03/11/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-011163: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 730-4B CX(s) Applied: B1.3 Date: 08/08/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-010836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Roof Repair at 717-12S CX(s) Applied: B1.3 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-011147: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 716-N CX(s) Applied: B1.3 Date: 08/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-010848: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    300 square feet of Modified Bitumen Roof Repair CX(s) Applied: B1.3 Date: 07/23/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-011162: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 730-1B CX(s) Applied: B1.3 Date: 08/08/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-011152: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at the South End of 722-4A CX(s) Applied: B1.3 Date: 08/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-011150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 730-2B CX(s) Applied: B1.3 Date: 08/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-011169: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Core Sampling of 703-A Roof CX(s) Applied: B1.3 Date: 08/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-010860: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Repair Roof at 192-2K CX(s) Applied: B1.3 Date: 07/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-012589: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Replacement of the Roof at Building 773-A, Rooms E172 and E174 CX(s) Applied: B1.3Date: 41829 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-011158: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 717-11A CX(s) Applied: B1.3 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-011140: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Will Provide Roof Repairs at 751-1A CX(s) Applied: B1.3 Date: 08/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-011146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 704-3N CX(s) Applied: B1.3 Date: 08/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-011168: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leak on 730-B CX(s) Applied: B1.3 Date: 08/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-011154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks above Cubicles 139/144 in 705-K CX(s) Applied: B1.3 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-011145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 773-A CX(s) Applied: B1.3 Date: 08/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  18. CX-011157: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Roof Repairs in Telecom Room at 702-C CX(s) Applied: B1.3 Date: 08/13/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-011151: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof at 773-51A CX(s) Applied: B1.3 Date: 08/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-011170: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Roof Repair at 717-12S CX(s) Applied: B1.3 Date: 08/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-011164: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 773-52A CX(s) Applied: B1.3 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-011135: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Will Provide Roof Repairs at 705-A CX(s) Applied: B1.3 Date: 08/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-010843: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leak in Rm. F45 at 703-1B CX(s) Applied: B1.3 Date: 07/31/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-011137: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Will Provide Roof Repairs at 735-17A CX(s) Applied: B1.3 Date: 08/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-011136: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Will Provide Roof Repairs at 781-A CX(s) Applied: B1.3 Date: 08/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-012395: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Repair of Roof Leaks at 221-S CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-012577: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Will Provide Roof Repairs at 225-9H CX(s) Applied: B1.3Date: 41852 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  8. CX-012594: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at Building 705-H, Rooms 28 and 64 CX(s) Applied: B1.3Date: 41827 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  9. CX-012387: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Repair of Roof Leaks at 701-1K CX(s) Applied: B1.3 Date: 05/13/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-012374: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Repair of Roof Leaks at 221-H (Truckwell Airlock) CX(s) Applied: B1.3 Date: 05/29/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-012579: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Will Provide Roof Repairs at 702-K CX(s) Applied: B1.3Date: 41848 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-012591: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at Building 105-L (+34 Near/Farside) CX(s) Applied: B1.3Date: 41829 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  13. CX-012615: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Will Provide Roof Repairs at 722-5A CX(s) Applied: B1.3Date: 41800 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  14. CX-012396: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor Repair of Roof Leaks at 705-K CX(s) Applied: B1.3 Date: 05/01/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-012614: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subcontractor to Repair Roof Leaks at 246-H CX(s) Applied: B1.3Date: 41801 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  16. CX-011672: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 723-A CX(s) Applied: B1.3 Date: 12/10/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-012558: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof repairs at 773-A, E-004 CX(s) Applied: B1.3Date: 41872 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-011670: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Repairs at 735-A CX(s) Applied: B1.3 Date: 12/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-012051: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    773-A, E114 Roof Replacement CX(s) Applied: B1.3 Date: 03/24/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-009153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Ballasted Flat Roof Solar Photovoltaic Racking System CX(s) Applied: B5.15 Date: 09/24/2012 Location(s): Michigan Offices(s): Golden Field Office

  1. CX-008383: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheyenne Substation West Control Building Roof Replacement CX(s) Applied: B1.3 Date: 04/02/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-000077: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Alexandria's Audits, Revolving Loan, Fleet Hybrid Vehicles, Renewable Energy Feasibility Study (Streetlight and Green Roof Retrofits) CX(s) Applied: B5.1, A1, A9, A11 Date: 1116...

  3. CX-007537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City Hall Green Roof CX(s) Applied: B1.33, B5.1 Date: 12/29/2011 Location(s): California Offices(s): Golden Field Office

  4. CX-012595: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subcontractor Repair of Roof Leaks at 704-H CX(s) Applied: B1.3Date: 41827 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-011126: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fluorescent Pigments for High Performance Cool Roofing and Facades CX(s) Applied: B3.6 Date: 08/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  6. CX-012575: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spray Herbicide on 105-P & 105-R Roofs CX(s) Applied: B1.3Date: 41852 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  7. Energy Saving 'Cool Roofs' Installed at Y-12 | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Saving 'Cool ... Energy Saving 'Cool Roofs' Installed at Y-12 Posted: October 17, 2012 - 4:08pm The Y-12 National Security Complex has taken additional steps to reduce its energy costs by installing almost 100,000 square feet of new heat reflective "cool" roofs at the Oak Ridge, Tennessee facility. The latest Y-12 cool roofs were added to Buildings 9204-2E and 9103. Fifteen percent of roofs at Y-12 are currently equipped with cool roof technology. This technology is

  8. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect (OSTI)

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  9. Load test of the 277W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-12-02

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  10. Load test of the 3701U Building roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-14

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  11. Structural testing of corrugated asbestos-cement roof panels at the Hanford Facilities, Richland, Washington

    SciTech Connect (OSTI)

    Moustafa, S.E.; Rodehaver, S.M.; Frier, W.A.

    1993-10-01

    This report describes a roof testing program that was carried out at the 105KE/KW Spent Fuel Storage Basins and their surrounding facilities at the Hanford Site in Richland, Washington. The roof panels were constructed in the mid 1950`s of corrugated asbestos-cement (A/C), which showed common signs of aging. Based on the construction specifications, the panels capacity to meet current design standards was questioned. Both laboratory and in-situ load testing of the corrugated A/C panels was conducted. The objective of the complete test program was to determine the structural integrity of the existing A/C roof panels installed in the 105KE and 105KW facilities. The data from these tests indicated that the roofs are capable of resisting the design loads and are considered safe. A second phase test to address the roof resistance to personnel and roof removal/roofing system installation equipment was recommended and is underway.

