National Library of Energy BETA

Sample records for romania serbia tajikistan

  1. tajikistan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    tajikistan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  2. tajikistan

    National Nuclear Security Administration (NNSA)

    of physical security of radiological materials;

  3. Provision of mobile and man-portable radiation detection equipment;
  4. Regional cooperation on safeguards...

  5. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiologica...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Weapons of Mass Destruction (WMD) Non-proliferation Training Center, part of Tajikistan's ...

  6. Tajikistan-Pilot Program for Climate Resilience (PPCR) | Open...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tajikistan-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  7. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological

    National Nuclear Security Administration (NNSA)

    Materials | National Nuclear Security Administration Provides Tajikistan Specialized Vehicles to Transport Radiological Materials | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  8. Romania | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Romania | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  9. Romania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Romania Population 20,121,641 GDP 191,581,000,000 Energy Consumption 1.68 Quadrillion Btu 2-letter ISO code RO 3-letter ISO code ROU Numeric ISO...

  10. Tritium Separation at Cernavoda Nuclear - Romania | Department of Energy

    Office of Environmental Management (EM)

    Separation at Cernavoda Nuclear - Romania Tritium Separation at Cernavoda Nuclear - Romania Presentation from the 35th Tritium Focus Group Meeting held in Princeton New Jersey on May 05-07, 2015. PDF icon Tritium Separation at Cernavoda Nuclear - Romania More Documents & Publications Management of Spent Desiccant from Vapour Recovery Dryers Flexible Assembly Solar Technology USABC LEESS and PHEV Programs

  11. Romania: Brand-New Engineering Solutions

    SciTech Connect (OSTI)

    Ken Allen; Lucian Biro; Nicolae Zamfir; Madalina Budu

    2011-01-01

    The HEU spent nuclear fuel transport from Romania was a pilot project in the framework of the Russian Research Reactor Fuel Return Program (RRRFR), being the first fully certified spent nuclear fuel shipment by air. The successful implementation of the Romanian shipment also brought various new technology in the program, further used by other participating countries. Until 2009, the RRRFR program repatriated to the Russian Federation HEU spent nuclear fuel of Russian origin from many countries, like Uzbekistan, Czech Republic, Latvia, Hungary, Kazakhstan and Bulgaria. The means of transport used were various; from specialized TK-5 train for the carriage of Russian TUK-19 transport casks, to platform trains for 20 ft freight ISO containers carrying Czech Skoda VPVR/M casks; from river barge on the Danube, to vessel on the Mediterranean Sea and Atlantic Ocean. Initially, in 2005, the transport plan of the HEU spent nuclear fuel from the National Institute for R&D in Nuclear Physics and Nuclear Engineering 'Horia Hulubei' in Magurele, Romania considered a similar scheme, using the specialized TK-5 train transiting Ukraine to the destination point in the Russian Federation, or, as an alternative, using the means and route of the spent nuclear fuel periodically shipped from the Bulgarian nuclear power plant Kosloduy (by barge on the Danube, and by train through Ukraine to the Russian Federation). Due to impossibility to reach an agreement in due time with the transit country, in February 2007 the US, Russian and Romanian project partners decided to adopt the air shipment of the spent nuclear fuel as prime option, eliminating the need for agreements with any transit countries. By this time the spent nuclear fuel inspections were completed, proving the compliance of the burn-up parameters with the international requirements for air shipments of radioactive materials. The short air route avoiding overflying of any other countries except the country of origin and the country of destination also contributed to the decision making in this issue. The efficient project management and cooperation between the three countries (Russia, Romania and USA) made possible, after two and a half years of preparation work, for the first fully certified spent nuclear fuel air shipment to take place on 29th of June 2009, from Romanian airport 'Henri Coanda' to the Russian airport 'Koltsovo' near Yekaterinburg. One day before that, after a record period of 3 weeks of preparation, another HEU cargo was shipped by air from Romanian Institute for Nuclear Research in Pitesti to Russia, containing fresh pellets and therefore making Romania the third HEU-free country in the RRRFR program.

  12. NNSA, Romania Launch Radiation Detection System at International Airport

    National Nuclear Security Administration (NNSA)

    near Bucharest | National Nuclear Security Administration Romania Launch Radiation Detection System at International Airport near Bucharest | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  13. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  14. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  15. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  16. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  17. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  18. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  19. Tajikistan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    sector to the brink of collapse. The international financial crisis and rising food prices completed the picture (which some experts call a compound crisis), the most pronounced...

  20. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect (OSTI)

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  21. New cosmic rays experiments in the underground laboratory of IFIN-HH from Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, Bogdan; Stanca, Denis; Brancus, Iliana; Margineanu, Romul; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Saftoiu, Alexandra; Toma, Gabriel; Gherghel-Lascu, Alexandru; Niculescu-Oglinzanu, Mihai; Rebel, Heinigerd; Haungs, Andreas; Sima, Octavian

    2015-02-24

    Since 2006 a modern laboratory has been developed by IFIN-HH in the underground of Slanic Prahova salt ore. This work presents a short review of previous scientific activities performed in the underground laboratory, in parallel with some plans for the future. A mobile detector for cosmic muon flux measurements has been set up at IFIN-HH, Romania. The device is used to measure the muon flux on different locations at the surface and underground and it consists of two detection layers, each one including four large scintillator plates. A new rotatable detector for measurements of the directional variation of the muon flux has been designed and it is presently under preliminary tests. Built from four layers of sensitive material and using for collecting the signals and directing them to the micro PMTs a new technique, through optical fibers instead wave length shifters, it allows an easy discrimination of the moun flux on the arrival directions of muons. Combining the possibility to rotate and the directionality properties, the underground muon detector is acting like a muon tomography device, being able to scan, using cosmic muons, the rock material above the detector. In parallel new detection system based on SiPM will be also installed in the following weeks. It should be composed by four layers, each layer consisting in 4 scintillator plates what we consider in the following as a module of detection. For this purpose, first two scintillator layers, with the optical fibers positioned on perpendicular directions are put in coincidence with other two layers, 1 m distance from the first two, with similar optical fiber arrangement, thus allowing reconstructing muon trajectory. It is intended also to design and construct an experimental device for the investigation of such radio antennas and the behavior of the signal in rock salt at the Slanic salt mine in Romania. Another method to detect high energy neutrinos is based on the detection of secondary particles resulting from the interaction with the salt massive. We intent to design and construct a 3D array in the underground of Slanic Prahova salt ore.

  22. Serbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EIA Natural Gas Reserves 48,140,000,000 Cubic Meters (cu m) 66 2010 CIA World Factbook Oil Reserves 77,500,000 Barrels (bbl) 75 2010 CIA World Factbook Energy Maps featuring...

  1. Romania Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  2. Serbia-Enhancing Capacity for Low Emission Development Strategies...

    Open Energy Info (EERE)

    illustrates the U.S. perspective on LEDS: Integrated development goals and objectives, national greenhouse gas inventory, and economic and resource data Long-term projections of...

  3. Serbia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  4. USAID-Central Asian Republics Climate Activities | Open Energy...

    Open Energy Info (EERE)

    ourwork Country Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan Central Asia, Central Asia, Central Asia, Central Asia, Central Asia References USAID Climate...

  5. USAID Europe and Eurasia Climate Program | Open Energy Information

    Open Energy Info (EERE)

    Country Armenia, Republic of Macedonia, Russia, Ukraine, Poland, Kazakhstan, Hungary, Turkey, Uzbekistan, Turkmenistan, Lithuania, Estonia, Latvia, Azerbaijan, Tajikistan Western...

  6. Request for Proposal No. DE-SOL-0008418 Section J, Appendix D

    National Nuclear Security Administration (NNSA)

    Sudan Syria Taiwan Tajikistan Turkmenistan Ukraine Uzbekistan 2. Due to the dynamic nature of world events, other countries may, at any time, become sensitive. Therefore,...