  12. Load test of the 283W Clearwell Roof Deck and Support Structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-12

    The 283W Clearwell roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 0, as modified below. The 283W Clearwell is located in the 200 West Area of the Hanford Site and has the following characteristics: Roof deck - concrete slab supported by columns and walls; Roof membrane - tar and gravel; Roof slope - flat (< 10 deg); and Roof elevation - approximately 6 in. above ground level. The 283W Clearwell was visited in April 1993 for a visual inspection, but could not be inspected because of the confined space requirements. It was revisited in February 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access.

  13. CX-011677: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    677: Categorical Exclusion Determination CX-011677: Categorical Exclusion Determination Subcontractor Repair of Roof Leaks at 742-A CX(s) Applied: B1.3 Date: 12/09/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office C. E. Bourne, a roofing subcontractor, will repair roof leaks at 742-A. The Subcontractor will disturb the existing roof while installing drain insert on 742-A. PDF icon CX-011677.pdf More Documents & Publications CX-011675: Categorical Exclusion

  14. A Hygrothermal Risk Analysis Applied to Residential Unvented Attics

    SciTech Connect (OSTI)

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Aresidential building, constructed with an unvented attic, is acommonroof assembly in the United States.The expected hygrothermal performance and service life of the roof are difficult to estimate due to a number of varying parameters.Typical parameters expected to vary are the climate, direction, and slope of the roof as well as the radiation properties of the surface material. Furthermore, influential parameters are indoor moisture excess, air leakages through the attic floor, and leakages from air-handling unit and ventilation ducts. In addition, the type of building materials such as the insulation material and closed or open cell spray polyurethane foam will influence the future performance of the roof. A development of a simulation model of the roof assembly will enable a risk and sensitivity analysis, in which the most important varying parameters on the hygrothermal performance can be determined. The model is designed to perform probabilistic simulations using mathematical and hygrothermal calculation tools. The varying input parameters can be chosen from existing measurements, simulations, or standards. An analysis is applied to determine the risk of consequences, such as mold growth, rot, or energy demand of the HVAC unit. Furthermore, the future performance of the roof can be simulated in different climates to facilitate the design of an efficient and reliable roof construction with the most suitable technical solution and to determine the most appropriate building materials for a given climate

  15. Stay-Clean and Durable White Elastomeric Roof Coatings (ERCs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stay-Clean and Durable White 2014 Building Technologies Office Elastomeric Roof Coatings (ERCs) Peer Review CRADA with Dow Chemical aged Challenge: speed the development of high performance white coatings that resist soiling, last longer, and save more energy new Mohamad Sleiman MSleiman@LBL.gov Hugo Destaillats HDestaillats@LBL.gov Ronnen Levinson RMLevinson@LBL.gov Lawrence Berkeley National Laboratory Project Summary Timeline: Start date: 10/2011 Planned end date: 9/2014 Key Milestones *

  16. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect (OSTI)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  17. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    SciTech Connect (OSTI)

    2015-11-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  18. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    SciTech Connect (OSTI)

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise.

  19. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  20. Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government | Department of Energy Steps to Implement Cool Roofs at DOE and Across the Federal Government Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the Federal Government July 19, 2010 - 12:00am Addthis Washington - U.S. Department of Energy Secretary Steven Chu today announced a series of initiatives underway at the Department of Energy to more broadly implement cool roof technologies on DOE facilities and buildings across the federal government. Cool

  1. Measure Guideline: Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-05-01

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit (DEER) solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat, wood-framed roof with brick masonry exterior walls, using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat, wood-framed roofs with wood-framed exterior walls.

  2. Measure Guideline. Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs

    SciTech Connect (OSTI)

    Loomis, H.; Pettit, B.

    2015-05-29

    This Measure Guideline provides design and construction information for a deep energy enclosure retrofit solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat wood-framed roof with brick masonry exterior walls using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat wood-framed roofs with wood-framed exterior walls.

  3. CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ronnen Levinson, Staff Scientist, LBNL RMLevinson@LBL.gov Scott Hunter, Senior Research Scientist, ORNL HunterSR@ORNL.gov CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings 2014 Building Technologies Office Peer Review 2 Project Summary (Cool Roof Infrastructure) Timeline: Start date: January 2011 Planned end date: December 2015 Key Milestones 1. Initiate natural exposure trials in many Chinese cities for roof product rating (6/2014) 2. Start black/white/garden

  4. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect (OSTI)

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-01

    A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  5. Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at the San José Convention Center | Department of Energy Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof

  6. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect (OSTI)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  7. Asphalt Roofing Shingles Into Energy Project Summary Report

    SciTech Connect (OSTI)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  8. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  9. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  10. Assessment of technologies for constructing self-drying low-slope roofs

    SciTech Connect (OSTI)

    Kyle, D.M.; Desjarlais, A.O.

    1994-05-01

    Issues associated with removing excessive moisture from low-slope roofs have been assessed. The economic costs associated with moisture trapped in existing roofs have been estimated. The evidence suggests that existing moisture levels cause approximately a 40% overall reduction in the R-value of installed roofing insulation in the United States. Excess operating costs are further increased by a summertime heat transfer mode unique to wet insulation, caused by the daily migration of water within the roof. By itself, this effect can increase peak electrical demand for air conditioning by roughly 15 W/m{sup 2} of roofing, depending on the type of insulation. This effect will increase peak demand capacity required of utilities in any geographic region (e.g., 900 MW in the South). A simple formula has been derived for predicting the effect that self-drying roofs can have upon time-averaged construction costs. It is presumed that time-averaged costs depend predominantly upon (1) actual service life and (2) the likelihood that the less expensive recover membranes can be installed safely over old roofs. For example, an increase in service life from 15 to 20 years should reduce the current cost of roofing ($12 billion/year) by 21%. Another simple formula for predicting the reroofing waste volume indicates that an increase in service life from 15 to 20 years might reduce the current estimated 0.4 billion ft{sup 3}/year of waste by 25%. A finite-difference computer program has been used to study the flow of heat and moisture within typical existing roofs for a variety of US climates. Nearly all publicly available experimental drying data have been consulted. The drying times for most existing low-slope roofs in the United States are controlled largely climate and the permeability of the structural deck to water vapor.

  11. An analysis of moisture accumulation in the roof cavities of manufactured housing

    SciTech Connect (OSTI)

    Burch, D.