  7. South Africa-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Peru, Philippines, Russian Federation, Rwanda, Senegal, Serbia, South Africa and Ukraine." References "UNEP Green Economy Advisory Services" Retrieved from "http:...

  8. International Framework for Nuclear Energy Cooperation (IFNEC) Expert

    Office of Environmental Management (EM)

    meetings in Romania | Department of Energy (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania May 28, 2014 - 12:37pm Addthis International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania Earlier this month, Edward McGinnis, Deputy Assistant Secretary for International Nuclear Energy Policy and Cooperation, traveled to Bucharest, Romania to take part in the International Framework for Nuclear

  9. Microsoft Word - Foreign Obligation Codes.docx

    National Nuclear Security Administration (NNSA)

    Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, ...

  10. 123 Agreements for Peaceful Cooperation | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, ...

  11. Global Material Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Global Material Security Global Material Security NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological Materials NNSA Program Manager Nick Cavellero, right, and NRSA Director of the Department of Information and International Relations Ilkhom Mirsaidov, left, with two specialized vehicles purchased by NNSA for

  12. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect (OSTI)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

  13. Request for Proposal No. DE-SOL-0008418 Section J, Appendix D

    National Nuclear Security Administration (NNSA)

    D SECTION J APPENDIX D SENSITIVE FOREIGN NATIONS CONTROL 1. Pursuant to the Contract Section I Clause 952.204-71 entitled "Sensitive Foreign Nations Controls," "sensitive foreign nations" is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan Libya Moldova North Korea (Democratic People's Republic of) Pakistan Russia Sudan Syria Taiwan Tajikistan

  14. Microsoft Word - SEC J_Appendix D - Sensitive Foreign Nations Control

    National Nuclear Security Administration (NNSA)

    D, Page 1 SECTION J APPENDIX D SENSITIVE FOREIGN NATIONS CONTROL 1. Pursuant to the Contract Section I Clause entitled "Sensitive Foreign Nations Controls," "sensitive foreign nations" is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan Libya Moldova North Korea (Democratic People's Republic of) Pakistan Russia Sudan Syria Taiwan Tajikistan Turkmenistan

  15. Microsoft Word - Final Nuclear Materials Management and Safeguards...

    National Nuclear Security Administration (NNSA)

    ... Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United Kingdom. ...

  16. Warehouse De Pauw | Open Energy Information

    Open Energy Info (EERE)

    Name: Warehouse De Pauw Place: Belgium Product: String representation "Warehouse De Pa ... ic and Romania." is too long. References: Warehouse De Pauw1 This article is a...

  17. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  18. The Energy Research and Modernization Institute ICEMENERG | Open...

    Open Energy Info (EERE)

    Research and Modernization Institute ICEMENERG Jump to: navigation, search Name: The Energy Research and Modernization Institute (ICEMENERG) Place: Bucharest, Romania Sector:...

  19. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicaragua Niger Nigeria Niue Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Reunion Romania Russia Rwanda...

  20. Stump the Scientist Question Form | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Norway Northern Mariana Islands Oman Pakistan Palau Palestine Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Rwanda Saint Kitts...

  1. Utility Rate Database | Open Energy Information

    Open Energy Info (EERE)

    Islands Norway Oman Pakistan Palau Palestinian Territories Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Islands Poland Portugal Puerto Rico Qatar Romania Russia...

  2. UNFCCC-Global Map-Annex 1 | Open Energy Information

    Open Energy Info (EERE)

    Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, United States Cost: Free Australia and New Zealand, Western...

  3. OECD Input-Output Tables | Open Energy Information

    Open Energy Info (EERE)

    714271111,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India,...

  4. Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The United States and Russia are two of the original members of the Global Nuclear Energy ... Kazakhstan, Lithuania, Poland, Republic of Korea, Romania, Senegal, Slovenia, and Ukraine. ...

  5. WIPP News Releases - 1998

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... or, in Hedin's case, who oversee a facility's power systems. ... their employees. "Star" status is the highest level that ... disposal of spent fuel from Romania's Cernovoda reactors. ...