    1995-09-01

    A detailed computer analysis is conducted to investigate whether moisture problems occur in the roof cavity of manufactured homes constructed in compliance with the current Department of Housing and Urban Development (HUD) Standards for manufactured housing. The current HUD Standards require a ceiling vapor retarder, but do not require outdoor ventilation of the roof cavity. In cold climates, the analysis revealed that moisture accumulates at lower roof surface and poses a risk of material degradation. The analysis found the following combination of passive measures to be effective in preventing detrimental winter moisture accumulation at lower surface of the roof: (1) providing a ceiling vapor retarder; (2) sealing penetrations and openings in the ceiling construction, and (3) providing natural ventilation openings in the roof cavity. In addition, the performance of a roof cavity exposed to a hot and humid climate is investigated. The analysis revealed that outdoor ventilation of the roof cavity causes the monthly mean relative humidity at the upper surface of the vapor retarder to exceed 80%. This condition is conducive to mold and mildew growth.

  12. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect (OSTI)

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  13. Fatal accidents involving roof falls in coal mining, 1996--1998

    SciTech Connect (OSTI)

    Not Available

    1999-01-01

    This publication presents information on fatalities involving roof and rib falls that occurred in coal mining operations from January 1996 through December 1998. It includes statistics for the fatalities, as well as abstracts, best practices and illustrations. Conclusion statements have been substituted for best practices where no Title 30 Code of Regulations violations were cited during the accident investigation. From January 1996 through December 1998, 36 miners died at coal operations from accidents classified as roof falls. The information in the report is based on statistics taken from the 1996 through 1998 MSHA Fatal Illustration Programs: Roof Fall Fatalities by District.

  14. Fatal accidents involving roof falls in coal mining, 1996--1998

    SciTech Connect (OSTI)

    1999-11-01

    This publication presents information on fatalities involving roof and rib falls that occurred in coal mining operations from January 1996 through December 1998. It includes statistics for the fatalities, as well as abstracts, best practices and illustrations. Conclusion statements have been substituted for best practices where no Title 30 Code of Regulations violations were cited during the accident investigation. From January 1996 through December 1998, 36 miners died at coal operations from accidents classified as roof falls. The information in the report is based on statistics taken from the 1996 through 1998 MSHA Fatal Illustration Programs: Roof Fall Fatalities by District.

  15. Stay-Clean and Durable White Elastomeric Roof Coatings | Department of

    Energy Savers [EERE]

    Energy Stay-Clean and Durable White Elastomeric Roof Coatings Stay-Clean and Durable White Elastomeric Roof Coatings Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Dow Chemical - Midland, MI DOE Funding: $570,000 Cost Share: $449,000 Project Term: 10/1/2011 - 9/30/2014 Project Objective This project is developing stay-clean white elastomeric roof coatings (ERCs) with a three-year aged solar reflectance (SR) of at least 0.75 and a service life of 15 years or

  16. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect (OSTI)

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-03

    "9A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  17. Impact of Solar PV Laminate Membrane Systems on Roofs | Department of

    Office of Environmental Management (EM)

    Energy Impact of Solar PV Laminate Membrane Systems on Roofs Impact of Solar PV Laminate Membrane Systems on Roofs In 2008, CH2M HILL performed a solar site analysis of the HP Pavilion facility for the City of San José under the Department of Energy's Solar America Showcase program. Based on weight loading requirements of the facility's roof, CH2M HILL recommended a building integrated photovoltaic (BIPV) product that consists of thin-film, flexible photovoltaic modules that can be

  18. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Advanced RTU Campaign | Department of Energy What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign November 10, 2015 - 11:40am Addthis What’s on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign By Marta Schantz This is the first in a series of upcoming blogs on DOE's Advanced Rooftop Unit

  19. You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wooden Rooftops | Department of Energy You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops You Don't Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops June 17, 2015 - 3:42pm Addthis You Don’t Need to Raise the Roof: Cutting Solar Permitting Costs for Wooden Rooftops Stephen F. Dwyer Stephen F. Dwyer PhD., Physical Engineer, Sandia National Laboratory As solar energy becomes a more affordable choice to power our lives, hardware

  20. CX-010832: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    2: Categorical Exclusion Determination CX-010832: Categorical Exclusion Determination Subcontractor Will Perform Roof Leak Repairs on 717-8N CX(s) Applied: B1.3 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office C. E. Bourne Roofing, a subcontractor, will repair roof leaks at 717-8N. PDF icon CX-010832.pdf More Documents & Publications CX-010836: Categorical Exclusion Determination CX-010833: Categorical Exclusion Determination CX-011329

  1. A meeting of the minds when NYC CoolRoofs visits PPPL | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which collected data on three white "cool roofs," including one on the Museum of Modern Art Queens in Long Island City, and found there was a 42 degree Fahrenheit difference...

  2. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  3. Urban Heat Islands: Anti-Soiling Cool Roof Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anti-Soiling Cool Roof Coatings Urban Heat Islands: Anti-Soiling Cool Roof Coatings Performers: Lawrence Berkeley National Laboratory Project Partners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Dow Chemical Company - Midland, MI DOE Funding: $500,000 Cost Share: $500,000 Project Term: Jan. 2013 - Dec. 2014 Project Objective The U.S.-China Clean Energy Research Center (CERC) is a pioneering research and development (R&D) consortium bringing together governments, key policymakers,

  4. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  5. Analysis of DOE s Roof Savings Calculator with Comparison to other Simulation Engines

    SciTech Connect (OSTI)

    New, Joshua Ryan; Huang, Yu; Levinson, Ronnen; Mellot, Joe; Sanyal, Jibonananda; Childs, Kenneth W

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on national averages and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance surfaces, HVAC duct location, duct leakage rates, multiple layers of building materials, ceiling and deck insulation levels, and other parameters. A base case and energy-efficient alternative can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA. However, RSC gives different energy savings estimates than previous cool roof simulation tools so more thorough software and empirical validation proved necessary. This report consolidates much of the preliminary analysis for comparison of RSC s projected energy savings to that from other simulation engines.

  6. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

  7. No Roof, No Problem: Shared Solar Programs Make Solar Possible For You |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy No Roof, No Problem: Shared Solar Programs Make Solar Possible For You No Roof, No Problem: Shared Solar Programs Make Solar Possible For You January 29, 2015 - 3:39pm Addthis Innovative solar business models like these help make it easier for communities to increase solar deployment by making it faster, easier and cheaper for people to invest in solar together and enabling multiple participants to benefit directly from the energy produced by one solar array. | Image by

  8. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  9. NNSA Commitment to Energy Efficiency: Promoting Cool Roof Technologies...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  10. Laying the Foundation for a Solar America: The Million Solar Roofs Initiative

    SciTech Connect (OSTI)

    Strahs, G.; Tombari, C.

    2006-10-01

    As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

  11. Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants

    Broader source: Energy.gov [DOE]

    India, Mexico, and the United States have signed up to join the Cool Roofs Working Group, which was announced yesterday in Abu Dhabi at the second Clean Energy Ministerial -- a high-level global forum to promote policies and programs that advance clean energy technology, to share lessons learned and best practices and to encourage the transition to a global clean energy economy.

  12. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Broader source: Energy.gov [DOE]

    The taxpayer must provide proof of the taxpayer’s costs for installation of a solar powered roof vent or fan and a list of the persons or corporations that supplied labor or materials for the solar...

  13. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    SciTech Connect (OSTI)

    2015-11-01

    This case study by the U.S. Department of Energys Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  14. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    SciTech Connect (OSTI)

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott

    2014-06-01

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.

  15. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  16. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  17. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect (OSTI)

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Maxey, L Curt; Gehl, Anthony C; Hurt, Rick A; Boehm, Robert F

    2008-01-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  18. Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Saving "Cool Roofs" Installed at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  19. CX-008030: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30: Categorical Exclusion Determination CX-008030: Categorical Exclusion Determination Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy Frankfort, Kentucky proposes to replace the roof on city hall with an energy efficient roof. The city hall is listed on the on the Historic Register. PDF icon CX-008030.pdf More Documents & Publications CX-007837: Categorical Exclusion Determination CX-010860: Categorical

  20. CX-012402: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B-33 Roof Replacement and Fall Protection System Installation CX(s) Applied: B1.3, B2.2, B2.3 Date: 41884 Location(s): West Virginia Offices(s): National Energy Technology Laboratory Roof and lightning protection system replacement and fall protection system installation for B-33. Document(s) Available for Download PDF icon CX-012402.pdf More Documents & Publications CX-012402: Categorical Exclusion Determination CX-012223: Categorical Exclusion Determination CX-012649

  1. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect (OSTI)

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

  2. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eaton Corporation STATE: WI PROJECT TITLE : Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0001201 DE-EE0007286 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Small-scale research and

  3. CX-009269: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Trailers 40, 43, and 45 Lateral Force Resisting System and Roof Re-Coating Project CX(s) Applied: B1.3, B2.2 Date: 09/11/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  4. CX-010193: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    B-4 Rooms 110, 111, and 112 Roof Top Heating, Ventilation, and Air Conditioning Unit Replacement CX(s) Applied: B1.4, B2.1, B2.2, B2.5 Date: 04/16/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  5. CX-007909: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ambler Boiler House Geothermal Wells, Cool Roof and Photovoltaic installation CX(s) Applied: B5.1, B5.16, B5.19 Date: 02/08/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  6. CX-100217 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    STM Shipping & Receiving Roof Replacement, NREL Tracking No. 15-013 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOE/EA-1968 National Renewable Energy Laboratory (NREL) Date: 04/14/15 Location(s): CO Office(s): Golden Field Office

  7. CX-010226: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficient Integrated Fiber-Reinforced Polymer-confined Sandwich Roof System CX(s) Applied: A9, B3.6, B5.1 Date: 02/20/2013 Location(s): Idaho Offices(s): Golden Field Office

  8. CX-008433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Buildings 7-8 Roof Replacements & Buildings 14-16 Demolitions CX(s) Applied: B1.23, B2.1, B2.5 Date: 06/28/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

  9. Three-dimensional analysis of AP600 standard plant shield building roof

    SciTech Connect (OSTI)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-06-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design adequacy. The results demonstrated that provided area of steal on each face of several sections of the AP600 SBR was inadequate. This was also noticed when comparing the total provided area of steel per section, i.e., the area of steel on both faces. The discrepancy between Westinghouse results and these reported herein could have resulted from the different finite element mesh sizes and the assumption used in Westinghouse design.

  10. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  11. Performance evaluation of Automatic Extraction System. Volume V. Geotechnical investigations of the roof conditions in the area mined by the AES machine. Final technical report

    SciTech Connect (OSTI)

    Bieniawski, Z.T.; Rafia, F.; Newman, D.A.

    1980-07-01

    This report presents the results of an in-depth geotechnical investigation aimed at assessing the roof, floor, and coal pillar conditions in the area mined by an experimental Automatic Extraction System (AES), built by National Mine Service Co. The study included diamond core drilling, borescope observations, and detailed engineering geological mapping in Consolidation Coal's McElroy coal mine in West Virginia. The field investigations were accompanied by regional geology studies involving aerial photography and lineament analysis as well as by laboratory testing of 103 rock and coal samples. The roof conditions were interpreted by means of an engineering rock mass classification system, known as the Geomechanics Classification. It was found that the roof quality in the areas mined by the AES machine was poor and that the action of the AES support beams could be detrimental to the overall roof stability. Improvements in the procedures for evaluating future AES-type mining are suggested.

  12. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  13. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Roof with Fibrous Insulation and Tiles Orlando, Florida PROJECT INFORMATION Construction: New construction Partners: Building Science Corporation, buildingscience.com David Weekley Homes, davidweekleyhomes.com Climate Zone: Hot-humid (2A) A measure that has an established presence in Florida markets is the use of unvented roofs (also known as "cathedralized" attics), which include poly- urethane spray foam at the underside of the roof deck. This method moves the heating, ventilating,

  14. Applied Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Energy Programs Applied Energy Programs Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact and by improving the efficiency and reliability of the energy infrastructure. CONTACT US Program Director Melissa Fox (505) 665-0896 Email Applied Energy Program Office serves as the hub connecting the Laboratory's scientific and technical resources to DOE sponsors, DoD programs, and to

  15. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  16. Applied Math & Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math & Software - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied Math & Software HomeTransportation ...

  17. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.