  6. Energie Eko Pyt Srl | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Energie & Eko Pyt Srl Place: Romania Product: ( Private family-controlled ) References: Energie & Eko Pyt Srl1 This article is a stub. You can help...

  7. SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Hofmann, J. Maurer, S. Heinz GSI. Darmstadt, Germany D. Pantelica, C. Nita IFIN-HH, Bucharest, Romania S. Mullins, P. Jones, S. Ntshangase, iThemba LABS, South Africa J....

  8. Microsoft Word - LTrache_11_20_2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and future nuclear physics research at IFIN-HH Bucharest, Romania Dr. Livius Trache National Institute for Physics and Nuclear Engineering Bucharest-Magurele, Romania and Cyclotron Institute, Texas A&M University, College Station, TX 77845-3366, USA ABSTRACT I will use the occasion I am back at the Cyclotron to describe briefly the existing and future facilities and the current and planned research in my old/new work place, the National Institute for Physics and Nuclear Engineering

  9. The Nuvruz Project: Monitoring for Radionuclides and Metals in Central Asia Transboundary Rivers End of Year One Reports

    SciTech Connect (OSTI)

    YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV, BAJGABYL; VALENTINA, ALEKHINA; SOLODUKHIN, VLADIMIR; POZNIAK, VICTOR; LITTLEFIELD, ADRIANE C.

    2002-09-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors. The Navruz project has a duration of three years. This document contains the reports from each of the participating institutions following the first year of data collection. While a majority of samples from the Navruz project are within normal limits, a preliminary analysis does indicate a high concentration of selenium in the Kazakhstan samples. Uzbekistan samples contain high uranium and thorium concentrations, as well as elevated levels of chromium, antimony and cesium. Additionally, elevated concentrations of radioactive isotopes have been detected at one Tajikistan sampling location. Further analysis will be published in a subsequent report.

  10. Management of waste electrical and electronic equipment in two EU countries: A comparison

    SciTech Connect (OSTI)

    Torretta, Vincenzo; Ragazzi, Marco; Istrate, Irina Aura; Rada, Elena Cristina

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Review on data regarding WEEE management in Italy and in Romania. Black-Right-Pointing-Pointer Problems that countries that will enter in the EU will have to solve facing with the WEEE management. Black-Right-Pointing-Pointer Pilot experiences useful for the awareness campaign of the population. - Abstract: The paper presents some data regarding waste electrical and electronic (WEEE) management in one of the founding countries of the EU, Italy, and in a recent entry into the EU, Romania. The aim of this research was to analyze some problems that countries entering the EU will have to solve with respect to WEEE management. The experiences of Italy and Romania could provide an interesting reference point. The strengths and weaknesses that the two EU countries have encountered can be used in order to give a more rational plan for other countries. In Italy the increase of WEEE collection was achieved in parallel with the increase of the efficiency of selective Municipal Solid Waste collection. In Romania, pilot experiences were useful to increase the awareness of the population. The different interests of the two populations towards recyclable waste led to a different scenario: in Romania all types of WEEE have been collected since its entrance into the EU; in Italy the 'interest' in recycling is typically related to large household appliances, with a secondary role of lighting equipment.

  11. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 26, 2009 [Events] Call for Abstracts: Milankovitch Anniversary Symposium Bookmark and Share The Serbian Academy of Sciences and Arts (SASA) is hosting an international symposium to celebrate the 130th anniversary of the birth of Milutin Milankovitch. The symposium, "Climate Change at the Eve of the Second Decade of the Century," will be held in Belgrade, Serbia, September 22-25, 2009. Notable sponsors of this event include the United Nations Educational, Scientific and Cultural

  12. January 2011 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Library / Newsletters / January 2011 January 2011 Newsletter Jan 31, 2011 In this issue: Brig. Gen. Sandra Finan Named Principal Assistant Deputy Administrator for Military Application NNSA Honored for Project Management Excellence Y-12 Begins B83 Dismantlements Gen. Harencak Receives NNSA Gold Medal NNSA Achieves Major Milestone With Recent Removal of HEU From Ukraine NNSA Announces All HEU Removed from Serbia Kansas City Plant Develops Mobile Training Kit to Combat WMD Smuggling NNSA Hosts

  13. Tritiated Water Challenge in Fukushima Daiichi | Department of Energy

    Office of Environmental Management (EM)

    Tritiated Water Challenge in Fukushima Daiichi Tritiated Water Challenge in Fukushima Daiichi Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. PDF icon Tritiated Water Challenge in Fukushima Daiichi More Documents & Publications Fukushima Light Water Detritiation System DOE-HDBK-1079-94 Tritium Separation at Cernavoda Nuclear - Romania

  14. European Partnerships and Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    European Partnerships and Projects European Partnerships and Projects The Office of Energy Efficiency and Renewable Energy (EERE) engages through regional partnerships, as well as bilaterally with individual countries in the European region. In addition to the regional partnerships described below, EERE Technology Offices engage in bilateral research partnerships with countries in Europe, including Denmark, France, Germany, Iceland, Ireland, the Netherlands, Norway, Portugal, Romania, Spain,

  15. The analysis of climate variability at local and regional scales in the global warming context

    SciTech Connect (OSTI)

    Mares, I.; Mares, C.

    1996-12-31

    The time series of the seasonal and annual temperatures and precipitation amounts from two stations with observations for more than 100 years and from one mountain station (data since 1928), in Romania have been analyzed. For the entire territory of Romania, 33 stations have also been studied using EOF components, for the 1950--1993 period. In order to find climate change-points, nonparametric tests Pettitt and Mann-Kendall have been used. Quantification of the significant change-points was made estimating the signal-to-noise ratio. Some of the change-points in the temperature and precipitation fields could be associated with the changes in the geopotential field at 500hPa, represented by EOFs and blocking index calculated for the Atlantic-European region. The comparison with other results obtained from the European stations or from the entire Northern Hemisphere shows several common points, but also some differences in the climate jumps, reflecting the local peculiarities.

  16. Ralu Divan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ralu Divan Chemist Ph.D., University of Bucharest, Romania Research interests are in the lithographic properties and chemistry of materials, characterizing interfacial and compatibility properties of materials used in MEMS and NEMS, nanogels, and metal nanoparticles synthesis. News Traveling Electrons in Loosely Bound Layers Telephone 630.252.0146 Fax 630.252.5739 E-mail divan@anl.gov CV/Resume PDF icon Dr Divan 2014

  17. Secretary Bodman Meets with Regional Energy Ministers in Hungary |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Regional Energy Ministers in Hungary Secretary Bodman Meets with Regional Energy Ministers in Hungary March 17, 2006 - 3:44pm Addthis Emphasizes U.S. Support for Central European Energy Security BUDAPEST, HUNGARY - Secretary of Energy Samuel W. Bodman today participated in a regional energy meeting with ministers from Hungary, Czech Republic, Poland, Slovakia, Austria, Croatia and Romania. During the meeting, Secretary Bodman and the ministers discussed the importance of

  18. Liliana Stan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liliana Stan Engineering Specialist Senior Experience Extensive experience on designing, synthesis, and characterization of multilayered structures of metal, complex-oxide films, and multifunctional nanocomposites using physical vapor deposition techniques (sputtering, ion beam assisted deposition (IBAD), e-beam evaporation) and atomic layer deposition (ALD). Educational background M.S. Electrical Engineering, University of New Mexico. B.S. Physics, University of Bucharest, Romania Research

  19. DNN Sentinel

    National Nuclear Security Administration (NNSA)

    3  defense by other means u.s. department of energy (doe) national nuclear security administration (nnsa) defense nuclear nonproliferation (dnn) National Nuclear Security Administration 3 Jamaica SLOWPOKE Reactor Conversion 4 Integrating Cyber Analysis and Nuclear Security 5 Radiation Detection System Commissioned in Romania 6 Administrator Leads NNSA Team at CTBT SnT15 Conference 7 Innovation: Developing a New Fuel 8 LANL Scientist Recognized for Innovations 9 U.S., China, IAEA Advance

  20. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 1 life cycle management solutions GENERATING SUCCESS --- FOR 100 YEARS Tritium Separation at Cernavoda Nuclear - Romania A. Antoniazzi TFG May 5-7, 2015 Copyright © 2015 Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 2 life cycle management solutions Background - Cernavoda Nuclear * SNN-CNE has 2 operating CANDU 6 Heavy Water reactors (706 MWe) * U1 operational 1996,

  1. Women @ Energy: Simona E. Hunyadi Murph | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simona E. Hunyadi Murph Women @ Energy: Simona E. Hunyadi Murph September 22, 2015 - 1:12pm Addthis Simona E. Hunyadi Murph is a principal scientist at Savannah River National Laboratory. She attended the University of South Carolina, studying chemistry/nanotechnology, Georgia Regents University (Augusta State University), and Babes-Bolyai University in Romania, studying chemistry/electrochemistry and physics with an education minor. She holds a Ph.D in chemistry/nanotechnology. Simona E.

  2. Progress Toward Remediation of Uranium Tailings in Mailuu-Suu, Kyrgyzstan

    SciTech Connect (OSTI)

    Buckley, P B; Ranville, J; Honeyman, B D; Smith, D K; Rosenberg, N; Knapp, R B

    2003-07-09

    The town of Mailuu-Suu in Kyrgyzstan inherited 23 distinct tailings deposits from Soviet-Era uranium mining operations. Mailuu-Suu is located in the narrow landslide-prone valley of the Mailuu-Suu River about 25 km from the Uzbekistan border. Large-scale release of the radioactive tailings, as a result of landslides, could lead to irreversible contamination of the river and downstream areas. The Mailuu-Suu River is a tributary to the Syr-Darya River, the Fergana valley's main source of irrigation water. The Fergana Valley is a key agricultural region and major population center that spans Kyrgyzstan, Tajikistan, and Uzbekistan. The trans-boundary nature of the Mailuu-Suu tailings issue presents an opportunity for collaboration among these Central Asian states. A cooperative approach to addressing environmental issues such as Mailuu-Suu may contribute to the region's stability by facilitating peaceful associations. Experience from remediation of sites in the US under the Uranium Mill Tailings Remediation Action Project (UMTRA) will be useful in progressing toward remediation at Mailuu-Suu.

  3. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  4. TFG Attendance.xlsx

    Office of Environmental Management (EM)

    Confirmed Attending Presenting? Presentation Received? Y/N Title of Presentation Antoniazzi, Armando Y Y Tritium Separation at Cernavoda Nuclear - Romania Babineau, Dave Y Y Y Direct Li-T Extraction via Electrolysis in a Metallic Lithium Fusion Blanket Boniface, Hugh Y Y Select topics on tritium R&D at Chalk River Garry, Steven Y Y NRC Experience on T2 in Groundwater Holmer, Debbie Y Y Discussion Q&A for Tritium accountability limits Jose Cortes-Concepcion Y Y Analysis of Process

  5. International Advisory Committee for the WCI project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisory Committee for the WCI project J.Aichelin (Subatech, Nantes, FRANCE) aichelin@subatech.in2p3.fr V.Baran (Bucharest, ROMANIA) baran@lns.infn.it G.Bertsch (University of Washington, USA)* bertsch@phys.washington.edu A.Bonasera (LNS, Catania, ITALY) bonasera@lns.infn.it J.Bondorf (NBI, Copenhagen, DENMARK) bondorf@nbi.dk M.Bruno (Bologna University, ITALY) Mauro.Bruno@bo.infn.it X.Campi (LPTMS, Orsay, FRANCE)* campi@ipno.in2p3.fr J.Cugnon (Université de Liège, BELGIQUE)*

  6. Microsoft PowerPoint - Marius Stan.update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations for Nuclear Energy Applications High Speed Computing Conference Salishan Lodge, Gleneden Beach, OR, April 27-30, 2009 UNCLASSIFIED LA-UR-09-02604 Marius Stan 1 Contributors: C. R. Stanek 1 , B. P. Uberuaga 1 , B. Mihaila 1 , S. M. Valone 1 , A. D. Andersson 1 , P. Cristea 2 , S. Y. Hu 3 , J. C. Ramirez 4 , V. Tikare 5 , P. Turchi 6 , and M. Samaras 7 1 Los Alamos National Laboratory, U. S. A. 2 Univ. of Bucharest, Romania 3 Pacific Northwest National Laboratory, U. S. A. 4 Exponent,

  7. Packaging waste recycling in Europe: Is the industry paying for it?

    SciTech Connect (OSTI)

    Ferreira da Cruz, Nuno Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-15

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)

  8. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    SciTech Connect (OSTI)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  9. Qualification tests for {sup 192}Ir sealed sources

    SciTech Connect (OSTI)

    Iancso, Georgeta Iliescu, Elena Iancu, Rodica

    2013-12-16

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  10. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect (OSTI)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)

  11. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  12. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.

  13. Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach

    SciTech Connect (OSTI)

    Leitner, Thomas; Paraskevis, D; Pybus, O; Magiorkinis, G; Hatzakis, A

    2008-01-01

    The prevalence and the origin of HIV-1 subtype B, the most prevalent circulating clade among the long-term residents in Europe, have been studied extensively. However the spatial diffusion of the epidemic from the perspective of the virus has not previously been traced. In the current study we inferred the migration history of HIV-1 subtype B by way of a phylogeography of viral sequences sampled from 16 European countries and Israel. Migration events were inferred from viral phylogenies by character reconstruction using parsimony. With regard to the spatial dispersal of the HIV subtype B sequences across viral phylogenies, in most of the countries in Europe the epidemic was introduced by multiple sources and subsequently spread within local networks. Poland provides an exception where most of the infections were the result of a single point introduction. According to the significant migratory pathways, we show that there are considerable differences across Europe. Specifically, Greece, Portugal, Serbia and Spain, provide sources shedding HIV-1; Austria, Belgium and Luxembourg, on the other hand, are migratory targets, while for Denmark, Germany, Italy, Israel, Norway, the Netherlands, Sweden, Switzerland and the UK we inferred significant bidirectional migration. For Poland no significant migratory pathways were inferred. Subtype B phylogeographies provide a new insight about the geographical distribution of viral lineages, as well as the significant pathways of virus dispersal across Europe, suggesting that intervention strategies should also address tourists, travellers and migrants.

  14. Chernobyl bibliography

    SciTech Connect (OSTI)

    Carr, F. Jr.; Mahaffey, J.A.

    1989-09-01

    The purpose of the DOE/OHER Chernobyl Database project is to create and maintain an information system to provide usable information for research studies related to the nuclear accident. The system is the official United States repository for information about the Chernobyl accident and its consequences, and currently includes an extensive bibliography and diverse radiological measurements with supporting information. PNL has established two resources: original (not summarized) measurement data, currently about 80,000 measurements, with ancillary information; and about 2,200 bibliographic citations, some including abstracts. Major organizations that have contributed radiological measurement data include the Washington State Department of Social and Health Services; United States Environmental Protection Agency (domestic and foreign data); United States Nuclear Regulatory Commission; Stone Webster; Brookhaven National Laboratory; Commissariat A L'energie Atomique in France; Ministry of Agriculture, Fisheries, and Food in the United Kingdom; Japan National Institute of Radiological Sciences; and the Finnish Centre For Radiation and Nuclear Safety (STUK). Scientists in Australia, Austria, Belgium, Canada, China, Denmark, England, Federal Republic of Germany, Finland, France, Ireland, Italy, Japan, the Netherlands, Romania, Scotland, Spain, Sweden, Switzerland, United States, Wales, and Yugoslavia have made contributions. Bibliographic materials have been obtained from scientists in the above countries that have replied to requests. In addition, literature searches have been conducted, including a search of the DOE Energy Database. The last search was conducted in January, 1989. This document lists the bibliographic information in the DOE/OHER Chernobyl Database at the current time.

  15. International Workshops to Foster Implementation of the IAEA Additional Protocol

    SciTech Connect (OSTI)

    Killinger, Mark H.; Coates, Cameron W.; Bedke, Michael L.

    2003-07-14

    A country’s adherence to the International Atomic Energy Agency’s (IAEA) Additional Protocol is an important statement to the world of that country’s commitment to nuclear nonproliferation. Without the Additional Protocol (AP) it is possible, as demonstrated in Iraq, for a country party to the Non-Proliferation Treaty (NPT) to clandestinely work toward nuclear weapons and be undetected by the IAEA. This is because classical safeguards under the NPT are directed at diversion of nuclear material from declared activities. But a country may instead build undeclared activities to produce weapons-grade nuclear material. The AP is directed at detecting those undeclared activities. As of May 2003, 73 countries had signed the AP, but only 35 have entered into force. To further adherence to the AP, the IAEA has held regional, high-level seminars in Japan, South Africa, Kazakhstan, Peru, Romania, and Malaysia to explain AP provisions. To supplement these policy-level seminars, the U.S. Department of Energy (DOE) has undertaken to develop a set of modules of technical competencies required to implement the AP. The intent is to work closely with the IAEA by providing these technical competencies to countries as well as to complement the IAEA’s regional seminars and other outreach efforts. This paper briefly describes the technical competency modules.

  16. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect (OSTI)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  17. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  18. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  19. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect (OSTI)

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  20. The science, technology, and politics of ballistic missile defense

    SciTech Connect (OSTI)

    Coyle, Philip E.

    2014-05-09

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  1. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    SciTech Connect (OSTI)

    Chesneanu, Daniela Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam with intensities 0.5–2 particle?A was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before ?–? coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  2. Nuclear Data Sheets for A = 84

    SciTech Connect (OSTI)

    Abriola, Daniel; Bostan, Melih; Erturk, Sefa; Fadil, Manssour; Galan, Monica; Juutinen, Sakari; Kibedi, Tibor; Kondev, Filip; Luca, Aurelian; Negret, Alexandru; Nica, Ninel; Pfeiffer, Bernd; Singh, Balraj; Sonzogni, Alejandro; Timar, Janos; Tuli, Jagdish; Venkova, Tsanka; Zuber, Kazimierz

    2009-11-15

    The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent, and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.

  3. Nuclear data sheets for A=84.

    SciTech Connect (OSTI)

    Abriola, D.; Bostan, M.; Erturk, S.; Fadil, M.; Galan, M; Juutinen, S.; Luca, A.; Negret, A.; Nica, N.; Pfeiffer, B.; Singh, B.; Sonzogni, A.; Timar, J.; Tuli, J.; Venkova, T.; Zuber, K.; Kondev, F.; Nuclear Engineering Division; IAEA, Austria; Istanbul Univ.; Nigde Univ.; GANIL, France; CIEMAT, Spain; Univ. Jyvaskyla; ANU, Austrialia; IFIN-HH, Romania; Texas A&M; GSI, Germany; McMaster,Canada; NNDC; ATOMKI, Hungary; INRNE, Bulgaria; IFJ-PAN, Poland

    2009-01-01

    The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent, and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.

  4. Nuclear Data Sheets A = 84

    SciTech Connect (OSTI)

    Abriola, D.; Sonzogni, A.; Bostan,M. Erturk,S.; Fadi,M.; Galan,M.; Juutinen,S.; Kibed,T.; Kondev,F.; Luca,A.; Negret,A.; Nica,N.; Pfeiffer,B.; Singh.B.; Sonzogni,A.; Timar,J.; Tuli,J.; Venkova,T.; Zuber,K.

    2009-11-01

    The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent, and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.