  18. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  19. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing PROJECT aPPliCaTiON Construction: Existing homes with unvented cathedralized roofs. Type: Residential Climate Zones: All TEam mEmbERs Building Science Corporation www.buildingscience.com BASF www.basf.com Dow Chemical Company www.dow.com Honeywell http://honeywell.com Icynene www.icynene.com COdE COmPliaNCE 2012 International Code Council, International Residential Code Spray polyurethane foams (SPFs) have advantages over

  20. CX-010833: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    3: Categorical Exclusion Determination CX-010833: Categorical Exclusion Determination Subcontractor Will Clean Out Gutters Causing Leaks in 706-N CX(s) Applied: B1.3 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office C. E. Bourne Roofing, a subcontractor, will clean out gutters that are causing leaks in 706-N. PDF icon CX-010833.pdf More Documents & Publications CX-010832: Categorical Exclusion Determination CX-010836: Categorical Exclusion

  1. Categorical Exclusion Determinations: Savannah River Operations Office |

    Office of Environmental Management (EM)

    Department of Energy Savannah River Operations Office Categorical Exclusion Determinations: Savannah River Operations Office Categorical Exclusion Determinations issued by Savannah River Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD April 6, 2015 CX-012595: Categorical Exclusion Determination Subcontractor Repair of Roof Leaks at 704-H CX(s) Applied: B1.3 Date: 41827 Location(s): South Carolina Offices(s): Savannah River Operations Office October 27, 2014 CX-012388: Categorical

  2. Categorical Exclusion Determinations: West Virginia | Department of Energy

    Office of Environmental Management (EM)

    Virginia Categorical Exclusion Determinations: West Virginia Location Categorical Exclusion Determinations issued for actions in West Virginia. DOCUMENTS AVAILABLE FOR DOWNLOAD September 2, 2014 CX-012402: Categorical Exclusion Determination B-33 Roof Replacement and Fall Protection System Installation CX(s) Applied: B1.3, B2.2, B2.3 Date: 41884 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 28, 2014 CX-012428: Categorical Exclusion Determination Remove IT

  3. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  4. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous

  5. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.

    2014-12-01

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 -story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  6. Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1 1/2-Story Homes in Cold Climates

    SciTech Connect (OSTI)

    Ojczyk, C.

    2014-12-01

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  7. Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005

    SciTech Connect (OSTI)

    Tombari, C.

    2005-09-01

    The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

  8. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  9. Apply for Technical Assistance

    Office of Environmental Management (EM)

    Apply for Technical Assistance Use this online form to request technical assistance from the DOE Offce of Indian Energy for planning and implementing energy projects on tribal lands. To help us determine whether your request fts within the program's scope and can be addressed with available resources, please provide the information below and then click on "Submit Request." Only requests from federally recognized Indian Tribes, bands, nations, tribal energy resource develop- ment

  10. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC » CCS » CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These

  11. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) Larry Schultz Email Deputy Group Leader John George Email Group Office (505) 665-2545 QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  12. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  13. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing

  14. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  15. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  16. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing an Unvented Roof with Asphalt Shingles in a Cold Climate Bolingbrook, Illinois N PROJECT INFORMATION Construction: New construction Partners: K. Hovnanian Homes, khov.com Building Science Corporation, buildingscience.com Climate Zone: Cold (5A) In cold climates, a common practice of the weatherization industry is to retroft compact roof/ceiling assemblies (e.g., cathedral ceilings) with blown-in dense- pack cellulose. This technique minimizes the interior and exterior demolition required

  17. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect (OSTI)

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  18. Technology Solutions Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN

    SciTech Connect (OSTI)

    2014-12-01

    This case study describes the External Thermal and Moisture Management System developed by the NorthernSTAR Building America Partnership. This system is typically used in deep energy retrofits and is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  19. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  20. The technical viability of alternative blowing agents in polyisocyanurate roof insulation: A cooperative industry/government project

    SciTech Connect (OSTI)

    Christian, J.E.; Courville, G.E.; Desjarlais, A.O.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Wendt, R.L.; Yarbrough, D.W.

    1993-06-01

    This report is a summary of the cooperative industry/government program to establish the viability of alternative blowing agents to chlorofluorocarbons (CFCs). The project was initiated in 1989 following two workshops that focused on needed research on thermal insulation blown with substitutes for CFC-11 and CFC-12. The project is directed by a steering committee of representatives of the sponsors and of Oak Ridge National Laboratory (ORNL). The purpose of the project is to determine if the performance of polyisocyanurate (PIR) roof insulation foam boards blown with alternate agents differs from the performance of boards blown with CFC-1. This report describes apparent thermal conductivity (k) results obtained from field and laboratory tests from 1989 to 1992 on a set of experimental PIR laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was manufactured from similar formulations that were not optimized for thermal performance. Commercial broadstock made in the future may differ in performance from this set. The PIR boards were prepared with CFC-11, HCFC-123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b.

  1. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  2. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  3. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  4. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab1-300x218 Complementary burner facilities with...

  5. Cool Roofing Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air- conditioning use *Indirect Effect - Light-colored surfaces in a neighborhood alter surface energy balance; result in lower ambient temperature 6 7 Methodology: Energy and ...

  6. Roofs | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  7. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  8. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  9. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Information Science, Computing, Applied Math /science-innovation/_assets/images/icon-science.jpg Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design»

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces (11) Apply Furnaces filter Roofs (11) Apply Roofs filter Windows (11) Apply Windows filter Air conditioners (10) Apply Air conditioners filter Caulking...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation filter Heat Pumps (10) Apply Heat Pumps filter Roofs (10) Apply Roofs filter Windows (10) Apply Windows filter Air conditioners (9) Apply Air conditioners filter Duct...

  12. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  13. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  14. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  15. CX-011166: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    66: Categorical Exclusion Determination CX-011166: Categorical Exclusion Determination Abandon Metals Structures in N-Area CX(s) Applied: B1.23 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office Five roof trusses and four miscellaneous steel structures generated during the construction of Vault 4 at the Savannah River Site Saltstone Facility will remain in N-Area until Area Closure Projects completes Site closure. PDF icon CX-011166.pdf More Documents &

  16. CX-100273 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    73 Categorical Exclusion Determination CX-100273 Categorical Exclusion Determination RSF Visitor Parking Lot Low Beam Hazards Retrofit; NREL Tracking No. 15-018 Award Number: DE-AC36-08GO28308 CX(s) Applied: B1.16, B2.5, B1.14, B5.1, DOE/EA 1914 National Renewable Energy Laboratory (NREL) Date: 06/05/15 Location(s): CO Office(s): Golden Field Office The U.S. Department of Energy (DOE) proposes various repairs and replacement of building systems to maintain the existing roofing system, life

  17. Categorical Exclusion Determinations: B1.4 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Categorical Exclusion Determinations: B1.4 Existing Regulations B1.4: Air conditioning systems for existing equipment Installation or modification of air conditioning systems required for temperature control for operation of existing equipment. DOCUMENTS AVAILABLE FOR DOWNLOAD June 5, 2015 CX-100273 Categorical Exclusion Determination NWTC Bldg. 251 Roof & RTU-1 Replacement Project, NREL Tracking No. 15-007 Award Number: DE-AC36-08GO28308 CX(s) Applied: B1.16, B2.5, B1.14, B5.1, DOE/EA

  18. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  19. Building America Expert Meeting: Recommendations for Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  20. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  1. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  2. Geologic investigation of roof and floor strata: longwall demonstration, Old Ben Mine No. 24. Prediction of coal balls in the Herrin Coal. Final technical report: Part 2. [Mineralized peat balls

    SciTech Connect (OSTI)

    DeMaris, P.J.; Bauer, R.A.; Cahill, R.A.; Damberger, H.H.

    1983-04-01

    Coal-ball areas, large deposits of mineralized peat in the coal seam, obstructed longwall mining in the Herrin Coal at Old Ben Mine No. 24. In-mine mapping located coal balls under transitional roof - areas where the roof lithology alternates between the Energy Shale and the Anna Shale/Brereton Limestone. Specifically, coal balls occur under eroded exposures or windows of the marine Anna Shale/Brereton Limestone in the Energy Shale. Two types of coal-ball areas have been identified, based on stratigraphic position in the coal seam: type I is restricted to the top of the seam, and type II occurs at midseam and below. To predict the distribution of coal balls, as well as explain their formation, a depositional model was developed: First, freshwater sediments buried the Herrin peat. Decomposition of the sealed peat continued, producing high CO/sub 2/ partial pressures; then selective erosion took place as a river removed the cover along sinuous paths, cutting through to the peat in some places. With the seal broken, CO/sub 2/ was released, and freshwaters that contained Ca and Mg ions flushed out organic acids. Later, marine mud buried both the freshwater sediments and the exposed peat, which accounts for the transitional roof over the Herrin Coal and the coal balls under the marine shale windows in the Energy Shale. The depositional model was supported by the first comprehensive set of geochemical data for coal balls. Coal balls generally contained less than 4 percent organic carbon and very low levels of detrital minerals. Although individual sites of concentrated coal balls cannot be predicted, the specific linear roof exposures associated with these coal-ball areas can be identified by mapping. Based on previously mapped areas, the trends of these linear exposures can be projected.

  3. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  4. How to Apply for the ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  5. Applied geodesy (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Applied geodesy Citation Details In-Document Search Title: Applied geodesy This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are

  6. Apply for Your First NERSC Allocation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Your First Allocation Apply for Your First NERSC Allocation Initial Steps Needed to Apply for Your First NERSC Allocation All work done at NERSC must be within the DOE Office of Science mission. See the Mission descriptions for each office at Allocations Overview and Eligibility. Prospective Principal Investigators without a NERSC login need to fill out two forms: The online ERCAP Access Request Form. If you wish to designate another person to fill out the request form you may

  7. Applied Field Research Initiative Attenuation Based Remedies

    Office of Environmental Management (EM)

    Laboratory (SRNL), the initiative is a collaborative effort that leverages DOE invest- ments in applied research and basic science and the work of the site contractors to...

  8. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  9. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  10. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  11. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  12. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share...

  13. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced physicschemistry course. To apply for the REU Program, complete the 3 steps below: Fill out the on-line 2016 Cyclotron Institute REU Application Note: You will be...

  14. Applying computationally efficient schemes for biogeochemical cycles

    Office of Scientific and Technical Information (OSTI)

    (ACES4BGC) (Technical Report) | SciTech Connect Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) Citation Details In-Document Search Title: Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) NCAR contributed to the ACES4BGC project through software engineering work on aerosol model implementation, build system and script changes, coupler enhancements for biogeochemical tracers, improvements to the Community Land Model (CLM) code and

  15. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience Application deadline: March 27, 2016, 5:00 pm MDT Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Application process for SAGE 2016 is now open. U.S.

  16. LANSCE | Lujan Center | Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime LANSCE User Resources Tips for a Successful Proposal Step 1: Apply for Beam Time 1. Select an Instrument and a Local Contact 2. Submit Your Proposal Step 2: Before You Arrive 1. Complete the LANSCE User Facility Agreement Questionnaire 2. Arrange for Site Access 3. Prepare for Your Experiment: Contact Lujan Experiment Coordinator to arrange shipping of your samples. Talk to the beamline scientist about any electrical equipment you might bring. 4. Complete your training Step 3:

  17. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postdoctoral Research Awards » How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/853 Application deadline May 7, 2015. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Category: Lighting, Heat Pumps, Air conditioners, Roofs, Other EE, Reflective Roofs EmPOWER Maryland Clean Energy Communities Grant Program NOTE: The program deadline to apply...

  19. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  20. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  1. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  2. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Ott 505-663-5537 Program Administrator Jutta Kayser 505-663-5649 Program Manager Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National Laboratory programs funded by the Department of Energy's Offices of Energy Efficiency/Renewable Energy, Electricity Delivery and Energy Reliability, and Fossil Energy. With energy use increasing across the nation and the world, Los

  3. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  4. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  5. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  6. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  7. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  8. Tritium research activities in Safety and Tritium Applied Research...

    Office of Environmental Management (EM)

    research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Tritium research activities in Safety and Tritium Applied Research (STAR)...

  9. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  10. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  11. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  12. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review PDF icon 2008meritreview2.pdf...

  13. Advanced Multivariate Analysis Tools Applied to Surface Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Multivariate Analysis Tools Applied to Surface Analysis. Citation Details In-Document Search Title: Advanced Multivariate Analysis Tools Applied to Surface Analysis. No...

  14. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science...

  15. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...

  16. Magnetic relaxometry as applied to sensitive cancer detection...

    Office of Scientific and Technical Information (OSTI)

    relaxometry as applied to sensitive cancer detection and localization Title: Magnetic relaxometry as applied to sensitive cancer detection and localization Here we describe ...

  17. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE ...

  18. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  19. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  20. CX-009420: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  1. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  2. X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You Presentation given at DEER...

  3. DOE - Office of Legacy Management -- Case School of Applied Science...

    Office of Legacy Management (LM)

    Case School of Applied Science Ohio State University - OH 0-01 FUSRAP Considered Sites Site: Case School of Applied Science, Ohio State University (OH.0-01 ) Eliminated from...

  4. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Info (EERE)

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  5. Aachen University of Applied Sciences | Open Energy Information

    Open Energy Info (EERE)

    Aachen University of Applied Sciences Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Aachen...

  6. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  7. Applying for PMCDP/FPD Certification (initial) | Department of Energy

    Energy Savers [EERE]

    Services » Career Development (PMCDP) » Applying for PMCDP/FPD Certification (initial) Applying for PMCDP/FPD Certification (initial) Certification applicants are nominated by their respective Program Secretarial Office (PSO) to apply for FPD certification - candidates may not apply without program sponsorship. Each participating program has a dedicated point of contact (POC) whose role is to support the FPD applicant in preparing their certification package. First time applicants, as well as

  8. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Energy Savers [EERE]

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  9. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  10. Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to

    Office of Environmental Management (EM)

    the Thomas Jefferson National Accelerator Facility (TJNAF) | Department of Energy Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By:

  11. Overview of Applied Battery Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es014_henriksen_2010_o.pdf More Documents & Publications Overview of Applied Battery Research Overview and Progress of the Applied Battery Research (ABR) Activity Overview and Progress of the Applied Battery Research (ABR) Activity

  12. Applied Mathematics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of

  13. Tritium Permeation Activity at Safety and Tritium Applied Research (STAR)

    Office of Environmental Management (EM)

    Facility | Department of Energy Permeation Activity at Safety and Tritium Applied Research (STAR) Facility Tritium Permeation Activity at Safety and Tritium Applied Research (STAR) Facility Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Tritium Permeation Activity at Safety and Tritium Applied Research (STAR) Facility More Documents & Publications Tritium Behavior in Lead Lithium Eutectic (LLE) at Low Tritium Partial

  14. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing » How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate

  15. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-1 2. Applied Battery Research Introduction Applied battery research focuses on addressing the cross-cutting barriers facing the lithium-ion systems that are closest to meeting all of the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, the applied battery research activity concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and

  16. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace007_oefelein_2012_o.pdf More Documents & Publications Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research

  17. El Paso County Geothermal Project: Innovative Research Technologies Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Geothermal Reosurce Potential at Fort Bliss | Department of Energy El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss presentation at the April 2013 peer

  18. Opportunities to Apply Phase Change Materials to Building Enclosures

    Energy Savers [EERE]

    Webinar | Department of Energy Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building America webinar on November 11, 2011. PDF icon webinar_pcm_enclosures_20111111.pdf More Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures 2011 Residential Energy Efficiency Technical Update Meeting Summary

  19. Building America Expert Meeting: Recommendations for Applying Water Heaters

    Energy Savers [EERE]

    in Combination Space and Domestic Water Heating Systems | Department of Energy Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems This expert meeting was conducted by Building Science Corporation on July 31, 2011 in Westford, Massachusetts ; the topic of this meeting was 'Recommendations For Applying Water Heaters

  20. Energy Department Extends Deadline to Apply for START Tribal Renewable

    Office of Environmental Management (EM)

    Energy Project Development Assistance to May 22, 2015 | Department of Energy Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 April 30, 2015 - 4:05pm Addthis Energy Department Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 WASHINGTON, DC - The U.S.

  1. APPLIED TECHNOLOGY R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » APPLIED TECHNOLOGY R&D APPLIED TECHNOLOGY R&D rdplan-thumb.jpg Applied technology R&D projects monitor SSL technology advances and provide laboratory and field evaluations of emerging products. Impartial, trusted analysis from DOE identifies and characterizes technology problems early on, alerting manufacturers to needed improvements, and helping to put detailed information into the hands of buyers, which when used in discussions with manufacturers can

  2. Where to Apply for Weatherization Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Weatherization Assistance Program » Where to Apply for Weatherization Assistance Where to Apply for Weatherization Assistance To apply for weatherization assistance you need to contact your state weatherization agency. The U.S. Department of Energy (DOE) does not provide weatherization services or services of any kind to individuals. DOE also does not process applications-this process is handled by each state. How to Determine if You Are Eligible for Weatherization

  3. Overview and Progress of the Applied Battery Research (ABR) Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricate PHEV Cells for Testing & Diagnostics Overview and Progress of the Applied Battery Research (ABR) Activity Current Research Activities in Electrode and Cell Prototyping...

  4. WEBINAR: UNDERSTANDING AND APPLYING TM-30-15 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provided examples of how they can be applied by various users, and demonstrated the Excel tools that are distributed with the document. View the presentation slides View the ...

  5. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings ...

  6. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  7. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  8. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) February 4, 2014 - ...

  9. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  10. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America...

  11. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager.

  12. The generalized finite element method applied to the dynamic...

    Office of Scientific and Technical Information (OSTI)

    Title: The generalized finite element method applied to the dynamic response of heterogeneous media. Authors: Robbins, Joshua ; Voth, Thomas E. Publication Date: 2013-02-01 OSTI ...

  13. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  14. Applied Materials Switzerland SA Formerly HCT Shaping Systems...

    Open Energy Info (EERE)

    Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name: Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place: Chezeaux, Switzerland...

  15. Building America Webinar: Opportunities to Apply Phase Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy ...

  16. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is ...

  17. Applied Solar LLC formerly Open Energy Corp and Barnabus Energy...

    Open Energy Info (EERE)

    Open Energy Corp and Barnabus Energy Inc Jump to: navigation, search Name: Applied Solar LLC (formerly Open Energy Corp and Barnabus Energy Inc) Place: San Diego, California...

  18. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2804: Applying for FLPMA GrantsPermittingRegulatory...

  19. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the ...

  20. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...

    Open Energy Info (EERE)

    Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...

  1. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  2. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for Improved Enhanced Oil Recovery Technique Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site New Breathalyzer Offers Hope of Pain-Free Diabetes Monitoring

  3. CX-008179: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 09-056 Demolition CX(s) Applied: B1.23 Date: 04/24/2012 Location(s): Texas Offices(s): Pantex Site Office

  4. CX-007550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-012310: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  7. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  8. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  9. CX-011628: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enclosure Modification Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  10. CX-011630: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  11. CX-009753: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  12. CX-012799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Malin-Hilltop Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  13. CX-012805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brasada-Harney #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41908 Location(s): OregonOffices(s): Bonneville Power Administration

  14. CX-012813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  15. CX-010479: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Load Control System Reliability CX(s) Applied: A9 Date: 05/29/2013 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

  16. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2011 CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011 Location(s): Albany, Oregon...

  17. CX-012619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography and Analytical Sensor Measurements CX(s) Applied: B3.6Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-007587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Chromatography CX(s) Applied: B3.6 Date: 12/29/2011 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  19. CX-009202: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Port Angeles Substation Equipment Additions CX(s) Applied: B4.6 Date: 09/14/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-012791: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grizzly Captain Jack Transmission Line Access Road Acquisition CX(s) Applied: B1.24Date: 41935 Location(s): OregonOffices(s): Bonneville Power Administration

  1. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  2. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  3. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  4. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  5. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  6. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation of Cathode Electrocatalytic Activity using Surfaced Engineered Thin Film Samples CX(s) Applied: B3.6 Date: 09082011 Location(s): Pittsburgh,...

  7. CX-009543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sopogy Subcontract CX(s) Applied: A9, B5.15 Date: 11/28/2012 Location(s): Hawaii Offices(s): Golden Field Office

  8. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  9. CX-012469: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Analysis Services CX(s) Applied: B3.6Date: 41876 Location(s): OregonOffices(s): National Energy Technology Laboratory

  10. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  11. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  12. CX-012666: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carib Energy (USA) LLC CX(s) Applied: B5.7Date: 05/30//2014 Location(s): FloridaOffices(s): Fossil Energy

  13. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  14. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-010727: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dayton Tap Line Retirement CX(s) Applied: B4.10 Date: 08/13/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  16. CX-011173: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Yaak Substation Transformer Replacement CX(s) Applied: B4.6 Date: 09/18/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  17. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  18. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  1. CX-009132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

  2. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  3. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  4. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  5. CX-010339: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flight's End Property Funding CX(s) Applied: B1.25 Date: 05/20/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  6. CX-012311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office

  7. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  8. CX-012570: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Install Elevated Fire Water Storage Tank CX(s) Applied: B2.5Date: 41862 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  9. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-009850: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Nanomaterials Preparation Lab CX(s) Applied: B3.6 Date: 01/29/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  11. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-012656: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Bend Communication Site Engine Generator Replacement CX(s) Applied: B1.3Date: 41848 Location(s): WashingtonOffices(s): Bonneville Power Administration

  13. CX-010195: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Polymer Synthesis Lab - Modification CX(s) Applied: B3.6 Date: 04/15/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  14. CX-007779: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Routine Maintenance CX(s) Applied: B1.3 Date: 01/13/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  15. CX-009159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Montana Formaul State Energy Program CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Montana Offices(s): Golden Field Office

  16. CX-007522: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Crane Removal Project CX(s) Applied: B1.23 Date: 12/15/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  17. CX-012645: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wenatchee District 2014 Transmission Line Maintenance - Multiple Lines CX(s) Applied: B1.3Date: 41862 Location(s): WashingtonOffices(s): Bonneville Power Administration

  18. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  19. CX-007650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Control Room Consolidation CX(s) Applied: B2.2 Date: 12/29/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-012653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holcomb-Naselle #1 Access Road Improvements CX(s) Applied: B1.3Date: 41855 Location(s): WashingtonOffices(s): Bonneville Power Administration

  1. CX-012643: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis-Covington #1 Access Roads CX(s) Applied: B1.13Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  2. CX-012641: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mossy Rock-Chehalis #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  3. CX-010514: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Nanoscale Energy CX(s) Applied: B3.6 Date: 06/24/2013 Location(s): North Dakota Offices(s): Golden Field Office

  4. CX-007778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 01/13/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  5. CX-010091: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  6. CX-010398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  7. CX-009312: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  8. CX-100159 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed Rulemaking for Energy Conservation Standards for Commercial and Industrial Pumps RIN: 1904-AC54 CX(s) Applied: B5.1

  9. CX-011065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 08/29/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  10. CX-011788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    I-75 Green Corridor Project CX(s) Applied: A1 Date: 02/10/2014 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

  11. CX-007497: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A1 Date: 12/06/2011 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  12. CX-011712: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 01/08/2014 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  13. CX-010938: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 09/17/2013 Location(s): Kansas, Kansas Offices(s): National Energy Technology Laboratory

  14. CX-011271: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1 Date: 09/30/2013 Location(s): Idaho Offices(s): National Energy Technology Laboratory

  15. CX-012722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Reactor Area (TRA)-653 Conference Room Modifications CX(s) Applied: B1.15Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  17. CX-010797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  18. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-009203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ross Maintenance Headquarters Project CX(s) Applied: B1.15 Date: 09/19/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-012788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bio-Aviation Fuel LCA with GREET CX(s) Applied: B5.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  1. CX-011069: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  2. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  3. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-007795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Easement Acquisition, Carroll County, Arkansas CX(s) Applied: B1.24 Date: 02/07/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  5. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-012472: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  7. CX-007613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  8. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  9. CX-012495: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 6 Stack Replacement CX(s) Applied: B1.3Date: 41855 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  10. CX-007428: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ralls Independent School District CX(s) Applied: B5.18 Date: 12/20/2011 Location(s): Texas Offices(s): Golden Field Office

  11. CX-007423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Highland Independent School District CX(s) Applied: B5.18 Date: 12/13/2011 Location(s): Texas Offices(s): Golden Field Office

  12. CX-007426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sharyland Independent School District CX(s) Applied: B5.16 Date: 12/13/2011 Location(s): Texas Offices(s): Golden Field Office

  13. CX-010150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Fiber System CX(s) Applied: B4.7 Date: 04/15/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  14. CX-009587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office

  15. CX-012228: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deer Park Substation Connection Modifications CX(s) Applied: B4.11 Date: 06/17/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  16. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  17. CX-006646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration South of 54-TPX-10CX(s) Applied: B6.1Date: 02/09/2010Location(s): Casper, WyomingOffice(s): RMOTC

  18. CX-003164: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...

  19. CX-012796: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy-Redmond #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41919 Location(s): OregonOffices(s): Bonneville Power Administration

  20. CX-008471: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tree Planting Initiative - Rebuild Western Mass CX(s) Applied: A1 Date: 06/08/2012 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  1. CX-012803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacajawea Substation Expansion and Upgrade CX(s) Applied: B4.6Date: 41912 Location(s): WashingtonOffices(s): Bonneville Power Administration

  2. CX-012665: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheniere Marketing, LLC CX(s) Applied: B5.7Date: 06/04/2014 Location(s): Multiple LocationsOffices(s): Fossil Energy

  3. CX-011707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laser Nanoparticle Lab CX(s) Applied: B3.6 Date: 01/15/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  4. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  5. CX-011177: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  6. CX-006491: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

  7. CX-007873: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  8. CX-007867: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  9. CX-012640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Longview #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. CX-011189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naselle Ridge Emergency Generator Replacement CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  11. CX-011237: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. CX-010756: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Utility Network Deployment Acceleration CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Virginia Offices(s): Golden Field Office

  13. CX-011102: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    American Solar Transformation Initiative CX(s) Applied: A11 Date: 08/09/2013 Location(s): California Offices(s): Golden Field Office

  14. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  15. CX-010426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vista View Fields Land Acquisition CX(s) Applied: B1.25 Date: 06/19/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  16. CX-008250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy

  17. CX-010699: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Boulevard Annex Lease Termination CX(s) Applied: B1.24 Date: 07/11/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  18. CX-008251: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy

  19. CX-007793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jonesboro Maintenance Facility Additions CX(s) Applied: B1.15 Date: 05/10/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  20. CX-007794: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grandview, Arkansas Interconnection CX(s) Applied: B4.12 Date: 04/08/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration