Sample records for roll-to-roll solution-processable small-molecule

  1. Roll-to-Roll Solution-Processible Small-Molecule OLEDs

    SciTech Connect (OSTI)

    Liu, Jie Jerry

    2012-07-31T23:59:59.000Z

    The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

  2. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India) [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)] [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16T23:59:59.000Z

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7?-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b?]dithiophene-2,6-diyl) bis(6-fluoro-4-(5?-hexyl-[2,2?-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc})?=?5.45?mA/cm{sup 2}, open circuit voltage (V{sub oc})?=?0.727?V, and fill factor (FF)?=?51%, and a power conversion efficiency?=?2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  3. Commercial assessment of roll to roll manufacturing of electronic displays

    E-Print Network [OSTI]

    Randolph, Michael Aaron

    2006-01-01T23:59:59.000Z

    The cost of manufacturing electronic displays currently limits the range of applications and markets into which it is currently economically feasible to adopt displays. Roll-to-roll manufacturing has been identified by the ...

  4. Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced...

  5. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2014: Roll-to-Roll...

  6. Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost ...

  7. Design and manufacturing of high precision roll-to-roll multilayer printing machine -- machine upgrade

    E-Print Network [OSTI]

    Zhu, Yufei

    2009-01-01T23:59:59.000Z

    In 2008, a group of MIT Master of Engineering students built a roll to roll machine for printing thiol onto a flexible gold substrate by self-assembly. The machine demonstrated good performance in high speed printing (400 ...

  8. Roll-to-Roll Nanomanufacturing Processes and Applications to Display and Solar Cell Devices

    E-Print Network [OSTI]

    Keaveny, Tony

    Roll-to-Roll Nanomanufacturing Processes and Applications to Display and Solar Cell Devices% enhanced the power efficiency in organic solar cells as compared with devices made by ITO. BIOGRAPHY L. Jay than 6% of the backlight, in large part due to the polarizer and color filter in the panel. We propose

  9. Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process

    E-Print Network [OSTI]

    Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

  10. Design and manufacturing of high precision roll-to-roll multi-layer printing machine : measurement and experiment

    E-Print Network [OSTI]

    Yang, Wenzhuo, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    In 2008, a prototype machine demonstrating the application of roll-to-roll technology in micro-contact printing was developed. In this research, the prototype machine was upgraded by designing and machining a device that ...

  11. UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanocomposites for light-trapping applications$

    E-Print Network [OSTI]

    UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanoimprint lithography Light-trapping Roll-to-roll Amorphous silicon a b s t r a c t Light-trapping textures were produced in hyperbranched polymer (HBP) silica nanocomposites using a UV-nanoimprint lithography

  12. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    SciTech Connect (OSTI)

    Maydannik, Philipp S., E-mail: philipp.maydannik@lut.fi; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C. [Advanced Surface Technology Research Laboratory, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Söderlund, Mikko; Soininen, Pekka [Beneq Oy, P.O. Box 262, 01511 Vantaa (Finland); Johansson, Petri; Kuusipalo, Jurkka [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 589, 33101 Tampere (Finland); Moro, Lorenza; Zeng, Xianghui [Samsung Cheil Industries, San Jose R and D Center, 2186 Bering Drive, San Jose, California 95131 (United States)

    2014-09-01T23:59:59.000Z

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20?nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500?mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105?°C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20?nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38?°C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5?×?10{sup ?4}?g/m{sup 2} day) for films coated at web moving speed of 0.25?m/min. Measurements using the Ca test indicated water vapor transmission rates ?5?×?10{sup ?6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

  13. A direct-write thick-film lithography process for multi-parameter control of tooling in continuous roll-to-roll microcontact printing

    E-Print Network [OSTI]

    Nietner, Larissa F

    2014-01-01T23:59:59.000Z

    Roll-to-roll (R2R) microcontact printing ([mu]CP) aims to transform micron-precision soft lithography in a continuous, large-scale, high-throughput process for large-area surface patterning, flexible electronics and ...

  14. Design and development of high precision elastomeric-stamp wrapping system for roll-to-roll multi-layer microcontact printing

    E-Print Network [OSTI]

    Datar, Charudatta Achyut

    2009-01-01T23:59:59.000Z

    Microcontact printing is an emerging printing technique that could potentially find application in the electronics industry. High-speed roll-to-roll equipment was built at Nano Terra, Inc in 2008, for microcontact printing. ...

  15. Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing

    SciTech Connect (OSTI)

    You, H.-J. [National Fusion Research Institute, Daejeon (Korea, Republic of)] [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-07-15T23:59:59.000Z

    We present a SLot-excited ANtenna (SLAN) long racetrack ECR plasma source that is utilized for roll-to-roll plasma processing such as thin film encapsulation of large-area OLED (organic light emitting diode) panel or modification of fabric surfaces. This source is designed to be long, and to operate under high density uniform plasma with sub-milli-torr pressures. The above features are accomplished by a slot-excited long racetrack resonator with a toroidal geometry of magnetic field ECR configuration, and reinforced microwave electric distributions along the central region of plasma chamber. Also, a new feature has been added to the source. This is to employ a tail plunger, which allows the microwave electric field and the uniformity of the plasma profile to be easily adjustable. We have successfully generated Ar plasmas operating with the microwave power of 0.5–3 kW in the pressure range of 0.2–10 mTorr. The plasma is uniform (<10%) in the direction of the straight track and has a Gaussian profile in the roll-to-roll (scanning) direction. In addition, it is shown that the tail plunger could adjust the plasma profile in order to obtain plasma uniformity. Furthermore, based on the results, we suggest a newly designed up-scaled racetrack-SLAN source.

  16. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells

    E-Print Network [OSTI]

    Candea, George

    , Laboratory of Polymer and Composite Technology, Lausanne A large source of interest in organic photovoltaics to lateral structures with sizes of about 300 nm. The UV-Vis absorbance spectra of a SQ:PCBM blend film:PCBM blends with varying composition and indicate an eutectic system. This might provide a strategy to obtain

  17. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Semiannual technical progress report, 1 April 1992--30 September 1992

    SciTech Connect (OSTI)

    Izu, M. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1993-04-01T23:59:59.000Z

    This report describes work performed by ECD to advance its roll-to-roll, triple-junction photovoltaic manufacturing technologies; to reduce the module production costs; to increase the stabilized module performance; and to expand the commercial capacity utilizing ECD technology. The 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1/W{sub p}. Major efforts during Phase I are (1) the optimization of the high-performance back-reflector system, (2) the optimization of a-Si-Ge narrow band-gap solar cell, and (3) the optimization of the stable efficiency of the module. The goal is to achieve a stable 8% efficient 0.3-m {times} 1.2-m (1-ft {times} 4-ft) module. Also, the efforts include work on a proprietary, high-deposition-rate, microwave plasma, CVD manufacturing technology; and on the investigation of material cost reduction.

  18. CX-001153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010Location(s): Wilmington, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  19. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    lasers or excimer lamp and translation systems, this technique can be adapted to roll-to-roll manufacturing.

  20. X-ray characterization of solid small molecule organic materials

    SciTech Connect (OSTI)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10T23:59:59.000Z

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  1. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect (OSTI)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07T23:59:59.000Z

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  2. CX-001152: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Niskayuna)CX(s) Applied: B3.6Date: 03/11/2010Location(s): Niskayuna, New YorkOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  3. Electrochemical deposition of small molecules for electronic materials 

    E-Print Network [OSTI]

    Allwright, Emily Marieke

    2014-11-27T23:59:59.000Z

    The method of the deposition of films of small molecules for use in electronic applications is just as important as the molecule design itself as the film’s morphology and continuity influence the performance of the ...

  4. Small Molecule Sensing by Local pH Modulation

    E-Print Network [OSTI]

    Huang, Da

    2013-11-14T23:59:59.000Z

    ). Studies with membranes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) yielded an equilibrium dissociation constant value of Kd = 180±47 µm for this small molecule-membrane interaction. And the influences of cholesterol...

  5. Multimonth controlled small molecule release from biodegradable thin films

    E-Print Network [OSTI]

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  6. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    SciTech Connect (OSTI)

    Parker, Ian

    2012-02-29T23:59:59.000Z

    Prototype lighting panels and luminaires were fabricated using DuPont Displaysâ?? solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  7. Low-Temperature, Solution-Processed Molybdenum Oxide Hole-Collection Layer for Organic Photovoltaics

    SciTech Connect (OSTI)

    Hammond, S. R.; Meyer, J.; Widjonarko, N. E.; Ndione, P. F.; Sigdel, A. K.; Garcia, A.; Miedaner, A.; Lloyd, M. T.; Kahn, A.; Ginley, D. S.; Berry, J. J.; Olson, D. C.

    2012-02-21T23:59:59.000Z

    We have utilized a commercially available metal-organic precursor to develop a new, low-temperature, solution-processed molybdenum oxide (MoO{sub x}) hole-collection layer (HCL) for organic photovoltaic (OPV) devices that is compatible with high-throughput roll-to-roll manufacturing. Thermogravimetric analysis indicates complete decomposition of the metal-organic precursor by 115 C in air. Acetonitrile solutions spin-cast in a N{sub 2} atmosphere and annealed in air yield continuous thin films of MoO{sub x}. Ultraviolet, inverse, and X-ray photoemission spectroscopies confirm the formation of MoO{sub x} and, along with Kelvin probe measurements, provide detailed information about the energetics of the MoO{sub x} thin films. Incorporation of these films into conventional architecture bulk heterojunction OPV devices with poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester afford comparable power conversion efficiencies to those obtained with the industry-standard material for hole injection and collection: poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The MoO{sub x} HCL devices exhibit slightly reduced open circuit voltages and short circuit current densities with respect to the PEDOT:PSS HCL devices, likely due in part to charge recombination at Mo{sup 5+} gap states in the MoO{sub x} HCL, and demonstrate enhanced fill factors due to reduced series resistance in the MoO{sub x} HCL.

  8. Polymer and small molecule based hybrid light source

    DOE Patents [OSTI]

    Choong, Vi-En (Carlsbad, CA); Choulis, Stelios (Nuremberg, DE); Krummacher, Benjamin Claus (Regensburg, DE); Mathai, Mathew (Monroeville, PA); So, Franky (Gainesville, FL)

    2010-03-16T23:59:59.000Z

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  9. SOLUTION-PROCESSED INORGANIC ELECTRONICS

    E-Print Network [OSTI]

    Bakhishev, Teymur

    2011-01-01T23:59:59.000Z

    Solution-Processed Graphene Electronics,” Nano Letters, vol.applications,” Organic Electronics, vol. 12, no. 2, pp. 249-design in organic electronics by dual-gate technology,” in

  10. Small-Molecule Inhibition of TNF-alpha

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »Small SpaceSmall-Molecule

  11. Studies Relevent to Catalytic Activation Co & other small Molecules

    SciTech Connect (OSTI)

    Ford, Peter C

    2005-02-22T23:59:59.000Z

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  12. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOE Patents [OSTI]

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14T23:59:59.000Z

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  13. Small Molecule that Reverses Dexamethasone Resistance in Tcell Acute Lymphoblastic Leukemia (T-ALL)

    E-Print Network [OSTI]

    Stockwell, Brent R.

    Small Molecule that Reverses Dexamethasone Resistance in Tcell Acute Lymphoblastic Leukemia (T are one of the most utilized and effective therapies in treating T-cell acute lymphoblastic leukemia lymphoblastic leukemia, dexamethasone, glucocorticoid resistance, NOTCH1 Acute lymphoblastic leukemia (ALL

  14. Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells

    E-Print Network [OSTI]

    Kubicek, Stefan

    Under the instruction of cell-fate–determining, DNA-binding transcription factors, chromatin-modifying enzymes mediate and maintain cell states throughout development in multicellular organisms. Currently, small molecules ...

  15. Studies of solution-processed organic light-emitting diodes and their materials

    SciTech Connect (OSTI)

    Hellerich, Emily [Ames Laboratory] [Ames Laboratory

    2013-05-15T23:59:59.000Z

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

  16. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Gallivan, Justin [Emory University] [Emory University

    2012-03-21T23:59:59.000Z

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  17. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Gallivan, Justin [Emory University

    2013-01-22T23:59:59.000Z

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  18. Simulation of a small molecule analogue of a lithium ionomer in an external electric field

    SciTech Connect (OSTI)

    Waters, Sara M.; McCoy, John D., E-mail: mccoy@nmt.edu; Brown, Jonathan R. [Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States)] [Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Frischknecht, Amalie L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-01-07T23:59:59.000Z

    We have investigated the ion dynamics in lithium-neutralized 2-pentylheptanoic acid, a small molecule analogue of a precise poly(ethylene-co-acrylic acid) lithium ionomer. Atomistic molecular dynamics simulations were performed in an external electric field. The electric field causes alignment of the ionic aggregates along the field direction. The energetic response of the system to an imposed oscillating electric field for a wide range of frequencies was tracked by monitoring the coulombic contribution to the energy. The susceptibility found in this manner is a component of the dielectric susceptibility typically measured experimentally. A dynamic transition is found and the frequency associated with this transition varies with temperature in an Arrhenius manner. The transition is observed to be associated with rearrangements of the ionic aggregates.

  19. Effective Absorption Enhancement in Small Molecule Organic Solar Cells by Employing Trapezoid Gratings

    E-Print Network [OSTI]

    Chun-Ping, Xiang; Yu, Jin; Bin-Zong, Xu; Wei-Min, Wang; Xin, Wei; Guo-Feng, Song; Yun, Xu

    2013-01-01T23:59:59.000Z

    We demonstrate the optical absorption has been enhanced in the small molecule organic solar cells by employing trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which has been simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce high intensity field increment in the donor layer. Meanwhile, the waveguide modes result a high intensity field in acceptor layer. The increment of field improves the absorption of organic solar cells, significantly, which has been demonstrated by simulating the electrical properties. The simulated results exhibiting 31 % increment of the short-circuit current has been achieved in the optimized device, which is supported by the experimental measurement. The power conversion efficiency of the grating sample obtained in experiment exhibits an...

  20. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    SciTech Connect (OSTI)

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31T23:59:59.000Z

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  1. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    SciTech Connect (OSTI)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Mallika, A. [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India)] [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Badiger, Jayasree [HKE's Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India)] [HKE's Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India); Alinakhi [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India)] [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Talukdar, Pinaki [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India)] [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India); Sachchidanand [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)] [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)

    2010-10-08T23:59:59.000Z

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  2. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    the diagnostic tools in-situ XRD, TEM, electron diffraction, magnetic susceptibility, and neutron scattering to quantify effect of microstructural changes on capacity fade and...

  3. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    using field cooling (FC) and zero field cooling (ZFC) methods. Similar trend in magnetic signal is observed for both the powder and electrode (the magnitude of signal from the...

  4. Precision control of cylindrical stamp contact in a continuous roll-to-roll microcontact printing machine

    E-Print Network [OSTI]

    Libert, Adam M. (Adam Marcus)

    2014-01-01T23:59:59.000Z

    Microcontact printing is a form of soft lithography that uses a molded elastomeric stamp to print patterns with micron and sub-micron scale features. This is an effective low-cost technique for replicating master patterns ...

  5. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Energy Savers [EERE]

    and Materials NDE for Advanced Lithium Secondary Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  6. Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary...

    Broader source: Energy.gov (indexed) [DOE]

    in-line, cross-web laser sensing for electrode thickness monitoring. - Routine IR thermography for electrode coating defects (agglomerates, pinholes, blisters, divots, metal...

  7. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect (OSTI)

    Slafer, W. Dennis

    2010-06-02T23:59:59.000Z

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  8. Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L

  9. Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e LSecondary Batteries |

  10. Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&SystemsChargingEnergyofUS

  11. Synthesis and Identification of Small Molecules that Potently Induce Apoptosis in Melanoma Cells through G1 Cell

    E-Print Network [OSTI]

    Hergenrother, Paul J.

    Synthesis and Identification of Small Molecules that Potently Induce Apoptosis in Melanoma Cells November 23, 2004; E-mail: hergenro@uiuc.edu Abstract: Late-stage malignant melanoma is a cancer molecules (triphenylmethylamides, TPMAs) that arrest the growth of melanoma cells in the G1 phase

  12. Large area ceramic thin films on plastics: A versatile route via solution processing

    SciTech Connect (OSTI)

    Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M. [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan); Fukui, T.; Yoki, M.; Akase, T. [Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, 564-8680 (Japan)

    2012-01-01T23:59:59.000Z

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  13. Dual Binding of an Antibody and a Small Molecule Increases the Stability of TERRA G-Quadruplex

    E-Print Network [OSTI]

    Yangyuoru, Philip M.; Di Antonio, Marco; Ghimire, Chiran; Biffi, Giulia; Balasubramanian, Shankar; Mao, Hanbin

    2014-11-24T23:59:59.000Z

    RNA Structures DOI: 10.1002/anie.201408113 Dual Binding of an Antibody and a Small Molecule Increases the Stability of TERRA G-Quadruplex** Philip M. Yangyuoru, Marco Di Antonio, Chiran Ghimire, Giulia Biffi, Shankar Balasubramanian,* and Hanbin Mao... the development of [*] P. M. Yangyuoru,[+] C. Ghimire, Prof. H. Mao Department of Chemistry and Biochemistry Kent State University, Kent, OH 44242 (USA) E-mail: hmao@kent.edu Dr. M. Di Antonio,[+] Prof. S. Balasubramanian Department of Chemistry, University...

  14. Surface-supported Ag islands stabilized by a quantum size effect: Their interaction with small molecules relevant to ethylene epoxidation

    SciTech Connect (OSTI)

    Shao, Dahai

    2013-05-15T23:59:59.000Z

    This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylene with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.

  15. Inverted-Rib Chalcogenide Waveguides by Solution Process Yunlai Zha,,

    E-Print Network [OSTI]

    Arnold, Craig B.

    Inverted-Rib Chalcogenide Waveguides by Solution Process Yunlai Zha,, Pao Tai Lin,,§ Lionel by a microtrench filling method. In this process, channels are etched on substrates and backfilled with solution for making reliable and low-loss arsenic sulfide waveguides based on a microtrench filling method. Channels

  16. High-efficiency solution processable polymer photovoltaic cells by

    E-Print Network [OSTI]

    ,8 consisting of an interpenetrating network of electron donor and acceptor materials. This concept has alsoARTICLES High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends GANG LI1 , VISHAL SHROTRIYA1 , JINSONG HUANG1 , YAN YAO1 , TOM MORIARTY2 , KEITH EMERY2

  17. Solution-processed coreshell nanowires for efficient photovoltaic cells

    E-Print Network [OSTI]

    Yang, Peidong

    Solution-processed core­shell nanowires for efficient photovoltaic cells Jinyao Tang1,3 , Ziyang are promising for photovoltaic appli- cations1­11 , but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials6­10,12,13 , even allowing for the generally lower

  18. Heterocyclic small molecule peptidomimetics

    E-Print Network [OSTI]

    Liu, Jing

    2009-05-15T23:59:59.000Z

    Polymer-supported synthesis of a close analog (i.e. A) of an early lead, a 14- membered ring peptidomimetic D3, was described. The monovalent molecule was attached to different length linkers, and they were then paired sequentially on a triazine...

  19. Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain

    SciTech Connect (OSTI)

    Leonardi, Roberta; Zhang, Yong-Mei; Yun, Mi-Kyung; Zhou, Ruobing; Zeng, Fu-Yue; Lin, Wenwei; Cui, Jimmy; Chen, Taosheng; Rock, Charles O.; White, Stephen W.; Jackowski, Suzanne (SJCH)

    2010-09-27T23:59:59.000Z

    Pantothenate kinase (PanK) catalyzes the rate-controlling step in coenzyme A (CoA) biosynthesis. PanK3 is stringently regulated by acetyl-CoA and uses an ordered kinetic mechanism with ATP as the leading substrate. Biochemical analysis of site-directed mutants indicates that pantothenate binds in a tunnel adjacent to the active site that is occupied by the pantothenate moiety of the acetyl-CoA regulator in the PanK3 acetyl-CoA binary complex. A high-throughput screen for PanK3 inhibitors and activators was applied to a bioactive compound library. Thiazolidinediones, sulfonylureas and steroids were inhibitors, and fatty acyl-amides and tamoxifen were activators. The PanK3 activators and inhibitors either stimulated or repressed CoA biosynthesis in HepG2/C3A cells. The flexible allosteric acetyl-CoA regulatory domain of PanK3 also binds the substrates, pantothenate and pantetheine, and small molecule inhibitors and activators to modulate PanK3 activity.

  20. Integrated hardware, software, and sensor design for control of a scalable, continuous roll-to-roll microcontact printing process

    E-Print Network [OSTI]

    Nill, Scott T. (Scott Thomas)

    2014-01-01T23:59:59.000Z

    Soft lithography has been a long-time candidate for altering the landscape in micromanufacturing. Such processes promise lower cost in equipment and processed products while showing substantial gains in throughput and ...

  1. Design and development of a roll-to-roll machine for continuous high-speed microcontact printing

    E-Print Network [OSTI]

    Stagnaro, Adam

    2008-01-01T23:59:59.000Z

    Microcontact printing ([mu]CP) is an emerging technique for patterning micro-scale features for electronics, optics, surface modifications, and a variety of other applications. Its many advantages over traditional techniques ...

  2. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    SciTech Connect (OSTI)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02T23:59:59.000Z

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  3. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect (OSTI)

    Inoue, Satoshi, E-mail: s-inoue@jaist.ac.jp [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ariga, Tomoki [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Matsumoto, Shin [School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Onoue, Masatoshi; Miyasako, Takaaki [ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tokumitsu, Eisuke; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Chinone, Norimichi; Cho, Yasuo [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-21T23:59:59.000Z

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550?°C involving three phases: an amorphous phase, Bi{sub 3}NbO{sub 7} fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic ?-BiNbO{sub 4} crystals at 590?°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550?°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500?°C contained approximately 6.5?atm.?% carbon, which was lost at approximately 550?°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  4. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    SciTech Connect (OSTI)

    Van Berkel, Gary J [ORNL; Kertesz, Vilmos [ORNL

    2013-01-01T23:59:59.000Z

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI mode was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.

  5. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    SciTech Connect (OSTI)

    Diaz, Dolores, E-mail: diaz.dolores@gene.com [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Ford, Kevin A. [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Hartley, Dylan P. [Array Biopharma, Boulder, CO (United States)] [Array Biopharma, Boulder, CO (United States); Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Peng, Jing; Zheng, Zhong; Merchant, Mark [Translation Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Translation Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Sutherlin, Daniel P. [Medicinal Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Medicinal Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Gaudino, John J.; Kaus, Robert [Array Biopharma, Boulder, CO (United States)] [Array Biopharma, Boulder, CO (United States); Lewin-Koh, Sock C. [Biostatistics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Biostatistics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Choo, Edna F.; Liederer, Bianca M. [Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States); Dambach, Donna M. [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)] [Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 (United States)

    2013-01-01T23:59:59.000Z

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ? Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ? New analysis tools to assess electrostatic effects and ionization are presented. ? Chemical and PK drivers of toxicity can be leveraged to improve safety.

  6. Development of low-temperature solution-processed colloidal quantum dot-based solar cells

    E-Print Network [OSTI]

    Chang, Liang-Yi, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Solution-processed solar cells incorporating organic semiconductors and inorganic colloidal quantum dots (QDs) are potential alternatives to conventional solar cells fabricated via vacuum or high-temperature sintering ...

  7. Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

    SciTech Connect (OSTI)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto [Dipartimento di Fisica e Astronomia, Universitŕ di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)] [Dipartimento di Fisica e Astronomia, Universitŕ di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2014-03-28T23:59:59.000Z

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  8. MLN8054, A Small Molecule Inhibitor of Aurora Kinase A, Sensitizes Androgen-Resistant Prostate Cancer to Radiation;Aurora kinase A; MLN8054; Prostate cancer; Radiation

    SciTech Connect (OSTI)

    Moretti, Luigi [Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee (United States); Department of Radiation Oncology, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels (Belgium); Niermann, Kenneth; Schleicher, Stephen; Giacalone, Nicholas J.; Varki, Vinod; Kim, Kwang Woon; Kopsombut, Prapaporn; Jung, Dae Kwang [Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee (United States); Bo Lu, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee (United States)

    2011-07-15T23:59:59.000Z

    Purpose: To determine whether MLN8054, an Aurora kinase A (Aurora-A) inhibitor causes radiosensitization in androgen-insensitive prostate cancer cells in vitro and in vivo. Methods and Materials: In vitro studies consisted of culturing PC3 and DU145 prostate cancer cells and then immunoblotting Aurora A and phospho-Aurora A after radiation and/or nocodazole with MLN8054. Phases of the cell cycle were measured with flow cytometry. PC3 and DU145 cell lines were measured for survival after treatment with MLN8054 and radiation. Immunofluorescence measured {gamma}-H2AX in the PC3 and DU145 cells after treatment. In vivo studies looked at growth delay of PC3 tumor cells in athymic nude mice. PC3 cells grew for 6 to 8 days in mice treated with radiation, MLN8054, or combined for 7 more days. Tumors were resected and fixed on paraffin and stained for von Willebrand factor, Ki67, and caspase-3. Results: In vitro inhibition of Aurora-A by MLN8054 sensitized prostate cancer cells, as determined by dose enhancement ratios in clonogenic assays. These effects were associated with sustained DNA double-strand breaks, as evidenced by increased immunofluorescence for {gamma}-H2AX and significant G2/M accumulation and polyploidy. In vivo, the addition of MLN8054 (30 mg/kg/day) to radiation in mouse prostate cancer xenografts (PC3 cells) significantly increased tumor growth delay and apoptosis (caspase-3 staining), with reduction in cell proliferation (Ki67 staining) and vascular density (von Willebrand factor staining). Conclusion: MLN8054, a novel small molecule Aurora-A inhibitor showed radiation sensitization in androgen-insensitive prostate cancer in vitro and in vivo. This warrants the clinical development of MLN8054 with radiation for prostate cancer patients.

  9. Design and development of high precision five-axis positioning system for roll-to-roll multi-layer microcontact printing

    E-Print Network [OSTI]

    Baldesi, Paolo

    2009-01-01T23:59:59.000Z

    Microcontact printing is based on the use of elastomeric stamps to transfer ink onto a substrate taking advantage of the self-assembly process. Features as small as 300nm can be easily printed over an extended area. The ...

  10. Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency

    E-Print Network [OSTI]

    photovolta- ics are limited to about 3%. This arises partly from the lim- ited efficiency with which carriers applications emit predominantly in the 1­3 m range; these require efficient infrared photovoltaicsSolution-processed infrared photovoltaic devices with >10% monochromatic internal quantum

  11. Solution-processed high-performance colloidal quantum dot tandem photodetectors on flexible substrates

    SciTech Connect (OSTI)

    Jiang, Zhenyu; You, Guanjun; Wang, Li; Liu, Jie; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Hu, Wenjia [China Tianchen Engineering Corporation, Tianjin 300400 (China); Zhang, Yu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-08-28T23:59:59.000Z

    We report a high-performance colloidal quantum dot (CQD)-based near-infrared tandem photodetector fabricated on flexible substrates via solution-processed method. The tandem photodetector on poly(ethylene terephthalate) substrates exhibited low dark current and high detectivities over ?8.8?×?10{sup 11} Jones at near infrared range at ?0.5?V bias and over ?10{sup 13} Jones near 0 bias. The critical bend radii of ?8?mm and ?3?mm have been demonstrated for tensile and compressive bending, respectively. The performance of photodetectors remains stable under mechanical stress, making PbSe CQD material a promise candidate for flexible infrared sensing applications.

  12. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27T23:59:59.000Z

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  13. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    SciTech Connect (OSTI)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma

    2012-04-02T23:59:59.000Z

    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  14. Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes

    E-Print Network [OSTI]

    Meng, Hsin-Fei

    -coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

  15. [Transition metal mediated transformations of small molecules

    SciTech Connect (OSTI)

    Sen, A.

    1992-01-01T23:59:59.000Z

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  16. Laser Direct Writing Organic Small Molecule Luminophores

    E-Print Network [OSTI]

    Petta, Jason

    -generation photovoltaics #12;Energy, Society, and Environment · Search for a new energy paradigm: ­ Global warming ­ Energy security ­ Renewables · Solar energy not economically competative #12;VS. Solar Cell Technology High deforms film polyimide titanium, nitrobenzyl alcohol Droplet mechanically deposited #12;Need to show

  17. Small-Molecule Allosteric Activators of Sirtuins

    E-Print Network [OSTI]

    Sinclair, David A.

    The mammalian sirtuins (SIRT1–7) are NAD[superscript +]-dependent lysine deacylases that play central roles in cell survival, inflammation, energy metabolism, and aging. Members of this family of enzymes are considered ...

  18. Small molecule Interactions with Heparan sulfate

    E-Print Network [OSTI]

    Schuksz, Manuela

    2009-01-01T23:59:59.000Z

    13. Alexopoulou, A. N. , Multhaupt, H. A. & Couchman, J. R.17:173-7. Alexopoulou AN, Multhaupt HA, Couchman JR (2007)

  19. Allosteric Modulation of DNA by Small Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|Aljazeera story

  20. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells

    SciTech Connect (OSTI)

    Adam J. Moule

    2012-05-01T23:59:59.000Z

    The original objectives were: (1) Develop a method to deposit multiple conjugated polymer film layers and avoid the problem of dissolution from mutually solubility; (2) Use this deposition method to develop multi-layer polymer based solar cells with layers that are function specific; (3) characterize these layers and devices; (4) develop electrical and optical models that describe and predict the properties of the multi-layers; and (5) Ultimate efficiency goals are {approx}6.75% with J{sub sc} = 12 mA/cm{sup 2}, FF = 0.75, and V{sub oc} = 0.75. The question of whether photovoltaic (PV) cells will ever be able to replace fossil fuels as the main provider of electrical power is not just a question of device efficiency; it is a question of how much power can be provided for what price. It has been well documented that PV devices at 10% power efficiency can provide for all of the world's power needs without covering too much of the earth's surface. Assuming desert like cloud coverage, an area equivalent to the land area of Texas would have to be covered. However, it has also been shown that using the current state-of-the-art silicon devices, the price-per-Watt will never be low enough to be economically feasible for large-scale development. Solution-processable PV devices based on polymers are a very attractive alternative to traditional Silicon PV because this technology is much lower in materials cost and in environmentally toxic waste production. Solution-based polymers can be rapidly deposited using printing technologies and are compatible with light-weight flexible substrates that can increase the range of available PV applications. In the past ten years, the efficiency of polymer based PV devices has increased from {approx}1% to over 10%. The highest efficiency organic solar cells are based upon a single layer than consists of a mixture of donor and acceptor moieties. This one layer has multiple optical and electrical functions, so the design of a single heterojunction layer is based upon the idea of balancing good and bad properties within a single film. This proposal addresses the idea that the use of multiple layers that have differing electrical and optical functions could lead to greater efficiency because fewer materials compromises must be made. This idea is not new, multiple functional layer have been successfully used in cross-linked OLED's and organic small molecule evaporated PV devices. The main reason that multiple layers of polymers are not commonly deposited is that most conjugated polymers are mutually soluble in the same solvents. The work outlined in the proposal was intended to develop a new deposition strategy that would allow multiple organic layers to be deposited from solution using spin coating. The deposition method that we proposed was successful, sometimes, but ultimately not reliable. Instead we focused on more reliable methods to implement doping along the interface between layers. This work has been very successful. We found that using PEDOT:PSS, the PSS would form a surface layer of {approx}2-3 nm thickness that would mix with and electrochemically react with P3HT upon heating. This mechanism is also a crosslinking reaction in that H{sub 2} is released and permanent new bonds are formed. Using the Plextronics Inc. replacement to PEDOT:PSS, for which there are no mobile dopants, we were able to show that a second and different mechanism can be used to p-type dope organic materials. We are currently working with Plextronics to develop a new product. Finally we produced n-type doping of a thin fullerene layer near the cathode also using a self-assembly method. Low work function metals will diffuse into the BHJ layer and dope the fullerene upon heating. This doping also affects the vertical segregation of BHJ materials in a predictable way. We accomplished all of the scientific goals that we set out in the proposal written in May 2007. Some of the methods we proposed were not fully successful, but we did come up with better methods to achieve the same goal. We did not achieve the efficiency g

  1. Modulation of physical and photocatalytic properties of (Cr, N) codoped TiO{sub 2} nanorods using soft solution processing

    SciTech Connect (OSTI)

    Lu, Wen-Chung [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan (China); Nguyen, Hoang-Diem; Wu, Chun-Yi [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan (China); Chang, Kao-Shuo, E-mail: kschang@mail.ncku.edu.tw; Yoshimura, Masahiro [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan (China); Promotion Center for Global Materials Research (PCGMR), National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan (China)

    2014-04-14T23:59:59.000Z

    Facile polymerized complex reactions together with a hydrothermal reaction were implemented to make single crystalline TiO{sub 2} nanorods for the first time. Chromium (Cr) and nitrogen (N{sub 2}) co-doping was performed to tailor the physical properties. Transmission electron microscopy and x-ray diffraction study illustrated that highly reactive facets of (101), (111), and (001) dominated rutile TiO{sub 2} nanorods. A growth model, based on formation of complex species, was proposed to elucidate effectiveness of the soft solution processing in making TiO{sub 2} nanorods. X-ray photoelectron spectroscopy analysis and consideration of fundamentals of charge neutrality showed N{sub 2} doping could inhibit formation of Cr{sup 6+} and oxygen vacancies (V{sub O}{sup 2+}). An investigation of the photocatalytic properties exhibited high efficiency of photodegradation of methylene blue in 15?min under pH?=?10, using a nanocomposite of (7% Cr, 0.0021% N) codoped and 3% Cr doped TiO{sub 2} nanorods.

  2. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    SciTech Connect (OSTI)

    Chen, Dongcheng; Zhou, Hu; Cai, Ping; Sun, Shi; Ye, Hua; Su, Shi-Jian, E-mail: mssjsu@scut.edu.cn; Cao, Yong [State Key Laboratory of Luminescent Materials and Devices (South China University of Technology) and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640 (China)

    2014-02-03T23:59:59.000Z

    A triazine- and pyridinium-containing water-soluble material of 1,1?,1?-(4,4?,4?-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on the TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.

  3. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?

    SciTech Connect (OSTI)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-21T23:59:59.000Z

    Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?

  4. Solution Processed MoS2-PVA Composite for Sub-Bandgap Mode-Locking of a Wideband Tunable Ultrafast Er:Fiber Laser

    E-Print Network [OSTI]

    Zhang, Meng; Howe, Richard C. T.; Woodward, Robert I.; Kelleher, Edmund J. R.; Torrisi, Felice; Hu, Guohua; Popov, Sergei V.; Taylor, J. Roy; Hasan, Tawfique

    2014-11-11T23:59:59.000Z

    with stable, picosecond pulses, tunable from 1535 nm to 1565 nm 2 Solution Processed MoS2-PVA Composite for Sub-Bandgap Mode-Locking of a Wideband Tunable Ultrafast Er:Fiber Laser Meng Zhang1, Richard C. T. Howe2, Robert I. Woodward1... ! to! relaxation! of! thermalized! electron! and!phonon! distribution! [3].! This! combination! of!properties!makes!MoS2!a!suitable!saturable!absorber!(SA)! for! ultrafast! mode+locked! pulsed! lasers,! with!the! potential! for! pulse! generation! at...

  5. BioTherapeutics Engineering Laboratory (BioTEL) Small molecules

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Tissues and organs Physiological functions cmcm PI: Young Jik Kwon, kwonyj@uci.edu, 949-824-8714, http NH2l n HN HN O m H3O+HN O H N O HN OH OH O Nucleic acid H2N Dissociated nucleic acid H2N PI: YoungTherapeutics Engineering Laboratory (BioTEL) NIH 3T3 Cells RAW309 CR.1 Nanoparticles Naked DNANIH 3T3 Cells (Fibroblast

  6. Targeting unique nucleic acid structures with small molecules

    E-Print Network [OSTI]

    Tam, Victor Kin-man

    2007-01-01T23:59:59.000Z

    of mono- and disubstitued anthraquinone derivatives with anat opposite ends of the anthraquinone scaffold are employed.

  7. Targeting DNA G-Quadruplexes with Helical Small Molecules

    E-Print Network [OSTI]

    Müller, Sebastian; Laxmi-Reddy, Katta; Jena, Prakrit V.; Baptiste, Benoit; Dong, Zeyuan; Godde, Frédéric; Ha, Taekjip; Rodriguez, Raphaël; Balasubramanian, Shankar; Huc, Ivan

    2014-09-26T23:59:59.000Z

    . Balasubramanian, S. P. Jackson, Nat. Chem. Biol. 2012, 8, 301–310. [11] a) G. Biffi, M. Di Antonio, D. Tannahill, S. Balasubramanian, Nat. Chem. 2014, 6, 75–80; b) A. Henderson, Y. Wu, Y. C. Huang, E. A. Chavez, J. Platt, F. B. Johnson, R. M. Brosh, Jr., D...

  8. Dynamic nuclear polarization of amorphous and crystalline small molecules

    E-Print Network [OSTI]

    Ong, Ta-Chung

    2014-01-01T23:59:59.000Z

    Solid-state NMR has emerged to become an important technique in the studies of pharmaceutical formulations consisting of active pharmaceutical ingredients (API) and excipients. Dynamic nuclear polarization (DNP), which ...

  9. [Transition metal mediated transformations of small molecules]. Progress report

    SciTech Connect (OSTI)

    Sen, A.

    1992-10-01T23:59:59.000Z

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of {alpha}-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  10. Transcription Factor-Based Small-Molecule Screens and Selections

    E-Print Network [OSTI]

    Dietrich, Jeffrey Allen

    2011-01-01T23:59:59.000Z

    for the production of 3-methyl-1- butanol. Appl. Environ.for the production of 3-Methyl-1-Butanol. Appl. Environ.butanol; 3M-1-C4OH, 3-methyl-1- butanol; C4=O, butaldehyde;

  11. antigen small molecule: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A printing technology for OLEDs and next the answer? http:www.tranism.comweblogimagesphotovoltaicoled.jpg 12;Like this one --- Yellow resolution 12;From drops to pads ...

  12. Transcription Factor-Based Small-Molecule Screens and Selections

    E-Print Network [OSTI]

    Dietrich, Jeffrey Allen

    2011-01-01T23:59:59.000Z

    analogs 76 , and a tyrosinase-catalyzed transformation ofan in vivo expressed tyrosinase to use melanin as a reportertryosinase in E. coli. (a) Tyrosinases use molecular oxygen

  13. Transcription Factor-Based Small-Molecule Screens and Selections

    E-Print Network [OSTI]

    Dietrich, Jeffrey Allen

    2011-01-01T23:59:59.000Z

    were synthesized (DNA 2.0). The pdc gene was amplified fromacid decarboxylase, with PDC, encoding for Zymomonas mobilispyruvate decarboxylase. When PDC is co-expressed with ADH6,

  14. Understanding Small Molecule Interactions in Metal-Organic Frameworks:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map Site Map HomeUSSites | Center

  15. Interfacial degradation effects of aqueous solution-processed molybdenum trioxides on the stability of organic solar cells evaluated by a differential method

    SciTech Connect (OSTI)

    Lou, Yan-Hui [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Graduate School of Science and Technology, University of Toyama, 3190 Gofuku Toyama (Japan); Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Yuan, Da-Xing; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Okada, Hiroyuki [Graduate School of Science and Technology, University of Toyama, 3190 Gofuku Toyama (Japan)

    2014-09-15T23:59:59.000Z

    The authors investigate the influence of two hole interfacial materials poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) and aqueous solution-processed MoO{sub 3} (sMoO{sub 3}) on cell stability. sMoO{sub 3}-based device demonstrated obviously improved stability compared to PEDOT:PSS-based one. Current-voltage characteristics analysis is carried out to investigate the effect of the hole interfacial layers on the cell stability. The formation of additional trap states at the interfaces between the hole interfacial layer and the active layer in degraded devices is verified by a differential method. Improved cell stability is attributed to a relatively stable sMoO{sub 3} interfacial layer compared to PEDOT:PSS by comparing their different trap states distributions.

  16. SOLUTION-PROCESSED INORGANIC ELECTRONICS

    E-Print Network [OSTI]

    Bakhishev, Teymur

    2011-01-01T23:59:59.000Z

    Electrodes for Dye-Sensitized Solar Cells,” Nano Letters,diodes (OLEDs), dye- sensitized solar cells, as well as

  17. SOLUTION-PROCESSED INORGANIC ELECTRONICS

    E-Print Network [OSTI]

    Bakhishev, Teymur

    2011-01-01T23:59:59.000Z

    Graphene Conductors .. 41 Fabrication .. 44 Printing Conditions Optimization 44 ii Experimental Setup and Sample Preparation

  18. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    SciTech Connect (OSTI)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01T23:59:59.000Z

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially pronounced in solution processed OLEDs lacking the accuracy and precision of fabrication found in their small molecule counterparts. From this point of view, it seems beneficial to develop materials allowing reduction of the operation bias voltage via improvement of the charge injection. The materials sought have to be compatible with solution-based fabrication process and allow easy incorporation of metal nanostructures.

  19. Misfit layered Ca{sub 3}Co{sub 4}O{sub 9} as a high figure of merit p-type transparent conducting oxide film through solution processing

    SciTech Connect (OSTI)

    Aksit, M.; Kolli, S. K.; Slauch, I. M.; Robinson, R. D., E-mail: rdr82@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2014-04-21T23:59:59.000Z

    Ca{sub 3}Co{sub 4}O{sub 9} thin films synthesized through solution processing are shown to be high-performing, p-type transparent conducting oxides (TCOs). The synthesis method is a cost-effective and scalable process that consists of sol-gel chemistry, spin coating, and heat treatments. The process parameters can be varied to produce TCO thin films with sheet resistance as low as 5.7?k?/sq (????57 m? cm) or with average visible range transparency as high as 67%. The most conductive Ca{sub 3}Co{sub 4}O{sub 9} TCO thin film has near infrared region optical transmission as high as 85%. The figure of merit (FOM) for the top-performing Ca{sub 3}Co{sub 4}O{sub 9} thin film (151 M?{sup ?1}) is higher than FOM values reported in the literature for all other solution processed, p-type TCO thin films and higher than most others prepared by physical vapor deposition and chemical vapor deposition. Transparent conductivity in misfit layered oxides presents new opportunities for TCO compositions.

  20. An easy-to-fabricate low-temperature TiO{sub 2} electron collection layer for high efficiency planar heterojunction perovskite solar cells

    SciTech Connect (OSTI)

    Conings, B.; Baeten, L.; Jacobs, T.; Dera, R.; D’Haen, J.; Manca, J.; Boyen, H.-G. [Instituut voor Materiaalonderzoek, Universiteit Hasselt, Wetenschapspark 1, 3590 Diepenbeek (Belgium)

    2014-08-01T23:59:59.000Z

    Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO{sub 2} electron collection layer that requires a high temperature treatment (>450?°C), which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ?150?°C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO{sub 2} layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO{sub 2} layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO{sub 2}/CH{sub 3}NH{sub 3}PbI{sub 3-x}Cl{sub x}poly(3-hexylthiophene)/Ag architecture.

  1. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    SciTech Connect (OSTI)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue, E-mail: yhao@xidian.edu.cn [State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, No. 2 South Taibai Road, Xi'an 710071 (China)

    2014-06-16T23:59:59.000Z

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150?°C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100?°C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  2. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    SciTech Connect (OSTI)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-08-04T23:59:59.000Z

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%)?+?ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  3. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    for improved photovoltaic efficiency. Chapter 3 describesunit. Reported photovoltaic efficiencies are averages of allefficiencies continue to rise, both DSCs and OPVs may begin to break into commercial photovoltaic

  4. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B

    E-Print Network [OSTI]

    Santaguida, Stefano

    By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle ...

  5. Covalent stabilization of a small moleculeRNA complex Hayden Peacock, Radhika Bachu, Peter A. Beal

    E-Print Network [OSTI]

    Beal, Peter A.

    on the high affinity HTP-binding site present in the folded apt- amer. These results are important for future structural studies of HTP­RNA complexes and methods for the discovery of new high affinity analogs via for an HTP­RNA complex. Stabilization of these complexes by introducing covalent linkages should prove

  6. DISORDERED BINDING OF SMALL MOLECULES TO A12-28 Marino Convertino, Andreas Vitalis*

    E-Print Network [OSTI]

    Caflisch, Amedeo

    .4 19 17.6 48.7 0.4 9,10-anthraquinone 8.2 6.3 15.5 0.2 8.2 10.8 30.4 0.2 anthracene 5.4 3.6 9.7 0.9 5,10-anthraquinone 10.3 7.1 18.3 1.1 10.3 11.4 33.3 0.7 anthracene 6.8 3.7 11.1 1.8 6.8 4.4 12.7 2.2 Tyr,10-anthraquinone full -6.6 -2.9 5.4 -1.5 -5.6 1st block -8.1 -5.4 8.1 -1.7 -6.9 2nd block -6.9 -3.1 5.7 -1.5 -5.9 3

  7. Identification from a Combinatorial Library of a Small Molecule that Selectively Induces

    E-Print Network [OSTI]

    Hergenrother, Paul J.

    Apoptosis in Cancer Cells Vitaliy Nesterenko, Karson S. Putt, and Paul J. Hergenrother* Roger Adams was cooled down in a water-ice bath (0-4 o C) and under efficient stirring a cold solution of potassiumH=7.65±0.02 by addition of a monobasic sodium phosphate solution. A solution of styrene (1.005 mg, 6

  8. Improving Blood Brain Barrier Permeation of Small Molecules Exhibiting Chemotherapeutic and Neuroprotective Effects

    E-Print Network [OSTI]

    Desino, Kelly Elizabeth

    2008-05-06T23:59:59.000Z

    . Somerville, NJ) was used for the permeability studies described in the following chapters. This set up consists of two glass chambers surrounded by thermal jackets which are maintained by a circulating water bath. BBMECs are grown on polycarbonate... Figure 1.1 Schematic of the Side-bi-Side? diffusion apparatus (Ho et al., 1999) Permeability studies are conducted by filling the donor (luminal) and receiver (abluminal) chambers with PBSA (phosphate buffered saline supplemented with CaCl2, MgSO4...

  9. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    of solid-state dye sensitized cells have previously beenon organic polymer and dye-sensitized cells. The detailedof a Typical Dye-Sensitized Cell……12 Design of Dyes for Dye-

  10. A Characterization of Small Molecule and Polymer Dyes for Use in Luminescent Solar

    E-Print Network [OSTI]

    Belanger, David P.

    that will soon be in short supply are the fossil fuels; coal, oil, natural gas, etc. In addition to their short supply, fossil fuels are also the major contributors of carbon dioxide and other pollutants back by cost. The price of solar generated electricity can run up to approximately $3 per Watt. [4

  11. A Small Molecule Modulator of Hsp90 Improves Experimental Diabetic Neuropathy

    E-Print Network [OSTI]

    Urban, Michael Joseph

    2010-07-30T23:59:59.000Z

    or 20 mg/kg KU-32 to non-diabetic mice over 6 week duration did not alter motor or sensory nerve conduction velocity (MNCV/SNCV), mechanical or thermal sensitivity, or intra-epidermal nerve fiber density. Thus, the drug alone had no effect on altering...

  12. Identification of Novel Small Molecule Inhibitors of Core-Binding Factor Dimerization by Computational

    E-Print Network [OSTI]

    Lilien, Ryan

    of a ligand database into the binding site of the protein. Ligands are then ranked by the number and quality (IIS-9906790, EIA- 0102710, EIA-0102712, EIA-9818299, EIA-9802068, and EIA-0305444). Author's current

  13. Preface: Forum on small molecules related to carbon-containing fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01T23:59:59.000Z

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. This transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather by themore »tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less

  14. Kevin Burgess' Research: Project 1 Design And Syntheses Of Small Molecules That

    E-Print Network [OSTI]

    Burgess, Kevin

    , diabetes, stroke, and neurodegeneration are underway. A future projects will be to develop an alternative

  15. Structural basis for specificity of TGF[beta] family receptor small molecule inhibitors

    SciTech Connect (OSTI)

    Ogunjimi, Abiodun A.; Zeqiraj, Elton; Ceccarelli, Derek F.; Sicheri, Frank; Wrana, Jeffrey L.; David, Laurent (Mount Sinai Hospital); (Toronto)

    2012-07-24T23:59:59.000Z

    Transforming growth factor-{beta} (TGF{beta}) receptor kinase inhibitors have a great therapeutic potential. SB431542 is one of the mainly used kinase inhibitors of the TGF{beta}/Activin pathway receptors, but needs improvement of its EC{sub 50} (EC{sub 50} = 1 {mu}M) to be translated to clinical use. A key feature of SB431542 is that it specifically targets receptors from the TGF{beta}/Activin pathway but not the closely related receptors from the bone morphogenic proteins (BMP) pathway. To understand the mechanisms of this selectivity, we solved the crystal structure of the TGF{beta} type I receptor (T{beta}RI) kinase domain in complex with SB431542. We mutated T{beta}RI residues coordinating SB431542 to their counterparts in activin-receptor like kinase 2 (ALK2), a BMP receptor kinase, and tested the kinase activity of mutated T{beta}RI. We discovered that a Ser280Thr mutation yielded a T{beta}RI variant that was resistant to SB431542 inhibition. Furthermore, the corresponding Thr283Ser mutation in ALK2 yielded a BMP receptor sensitive to SB431542. This demonstrated that Ser280 is the key determinant of selectivity for SB431542. This work provides a framework for optimising the SB431542 scaffold to more potent and selective inhibitors of the TGF{beta}/Activin pathway.

  16. A phosphoproteomics approach towards identifying signaling pathway modulators induced by small molecules :

    E-Print Network [OSTI]

    Lo, Frederick Buin-sing

    2011-01-01T23:59:59.000Z

    Fraction Data File Generation .. 47   iv C.1. Overview ofIV Analysis of Mass Spectrometry Data A. Introduction Chapter 3 described the generation

  17. Graphene Signal Amplification for Sensitive and Real-Time Fluorescence Anisotropy Detection of Small Molecules

    E-Print Network [OSTI]

    Tan, Weihong

    Graphene Signal Amplification for Sensitive and Real-Time Fluorescence Anisotropy Detection graphene oxide (GO) as the signal amplifier. Because of the extraordinarily larger volume of GO

  18. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Hui Zhang

    2007-12-01T23:59:59.000Z

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE{sub 1}(E{sub 2})-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE{sub 1}-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were counted with confidence based on Imagej software. The capacity factor and desorption rate were estimated from the counting results. The mobility-based adsorption isotherms were constructed from both computer simulations and experiments to determine the capacity factor.

  19. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    that decreases photovoltaic performance. The development ofTable 2: Performance data from photovoltaic cells fabricated

  20. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Theincluding organic solar cells and dye-sensitized solar

  1. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    of High Efficiency Polymer Photovoltaics…………………7 Futureof High Efficiency Polymer Photovoltaics Although the Tangthe Efficiency of Organic Photovoltaics……………..7 Development

  2. Depth Profiling Of Small Molecule Ingress Into Planar and Cylindrical Materials Using NRA and PIXE

    SciTech Connect (OSTI)

    Smith, Richard W.; Massingham, Gary; Clough, Anthony S. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2003-08-26T23:59:59.000Z

    The use of a 3He ion micro-beam technique to study the ingress/diffusion of water into a planar fibre optic grade glass and a cylindrical drug-release polymer is described. One-dimensional concentration profiles showing the depth of water ingress were produced. The depth of penetration of water into the glass was measured by fitting a gaussian function to the concentration profile. The ingress of water into the drug-release polymer was found to be Fickian and a cylindrical diffusion model used to obtain a diffusion coefficient.

  3. A Novel Class of Small Molecule Inhibitors of and Lynne Regan,,

    E-Print Network [OSTI]

    Regan, Lynne

    that these compounds are active in vivo. Treat- ment of human breast cancer cell lines BT474 and SKBR3 tumors. For in- stance, approximately one-third of all breast cancer cells overproduce the cell surface receptor HER2 (desig- nated HER2 positive) (1). The more HER2 a cell pro- duces, the more aggressive its

  4. Quantitative SERS Using the Sequestration of Small Molecules Inside Precise Plasmonic Nanoconstructs

    E-Print Network [OSTI]

    Steiner, Ullrich

    for monitoring analytes such as polyaromatic hydrocarbons (PAHs). PAHs are a class of pollutants that need of hydrophobic molecules in general has proved difficult.15 SERS analyses of PAHs have been carried out using, especially water-insoluble analytes, in various environmental matrices. Using a host molecule with a specific

  5. Dissection of Mitotic Ran Pathway Function Using the Small Molecule Importazole

    E-Print Network [OSTI]

    Bird, Stephen Lucien

    2012-01-01T23:59:59.000Z

    Importazole by Stephen Lucien Bird A dissertation submittedrights reserved by Stephen Lucien Bird Abstract DissectionImportazole by Stephen Lucien Bird Doctor of Philosophy in

  6. A phosphoproteomics approach towards identifying signaling pathway modulators induced by small molecules :

    E-Print Network [OSTI]

    Lo, Frederick Buin-sing

    2011-01-01T23:59:59.000Z

    prior to the experiment. Centrifuge tubes with caps able toand collected into a labeled centrifuge tube on ice. Thewere added to the same centrifuge tube. The 24 plates were

  7. Small molecule binding to electrophilic trigonal pyramidal platinum, palladium, and nickel

    E-Print Network [OSTI]

    Tsay, Charlene

    2013-01-01T23:59:59.000Z

    Chapter 1 A general introduction to the concepts and background of several types of transition metal complexes that motivate and inform the research described herein. These include a-complexes and molecular adducts of ...

  8. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    is termed the short circuit current, or J SC . The voltageV OC ) of 0.56 V, short circuit current (J SC ) of 1.85 mA

  9. Exploring Key Orientations of Small Molecules to Disrupt Protein-protein Interactions 

    E-Print Network [OSTI]

    Ko, Eunhwa

    2012-07-16T23:59:59.000Z

    with long-linkers bound to TrkA or TrkC receptor and showed partial antagonism for the receptors. Other mimics were conjugated with cytotoxic compounds and they were used for TrkC targeted drug delivery. The last group of bivalent mimics previously showed...

  10. Charge recombination in organic small-molecule solar cells by Jiye Lee.

    E-Print Network [OSTI]

    Lee, Jiye

    2008-01-01T23:59:59.000Z

    To enhance the power conversion efficiency in organic solar cells, charge recombination loss needs to be minimized. First, we perform transient absorption spectroscopy to study the charge recombination dynamics of thin ...

  11. Electrically Triggered Release of a Small Molecule Drug from a Polyelectrolyte Multilayer Coating

    E-Print Network [OSTI]

    Schmidt, Daniel J.

    Electrically triggered drug delivery represents an attractive option for actively and remotely controlling the release of a therapeutic from an implantable device (e.g., a “pharmacy-on-a-chip”). Here we report the fabrication ...

  12. Combinatorial design and synthesis of peptidomimics and small molecules for protein-protein interactions

    E-Print Network [OSTI]

    Park, Chihyo

    2007-04-25T23:59:59.000Z

    pharmacophores and to adjust the solubilities of the products. The fluorinated template also gave libraries of cyclic peptidomimetics on solid phase in good yields and purities. These libraries have improved water solubility over the iodinated libraries. The 3...

  13. Synthesis and small molecule chemistry of the niobaziridine-hydride functional group

    E-Print Network [OSTI]

    Figueroa, Joshua S

    2005-01-01T23:59:59.000Z

    Chapter 1. Synthesis and Divergent Reactivity of the Niobaziridine-Hydride Functional Group The synthesis, characterization and reactivity of the niobaziridine-hydride complex Nb(H)([eta]˛-t- ]Bu(H)C=NAr)(N[Np]Ar)? (la-H; ...

  14. Small Molecule Activation of PKM2 in Cancer Cells Induces Serine Auxotrophy

    E-Print Network [OSTI]

    Vander Heiden, Matthew G.

    Proliferating tumor cells use aerobic glycolysis to support their high metabolic demands. Paradoxically, increased glycolysis is often accompanied by expression of the lower activity PKM2 isoform, effectively constraining ...

  15. Exploring Key Orientations of Small Molecules to Disrupt Protein-protein Interactions

    E-Print Network [OSTI]

    Ko, Eunhwa

    2012-07-16T23:59:59.000Z

    10a - e. ...................... 62 Scheme 4.3. Synthesis of Eu-labeled Bivalent Mimics 1a - e. ...................................... 65 Scheme 5.1. Preparation of 1,3-Butadiyne-based Peptidomimetics 4a - f. ................... 94 Scheme 5... before synthesis,28 reducing expenditure on resources and time. There are two main paradigms in computer-aided methods: structure- and ligand-based approaches. Structure-based approaches use target protein structures and docking algorithms to place...

  16. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    Rizzardo, E. ; Thang, S. H. Polymer 2008, 49, 1079-1131. (b)V. L. ; Pezdirtz, G. F. Polymer Letters 1965, 3, 977-984. [efficiencies of polymer/fullerene bulk heterojunction OPVs

  17. Small Molecule Hsp90 Modulator and Neuregulin-induced Peripheral Demyelination

    E-Print Network [OSTI]

    Li, Chengyuan

    2012-08-31T23:59:59.000Z

    Abstract Modulating molecular chaperones is emerging as an attractive approach to treat neurodegenerative diseases associated with protein aggregation, diabetic peripheral neuropathy (DPN) and possibly, demyelinating neuropathies. KU-32 is a small...

  18. Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF

    E-Print Network [OSTI]

    Koppolu, Veerendra; Osaka, Ichie; Skredenske, Jeffrey M.; Kettle, Bria; Hefty, P. Scott; Li, Jianqin; Egan, Susan M.

    2013-09-03T23:59:59.000Z

    -13. Copyright © 2013, American Society for Microbiology. All Rights Reserved. doi:10.1128/IAI.00919-13 4220 iai.asm.org Infection and Immunity p. 4220–4231 November 2013 Volume 81 Number 11 o n June 30, 2014 by University of Kansas http://iai.asm .org/ D ow...Pad, La Jolla, CA). Error bars in Inhibitor of Shigella Virulence Regulator VirF November 2013 Volume 81 Number 11 iai.asm.org 4221 o n June 30, 2014 by University of Kansas http://iai.asm .org/ D ow nloaded from figures represent the standard errors...

  19. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Thebulk heterojunction organic solar cells, blends of a p-type

  20. Proton-coupled electron transfer : from basic principles to small molecule activation

    E-Print Network [OSTI]

    Rosenthal, Joel, 1979-

    2007-01-01T23:59:59.000Z

    Proton-coupled electron transfer (PCET) is the basic mechanism for bioenergetic conversion. Hallmark examples of such reactivities include water oxidation which is coupled to photosynthesis and oxygen reduction which is ...

  1. Identification of small molecules for human hepatocyte expansion and iPS differentiation

    E-Print Network [OSTI]

    Shan, Jing

    Cell-based therapies hold the potential to alleviate the growing burden of liver diseases. Such therapies require human hepatocytes, which, within the stromal context of the liver, are capable of many rounds of replication. ...

  2. Discovery of small molecules that enhance astrocyte differentiation in rat fetal neural stem cells

    E-Print Network [OSTI]

    Suh, Young-Ger

    -Jung Kim b, , Kyung Hoon Min c, a College of Pharmacy, Seoul National University, Seoul 151-741, Republic to understand how the cell fate of NSCs is regulated. In addition, much attention has been paid to the role of astrocytes in neuro- pathological conditions.12 An in-house chemical library was there- fore screened to see

  3. Selectivity in the interactions between positively charged small molecules and negatively charged biopolymers

    E-Print Network [OSTI]

    Elson-Schwab, Lev

    2006-01-01T23:59:59.000Z

    1 H NMR (400 MHz, acetonitrile-d 3 ) ? 8.58-8.50 (q, 2H),HPLC (C-18, 0-30% acetonitrile (0.1% TFA) in water (0.1 %purification (C-8, 5-13% acetonitrile (0.1% TFA) in water

  4. A phosphoproteomics approach towards identifying signaling pathway modulators induced by small molecules :

    E-Print Network [OSTI]

    Lo, Frederick Buin-sing

    2011-01-01T23:59:59.000Z

    ran low. Solvent B was 100% acetonitrile. Solvent C was 5%mixture by volume of 100% acetonitrile, isopropanol (IPA, JTbuffer contained 65% acetonitrile / 2% trifluoroacetic

  5. TBP expression and the investigation of on-bead assays for small molecule recognition

    E-Print Network [OSTI]

    Bhattarai, Kiran

    2002-01-01T23:59:59.000Z

    with NMP, DCM, methanol (MeOH) [EM Science], and dlH20 respectively. The desired peptides were purified by HPLC and mass of each peptide was determined by mass spectrometry (fig 3. 2-3. 5). The peptides prepared above were stored under the vacuum. 3. 3...- pyrrolidinone (NMP) [Advanced Chem Tech]. 3. 3. 3 Synthesis of Peptides On TentaGel Resin The desired sequence of peptides were synthesized on TentaGel resin charged with first amino acid of each desired peptide sequence as follows: each amino acid coupling...

  6. Synthesis of Small Molecule Candidate Insulin Mimics by the Claisen Rearrangement

    E-Print Network [OSTI]

    Nalbandian, Jenifer N.

    2013-01-01T23:59:59.000Z

    Dimethylallyl)naringenin by Europium(III)-Catalyzed Claisenof Flavonoids via Europium(III)-Catalyzed Claisen110 Scheme 4.11 Europium( III)-catalyzed Claisen

  7. Development of chiral LC-MS methods for small molecules and their applications i

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATE RELEASENovel COchiral

  8. Small molecule adsorption in open-site metal-organic frameworks: a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu Aboutsmr Small

  9. CONVENE IGERT ConvEne IGERT Publications (updated March 1, 2013)

    E-Print Network [OSTI]

    Bigelow, Stephen

    ) 480­492 [doi] 43. A. D. Ostrowsk, B. F. Lin, M. V. Tirrell, and P. C. Ford, Liposome Encapsulation a Solution-Processed Small-Molecule Bulk Hetero- junction Solar Cell, Adv. Mater. 24 (2012) 2135­2141. [doi processable small molecule bulk heterojunction solar cells via solvent additives, RSC Adv. 2 (2012) 2232

  10. Innovative, Lower Cost Sensors and Controls Yield Better Energy...

    Broader source: Energy.gov (indexed) [DOE]

    ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors. ORNLs Pooran Joshi shows how the process enables...

  11. Innovative, lower cost sensors and controls yield better energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and controls yield better energy efficiency ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors....

  12. AMO Overview: Peer Review 2015 Opening / Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    etc.) (6) Critical Materials (7) Advanced Composites & Lightweight Materials (8) 3D Printing Additive Manufacturing (9) 2D Manufacturing Roll-to-Roll Processes (10) Wide...

  13. TWO SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15...

    Broader source: Energy.gov (indexed) [DOE]

    and light uniformity, using substrates with improved barrier properties to prevent degradation, and developing low-cost roll-to-roll manufacturing technology for domestic...

  14. 2014 Annual Merit Review, Vehicle Technologies Office - 03 Adv...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory was also working with Sigma who had impressive roll-to- roll processing capabilities. Question 4: Proposed future research - the degree to which the...

  15. In-situ characterization and diagnostics of mechanical degradation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior of Electrodes Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary Batteries Characterization of Materials for Li-ion Batteries: Success...

  16. A quality map of transfer printing Matthew B. Tucker,1

    E-Print Network [OSTI]

    Li, Teng

    - nique to enable a low-cost and scalable roll-to-roll printing process of flexible devices.13­19 Although printing toward a roll-to-roll printing process of flexible devices hinges upon the understanding be fabricated on compliant organic substrates polymers, elastomers , result- ing in lightweight, rugged

  17. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    researchers from uranium chemistry. Fortunately, despitescarce in uranium coordination chemistry. A more detailedligands for uranium coordination chemistry. Figure 4-2.

  18. Reactivity of low-valent nickel-1,3-BIS (o-Diphenylphosphinophenylthio) propane (arom-PSSP) with small molecules

    E-Print Network [OSTI]

    Kang, Jeehee

    1997-01-01T23:59:59.000Z

    [Ru(NHs)4CI(SO2)]CI 2, 072 [Rh(Cp)(C2Hg)SO2] 2 096 1. 462, 1. 394 1. 442, 1. 430 113. 8 114. 4 Pyramidal [IrCI(CO)(SOs)(PPhs)p] 2. 488 [RhCI(CO)(SO2)(PPhs)s] 2, 450 1. 412, 1. 472 1. 446, 1. 456 117. 1 113. 8 [Ni(SO2)(nPs)] 2. 336 1. 312...

  19. Effect of Secondary Interactions on the Fundamental Properties of Small Molecule Models of the Diiron Hydrogenase Active Site 

    E-Print Network [OSTI]

    Singleton, Michael Lee

    2012-02-14T23:59:59.000Z

    . ......................................................................................................... 109 V-5 Thermal ellipsoid plot of (?-sadt)[Fe(CO)3]2 at 50% probability viewed A) perpendicular to the FeFe bond vector, and B) along the FeFe bond vector... V-15 Differential pulse voltammograms showing the effect of HOAc to top) 0.11 mM V-Na+1 in H2O with 0.01 M NaCl electrolyte and bottom) 0.11 mM V-Na+1 in H2O with 0.01 M NaCl electrolyte containing 1.1 mM ?-CyD. Marked potentials are relative...

  20. SMALL MOLECULE INHIBITORS OF THE SARS-COV NSP15 ENDORIBONUCLEASE, MECHANISM OF ACTION AND INSIGHT INTO CORONAVIRUS INFECTION 

    E-Print Network [OSTI]

    Ortiz Alcantara, Joanna M.

    2010-07-14T23:59:59.000Z

    The Severe Acute Respiratory Syndrome (SARS) virus encodes several unusual RNA processing enzymes, including Nsp15, an endoribonuclease that preferentially cleaves 3? of uridylates through a Ribonuclease A-like mechanism. ...

  1. Lifting the Mask: Identification of New Small Molecule Inhibitors of Uropathogenic Escherichia coli Group 2 Capsule Biogenesis

    E-Print Network [OSTI]

    Goller, Carlos C.; Arshad, Mehreen; Noah, James W.; Ananthan, Subramaniam; Evans, Carrie W.; Nebane, N. Miranda; Rasmussen, Lynn; Sosa, Melinda; Tower, Nichole A.; White, E. Lucile; Neuenswander, Benjamin; Porubsky, Patrick R.; Maki, Brooks E.; Rogers, Steven A.; Schoenen, Frank; Seed, Patrick C.

    2014-07-01T23:59:59.000Z

    Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among ...

  2. Rescue of Fragile X Syndrome phenotypes in Fmr1 KO mice by the small molecule PAK inhibitor FRAX486

    E-Print Network [OSTI]

    Dolan, Bridget M

    2012-01-01T23:59:59.000Z

    Autism is a diverse and complex family of disorders, and its prevalence is on the rise: 1 in 110 children have autism. There is no effective treatment for the symptoms which often include language and communication deficits, ...

  3. Implementation of a High-Throughput Screen for Identifying Small Molecules to Activate the Keap1-Nrf2-ARE Pathway

    E-Print Network [OSTI]

    Wu, Kai Connie; McDonald, Peter R.; Liu, Jie Jerry; Chaguturu, Rathnam; Klaassen, Curtis D.

    2012-10-08T23:59:59.000Z

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes involved in antioxidant defense through binding to Antioxidant Response Elements (ARE) located in the promoter regions...

  4. Effect of Secondary Interactions on the Fundamental Properties of Small Molecule Models of the Diiron Hydrogenase Active Site

    E-Print Network [OSTI]

    Singleton, Michael Lee

    2012-02-14T23:59:59.000Z

    mixed-valent FeIFeII complexes. An X-ray crystal structure of one of these complexes, (?-SCH2 C(CH3)2CH2S-)[Fe(CO)2PMe3]2PF6 shows both a semi-bridging carbonyl and an open site similar to the 2-Fe subsite in the Hox state of the enzyme active site...

  5. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    removal of the volatiles yielded dark-green solids identified as the dinuclear uraniumremoval of the volatiles, a brown solid was obtained and was characterized as the uranium

  6. SMALL MOLECULE INHIBITORS OF THE SARS-COV NSP15 ENDORIBONUCLEASE, MECHANISM OF ACTION AND INSIGHT INTO CORONAVIRUS INFECTION

    E-Print Network [OSTI]

    Ortiz Alcantara, Joanna M.

    2010-07-14T23:59:59.000Z

    . Benzopurpurin B, C-473872, and Congo red are competitive inhibitors, according to kinetic studies and were demonstrated to bind SARS-CoV Nsp15 by a differential scanning fluorimetry assay. Benzopurpurin B also inhibited the Nsp15 orthologs from two other...

  7. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    Coordination Chemistry of Uranium………………………………….11 1.4researchers from uranium chemistry. Fortunately, despiteclassical coordination chemistry of uranium has flourished

  8. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

  9. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    methylene chloride and acetonitrile solvent molecules aremethylene chloride CH 3 CN acetonitrile calcd calculated xiiand co-crystallized benzene and acetonitrile are omitted for

  10. Structuralphase transitions of small molecules at air/waterinterfaces D. Zhang, J. H. Gutow and K. B. Eisenthal"

    E-Print Network [OSTI]

    Eisenthal, Kenneth B.

    transitions have been observed using IR-VIS sum frequency generation (SFG) at the air/acetonitrile at the air/acetonitrile(ACN)- water solution interface. Using IR-VIS SFG we observed an abrupt rearrangement of acetonitrile molecules, indicating a phase transition at the interface, as the solution composition was varied

  11. Solution-processed photovoltaics with advanced characterization and analysis

    E-Print Network [OSTI]

    Duan, Hsin-Sheng

    2014-01-01T23:59:59.000Z

    at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

  12. Characterization of Solution-Processed Double-Walled Carbon Nanotube/

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    ductility was retained.[4] Po¨tschke et al. reported a significant increase in the conductivity and the dielectric constant of a polycarbonate composite by adding multi-walled carbon nanotubes (MWNTs).[5 it is conductive, was calculated to be 1.0 wt.-% for the MWNTs. Ounaies Full Paper Dispersion of CNTs in polymers

  13. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01T23:59:59.000Z

    3-6,3-7] Chalcopyrite CIGS solar cells, without introducingperformance CISS and CIGS solar cells with efficiencies uptellurium might impede CIGS/CdTe solar cells from reaching

  14. Solution processed nickel oxide anodes for organic photovoltaic devices

    SciTech Connect (OSTI)

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R., E-mail: alastair.buckley@sheffield.ac.uk [Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2014-02-10T23:59:59.000Z

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400?°C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7?eV for the annealed film, to 5.0?eV allowing for efficient hole extraction at the organic interface.

  15. Solution-Processed Solar Cells using Colloidal Quantum Dots ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 at 3pm36-428 Ted Sargent Department of Electrical and Computer Engineering - Canada Research Chair in Nanotechnology, University of Toronto, Canada sargent001000...

  16. Solution Processed Silver Sulfide Thin Films for Filament Memory Applications

    E-Print Network [OSTI]

    Yin, Shong

    2010-01-01T23:59:59.000Z

    TGA) with Mixed Conductivity (EIS) o Understanding effect ofModified Circuit Simulated EIS data of the brick-layer modelimpedance spectroscopy (EIS). Nanoparticle Synthesis 4.1.1:

  17. Molecular and Hybrid Solution Processable Thermoelectrics | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssaReceptorinCenter for

  18. The challenges of organic polymer solar cells

    E-Print Network [OSTI]

    Saif Addin, Burhan K. (Burhan Khalid)

    2011-01-01T23:59:59.000Z

    The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

  19. Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis

    E-Print Network [OSTI]

    Owens, Travis Nathan

    2011-01-01T23:59:59.000Z

    of CIGS solar cells . Conclusions . . . . . . . . . . . . .roll-to-roll printed CIGS solar cell on aluminum substrateDepth profiling of CIGS solar cell using a nanosecond Nd:YAG

  20. High Speed Instrumentation for Inspection of transparent parts

    E-Print Network [OSTI]

    Ljubicic, Dean M

    2013-01-01T23:59:59.000Z

    In micro manufacturing (MEMS, polymer hot-embossing, polymer roll-to-roll imprint, etc.) precise micro and nano-sized features are distributed over large areas. In order to inspect for defects or employ statistical process ...

  1. A General Framework for Development and Data Analysis of Competitive High-Throughput Screens for Small-Molecule Inhibitors of Protein-Protein

    E-Print Network [OSTI]

    ). Recent advances in chemical biology and high-throughput (HTP)1 screening (13-15) have introduced the use sensitive, robust, and widely used HTP methods for the study of protein interactions and drug discovery (19, can serve as a sensitive molecular sensor. HTP FP assays usually detect changes in polarization caused

  2. The Biochemical Investigation and Isolation of Small Molecule Inhibitors for Two Essential Proteins of Mycobacterium tuberculosis H37Rv: IspD and Wag31

    E-Print Network [OSTI]

    Joseph, Sonia

    2014-06-12T23:59:59.000Z

    Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, James C. Sacchettini Committee Members, Gary Kunkel Michael Polymenis Daniel Romo Head of Department... activity with magnesium than with other ions, which is consistent with other IspD homologs [24]. The crystal structure of M. tuberculosis IspD has been solved in our lab (courtesy Dr. Manchi Reddy). We have submitted to PDB the structures of the apo...

  3. The Biochemical Investigation and Isolation of Small Molecule Inhibitors for Two Essential Proteins of Mycobacterium tuberculosis H37Rv: IspD and Wag31 

    E-Print Network [OSTI]

    Joseph, Sonia

    2014-06-12T23:59:59.000Z

    Tuberculosis is one of the leading causes of death due to infectious disease. The causative agent, Mycobacterium tuberculosis, is a facultative intracellular parasite with a slow regeneration rate. Though there is a decline ...

  4. PRESENTATIONS SINCE JOINING A & M IN 1992 EKO: A Method to Discover Small Molecules to Perturb Protein-protein Interactions, University

    E-Print Network [OSTI]

    Burgess, Kevin

    Congress on Amino Acids, Peptides and Proteins (ICAPP), Galveston, TX, Oct. 2013. 2013 Designing Small

  5. A Chondroitin Sulfate Small Molecule that Stimulates Neuronal Growth Sarah E. Tully, Ross Mabon, Cristal I. Gama, Sherry M. Tsai, Xuewei Liu, and

    E-Print Network [OSTI]

    Hsieh-Wilson, Linda

    -galactosamine were masked with a p-methoxybenzylidene acetal. This group was chosen with future access to other, oxidative removal using DDQ6 or regioselective opening of the acetal ring7 was anticipated to permit with an allyl group, which could be converted to activated glycosyl donors and offers a convenient means

  6. The Toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    PLoS ONE 9, e100450. Speer, C.A. , Tilley, M. , Temple,a role in this process (Speer et al. , 1995). The PV1 has a

  7. 1. MEDICINAL CHEMISTRY OF A SMALL MOLECULE DRUG LEAD: TAMOXILOG. 2. ELECTRONIC COMMUNICATION THROUGH RUTHENIUM NANOPARTICLES: SYNTHESIS OF CUSTOM LIGANDS AND NANOPARTICLES

    E-Print Network [OSTI]

    Zuckerman, Nathaniel Benjamin

    2012-01-01T23:59:59.000Z

    by irradiation with an LED lamp (I = 12.6 mW/cm 2 ). UV/Vislamp. Cycloreversion of the sample was conducted with a white LED (

  8. The chemistry of transition metal complexes related to solar energy storage : H? production and small molecule (CO? and HX; X = Cl, Br) chemistry.

    E-Print Network [OSTI]

    Lee, Changhoon, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The studies in this thesis have focused on the chemistry of transition metal complexes related to solar energy storage: electrochemical H? production, HX splitting and CO? activation mediated by transition metal complexes. ...

  9. Study of the N-terminal domains of MDM2 and MDM4, and their potential for targeting by small-molecule drugs 

    E-Print Network [OSTI]

    Sanchez Perez, Maria Concepcion

    2011-11-24T23:59:59.000Z

    ’ attentions. The goal of this project was to establish structural and chemical ground rules for the disruption of the interactions between the N-terminal domains of MDM2/4 and p53, which is an attractive anticancer strategy. In the current work, successful...

  10. The development of a chemical biology pipeline for the identification of small molecules that induce cardiopoiesis in murine embryonic stem cells

    E-Print Network [OSTI]

    Bushway, Paul Jay

    2012-01-01T23:59:59.000Z

    of a Chemical Biology Pipeline for the Identification ofof a Chemical Biology Pipeline for the Identification ofhinge on the drug development pipeline and the importance of

  11. Cytosolic Delivery of Proteins, Peptides and Cell-Impermeable Small Molecules Into Live Cells Utilizing Virus-Inspired Multivalent Cell-Penetrating Peptides: Principles and Mechanisms

    E-Print Network [OSTI]

    Erazo, Alfredo

    2014-12-16T23:59:59.000Z

    .4.5 Determination of dfTAT cell localization and quantitative determination of dfTAT endosomal escape in cells expressing DN-Rab5 and DN-Rab7 ........ 174 4.4.6 Delivery of DEAC-K9 inside live cells with dfTAT or D-dfTAT ............ 175 4.4.7 Quantitative...M) ......................................................... 89 3-13 Pulse-chase experiment showing the progressive cytosolic penetration of dfTAT ............................................................................................................. 90 3-14 Structure and characterization of DEAC...

  12. The development of a chemical biology pipeline for the identification of small molecules that induce cardiopoiesis in murine embryonic stem cells

    E-Print Network [OSTI]

    Bushway, Paul Jay

    2012-01-01T23:59:59.000Z

    Comp CPCCG CQ CV Cxcr4 DAPI Dars Dck DFT Dhrs4 DMSO DsRedsynthase; Lars/Eprs/Rars/Dars, Leucine-/Glutamyl-prolyl-/synthase; Lars/Eprs/Rars/Dars, Leucine-/Glutamyl- prolyl-/

  13. 1. MEDICINAL CHEMISTRY OF A SMALL MOLECULE DRUG LEAD: TAMOXILOG. 2. ELECTRONIC COMMUNICATION THROUGH RUTHENIUM NANOPARTICLES: SYNTHESIS OF CUSTOM LIGANDS AND NANOPARTICLES

    E-Print Network [OSTI]

    Zuckerman, Nathaniel Benjamin

    2012-01-01T23:59:59.000Z

    Chem. Commun. 2009, 7230-7232. Zhang, S. ; Chandra, K. L. ;D. Chem. Commun. 2009, 7230-7232. Villuendas, I. ; Parilla,

  14. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect (OSTI)

    Mindiola, Daniel J.

    2014-05-07T23:59:59.000Z

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly, we are completing the synthesis and characterization of a titanium nitride anion and formation of the first example of boryl and aluminyl imido titanium complexes.

  15. Cytosolic Delivery of Proteins, Peptides and Cell-Impermeable Small Molecules Into Live Cells Utilizing Virus-Inspired Multivalent Cell-Penetrating Peptides: Principles and Mechanisms 

    E-Print Network [OSTI]

    Erazo, Alfredo

    2014-12-16T23:59:59.000Z

    of these peptides inside endocytic organelles. However, the endosomolytic activity displayed by CPPs is very low and cargos/CPP-cargo conjugates typically remain trapped inside endosomes. As a result, cargos often cannot reach their intracellular targets and fail...

  16. Tse et al. Supporting Information page S1 Translation of DNA into a Library of 13,000 Synthetic Small-Molecule

    E-Print Network [OSTI]

    Liu, David R.

    DMF, with agitation for 2 h. The resin was then washed with DMF and acetonitrile. The side was then washed with DMF and acetonitrile. The product was cleaved and fully deprotected from the resin with AMA at 65 °C for 10 min, dried in vacuo, and purified by reverse-phase HPLC using a gradient of acetonitrile

  17. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    SciTech Connect (OSTI)

    Tiwari, J. P., E-mail: jai-ti2002@yahoo.com, E-mail: tiwarijp@mail.nplindia.org; Ali, Farman; Sharma, Abhishek; Chand, Suresh [Physics of Energy Harvesting Division (Organic and Hybrid Solar Cell Group), CSIR-National Physical Laboratory, CSIR-Network of Institutes for Solar Energy (NISE), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pillai, Sriraj; Parakh, Sonal [Physics of Energy Harvesting Division (Organic and Hybrid Solar Cell Group), CSIR-National Physical Laboratory, CSIR-Network of Institutes for Solar Energy (NISE), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Physics, Delhi Technological University, Bawana Road, Delhi 110042 (India)

    2014-01-27T23:59:59.000Z

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution–processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ?17–19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells.

  18. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    films. Photovoltaic devices with power conversion efficiencyhigh efficiency fully solution-deposited CISS photovoltaic

  19. Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability

    E-Print Network [OSTI]

    Lin, Zhiqun

    , and highly scalable route to PbTiO3 nanoparticles. The use of oleic acid as surface capping ligand provides devices whose functionalities are enabled by the properties of the individual nanoparticles to PbTiO3 nanoparticles. The use of oleic acid as surface capping ligand provides nano- particles

  20. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  1. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    5.1 Introduction Dye-sensitized solar cells (DSSCs) are ato fabricate dye sensitized solar cells (DSSCs) on glass andof TiO 2 Nanoparticles for Dye Sensitized Solar Cells 5.1

  2. Charge Dynamics in Solution-Processed Nanocrystalline CuInS¬2 Solar Cells

    E-Print Network [OSTI]

    Halpert, Jonathan E.; Morgenstern, Frederik S. F.; Ehrler, Bruno; Vaynzof, Yana; Credgington, Dan; Greenham, Neil C.

    2015-05-07T23:59:59.000Z

    Cell Produced From Colloidal Silicon Nanocrystals. Nano. Res. Lett. 2010, 5, 1253–1256. 14. Konstantatos, G.; Sargent, E. H. Nanostructured Materials for Photon Detection. Nat. Nano. 2010, 5, 391-400. 15. Habas, S. E.; Platt, H. A. S.; Hest, M. F. A...

  3. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Printing and Low Temperature Laser Processing”, Sensor andCo. , Inc B Bäuerle, D. , Laser Processing and Chemistry (Conductor Microstructures by Laser Curing of Printed Gold

  4. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    CuInS x Se 2-x solar cells and its effect on defectabundant Cu 2 ZnSn(S,Se) 4 solar cells”, submitted 5. B. K.Visibly transparent polymer solar cells produced by solution

  5. Metallocene/carbon hybrids prepared by a solution process for supercapacitor applications

    E-Print Network [OSTI]

    Mao, Xianwen

    Efficient and scalable solution-based processes are not generally available to integrate well-studied pseudocapacitive materials (i.e., metal oxides and conducting polymers) with other components such as porous carbon, ...

  6. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    cm 2 ) efficiency CIGS solar cells taken from reference [and 20.3% efficiency CIGS solar cells [6] through the use ofcm 2 ) efficiency CIGS solar cells taken from reference [6].

  7. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    63 5.3 Photovoltaic performance……….64 5.4 Laterally resolvedaffect the photovoltaic performance of any resulting device.5.3 Photovoltaic performance Transmittance (%) (a) Sputtered

  8. Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL

    SciTech Connect (OSTI)

    None

    2012-07-15T23:59:59.000Z

    An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

  9. Enhancing performing characteristics of organic semiconducting films by improved solution processing

    DOE Patents [OSTI]

    Bazan, Guillermo C; Moses, Daniel; Peet, Jeffrey; Heeger, Alan J

    2014-05-13T23:59:59.000Z

    Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.

  10. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    annealing. Laser processing of DSSC has been reported [Kimparticle sizes Table 5.1 The DSSC processing parametersdeposition to realize DSSC on glass and plastic substrates

  11. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    and Photovoltaics by Heng Pan A dissertation submitted inCopyright © 2009 By Heng Pan Abstract Laser Assistedand Photovoltaics by Heng Pan Doctor of Philosophy in

  12. Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics

    E-Print Network [OSTI]

    Chung, Choong-Heui

    2012-01-01T23:59:59.000Z

    due to a reduced short circuit current density and fillor even higher short circuit current density and fill factorof 11.1% with a short circuit current density of 29.9 mA/cm

  13. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    of averaged short circuit current. The transmission of dyeTable 5.2 The short circuit current comparisons for samplesdiffusion J sc : short circuit current k : the Boltzmann

  14. Solution-processed photodetectors from colloidal silicon nano/micro particle composite

    E-Print Network [OSTI]

    Lin, Lih Y.

    . References and links 1. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, "Air-stable all(1), 40­44 (2009). 7. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "light-emitting diodes made from

  15. Enhancing performance characteristics of organic semiconducting films by improved solution processing

    DOE Patents [OSTI]

    Bazan, Guillermo C. (Santa Barbara, CA); Heeger, Alan J. (Santa Barbara, CA); Moses, Daniel (Santa Barbara, CA); Peet, Jeffrey (Goleta, CA)

    2013-09-25T23:59:59.000Z

    Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.

  16. Enhancing performance characteristics of organic semiconducting films by improved solution processing

    DOE Patents [OSTI]

    Bazan, Guillermo C; Mikhailovsky, Alexander; Moses, Daniel; Nguyen, Thuc-Quyen; Peet, Jeffrey; Soci, Cesare

    2012-11-27T23:59:59.000Z

    Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.

  17. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Fig. 1. 1 Flexible electronics and flexible solar cells. Inof metal oxide based electronics on heat sensitive flexibleNanoparticles for Low-cost Electronics and Photovoltaics by

  18. High-Performance Solution-Processed Amorphous-Oxide-Semiconductor TFTs with Organic Polymeric Gate Dielectrics

    E-Print Network [OSTI]

    Pecunia, Vincenzo; Banger, Kulbinder; Sirringhaus, Henning

    2015-01-13T23:59:59.000Z

    energy offsets (? 1 eV) between the conduction/valence bands of the semiconductor and the gate dielectric are needed to confine the charge carriers at the active interface and minimize undesirable charge injection from the semiconductor into the gate... in solution, all the other polymers came in the form of pellets or powder and were dissolved in suitable anhydrous organic solvents: P?MS was dissolved in xylene at a concentration of 60 mg mL-1; SAN in butyronitrile at 40 mg mL-1; PC in 1,2-dichlorobenzene...

  19. Solution-Processed Solar Cells using Colloidal Quantum Dots | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|Solar wind samples Solar windAboutCenter

  20. IMPRINTED MICROFLUIDIC DEVICE FOR BIOIN-SPIRED DETECTION OF AVIAN INFLUNZA VIRUS

    E-Print Network [OSTI]

    IMPRINTED MICROFLUIDIC DEVICE FOR BIOIN- SPIRED DETECTION OF AVIAN INFLUNZA VIRUS USING NANOWIRES for the detection of avian influenza virus. A roll-to-roll im- printed microfluidic device suitable for simple process were integrated to the designed microfluidic chip (Figure 1). Using this system, we developed

  1. www.365-city.com laseronsale.com

    E-Print Network [OSTI]

    Hung, Shih-Hao

    #12;7 Section of 300-ft. long roll-to-roll solar cell manufacturing line Energy Conversion Devices Components & Lens 13,968 14,611 13,442 13,845 14,510 Optical Fiber Communication 25,468 27,274 27,620 29% Optical Storage, 8% Optical Components & Lens, 3% Optical Fiber Communication, 1% LED& Laser Light source

  2. Air-stable ink for scalable, high-throughput layer deposition

    DOE Patents [OSTI]

    Weil, Benjamin D; Connor, Stephen T; Cui, Yi

    2014-02-11T23:59:59.000Z

    A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.

  3. ORNL 2010-G00644/jcn UT-B ID 201002380

    E-Print Network [OSTI]

    at a fraction of the cost of today's solar cells. The concept combines ORNL's unique pulse thermal processing of extremely low cost solar cell materials. The idea entails roll-to-roll manufacturing techniques on low the potential to produce large volumes of solar cell material at a fraction of the manufacturing costs of today

  4. MANUFACTURING OF TRIPLE-JUNCTION 4 fe a-Si ALLOY PV MODULES M. Izu, X. Deng, A. Krisko, K. Whelan, R. Young, II. C. G-&n&y, K. L. Namsimhan and S. R. Gvshinsky

    E-Print Network [OSTI]

    Deng, Xunming

    thin film solar cell manufacturing process for achieving the cost and efficiency goals necessary have been assembled utilizing solar cells produced in a 2 Megawa" continuous roll-to-roll manufacturing line. This manufacturing line produces solar cells on a 5 mill thick, 14 inch wide and 2500 foot long

  5. Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308

    SciTech Connect (OSTI)

    van Hest, M.; Ginley, D.

    2013-06-01T23:59:59.000Z

    Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

  6. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1351wileyonlinelibrary.com www.MaterialsViews.com

    E-Print Network [OSTI]

    McGehee, Michael

    8% for polymer-fullerene bulk heterojunction solar cells[4] and a lifetime approaching 7 years was demonstrated for glass encapsulated devices based on polymer-fullerene blends of PCDTBT and PC71BM.[5] However, in order to take full advantage of the cost reductions of organic solar cells from roll- to-roll printing

  7. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion Gary Frey, Sophia Rits-Volloch, X.-Q. Zhang, Robert T. Schooley, Bing Chen, and Stephen C.

    E-Print Network [OSTI]

    Harrison, Stephen C.

    Gary Frey, Sophia Rits-Volloch, X.-Q. Zhang, Robert T. Schooley, Bing Chen, and Stephen C. doi:10 envelope-mediated fusion Gary Frey , Sophia Rits-Volloch§ , X.-Q. Zhang¶ , Robert T. Schooley¶ , Bing Chen

  8. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    E-Print Network [OSTI]

    Rogers, John A.

    , Dong Joon Lee, Chi Hwan Lee, Jong-Ho Lee, and John A. Rogers Citation: Applied Physics Letters 105 Jin,1,a,b) Jongmin Shin,1,a) In-Tak Cho,1 Sang Youn Han,2,3 Dong Joon Lee,2 Chi Hwan Lee,2 Jong-Ho Lee biodegradable implants to hardware-secure memory systems, vanishing environmental sensors, and consumer

  9. Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells

    E-Print Network [OSTI]

    Osterloh, Frank

    from a common solvent. Nanoscale interpenetrating networks are formed as the donor and acceptor phase-junction polymer solar cells Lilian Chang,a Michael A. Holmes,b Mollie Waller,b Frank E. Osterlohb and Adam J-processed tandem polymer solar cells are demonstrated using stacked perovskite, (TBA,H) Ca2Nb3O10 (CNO

  10. High Photoluminescence E?ciency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors

    E-Print Network [OSTI]

    Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; Hu?ttner, Sven; Leijtens, Tomas; Stranks, Samuel D.; Snaith, Henry J.; Atatu?re, Mete; Phillips, Richard T.; Friend, Richard H.

    2014-03-24T23:59:59.000Z

    The study of the photo-physical properties of organic-metallic lead-halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photo...

  11. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    E-Print Network [OSTI]

    McGehee, Michael

    Accepted 6 March 2011 Available online 21 March 2011 Keywords: Dye-sensitized solar cells Nanomaterials meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective. Introduction Dye-sensitized solar cells (DSCs) [1­3] are an emerging photovoltaic technology on the verge

  12. Polymer solar cell by blade coating Yu-Han Chang a

    E-Print Network [OSTI]

    as that of inorganic solar cells, the potential of low-cost and roll- to-roll process on flexible substrates makesPolymer solar cell by blade coating Yu-Han Chang a , Shin-Rong Tseng a , Chun-Yu Chen a , Hsin cell Bulk hetero-junction Blade coating a b s t r a c t Polymer bulk hetero-junction solar cells

  13. Low-Cost Flexible Electrochromic Film for Energy Efficient Buildings

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ITN is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN’s roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

  14. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 14, NO. 4, JULY/AUGUST 2008 1223 Solution-Processed Infrared Optoelectronics

    E-Print Network [OSTI]

    . Terabit-per-second fiber-optic communication depends on semi- conductor lasers, modulators-based solar cells can convert 25% of the sun's energy reaching the earth into electrical power [1]. When even in long-haul fiber-optic communication and intrachip communica- tion alike [3]. As a consequence

  15. Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells

    E-Print Network [OSTI]

    Zhou, Yaoqi

    -Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

  16. Solution-processed ambipolar vertical organic field effect transistor Ariel J. Ben-Sasson, Zhihua Chen, Antonio Facchetti, and Nir Tessler

    E-Print Network [OSTI]

    Tessler, Nir

    , 024513 (2012) Self-heating enhanced charge trapping effect for InGaZnO thin film transistor Appl. Phys, 043301 (2012) Electric field-induced scatterings in rough quantum wells of AlGaN/GaN high and Nir Tessler1,a) 1 Department of Electrical Engineering, Sara and Moshe Zisapel Nano-Electronic Center

  17. Predicting cancer drug mechanisms of action using molecular network signatures

    E-Print Network [OSTI]

    Pritchard, Justin R.

    2013-01-01T23:59:59.000Z

    Molecular signatures are a powerful approach to characterize novel small molecules and derivatized small molecule libraries. While new experimental techniques are being developed in diverse model systems, informatics ...

  18. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph

    2011-09-30T23:59:59.000Z

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  19. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect (OSTI)

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)

    2013-12-23T23:59:59.000Z

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  20. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M. (A123 Systems, Inc.)

    2013-12-19T23:59:59.000Z

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  1. Computational ligand design and analysis in protein complexes using inverse methods, combinatorial search, and accurate solvation modeling

    E-Print Network [OSTI]

    Altman, Michael Darren

    2006-01-01T23:59:59.000Z

    This thesis presents the development and application of several computational techniques to aid in the design and analysis of small molecules and peptides that bind to protein targets. First, an inverse small-molecule ...

  2. Synthetic Control of Organic Semiconductor Excited States

    E-Print Network [OSTI]

    Clem, Tabitha Ann

    2010-01-01T23:59:59.000Z

    Properties and Photovoltaic Performance. Abstract Theproperties, and photovoltaic performance of a small moleculeproperties, and photovoltaic performance of a small molecule

  3. Active barrier films of PET for solar cell application: Processing and characterization

    SciTech Connect (OSTI)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

    2014-05-15T23:59:59.000Z

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain.

  4. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect (OSTI)

    Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

    1992-03-01T23:59:59.000Z

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  5. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    SciTech Connect (OSTI)

    Rupich, Martin, Dr. [American Superconductor Corporation; Duckworth, Robert, Dr. [Oak Ridge National Laboratory

    2009-10-01T23:59:59.000Z

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2G template strips.

  6. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    SciTech Connect (OSTI)

    Yersak, Alexander S.; Lee, Yung C. [Department of Mechanical Engineering, University of Colorado at Boulder, 1045 Regent Drive, 422 UCB, Boulder, Colorado 80309-0422 (United States); Spencer, Joseph A.; Groner, Markus D., E-mail: mgroner@aldnanosolutions.com [ALD NanoSolutions, Inc., 580 Burbank Street, Unit 100, Broomfield, Colorado 80020 (United States)

    2014-01-15T23:59:59.000Z

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100?°C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13?nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76?ms were demonstrated with a web speed of 1?m/s and a vertical gap height of 0.5?mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

  7. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01T23:59:59.000Z

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  8. Process Development for CIGS Based Thin Film Photovoltaics Modules, Phase II Technical Report

    SciTech Connect (OSTI)

    Britt, J.; Wiedeman, S.; Albright, S.

    2000-11-09T23:59:59.000Z

    As a technology partner with NREL, Global Solar Energy (GSE) has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) based on copper indium gallium diselenide (CIGS). The distinguishing feature of the GSE manufacturing process is the exclusive use of lightweight, flexible substrates. GSE has developed the technology to fabricate CIGS photovoltaics on both stainless-steel and polymer substrates. CIGS deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunication, and rooftop applications have been produced by affixing the flexible substrate to an inexpensive rigid panel by lamination or adhesive. Stainless-steel-based PV modules are fabricated by a novel interconnect method that avoids the use of wires or foils and soldered connections. In the case of polymer-based PV modules, the continuous roll is not sectioned into individual panels until the module buss and power leads are attached. Roll-to-roll vacuum deposition has several advantages that translate directly to reduced capital costs, greater productivity, improved yield, greater reliability, lower maintenance, and a larger volume of PV material. In combination with roll-to-roll processing, GSE has developed evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. The CIGS deposition process relies heavily on effusion source technology developed at GSE, and solving numerous problems was an integral part of the source development effort. Cell interconnection for thin-film CIGS modules on a polyimide substrate presents a considerable challenge.

  9. High mobility high efficiency organic films based on pure organic materials

    DOE Patents [OSTI]

    Salzman, Rhonda F. (Ann Arbor, MI); Forrest, Stephen R. (Ann Arbor, MI)

    2009-01-27T23:59:59.000Z

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  10. a-site molecular switches: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of parameters. Agata Checinska; Felix A. Pollock; Libby Heaney; Ahsan Nazir 2015-02-11 6 Engineering Protein Molecular Switches To Regulate Gene Expression with Small Molecules....

  11. Reflections on our Past, Present, and Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and quantum materials. Additional projects include the upgrade of existing beamlines-SAX-WAX (together with the Molecular Foundry), small molecule crystallography, spin-ARPES,...

  12. Dual-Porosity Hollow Nanoparticles for the Immunoprotection and Delivery of Nonhuman Enzymes

    E-Print Network [OSTI]

    Tsien, Roger Y.

    material. The nanoporous shell allows small molecule diffusion allowing interaction with the large platforms that can allow stealth operation. This requires preventing antibody and other blood protein access

  13. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

  14. Structure and allosteric regulation of the X 2 integrin I domain

    E-Print Network [OSTI]

    Springer, Timothy A.

    that of small G proteins, with seven amphipathic helices surrounding a hydro- phobic -sheet core (15). A Mg2 ion by small molecules th

  15. Beyond iron: non-classical biological functions of bacterial siderophores

    E-Print Network [OSTI]

    Nolan, Elizabeth M.

    Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination ...

  16. Journal of the Mechanics and Physics of Solids 56 (2008) 17791793 A theory of coupled diffusion and large deformation in

    E-Print Network [OSTI]

    Zhao, Xuanhe

    2008-01-01T23:59:59.000Z

    in elastic solids date at least back to Gibbs (1878), who formulated a thermodynamic theory of largeJournal of the Mechanics and Physics of Solids 56 (2008) 1779­1793 A theory of coupled diffusion and mixing the network with the small molecules. Both the small molecules and the long polymers are taken

  17. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.

    2005-10-01T23:59:59.000Z

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  18. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect (OSTI)

    Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Meysing, D. M.; Wolden, C. A. [Colorado School of Mines, Golden, Colorado 80401 (United States); Garner, S.; Cimo, P. [Corning Incorporated, Corning, New York 14831 (United States)

    2014-04-07T23:59:59.000Z

    Flexible glass enables high-temperature, roll-to-roll processing of superstrate devices with higher photocurrents than flexible polymer foils because of its higher optical transmission. Using flexible glass in our high-temperature CdTe process, we achieved a certified record conversion efficiency of 14.05% for a flexible CdTe solar cell. Little has been reported on the flexibility of CdTe devices, so we investigated the effects of three different static bending conditions on device performance. We observed a consistent trend of increased short-circuit current and fill factor, whereas the open-circuit voltage consistently dropped. The quantum efficiency under the same static bend condition showed no change in the response. After storage in a flexed state for 24 h, there was very little change in device efficiency relative to its unflexed state. This indicates that flexible glass is a suitable replacement for rigid glass substrates, and that CdTe solar cells can tolerate bending without a decrease in device performance.

  19. Cost and Reliability Improvement for CIGS-Based PV on Flexible Substrate: May 24, 2006 -- July 31, 2010

    SciTech Connect (OSTI)

    Wiedeman, S.

    2011-05-01T23:59:59.000Z

    Global Solar Energy rapidly advances the cost and performance of commercial thin-film CIGS products using roll-to-roll processing on steel foil substrate in compact, low cost deposition equipment, with in-situ sensors for real-time intelligent process control. Substantial increases in power module efficiency, which now exceed 13%, are evident at GSE factories in two countries with a combined capacity greater than 75 MW. During 2009 the average efficiency of cell strings (3780 cm2) was increased from 7% to over 11%, with champion results exceeding 13% Continued testing of module reliability in rigid product has reaffirmed extended life expectancy for standard glass product, and has qualified additional lower-cost methods and materials. Expected lifetime for PV in flexible packages continues to increase as failure mechanisms are elucidated, and resolved by better methods and materials. Cost reduction has been achieved through better materials utilization, enhanced vendor and material qualification and selection. The largest cost gains have come as a result of higher cell conversion efficiency and yields, higher processing rates, greater automation and improved control in all process steps. These improvements are integral to this thin film PV partnership program, and all realized with the 'Gen2' manufacturing plants, processes and equipment.

  20. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    SciTech Connect (OSTI)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30T23:59:59.000Z

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  1. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01T23:59:59.000Z

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  2. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus [ORNL

    2014-01-01T23:59:59.000Z

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  3. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    SciTech Connect (OSTI)

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01T23:59:59.000Z

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  4. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect (OSTI)

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28T23:59:59.000Z

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  5. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    E-Print Network [OSTI]

    Heider, Patrick L.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with ...

  6. Consequences of redox-active phenazines on the physiology of the opportunistic pathogen Pseudomonas aeruginosa

    E-Print Network [OSTI]

    Kern, Suzanne E

    2013-01-01T23:59:59.000Z

    Phenazines are redox-active small molecules produced by bacteria. Although phenazines have been studied extensively for their roles as toxins, how phenazines benefit producing organisms is still being uncovered. Pseudomonas ...

  7. Vaccine delivery with microneedle skin patches in nonhuman primates

    E-Print Network [OSTI]

    Li, Adrienne V

    Transcutaneous drug delivery from planar skin patches is effective for small-molecule drugs and skin-permeable vaccine adjuvants. However, to achieve efficient delivery of vaccines and other macromolecular therapeutics ...

  8. Enhancing the efficiency of organic LEDs through spin-orbit coupling of charge-transfer states

    E-Print Network [OSTI]

    Rivoire, Kelley (Kelley E.)

    2006-01-01T23:59:59.000Z

    In this thesis, the possibility of enhancing the efficiency of small molecule organic light-emitting diodes through spin-orbit effects is examined. Because only singlet spin states, statistically one quarter of the total ...

  9. Jeffrey Neaton | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Howe, Joshua D.; Lin, Li-Chiang; Smit, Berend; and Neaton, Jeffrey B. Small molecule adsorption in open-site metal-organic frameworks: a systematic density functional theory study...

  10. Berend Smit | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Howe, Joshua D.; Lin, Li-Chiang; Smit, Berend; and Neaton, Jeffrey B. Small molecule adsorption in open-site metal-organic frameworks: a systematic density functional theory study...

  11. Microfluidic in vivo laser microsurgery screen for identification of compounds enhancing neural regeneration

    E-Print Network [OSTI]

    Gilleland, Cody Lee

    2009-01-01T23:59:59.000Z

    Discovery of small molecules and novel mechanisms for enhancing neurite regeneration in animal models is significant for therapeutics of central nervous system injuries and neurodegenerative disorders. C. elegans is a ...

  12. Thermal analysis of biochemical systems

    E-Print Network [OSTI]

    McEuen, Scott Jacob

    2013-01-01T23:59:59.000Z

    Scientists, both academic and industrial, develop two main types of drugs: 1) small molecule drugs, which are usually chemically synthesized and are taken orally and 2) large molecule, biotherapeutic, or protein-based ...

  13. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

    E-Print Network [OSTI]

    Mukherjee, Sourav; Hanson, Alica M.; Shadrick, William R.; Ndjomou, Jean; Sweeney, Noreena L.; Hernadez, John J.; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J.; Heck, Julie A.; Arnold, Leggy A.; Schoenen, Frank; Frick, David N,

    2012-06-27T23:59:59.000Z

    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined ...

  14. Computational approaches for identifying inhibitors of protein interactions 

    E-Print Network [OSTI]

    Mehio, Wissam

    2011-06-27T23:59:59.000Z

    Inter-molecular interaction is at the heart of biological function. Proteins can interact with ligands, peptides, small molecules, and other proteins to serve their structural or functional purpose. With advances in ...

  15. Target-guided synthesis approach to the discovery of novel bivalent inhibitors of Glutathione Transferases 

    E-Print Network [OSTI]

    Clipson, Alexandra Jayne

    2012-06-22T23:59:59.000Z

    Target-guided synthesis is an approach to drug discovery that uses the biological target as a template to direct synthesis of its own best inhibitors from small molecule fragments. The process bridges the gap between ...

  16. Randall T. Peterson is at the Massachusetts General Hospital, Harvard Medical School,

    E-Print Network [OSTI]

    Cai, Long

    interactions between specific small molecules and a single target (Fig.1a as a 3-hydroxy-3-methylglu- taryl (HMG) coenzyme A reductase inhibitor, and lithium as a glycogen

  17. Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy

    E-Print Network [OSTI]

    Valencia, Pedro M.

    Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have ...

  18. Drug delivery Sustained Drug Release from Non-eroding Nanoporous

    E-Print Network [OSTI]

    Sridhar, Srinivas

    drug, doxorubicin (Dox), from different non-eroding nanopor- ous coatings. Detailed studies of drug, in the case of small molecules such as Dox, enzymes would not interfere with the drug and hence the elution

  19. ISSN 1743-588910.2217/NNM.12.153 2013 Future Medicine Ltd Nanomedicine (2013) 8(8), 12711280 1271 ReseaRch aRticleReseaRch aRticle

    E-Print Network [OSTI]

    Zhang, Liangfang

    2013-01-01T23:59:59.000Z

    report formulation strategies for loading small-molecule chemotherapy drugs such as doxorubicin (DOX by RBCm cloaks in drug retention. Specifically, to load DOX molecules into the NP core, two distinct

  20. First-principles transition-metal catalysis : efficient and accurate approaches for studying enzymatic systems

    E-Print Network [OSTI]

    Kulik, Heather J

    2009-01-01T23:59:59.000Z

    (cont.) We apply our approach to several paradigmatic systems: spin state splittings and structural properties of Fe2 and other small molecules as well as the addition-elimination reactions of hydrogen and methane on FeO+ ...

  1. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect (OSTI)

    Olson, D.

    2014-08-01T23:59:59.000Z

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  2. Systems level characterizations of single and combination drug mechanisms of action in vitro and in vivo

    E-Print Network [OSTI]

    Pritchard, Justin (Justin Robert)

    2012-01-01T23:59:59.000Z

    Small molecule characterization is a critical limiting step in cancer drug development. At the present time, high throughput screens of natural products and combinatorial synthesis libraries generate more pharmaceutical ...

  3. Quantitative multiplexing with nano-self-assemblies in SERS

    E-Print Network [OSTI]

    Kasera, Setu; Herrmann, Lars O.; del Barrio, Jesús; Baumberg, Jeremy J.; Scherman, Oren A.

    2014-01-01T23:59:59.000Z

    ‘hot- spots’1. Noble metal nanoparticles are favoured for small molecule analysis as they allow in situ detection within liquid media, compatible with microfluidic devices.2. Furthermore, their low cost, commercial availability and ease of synthesis...

  4. Fabrication of Ordered Array of Tips-pentacene Micro- and Nano-scale Single Crystals

    E-Print Network [OSTI]

    Xia, Ning

    2013-04-26T23:59:59.000Z

    As an important type of organic semiconductors, organic small molecule crystals have great potential for low-cost applications such as plastic solar cells (PSC), organic light emitting diodes (OLED) and organic field-effect transistors (OFET). Among...

  5. Nonstationary metabolic flux analysis (NMFA) for the elucidation of cellular physiology

    E-Print Network [OSTI]

    Walther, Jason L

    2010-01-01T23:59:59.000Z

    Many current and future applications of biological engineering hinge on our ability to measure, understand, and manipulate metabolism. Many diseases for which we seek cures are metabolic in nature. Small-molecule ...

  6. Spectroscopy and theory of cis-trans isomerization in the S? state of acetylene

    E-Print Network [OSTI]

    Changala, P. Bryan (Peter Bryan)

    2013-01-01T23:59:59.000Z

    This thesis consists of parallel experimental and theoretical studies of the rovibrational structure and dynamics of the Si state of acetylene, C2H2 . This small molecule is a prototypical system for the study of cis-trans ...

  7. Pulling Apart Molecular Magnetism

    E-Print Network [OSTI]

    Jarillo-Herrero, Pablo

    A single molecule constitutes the ultimate nanometer-scale object through which electronic transport can take place. Being so small, molecules share many characteristics with atoms, such as discrete quantized energy spectra ...

  8. Microfluidic in vivo screen identifies compounds enhancing neuronal

    E-Print Network [OSTI]

    Haggarty, Stephen

    Compound screening is a powerful tool to identify new therapeutic targets, drug leads, and elucidate the fundamental mechanisms of biological processes. We report here the results of the first in vivo small-molecule screens ...

  9. A macrocyclic approach to transition metal and uranyl Pacman complexes 

    E-Print Network [OSTI]

    Love J.B.

    2009-01-01T23:59:59.000Z

    Multielectron redox chemistry involving small molecules such as O-2, H2O, N-2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with ...

  10. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01T23:59:59.000Z

    in molecular uranium cluster chemistry. 13 Compound 2 ischemistry and small-molecule reactivity of uranium. AmongUranium Complexes by Jeffrey Dennis Rinehart Doctor of Philosophy in Chemistry

  11. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells

    E-Print Network [OSTI]

    Taipale, Mikko

    The interaction between the HSP90 chaperone and its client kinases is sensitive to the conformational status of the kinase, and stabilization of the kinase fold by small molecules strongly decreases chaperone interaction. ...

  12. Late transition metal bimetallics for photocatalytic hydrogen production, M-X and C-H bond activation

    E-Print Network [OSTI]

    Esswein, Arthur J

    2007-01-01T23:59:59.000Z

    Broadly defined this thesis has focused on the design and study of molecular catalysts that engender multi-electron reactions and photoreactions on small molecule substrates relevant to solar energy conversion. Specifically ...

  13. Design and synthesis of organic chromophores for imaging, lithography and organic electronics

    E-Print Network [OSTI]

    Andrew, Trisha Lionel

    2011-01-01T23:59:59.000Z

    The absorption and emission maxima, photostabilities and photoreactivities of small-molecule organic chromophores can be tailored by (a) the choice of an appropriate parent structure and (b) the deliberate introduction of ...

  14. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  15. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30T23:59:59.000Z

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  16. Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer-Fullerene Bulk-Heterojunction Organic Solar Cell

    SciTech Connect (OSTI)

    Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J.

    2012-03-01T23:59:59.000Z

    Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiO{sub x}) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V{sub oc}) for poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiO{sub x} film and its interface with the polymer shows Fermi level alignment of the polymer with the NiO{sub x} film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V{sub oc} and HTL work-function. Instead, trends in j{sub sc}, V{sub oc}, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness.

  17. Metathesis depolymerizable surfactants

    DOE Patents [OSTI]

    Jamison, Gregory M. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Loy, Douglas A. (Tucson, AZ); Simmons, Blake A. (San Francisco, CA); Long, Timothy M. (Evanston, IL); McElhanon, James R. (Manteca, CA); Rahimian, Kamyar (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2008-04-15T23:59:59.000Z

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  18. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect (OSTI)

    Glatkowski, P.J.; Landis, D.A.

    2013-04-16T23:59:59.000Z

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon���® enabled solar cells.

  19. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    SciTech Connect (OSTI)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31T23:59:59.000Z

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.

  20. An integrated pharmacokineticpharmacodynamic model for an Aurora kinase inhibitor

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    An integrated pharmacokinetic­pharmacodynamic model for an Aurora kinase inhibitor Hiroko Kamei of chromosomes prior to cell division at mitosis. Aurora kinases play critical roles in mitotic progression and hence small-molecule inhibitors of Aurora kinases have been developed as a new class of potential anti

  1. REVIEWS Drug Discovery Today Volume 12, Numbers 1/2 January 2007 Drug-target identification in Drosophila

    E-Print Network [OSTI]

    Perrimon, Norbert

    the combination of RNAi and small-molecule HTS can lead to effective identification of targets in drug discovery studies over the years has relied on the ease of growing this organism and the powerful genetic tools such as the insulin, epidermal growth factor, transforming growth factor b, Wnt, Hedgehog, JAK/STAT and Notch pathways

  2. Biomedical Research Advisory Group: Critical Areas of Research Chemical Biology/Pharmacology/Therapeutics White Paper

    E-Print Network [OSTI]

    Goodrich, Lisa V.

    or prevent disease. This includes small molecules, but also proteins, nucleic acids, other macromolecules and perhaps nanoparticles, also research on drug delivery. This document does not explicitly consider medical Opportunities The confluence of genomic information, broad understanding of how biological systems function

  3. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.advhealthmat.de

    E-Print Network [OSTI]

    Zhang, Liangfang

    such as polymeric nanoparticles, leading to a unique biomimetic approach to functionalizing these carriers- promising the structural integrity and biological functions of RBCs.[3] Numerous loading techniques proteins, nucleic acids, and small-molecule drugs. Several of them have entered clinical tests to treat

  4. M13 Bacteriophage Display Framework That Allows Sortase-Mediated Modification of Surface-Accessible Phage Proteins

    E-Print Network [OSTI]

    Hess, Gaelen T.

    We exploit bacterial sortases to attach a variety of moieties to the capsid proteins of M13 bacteriophage. We show that pIII, pIX, and pVIII can be functionalized with entities ranging from small molecules (e.g., fluorophores, ...

  5. 9,10-Anthraquinone hinders b-aggregation: How does a small

    E-Print Network [OSTI]

    Caflisch, Amedeo

    9,10-Anthraquinone hinders b-aggregation: How does a small molecule interfere with Ab of two relatively similar tricyclic, planar compounds, that is, 9, 10-anthraquinone (AQ) and anthracene; implicit solvent; Alzheimer's disease; 9,10-anthraquinone; amyloid; aggregation inhibition Introduction

  6. Biosensors and Bioelectronics 26 (2010) 12971301 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Chen, Wilfred

    and Environmental Engineering, University of California, Riverside, CA 92521, USA b Cell, Molecular-free chemiresistive/field-effect tran- sistor biosensors as they provide label-free and high sensitivity detection, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed

  7. Solar Cells DOI: 10.1002/ange.201203330

    E-Print Network [OSTI]

    Hone, James

    of Science, Office of Basic Energy Sciences under award number DE-SC0001085) and the FENA (Grant 2009-NTSolar Cells DOI: 10.1002/ange.201203330 A Supramolecular Complex in Small-Molecule Solar Cells solution can create the active layer in solar cells. We found that there is self-organization between

  8. Heat Shock Response Modulators as Therapeutic

    E-Print Network [OSTI]

    Morimoto, Richard

    Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation* Published. This review addresses the regulation of molecular chaperones and components of protein homeostasis by heat understanding of pharmacologically active small molecule regu- lators of the heat shock response

  9. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, VOL. 7, 693-699 (1993) Collisions of C&*and Cii at Fluorinated and

    E-Print Network [OSTI]

    Wysocki, Vicki H.

    energy is relatively high, typically 12-15% for small molecules.' Thus, if the efficiency of energy & Sons, Ltd. (e.g. masses areater than 200u) strike surfaces." The high relative energy transferRAPID COMMUNICATIONS IN MASS SPECTROMETRY, VOL. 7, 693-699 (1993) Collisions of C&*and Cii

  10. IL NUOVO CIMENTO VOL. 113 B, N. 5 Maggio 1998 Importance of two-body correlations in the 4

    E-Print Network [OSTI]

    Lagaris, Isaac

    of South Africa ­ P.O. Box 392, Pretoria 0003, South Africa (ricevuto l'8 Gennaio 1996; approvato il 16 energies and the root mean-square radii for small molecules are calculated and the results obtained and intermolecular potentials and forces, potential energy surfaces for collisions. 1. ­ Introduction Various methods

  11. Disordered organic electronic materials based on non-benzenoid 1,6-methano[10]annulene rings

    DOE Patents [OSTI]

    Tovar, John D; Streifel, Benjamin C; Peart, Patricia A

    2014-10-07T23:59:59.000Z

    Conjugated polymers and small molecules including the nonplanar aromatic 1,6-methano[10]annulene ring structure along with aromatic subunits, such as diketopyrrolopyrrole, and 2,1,3-benzothiadiazole, substituted with alkyl chains in a "Tail In," "Tail Out," or "No Tail" regiochemistry are disclosed.

  12. DOI: 10.1002/cmdc.200700121 Co-Delivery of Hydrophobic and

    E-Print Network [OSTI]

    Zhang, Liangfang

    ) as a model small molecule hydrophobic drug; doxorubicin (Dox) as a model intercalating hydrophilic drug- polymer as a model controlled release polymer system, we de- veloped targeted NPs that can co-deliver Dox stem region that is the preferred binding site of Dox.[16] Incubation of Dox with the A10 PSMA aptamer

  13. The Michigan Nanotechnology Institute for Medicine and Biological Sciences invites you to its

    E-Print Network [OSTI]

    Michigan, University of

    conjugation to the cancer chemotherapeutic Doxorubicin (Dox) and other small hydrophobic molecules of hydrophobic small molecules, including Dox, leads to the spontaneous formation of nanoparticles for a range of CP compositions and molecular weights. The CP-Dox nanoparticles are ~40 nm in diameter, release drug

  14. Chemically modified carbon, nickel and platinum electrodes. Final report, 1/15/80-8/31/81

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    Three primary areas of concentration existed during the award period: (1) Catalytic reduction of alkyl halides on iron porphyrin polymer modified electrodes, (2) polyvinyl viologen modified carbon electrodes, and (3) preparation and studies of electrode-bindable heterobismetallic complexes which are potential small molecule catalysts.

  15. Immunology Lecture 7 January 26, 2009 Lecture 7: Antigens, Epitopes, and Ig Structure

    E-Print Network [OSTI]

    Murphy, Robert F.

    , usually proteins. Haptens are generally small molecules such as antibiotics, reactive oil from poison ivy Identical Heavy Chains: IgG: VH, constant domains CH1, CH2, CH3. · V domains pair in heavy and light Chains region of heavy chain has effector, or biological activity functions. · Five different heavy chain genes

  16. Protein Structure Prediction Using a Combination of Sequence Homology

    E-Print Network [OSTI]

    Ponder, Jay

    model. The remainder of hydration free energy is obtained as the energetic effect of a continuous conformations of 15 small-molecule dimers; and experimental hydration free energies for 48 model compounds. All functions; hydration free energy; atomic multipoles Contractrgrant sponsor: NIH; contractrgrant number P01

  17. Journal of Molecular Graphics and Modelling 29 (2010) 443449 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Journal of Molecular Graphics and Modelling 29 (2010) 443­449 Contents lists available at ScienceDirect Journal of Molecular Graphics and Modelling journal homepage: www.elsevier.com/locate/JMGM Complementing- nition and binding of small molecules to proteins because of the sensitivity of the van der Waals energy

  18. Convergent evolution of protein structure

    E-Print Network [OSTI]

    Fischer, Daniel

    , well-defined, three-dimensional (3-D) structure of a protein dictates the way in which it performs its bi- ological function. Knowing the 3-D structure of a pro- tein allows researchers to gain insight on the active site of the protein or on the way it interacts with small molecules and other proteins. Thus, 3-D

  19. Approximation of the Time-Dependent Electronic Schrodinger Equation by

    E-Print Network [OSTI]

    Koch, Othmar

    ], [2]. Large-scale computations of electronic structure and dynamics pose extremely challenging powerful standard tools in electronic structure calculations of atoms and small molecules. Similar to DFT-dependent electronic Schr¨odinger equa- tion (TDSE) arising in ultrafast laser dynamics, which was first proposed in [1

  20. Design and Strategy in Organic Synthesis by Stephen Hanessian, Simon Giroux, and Bradley L.

    E-Print Network [OSTI]

    Heller, Eric

    naturally occurring small molecules as starting materials, catalytic asymmetric methods are also included as a corollary whenever relevant. The Selected Papers of William N. Lipscomb Jr. edited by Jianpeng Ma QD22.L57 Professor William N Lipscomb, Jr. Lipscomb is a long-standing icon in the fields of structural chemistry

  1. Mechanism of zinc-mediated inhibition of caspase-9

    E-Print Network [OSTI]

    Hardy, Jeanne

    of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 Received 9 February 2012-mediated inhibition is implicated in global caspase regulation, with relief of zinc- mediated inhibition central to both small-molecule and natively induced caspase activation. As an initiator, caspase-9 regulates

  2. MSc Programme NATURAL PRODUCTS

    E-Print Network [OSTI]

    Ullmann, G. Matthias

    - pounds and Drugs 9/7 cp Inorganic Materials: Nano chemis- try 7/9 cp Proteins ­ Structure, Dynamics of small molecules with biological targets. Based on a strong ex- pertise in organic synthesis the students Chemistry 9/7 cp Stereoselective Organic Synthesis 7/9 cp Bioinformatics 9/7 cp Molecular Modelling 7 cp

  3. Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems Qingbing WANG, Jung O. PARK1

    E-Print Network [OSTI]

    Srinivasarao, Mohan

    Control of Polymer Structures in Phase-Separated Liquid Crystal-Polymer Composite Systems Qingbing, Kent State University, Kent, OH 44242, USA 1 School of Polymer, Textile and Fiber Engineering and diffusion of small molecules, play important roles in determining a specific PSCOF polymer structure

  4. Improving the photostability of bright monomeric orange and red fluorescent proteins

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Improving the photostability of bright monomeric orange and red fluorescent proteins Nathan C illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor

  5. Library versus Library Recognition and Inhibition of the HIV-1 Nef Allelome Allison Olszewski and Gregory A. Weiss*,,

    E-Print Network [OSTI]

    Weiss, Gregory A.

    Library versus Library Recognition and Inhibition of the HIV-1 Nef Allelome Allison Olszewski resistance. Targeting HIV Nef with small molecules screened against a combinatorial library of Nef variants studies. We asked whether a library versus library approach could simultaneously uncover structure

  6. 11 December 1998 Z .Chemical Physics Letters 298 1998 4350

    E-Print Network [OSTI]

    Mark, Pinsky

    the .lack of improper symmetry . It is found everywhere -- in small molecules, proteins and full organisms w reaction center consists of two protein units engulfing nine main cofactors: one ferrous ion and two nearly protein. The two proteins have a simi- lar, but not identical, primary sequence which pro- vides different

  7. MICU1 encodes a mitochondrial EF hand protein required for Ca21

    E-Print Network [OSTI]

    South Bohemia, University of

    proteins16­18 . Because we lack specific, cell-permeant small molecules with which to interrogateARTICLES MICU1 encodes a mitochondrial EF hand protein required for Ca21 uptake Fabiana Perocchi1 of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we

  8. Poly(iohexol) Nanoparticles As Contrast Agents for in Vivo Xray Computed Tomography Imaging

    E-Print Network [OSTI]

    Cheng, Jianjun

    Poly(iohexol) Nanoparticles As Contrast Agents for in Vivo Xray Computed Tomography Imaging Qian for in vivo X-ray computed tomography (CT) imaging. Compared to conventional small-molecule contrast agents with improved diagnosis accuracy over a broad time frame without multiple administrations. X-ray computed

  9. Architecture and Selectivity in Aquaporins 2.5: A X-Ray Structure

    E-Print Network [OSTI]

    , United States of America Aquaporins are a family of water and small molecule channels found in organisms shown to selectively conduct only water at high rates. We have expressed, purified, crystallized on the molecular mechanisms of specificity between water and glycerol in this family of channels from a single

  10. Uranium Cluster Chemistry DOI: 10.1002/anie.200906605

    E-Print Network [OSTI]

    Uranium Cluster Chemistry DOI: 10.1002/anie.200906605 Tetranuclear Uranium Clusters by Reductive in the coordination chemistry and small-molecule reactivity of uranium. Among the intriguing reactivity patterns of tetravalent uranium with 3,5-dimethylpyrazolate (Me2PzŔ ) led to forma- tion of an unprecedented homoleptic

  11. OSP WEEKLY FUNDING BULLETIN Volume 4, Issue 42 25 October 2010

    E-Print Network [OSTI]

    Alabama in Huntsville, University of

    --------------------------------------------------------------------------------------- Volume 4, Issue 42 25 October 2010 Open Funding Opportunities DEPARTMENT OF DEFENSE (DOD) Pharmacy's Pharmacy on Demand program is soliciting research on fabrication devices and techniques for small molecule Research, (4) Fusion Energy Sciences, (5) High Energy Physics, (6) Nuclear Physics, and (7) Workforce

  12. Towards an understanding of light activation processes in titanium oxide based inverted organic solar cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    solar cells S. Chambon, E. Destouesse, B. Pavageau, L. Hirsch, and G. Wantz Citation: J. Appl. Phys. 112. Related Articles Power losses in bilayer inverted small molecule organic solar cells Appl. Phys. Lett. 101, 233903 (2012) Thin-film encapsulation of inverted indium-tin-oxide-free polymer solar cells by atomic

  13. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    may enable higher photovoltaic performance (through higherperformance in a low-cost solution-processed photovoltaicphotovoltaic material must be carefully examined, since it must maintain performance

  14. Title (right click and ŤRemove Content Control? if any hard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the production of solution-processed photovoltaic devices. These nanocomposite photovoltaics, also known as "hybrid solar cells," are promising because they combine the unique...

  15. alkyl carbonate solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. 13 Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors Physics Websites Summary: t Airbrushed single walled carbon nanotube...

  16. Conjugated Polymer Design and Engineering for Organic Electronics

    E-Print Network [OSTI]

    Woo, Claire Hoi Kar

    2011-01-01T23:59:59.000Z

    W. ; Forrest, S. R. Organic Electronics 2003, 4, 77-87. (24)Aspects of Organic Electronics: From Fundamentals toof solution-processed organic electronics rapidly advancing,

  17. amorphous-silicon solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state of affairs Schiff, Eric A. 19 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  18. amorphous-silicon-based solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 89 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  19. amorphous solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The convergence Schiff, Eric A. 20 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  20. arsenide solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  1. alingap solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 84 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  2. automated solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 103 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  3. arsenide solar cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  4. alloy solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 91 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  5. amplified-efficiency solar cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pankaj J Edla; Dr. Bhupendra Gupta 87 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

  6. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    SciTech Connect (OSTI)

    Clabo, D.A. Jr.

    1987-04-01T23:59:59.000Z

    Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.

  7. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect (OSTI)

    Pickel, Deanna L [ORNL; Pickel, Joseph M [ORNL; Devenyi, Jozsef [ORNL; Britt, Phillip F [ORNL

    2009-01-01T23:59:59.000Z

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  8. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Ann Arbor, MI); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-10-14T23:59:59.000Z

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  9. 2007 Inorganic Reaction Mechanisms Gordon Research Conference-February 18-23

    SciTech Connect (OSTI)

    Andreja Bakac

    2008-01-01T23:59:59.000Z

    This conference focuses on kinetic, mechanistic, and thermodynamic studies of reactions that play a role in fields as diverse as catalysis, energy, bioinorganic chemistry, green chemistry, organometallics, and activation of small molecules (oxygen, nitrogen, carbon monoxide, carbon dioxide, alkanes). Participants from universities, industry, and national laboratories present results and engage in discussions of pathways, intermediates, and outcome of various reactions of inorganic, organic, coordination, organometallic, and biological species. This knowledge is essential for rational development and design of novel reactions, compounds, and catalysts.

  10. MATERIALS, METHODS, AND INSTRUMENTATION FOR PREPARATIVE-SCALE ISOELECTRIC TRAPPING SEPARATIONS

    E-Print Network [OSTI]

    North, Robert Yates

    2011-08-08T23:59:59.000Z

    operational modes and used for the separation of small molecule ampholytic mixtures, for the separation of protein isoforms, and direct purification of a target pI marker from a crude reaction mixture. v.......................................... 133 5.5.1.2 Materials, method, and instrument setup................. 135 5.5.1.3 Results and discussion............................................. 136 5.5.2 Separation of a fluorescent pI marker from a crude reaction 147 mixture...

  11. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    SciTech Connect (OSTI)

    Andrews, Lester

    2014-10-17T23:59:59.000Z

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  12. Molecular? recognition? from? atomic ?interactions:?? insights ?into ?drug ?discovery?

    E-Print Network [OSTI]

    Higueruelo, Alicia Perez

    2012-05-08T23:59:59.000Z

    and selectivity, whilst trying to confer an appropriate therapeutic profile. This thesis starts with the description of the creation of TIMBAL, a database that holds small molecules disrupting protein-protein interactions. The thesis then focuses on the analysis... -like Growth Factor I IL2 Interleukin 2 IL2Ra Interleukin 2 Receptor Alpha subunit Inh Inhibitor iNOS Nitric Oxide Synthase, inducible IRAK-4 Interleukin-1 Receptor Associated Kinase 4 ITC Isothermal Titration Calorimetry IUPAC International Union of Pure...

  13. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    SciTech Connect (OSTI)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain) [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain)] [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain) [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain)] [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain) [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10T23:59:59.000Z

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  14. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues

    SciTech Connect (OSTI)

    Beletskiy, Evgeny V.; Schmidt, Jacob C.; Wang, Xue B.; Kass, Steven R.

    2012-11-14T23:59:59.000Z

    Enzymes and their mimics use hydrogen bonds to catalyze chemical transformations. Small molecule transition state analogs of oxyanion holes are characterized by gas phase IR and photoelectron spectroscopy and their binding constants in acetonitrile. As a result, a new class of hydrogen bond catalysts is proposed (OH donors that can contribute three hydrogen bonds to a single functional group) and demonstrated in a Friedel-Crafts reaction.

  15. Gadolinium speciation with Tetradentate, N-donor extractants for minor actinide/lanthanide separation: an XRD, mass spectrometry and EPR study

    SciTech Connect (OSTI)

    Whittaker, D.M. [School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sharrad, C.A. [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Research Centre for Radwaste and Decommissioning, Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Sproules, S. [Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-07-01T23:59:59.000Z

    The hydrophobic organic molecules CyMe{sub 4}-BTPhen (1) and CyMe{sub 4}-BTBP (2) have been developed and tuned over many years to be able to separate the trivalent actinides from the trivalent lanthanides (Ln) selectively in bi-phasic solvent extraction processes for the separation of the long-lived radio-toxic minor actinides from spent nuclear fuel. The ability of these N-donor ligands to perform this separation is poorly understood, as is their speciation with the metal ions when extracted into the organic phase. Our previous work has shown Ln{sup 3+} speciation to be largely 1:2 Ln:L in nature with another small molecule, either water or nitrate, occupying a cavity between the tetradentate bound N-donor ligands. The identity of the small molecule changes across the lanthanide series, and here we continue investigations into this speciation. Complexes of these N-donor ligands with Gd{sup 3+} have been synthesised and characterised by X-ray crystallography, mass spectrometry and EPR spectroscopy. We show that the N-donor ligands have no effect on the electronic configuration of Gd{sup 3+} and that the lanthanide contraction with the steric rigidity of the N-donor ligand appears to determine the size of the cavity between the coordinated ligands. This in turn appears to control the identity of the small molecule on the ninth site in the 1:2 Gd:L species. (authors)

  16. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    SciTech Connect (OSTI)

    Nalwa, Kanwar

    2012-11-03T23:59:59.000Z

    Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 ?m), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  17. CEEM Final Technical Report

    SciTech Connect (OSTI)

    Bowers, John

    2014-11-26T23:59:59.000Z

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical reactions that produce them. In response, the CEEM team developed well-defined molecular semiconductors that produce active layers with very high power conversion efficiencies, in other words they can convert a very high fraction of sunlight into useful electrical power. The fact that the semiconductor is formed from molecular species provides the basis for circumventing the unreliability of polymer counterparts and, as an additional bonus, allows one to attain much grater insight into the structure of the active layer. The latter is particularly important because efficient conversion is the result of a complex arrangement of two semiconductors that need to phase separate in a way akin to oil and water, but with domains that are described by nanoscale dimensions. CEEM was therefore able to provide deep insight into the influence of nanostructure, through the application of structural characterization tools and theoretical methods that describe how electrical charges migrate through the organic layer. Our research in light emitting diode (LED)-based solid state lighting (SSL) was directed at improving efficiency and reducing costs to enable the widespread deployment of economically-viable replacements for inefficient incandescent, halogen, and fluorescent-based lighting. Our specific focus was to advance the fundamental science and technology of light emitting diodes to both understand factors that limit efficiencies and to provide innovative and viable solutions to the current impediments. One of the main challenges we faced is the decrease in efficiency when LEDs are driven harder to increase light output---the so called “droop” effect. It requires large emitting surfaces to reach a desired optical output, and necessitates the use of costly heat sinks, both of which increase the cost. We successfully reduced droop by growing LED crystals having non-conventional orientations. As recognized by the award of the 2014 Nobel prize to the inventors of the nitride LEDs (one of whom was a member of CEEM), LEDs already have a large societal impact in both developed (l

  18. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31T23:59:59.000Z

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

  19. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30T23:59:59.000Z

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  20. Layer-by-layer assembly of electrically conductive polymer thin films 

    E-Print Network [OSTI]

    Jan, Chien Sy Jason

    2007-09-17T23:59:59.000Z

    resistance is an order of magnitude better than carbon black filled composites made via traditional melt or solution processing. Applications for this technology lie in the areas of flexible electronics, electrostatic charge dissipation, and electromagnetic...

  1. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites 

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14T23:59:59.000Z

    state. The ability to tailor nanoparticle dispersion state in liquid and solid media can ultimately provide a powerful method for tailoring the properties of solution processed nanoparticle-filled polymer composites. This dissertation reports the use...

  2. Photo provided by Getty Images. Photographer: David Fairfield

    E-Print Network [OSTI]

    Gilchrist, James F.

    -Photonics Photovoltaics and Sensors Integrated Photonics Systems #12;IEEE Photonics Journal Breakthroughs in Photonics, Photovoltaics and Sensors, and Integrated Photonics Systems. These selected topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Fischer and M.-Y. Im 260 Photovoltaics and Sensors Solution-Processed Light Sensors

  3. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    E-Print Network [OSTI]

    Tu, Bor-An Clayton

    2013-01-01T23:59:59.000Z

    Yang, “Solution-processed core-shell nanowires for efficientYong, “Fabrication of ZnO/CdS core/shell nanowire arrays fornew fabrication method for core-shell nanopillar array solar

  4. Modeling the structure of collective intelligence

    E-Print Network [OSTI]

    Dong, Wen, Ph.D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The human problem solution process has attracted an increasing amount of interest among educators, managers, computer scientists and others. However, the discussion of the subject has suffered from the lack of stochastic ...

  5. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.

  6. SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.139

    E-Print Network [OSTI]

    Yang, Peidong

    .nature.com/naturenanotechnology 1 Supplemental information: Solution processed core-shell nanowires for efficient photovoltaic cells cation exchange of the CdS to Cu2S. 4. Nanowire PV cell degradation test In order to test the degradation

  7. Nanostructured architectures for colloidal quantum dot solar cells

    E-Print Network [OSTI]

    Jean, Joel, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

  8. The renaissance of hybrid solar cells: progresses, challenges, and perspectives

    E-Print Network [OSTI]

    Feng, Gao; Ren, Shenqiang; Jianpu, Wang

    2013-06-12T23:59:59.000Z

    Solution-processed hybrid solar cells, a blend of conjugated polymers and semiconducting nanocrystals, are a promising candidate for next-generation energy-conversion devices. The renaissance of this field in recent years has yielded a much deeper...

  9. Improved performance and stability in quantum dot solar cells through band alignment engineering

    E-Print Network [OSTI]

    Bawendi, Moungi G.

    Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on ...

  10. Colloidal cluster phases and solar cells 

    E-Print Network [OSTI]

    Mailer, Alastair George

    2012-11-28T23:59:59.000Z

    The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and ...

  11. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants 

    E-Print Network [OSTI]

    Schwartz, M. H.

    1979-01-01T23:59:59.000Z

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  12. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-06-28T23:59:59.000Z

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  13. Experimental Verification of the Chemical Sensitivity of Two-Site Double Core-Hole States Formed by an X-ray FEL

    E-Print Network [OSTI]

    Salen, P; Schmidt, H T; Thomas, R D; Larsson, M; Feifel, R; Piancastelli, M N; Fang, L; Murphy, B; Osipov, T; Berrah, N; Kukk, E; Ueda, K; Bozek, J D; Bostedt, C; Wada, S; Richter, R; Feyer, V; Prince, K C

    2012-01-01T23:59:59.000Z

    We have performed X-ray two-photon photoelectron spectroscopy (XTPPS) using the Linac Coherent Light Source (LCLS) X-ray free-electron laser (FEL) in order to study double core-hole (DCH) states of CO2, N2O and N2. The experiment verifies the theory behind the chemical sensitivity of two-site (ts) DCH states by comparing a set of small molecules with respect to the energy shift of the tsDCH state and by extracting the relevant parameters from this shift.

  14. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect (OSTI)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01T23:59:59.000Z

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  15. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency

    E-Print Network [OSTI]

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-01-01T23:59:59.000Z

    Youpin Gong1, Qingfeng Liu1, Jamie Samantha Wilt1, Maogang Gong2, Shenqiang Ren2 & Judy Wu1 Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive... interests. How to cite this article: Gong, Y. et al. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency. Sci. Rep. 5, 11328; doi: 10.1038/srep11328 (2015). www...

  16. Tellurium-Containing Conjugated Materials for Solar Cells: From Sulfur to Tellurium

    SciTech Connect (OSTI)

    Park Y. S.; Kale, T.; Wu, Q.; Ocko, B.M.; Black, C.T., Grubbs, R.B.

    2013-04-03T23:59:59.000Z

    A series of diketopyrrolopyrrole(DPP)-based small molecules have been synthesized by palladium-catalyzed coupling reactions. Electron-donating moieties (benzothiophene, benzoselenophene, and benzotellurophene) are bridged by an electron-withdrawing DPP unit to generate donor-acceptor-donor (D-A-D) type molecules. We observe red-shifts in absorption spectra of these compounds by varying heteroatoms from sulfur to tellurium. In bulk heterojunction solar cells with [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor, we obtain power conversion efficiencies of 2.4% (benzothiophene), 4.1% (benzoselenophene), and 3.0% (benzotellurophene), respectively.

  17. VUV studies of molecular photofragmentation dynamics

    SciTech Connect (OSTI)

    White, M.G. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  18. X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket

    SciTech Connect (OSTI)

    Lountos, George T.; Jobson, Andrew G.; Tropea, Joseph E.; Self, Christopher R.; Zhang, Guangtao; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S. (Provid); (NIH); (SAIC); (NCI)

    2012-09-17T23:59:59.000Z

    The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC{sub 50} values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding.

  19. Method and apparatus for combinatorial chemistry

    DOE Patents [OSTI]

    Foote, Robert S.

    2007-02-20T23:59:59.000Z

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  20. Method and apparatus for combinatorial chemistry

    DOE Patents [OSTI]

    Foote, Robert S. (Oak Ridge, TN)

    2012-06-05T23:59:59.000Z

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  1. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOE Patents [OSTI]

    Marks, Iobin J. (Evanston, IL); Hains, Alexander W. (Evanston, IL)

    2011-02-15T23:59:59.000Z

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  2. Kinetic data base for combustion modeling

    SciTech Connect (OSTI)

    Tsang, W.; Herron, J.T. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-01T23:59:59.000Z

    The aim of this work is to develop a set of evaluated rate constants for use in the simulation of hydrocarbon combustion. The approach has been to begin with the small molecules and then introduce larger species with the various structural elements that can be found in all hydrocarbon fuels and decomposition products. Currently, the data base contains most of the species present in combustion systems with up to four carbon atoms. Thus, practically all the structural grouping found in aliphatic compounds have now been captured. The direction of future work is the addition of aromatic compounds to the data base.

  3. Structure of the Brachydanio Rerio Polo-Like Kinase 1 (Plk1) Catalytic Domain in Complex With An Extended Inhibitor Targeting the Adaptive Pocket of the Enzyme

    SciTech Connect (OSTI)

    Elling, R.A.; Fucini, R.V.; Hanan, E.J.; Barr, K.J.; Zhu, J.; Paulvannan, K.; Yang, W.; Romanowski, M.J.

    2009-05-18T23:59:59.000Z

    Polo-like kinase 1 (Plk1) is a member of the Polo-like kinase family of serine/threonine kinases involved in the regulation of cell-cycle progression and cytokinesis and is an attractive target for the development of anticancer therapeutics. The catalytic domain of this enzyme shares significant primary amino-acid homology and structural similarity with another mitotic kinase, Aurora A. While screening an Aurora A library of ATP-competitive compounds, a urea-containing inhibitor with low affinity for mouse Aurora A but with submicromolar potency for human and zebrafish Plk1 (hPlk1 and zPlk1, respectively) was identified. A crystal structure of the zebrafish Plk1 kinase domain-inhibitor complex reveals that the small molecule occupies the purine pocket and extends past the catalytic lysine into the adaptive region of the active site. Analysis of the structures of this protein-inhibitor complex and of similar small molecules cocrystallized with other kinases facilitates understanding of the specificity of the inhibitor for Plk1 and documents for the first time that Plk1 can accommodate extended ATP-competitive compounds that project toward the adaptive pocket and help the enzyme order its activation segment.

  4. Structural basis of substrate discrimination and integrin binding by autotaxin

    SciTech Connect (OSTI)

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis (Pfizer); (Leuven); (Oxford); (NCI-Netherlands); (Kentucky)

    2013-09-25T23:59:59.000Z

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  5. Osmoregulation in Methanogens (and other interesting organisms)

    SciTech Connect (OSTI)

    Roberts, Mary Fedarko

    2014-12-03T23:59:59.000Z

    Our research has been aimed at (i) identifying, (ii) determining mode of regulation, and (iii) understanding how different classes of compatible solutes (also termed osmolytes) affect macromolecular stability in response to osmotic and thermal stress. For solutes we have identified (e.g., di-inositol-1,1’-phosphate (DIP)), we used NMR to elucidate biosynthetic pathways and then cloned suspected enzymes in the pathway to explore how they are regulated. Compatible solutes are thought to protect proteins from thermal and osmotic stresses by being excluded from the surface, allowing critical water molecules to interact with the protein. This implies there are no specific binding interactions between osmolytes and proteins. However, we and others have often observed very specific solute effects for proteins that suggest a more direct interaction between solute and protein is likely can occur. Measuring such a weak interaction is extremely difficult. We have developed a solution NMR method, high-resolution field cycling relaxometry, that can measure spin-lattice relaxation rates as a function of magnetic field from 11.7 (the field of a 500 MHz spectrometer) to 0.003 T. The methodology is ideal for nuclei in small molecules with moderately long relaxation times at high fields – phosphate groups (31P), enriched carbonyls (13C), or methyl groups (1H). The protein of interest is spin-labeled to introduce a large dipole on it that will dominate the relaxation of nuclei on any small molecules that bind transiently. The key is to measure relaxation below 1-2 T (and extract nuclei-spin label distances in the bound complex) where the small molecule relaxation will be dominated by dipolar mechanisms with a correlation time indicative of the large protein complex. Our explorations of an inositol monophosphatase (the last step in DIP generation) localized four discrete binding sides for the thermoprotectant ?-glutamate. This is a novel approach, and while the work did not fully explain how this solute protected the IMPase from thermal denaturation, it did showcase a new and exciting method to monitor weak binding in biological systems.

  6. Broadband solar absorption enhancement via periodic

    E-Print Network [OSTI]

    Province, 230009, P. R. China. Solution processed colloidal quantum dot (CQD) solar cells have greatBroadband solar absorption enhancement via periodic nanostructuring of electrodes Michael M. Adachi demonstrate a bottom- illuminated periodic nanostructured CQD solar cell that enhances broadband absorption

  7. International Journal of Control Vol. 81, No. 8, August 2008, 12101220

    E-Print Network [OSTI]

    Ge, Shuzhi Sam

    -feedback control for a class of uncertain stochastic non-linear systems with time delays Shu-Jun Liuab , Shuzhi Sam, we investigate the adaptive output-feedback stabilisation for a class of stochastic non and uniqueness of the solution process for stochastic non-linear systems with time delays, and introduce a new

  8. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  9. www.afm-journal.de 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 4295

    E-Print Network [OSTI]

    Schreiber, Frank

    bot- tleneck by creating an interpenetrating network of donor and acceptor materials, has proven heterojunctions (BHJ) from solution processed polymer-fullerene mixtures,[3,4] which reduces the exciton diffusion heterojunction cells. Bulk heterojunctions exhibit large-scale phase sepa- ration forming a bicontinuous network

  10. RESEARCH LUNCHEON SERIES Co-hosted by the Departments of

    E-Print Network [OSTI]

    Farritor, Shane

    storage devices such as supercapacitors and batteries. Recently, our group has developed two different interests are focused on nanostructured, solution-processed optoelectronic devices, including solar cells-based Ionogel Formation for Biomedical and Energy Storage Applications Dr. Matthew Panzer Assistant Professor

  11. Dippy – a simplified interface for advanced mixed-integer ...

    E-Print Network [OSTI]

    2012-01-26T23:59:59.000Z

    model components such as variables and constraints between the mathematical modelling ... Studio enables Operations Research practitioners to express complicated mixed- .... The cut generation and heuristic callback functions mentioned previously can ..... which may be able to speed up the overall solution process.

  12. Proceedings of The Canadian Society for Mechanical Engineering Forum 2010 CSME FORUM 2010

    E-Print Network [OSTI]

    Victoria, University of

    , more geographically Distributed Generation (DG) units such as Combined Heat & Power (CHP), solar, Wind to reconstitute a statistically accurate simulation. The solution process, called Finite Element Probabilistic, gas, hydro, wind, solar and ocean). Grid transmission networks span intercity (sparse rural) areas

  13. Semiconducting compounds and devices incorporating same

    SciTech Connect (OSTI)

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17T23:59:59.000Z

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  14. OPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERING University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    SCIENCE & ENGINEERING University of New Mexico Abstract: Polymer solar cell (PSC) devices offer an intriguing alternative to traditional silicon based solar cell technologies, due to versatility in material structural, and thus functional, variations and amenability to low-cost high throughput solution processes

  15. Subscriber access provided by STANFORD UNIV GREEN LIBR Nano Letters is published by the American Chemical Society. 1155 Sixteenth Street

    E-Print Network [OSTI]

    Cui, Yi

    conductive electrodes are important components of thin-film solar cells, light-emitting diodes, and many-to-roll processed solar cells and large- area organic light-emitting diodes (LEDs) for lighting applications.1 When Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Letter Solution-Processed Metal Nanowire

  16. Copyright 2011 American Chemical Society 1155 Sixteenth Street N.W., Washington, DC 20036

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Copyright © 2011 American Chemical Society 1155 Sixteenth Street N.W., Washington, DC 20036 For Selected: Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells Daibin Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes Junbo Wu, Mukul Agrawal, H

  17. Extended Abstract CP 2002 Doctoral Programme

    E-Print Network [OSTI]

    Rossi, Francesca

    generation is a solution process where columns are generated and added dynamically to a linear program preprocessing techniques using Constraint Programming can help speed up the column generation process for the Tail Assignment problem. A generalized preprocessing technique based on constraint propagation

  18. Energy Research in the Oldenburg Region

    E-Print Network [OSTI]

    institutions and companies developing modern, efficient and climate friendly energy systems. Energy research Research Laboratory Our research group focuses on three novel concepts of thin film photovoltaics: Solar on the device level as well as the development of solution-processed thin film solar cells based on organic

  19. Post-Contingency Equilibrium Analysis of Power Systems Peter W. Sauer

    E-Print Network [OSTI]

    portion of the solution process. These load flow solutions then iterate with the de-coupled algebraic the dynamic model until it reaches steady state. The second uses the straightforward analytical choice of setting all time derivatives of the dynamic model to zero and solving the remaining algebraic equations

  20. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    E-Print Network [OSTI]

    Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation, 2010; E-mail: ted.sargent@utoronto.ca Solution-processed solar cells employing colloidal quantum dots-junction and tandem solar cells both rely on IR-band-gap semiconductors, there has been much recent emphasis

  1. pubs.acs.org/cm Published on Web 08/26/2009 r 2009 American Chemical Society 4090 Chem. Mater. 2009, 21, 40904092

    E-Print Network [OSTI]

    Hone, James

    , 21, 4090­4092 DOI:10.1021/cm9016134 Solar Cells from a Solution Processable Pentacene with Improved-oxidation of the pentacene donor.16 This situation is exacerbated by the fact that nearly all organic solar cells necessi- tate complex structures, low work function cathodes, and/or extensive encapsulation to achieve peak per

  2. LI ET AL. VOL. 8 ' NO. 7 ' 67976804 ' 2014 www.acsnano.org

    E-Print Network [OSTI]

    Xiong, Qihua

    be deposited through a facile solution process, providing avenues for fabricating low-cost solar cells light absorber ma- terials with low cost such as dyes,1 conju- gated polymers,2 and quantum dots,3 which- cies reaching 8%.11,12 This points the way toward a simpler fabrication process that does not involve

  3. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan (Piscataway, NJ); Forrest, Stephen R. (Ann Arbor, MI)

    2011-06-07T23:59:59.000Z

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  4. 2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)

    SciTech Connect (OSTI)

    Abu-Omar, Mahdi M.

    2012-12-08T23:59:59.000Z

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  5. Crystallographic Analysis of Murine Constitutive Androstane Receptor Ligand-Binding Domain Complexed with 5[alpha]-androst-16-en-3[alpha]-ol

    SciTech Connect (OSTI)

    Vincent, J.; Shan, L.; Fan, M.; Brunzelle, J.S.; Forman, B.M.; Fernandez, E.J. (Tennessee-K); (NWU); (CHNMC)

    2010-03-08T23:59:59.000Z

    The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. In contrast to classical nuclear receptors, which possess small-molecule ligand-inducible activity, CAR exhibits constitutive transcriptional activity in the apparent absence of ligand. CAR is among the most important transcription factors; it coordinately regulates the expression of microsomal cytochrome P450 genes and other drug-metabolizing enzymes. The murine CAR ligand-binding domain (LBD) was coexpressed with the steroid receptor coactivator protein (SRC-1) receptor-interacting domain (RID) in Escherichia coli. The mCAR LBD subunit was purified away from SRC-1 by affinity, anion-exchange and size-exclusion chromatography, crystallized with androstenol and the structure of the complex determined by molecular replacement.

  6. Polydispersity analysis of Taylor dispersion data: the cumulant method

    E-Print Network [OSTI]

    Luca Cipelletti; Jean-Philippe Biron; Michel Martin; Hervé Cottet

    2014-08-26T23:59:59.000Z

    Taylor dispersion analysis is an increasingly popular characterization method that measures the diffusion coefficient, and hence the hydrodynamic radius, of (bio)polymers, nanoparticles or even small molecules. In this work, we describe an extension to current data analysis schemes that allows size polydispersity to be quantified for an arbitrary sample, thereby significantly enhancing the potentiality of Taylor dispersion analysis. The method is based on a cumulant development similar to that used for the analysis of dynamic light scattering data. Specific challenges posed by the cumulant analysis of Taylor dispersion data are discussed, and practical ways to address them are proposed. We successfully test this new method by analyzing both simulated and experimental data for solutions of moderately polydisperse polymers and polymer mixtures.

  7. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M. J. (Oakland, CA); Standley, Stephany M. (Evanston, IL); Jain, Rachna (Milpitas, CA); Lee, Cameron C. (Cambridge, MA)

    2012-03-20T23:59:59.000Z

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  8. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules

    E-Print Network [OSTI]

    Bruneval, Fabien; Neaton, Jeffrey B

    2015-01-01T23:59:59.000Z

    The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased, and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely-used time-dependent density functional theory benchmark set [M. Schreiber et al. J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate...

  9. Accurate Evaluation of Charge Asymmetry in Aqueous Solvation

    E-Print Network [OSTI]

    Mukhopadhyay, Abhishek; Onufriev, Alexey V

    2015-01-01T23:59:59.000Z

    Charge hydration asymmetry (CHA) -- a characteristic dependence of hydration free energy on the sign of the solute charge -- quantifies the asymmetric response of water to electric field at microscopic level. Accurate estimates of CHA are critical for understanding of hydration effects ubiquitous in chemistry and biology. However, measuring hydration energies of charged species is fraught with significant difficulties, which lead to unacceptably large (up to 300 %) variation in the available estimates of the CHA effect. We circumvent these difficulties by developing a framework which allows us to extract and accurately estimate the intrinsic propensity of water to exhibit CHA from accurate experimental hydration free energies of neutral polar molecules. Specifically, from a set of 504 small molecules we identify two pairs that are analogous, with respect to CHA, to the K+/F- pair -- a classical probe for the effect. We use these "CHA-conjugate" molecule pairs to quantify the intrinsic charge-asymmetric respon...

  10. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20T23:59:59.000Z

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  11. Computational methods for molecular docking

    SciTech Connect (OSTI)

    Klebe, G. [BASF AG, Ludwigshafen (Germany); Lengauer, T.

    1995-12-31T23:59:59.000Z

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Recently, it has been demonstrated that the knowledge of the three-dimensional structure of the protein can be used to derive new protein ligands with improved binding properties. This tutorial focuses on the following questions: What is its binding affinity toward a particular receptor? What are putative conformations of a ligand at the binding site? What are the similarities of different ligands in terms of their recognition capabilities? Where and in which orientation will a ligand bind to the active site? How is a new putative protein ligand selected? An overview is presented of the algorithms which are presently used to handle and predict protein-ligand interactions and to dock small molecule ligands into proteins.

  12. Magnetic fields and density functional theory

    SciTech Connect (OSTI)

    Salsbury Jr., Freddie

    1999-02-01T23:59:59.000Z

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  13. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-11-01T23:59:59.000Z

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  14. Solar-assisted hydrogen generation by photoelectrocatalysis. Annual report, October 1, 1985-October 31, 1986

    SciTech Connect (OSTI)

    Sammells, A.F.; Cook, R.L.; Wessels, B.W.; Dempsey, P.F.; Pons, S.

    1986-12-01T23:59:59.000Z

    A detailed characterization of the electronic, chemical, and structural interfacial characteristics of p-InP in aqueous electrolytes was performed to provide a clearer understanding of its behavior so that systematic improvements in performance could be made. Measurement techniques for the in-situ detection of molecular-level photoelectrode/electrolyte interface parameters were employed. Techniques used to address this included classical electrochemical measurements, transient laser-pulse-induced photopotential and photocurrent measurements, together with photocapacitance, Raman, Auger and FTIR spectroscopy. Interfacial parameters investigated included charge-carrier energetics, the energies and densities of electronic surface states, photoelectrode kinetics, and interfacial molecular structure. This insight suggested new surface modifications strategies and PEC cell designs for efficient hydrogen evolution from aqueous electrolytes. In the absence of suitable surface modifications, p-InP can possess poor energetics and kinetics for small-molecule multielectron redox reactions such as hydrogen evolution.

  15. Singlet-Triplet Energy Gaps for Diradicals from Fractional-Spin Density-Functional Theory

    SciTech Connect (OSTI)

    Ess, Daniel H.; Johnson, E R; Hu, Xiangqian; Yang, W T

    2011-01-01T23:59:59.000Z

    Open-shell singlet diradicals are difficult to model accurately within conventional Kohn?Sham (KS) density-functional theory (DFT). These methods are hampered by spin contamination because the KS determinant wave function is neither a pure spin state nor an eigenfunction of the S2 operator. Here we present a theoretical foray for using single-reference closed-shell ground states to describe diradicals by fractional-spin DFT (FS-DFT). This approach allows direct, self-consistent calculation of electronic properties using the electron density corresponding to the proper spin eigenfunction. The resulting FS-DFT approach is benchmarked against diradical singlet?triplet gaps for atoms and small molecules. We have also applied FS-DFT to the singlet?triplet gaps of hydrocarbon polyacenes.

  16. Quantum Criticality at the Origin of Life

    E-Print Network [OSTI]

    Vattay, Gabor; Csabai, Istvan; Kaufmann, Ali Nassimi an Stuart A

    2015-01-01T23:59:59.000Z

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.

  17. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    SciTech Connect (OSTI)

    Kabalka, George W

    2011-05-20T23:59:59.000Z

    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  18. Multi-channel medical imaging system

    DOE Patents [OSTI]

    Frangioni, John V

    2013-12-31T23:59:59.000Z

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  19. Crystallization of iysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01T23:59:59.000Z

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozymemore »and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  20. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding

    SciTech Connect (OSTI)

    Garde, S.; Hummer, G.; Garcia, A.E.; Paulaitis, M.E.; Pratt, L.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716 (United States); [Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    1996-12-01T23:59:59.000Z

    An information theory model of hydrophobic effects is used to construct a molecular explanation why hydrophobic solvation entropies of protein unfolding measured by high sensitivity calorimetry converge to zero at a common convergence temperature. The entropy convergence follows directly from the weak temperature dependence of occupancy fluctuations {l_angle}{delta}{ital n}{sup 2}{r_angle} for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior of water relative to common organic solvents is the {ital relative} temperature insensitivity of the water isothermal compressibility compared to hydrocarbon liquids. The information theory model used provides a quantitative description of small molecule hydration and, in addition, predicts that the value of the entropy at convergence is slightly {ital negative}. Interpretations of entropic contributions to protein folding should account for this result. {copyright} {ital 1996 The American Physical Society.}

  1. Solvent Immersion Imprint Lithography

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21T23:59:59.000Z

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  2. White organic light-emitting diodes: Status and perspective

    E-Print Network [OSTI]

    Reineke, Sebastian; Lüssem, Björn; Leo, Karl

    2013-01-01T23:59:59.000Z

    White organic light-emitting diodes (OLEDs) are ultra-thin, large-area light sources made from organic semiconductor materials. Over the last decades, much research has been spent on finding the suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color-tunability, and color-quality, white OLEDs are emerging to become one of the next generation light sources. In this review, we discuss the physics of a variety of device concepts that are introduced to realize white OLEDs based on both polymer and small molecule organic materi als. Owing to the fact that about 80 % of the internally generated photons are trapped within the thin-film layer structure, we put a second focus on reviewing promising concepts for improved light outcoupling.

  3. Organic Based Nanocomposite Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-04-145

    SciTech Connect (OSTI)

    Olson, D.

    2013-01-01T23:59:59.000Z

    This CRADA will focus on the development of organic-based solar cells. Key interfacial issues in these cells will be investigated. In this rapidly emerging technology, it is increasingly clear that cell architecture will need to be at the nanoscale and the interfacial issues between organic elements (small molecule and polymer), transparent conducting oxides, and contact metallizations are critical. Thus this work will focus on the development of high surface area and nanostructured nanocarpets of inorganic oxides, the development of appropriate surface binding/acceptor molecules for the inorganic/organic interface, and the development of next-generation organic materials. Work will be performed in all three areas jointly at NREL and Konarka (with their partner in the third area of the University of Delaware). Results should be more rapid progress toward cheap large-area photovoltaic cells.

  4. Quantum Criticality at the Origin of Life

    E-Print Network [OSTI]

    Gabor Vattay; Dennis Salahub; Istvan Csabai; Ali Nassimi; Stuart A. Kaufmann

    2015-03-03T23:59:59.000Z

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.

  5. Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions

    SciTech Connect (OSTI)

    Zhu, Qing; Harris, Michael T.; Taylor, Lynne S. (Purdue)

    2013-03-07T23:59:59.000Z

    Simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) was employed to elucidate the physical state and location of various small molecule drugs blended with polyethylene glycol (PEG), as well as the time dependent microstructural evolution of the systems. Samples were prepared by comelting physical mixtures of the drug and PEG, followed by solidification at 25 C. The model drugs selected encompassed a wide variety of physicochemical properties in terms of crystallization tendency and potential for interaction with PEG. It was observed that compounds which crystallized rapidly and had weak interactions with PEG tended to be excluded from the interlamellar region of the PEG matrix. In contrast, drugs which had favorable interactions with PEG were incorporated into the interlamellar regions of the polymer up until the point at which the drug crystallized whereby phase separation occurred. These factors are likely to impact the effectiveness of drug/PEG systems as drug delivery systems.

  6. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes

    SciTech Connect (OSTI)

    Wang, Yangyang [ORNL; Fan, Fei [ORNL; Agapov, Alexander L [ORNL; Saito, Tomonori [ORNL; Yang, Jun [ORNL; Yu, Xiang [ORNL; Hong, Kunlun [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

    2014-01-01T23:59:59.000Z

    Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

  7. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect (OSTI)

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-18T23:59:59.000Z

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64?cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ?5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  8. Automated MAD and MIR structure solution

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berendzen, Joel [Biophysics Group, Mail Stop D454, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    1999-04-01T23:59:59.000Z

    A fully automated procedure for solving MIR and MAD structures has been developed using a scoring scheme to convert the structure-solution process into an optimization problem. Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations.

  9. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2007-09-30T23:59:59.000Z

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  10. Modulation of kinase-inhibitor interactions by auxiliary protein binding: Crystallography studies on Aurora A interactions with VX-680 and with TPX2

    SciTech Connect (OSTI)

    Zhao, Baoguang; Smallwood, Angela; Yang, Jingsong; Koretke, Kristin; Nurse, Kelvin; Calamari, Amy; Kirkpatrick, Robert B.; Lai, Zhihong (GSKPA)

    2008-10-24T23:59:59.000Z

    VX-680, also known as MK-0457, is an ATP-competitive small molecule inhibitor of the Aurora kinases that has entered phase II clinical trials for the treatment of cancer. We have solved the cocrystal structure of AurA/TPX2/VX-680 at 2.3 {angstrom} resolution. In the crystal structure, VX-680 binds to the active conformation of AurA. The glycine-rich loop in AurA adopts a unique bent conformation, forming a {pi}-{pi} interaction with the phenyl group of VX-680. In contrast, in the published AurA/VX-680 structure, VX-680 binds to AurA in the inactive conformation, interacting with a hydrophobic pocket only present in the inactive conformation. These data suggest that TPX2, a protein cofactor, can alter the binding mode of VX-680 with AurA. More generally, the presence of physiologically relevant cofactor proteins can alter the kinetics, binding interactions, and inhibition of enzymes, and studies with these multiprotein complexes may be beneficial to the discovery and optimization of enzyme inhibitors as therapeutic agents.

  11. Covalently crosslinked diels-alder polymer networks.

    SciTech Connect (OSTI)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01T23:59:59.000Z

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  12. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    SciTech Connect (OSTI)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D. [Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States)] [Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Keller, Charles, E-mail: keller@ohsu.edu [Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States) [Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229 (United States)

    2010-09-03T23:59:59.000Z

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  13. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate : new insights from structural and biochemical studies on human RPE.

    SciTech Connect (OSTI)

    Liang, W.; Ouyang, S.; Shaw, N.; Joachimiak, A.; Zhang, R.; Liu, Z.; Biosciences Division; Chinese Academy of Sciences

    2011-02-01T23:59:59.000Z

    The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe{sup 2+} for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe{sup 2+} ion buried deep inside the active site. Human RPE folds into a typical ({beta}/{alpha}){sub 8} triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.

  14. An Allosteric Inhibitor of the Human Cdc34 Ubiquitin-Conjugating Enzyme

    SciTech Connect (OSTI)

    Ceccarelli, Derek F.; Tang, Xiaojing; Pelletier, Benoit; Orlicky, Stephen; Xie, Weilin; Plantevin, Veronique; Neculai, Dante; Chou, Yang-Chieh; Ogunjimi, Abiodun; Al-Hakim, Abdallah; Varelas, Xaralabos; Koszela, Joanna; Wasney, Gregory A.; Vedadi, Masoud; Dhe-Paganon, Sirano; Cox, Sarah; Xu, Shuichan; Lopez-Girona, Antonia; Mercurio, Frank; Wrana, Jeff; Durocher, Daniel; Meloche, Sylvain; Webb, David R.; Tyers, Mike; Sicheri, Frank (Cellgene); (Mount Sinai Hospital); (Edinburgh); (SG); (Montreal)

    2011-09-06T23:59:59.000Z

    In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF{sup Skp2} substrate p27{sup Kip1}. CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.

  15. Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion

    SciTech Connect (OSTI)

    Liu Cheng [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Feng Youjun [Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Gao Feng [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Zhang Qiangmin [Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Wang Ming [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)]. E-mail: vetdean@cau.edu.cn

    2006-07-07T23:59:59.000Z

    Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six {alpha}-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection.

  16. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    SciTech Connect (OSTI)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10T23:59:59.000Z

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  17. Recent developments with metalloprotease inhibitor class of drug candidates for Botulinum neurotoxins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Gyanendra; Swaminathan, Subramanyam

    2015-03-10T23:59:59.000Z

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, andmore »these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.« less

  18. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect (OSTI)

    Berland, Kristian [Chalmers University of Technology, Sweden] [Chalmers University of Technology, Sweden; Arter, Calvin A [Wake Forest University, Winston-Salem] [Wake Forest University, Winston-Salem; Cooper, Valentino R [ORNL] [ORNL; Lee, Dr. Kyuho [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Lundqvist, Prof. Bengt I. [Chalmers University of Technology, Sweden] [Chalmers University of Technology, Sweden; Schroder, Prof. Elsebeth [Chalmers University of Technology, Sweden] [Chalmers University of Technology, Sweden; Thonhauser, Prof. Timo [Wake Forest University, Winston-Salem] [Wake Forest University, Winston-Salem; Hyldgaard, Per [Chalmers University of Technology, Sweden] [Chalmers University of Technology, Sweden

    2014-01-01T23:59:59.000Z

    The theoretical description of sparse matter attracts much interest, in particular for those groundstate properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B, in print] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromaticmolecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  19. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect (OSTI)

    Berland, Kristian [Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg (Sweden) [Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Arter, Calvin A.; Thonhauser, T. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States)] [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Cooper, Valentino R. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (United States)] [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114 (United States); Lee, Kyuho [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States) [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Lundqvist, Bengt I. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)] [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Schröder, Elsebeth; Hyldgaard, Per [Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)] [Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2014-05-14T23:59:59.000Z

    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory. One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO{sub 3}, the adsorption of small molecules within metal-organic frameworks, the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general-purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  20. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    SciTech Connect (OSTI)

    Qian, Shuo [ORNL; Heller, William T [ORNL

    2011-01-01T23:59:59.000Z

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.

  1. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    SciTech Connect (OSTI)

    Thomas, Ajit G.; Rojas, Camilo [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)] [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S. [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States)] [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States); Ferraris, Dana V. [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)] [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tsukamoto, Takashi [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States) [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Slusher, Barbara S., E-mail: bslusher@jhmi.edu [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2013-08-23T23:59:59.000Z

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC{sup 1280})) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.

  2. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17T23:59:59.000Z

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  3. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    SciTech Connect (OSTI)

    Stephen Cramer, Nancy Ryan Gray

    2009-01-01T23:59:59.000Z

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  4. Recent developments with metalloprotease inhibitor class of drug candidates for Botulinum neurotoxins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Gyanendra [Brookhaven National Lab. (BNL), Upton, NY (United States); St. Jude Research Hospital, Memphis, TN (United States); Swaminathan, Subramanyam [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-10T23:59:59.000Z

    Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are also potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.

  5. SHELXT – Integrated space-group and crystal-structure determination

    SciTech Connect (OSTI)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Georg-August Universität Göttingen, Tammannstrasse 4, Göttingen, 37077 (Germany)

    2015-01-01T23:59:59.000Z

    SHELXT automates routine small-molecule structure determination starting from single-crystal reflection data, the Laue group and a reasonable guess as to which elements might be present. The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.

  6. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect (OSTI)

    Oyeyemi, Victor B. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Krisiloff, David B. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Keith, John A.; Libisch, Florian [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Pavone, Michele [Department of Chemical Sciences, University of Napoli Federico II, Napoli 80120 (Italy)] [Department of Chemical Sciences, University of Napoli Federico II, Napoli 80120 (Italy); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-01-28T23:59:59.000Z

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  7. A self-interaction-free local hybrid functional: Accurate binding energies vis-ŕ-vis accurate ionization potentials from Kohn-Sham eigenvalues

    SciTech Connect (OSTI)

    Schmidt, Tobias; Kümmel, Stephan [Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth (Germany)] [Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Kraisler, Eli; Makmal, Adi; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)] [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-05-14T23:59:59.000Z

    We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional's parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest.

  8. Organic light-emitting devices using spin-dependent processes

    DOE Patents [OSTI]

    Vardeny, Z. Valy (Salt Lake City, UT); Wohlgenannt, Markus (Salt Lake City, UT)

    2010-03-23T23:59:59.000Z

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  9. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    SciTech Connect (OSTI)

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R. (Puerto Rico); (HHMI); (Texas)

    2012-09-17T23:59:59.000Z

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.

  10. International summer school on macromolecular crystallographic computing. Final report

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The School was the seventh in a series of International Union of Crystallography (IUCr) Crystallographic Symposia. The format of the School was formal lectures in the morning, tutorials in the afternoon, and software demonstrations and more lectures in the evening. The full program which left both the organizers and attendees exhausted, reflects the current state of excitement in the field of macromolecular structure determination using the technique of X-ray crystallography. The new and improved technologies and techniques described in these Proceedings are contributing to that growth and at the same time, as pointed out in the paper given by Sussman, creating challenges for the Protein Data Bank (PDB). As the School progressed, the authors were struck by the similarities to events which took place in small molecule crystallography beginning some 20 to 25 years ago. Growth then was fueled by the advent of new algorithms, affordable computer hardware, and good software. So it is today for macromolecular crystallography, but with the added bonus of the Internet which is changing how scientist conduct their research. Flack presented this view as part of his on-going contribution to how crystallographers use the Internet. After presentations discussing structures en masse they returned to the more traditional mode of presentation which parallels the determination of a single macromolecular structure: data collection -- phasing -- model building and visualization -- refinement.

  11. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect (OSTI)

    Wright, Corey R.; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16T23:59:59.000Z

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Ĺ): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5? is believed to be reliable to within 2?. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Ĺ compared to that in cyclopropane.

  12. Recent developments in proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Devanathan, Ramaswami

    2008-07-23T23:59:59.000Z

    Proton exchange membranes (PEMs) that operate at temperatures above 120 °C are needed to avoid catalyst poisoning, speed up electrochemical reactions, simplify the design and reduce the cost of fuel cells. This review summarizes developments in PEMs over the last five years. In order to design new membranes for elevated temperature operation, one must understand the chemistry, morphology and dynamics of protons and small molecules in existing membranes. The integration of experiments with modeling and simulation can shed light on the hierarchical structure of the membrane and dynamical processes associated with molecular transport. Based on such a fundamental understanding, membranes can be modified by controlling the polymer chemistry and architecture or adding inorganic fillers that can retain water under low relative humidity conditions. In addition, the development of anhydrous membranes based on phosphoric acid doped polymers, ionic liquid-infused polymer gels and solid acids can enable fuel cell operation above 150 °C. Considerable work remains to be done to identify proton transport mechanisms in novel membranes and evaluate membrane durability under real world operating conditions.

  13. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    SciTech Connect (OSTI)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain)] [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)] [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07T23:59:59.000Z

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  14. Reaction product imaging

    SciTech Connect (OSTI)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  15. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2012-07-24T23:59:59.000Z

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  16. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States) [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-05-21T23:59:59.000Z

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature ? ? (T ? T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  17. Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold

    SciTech Connect (OSTI)

    Zhou, Haibin; Chen, Jianfang; Meagher, Jennifer L.; Yang, Chao-Yie; Aguilar, Angelo; Liu, Liu; Bai, Longchuan; Cong, Xin; Cai, Qian; Fang, Xueliang; Stuckey, Jeanne A.; Wang, Shaomeng (Michigan)

    2014-10-02T23:59:59.000Z

    Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of 100 {micro}M for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10,000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both Bcl-2 and Bcl-xL and potent cellular activity. The best compound (21) binds to Bcl-xL and Bcl-2 with K{sub i} < 1 nM, inhibits cell growth in the H146 and H1417 small-cell lung cancer cell lines with IC{sub 50} values of 60-90 nM, and induces robust cell death in the H146 cancer cell line at 30-100 nM.

  18. On the critical flame radius and minimum ignition energy for spherical flame initiation

    SciTech Connect (OSTI)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01T23:59:59.000Z

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis number larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.

  19. Spectrally Narrowed Edge Emission from Organic Light-Emitting Diodes: Evidence for Amplified Spontaneous Emission and Mirrorless Lasing

    E-Print Network [OSTI]

    Yun Tian; Zhengqing Gan; Zhaoqun Zhou; Ji-hun Kang; Q-Han Park; David W. Lynch; Joseph Shinar

    2007-01-14T23:59:59.000Z

    p-Conjugated materials, including small molecules and polymers, are attracting substantial attention as novel gain media in semiconductor lasers; they offer many potential advantages not achievable with conventional inorganic semiconductors: simple processing, low cost, easy tuneability of the spectrum, and large-area integration on flexible substrates. Optically pumped lasing action in various small molecular and polymeric p-conjugated materials has been demonstrated using several resonator configurations. However, electrically pumped organic semiconductor lasers, i.e., organic injection or diode lasers, remain elusive, presumably due to various loss mechanisms, e.g., charge (polaron)-induced absorption and metal electrode absorption. Here we report on evidence for amplified spontaneous emission (ASE), also known as mirrorless lasing (i.e., wherein some of the spontaneously emitted photons are amplified by stimulated emission during their propagation) in DC-driven small molecular organic light-emitting diodes (SMOLEDs). The evidence includes a dramatic spectral line narrowing, with a full width at half maximum (FWHM) of only 5 - 10 nm, and optical gain, of the edge-emission from SMOLEDs at room temperature. However, there is no clear indication of threshold behavior associated with this spectral narrowing. Nevertheless, this discovery should pave the way towards the realization of an organic diode laser.

  20. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect (OSTI)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)

    2012-03-15T23:59:59.000Z

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  1. Basal-subtype and MEK-Pl3K feedback signaling determine susceptibility of breast cancer cells to MEK inhibition

    SciTech Connect (OSTI)

    Mirzoeva, Olga K.; Das, Debopriya; Heiser, Laura M.; Bhattacharya, Sanchita; Siwak, Doris; Gendelman, Rina; Bayani, Nora; Wang, Nicholas J.; Neve, Richard M.; Knight, Zachary; Feiler, Heidi S.; Gascard, Philippe; Parvin, Bahram; Spellman, Paul T.; Shokat, Kevan M.; Wyrobek, Andrew J.; Bissell, Mina J.; McCormick, Frank; Kuo, Wen-Lin; Mills, Gordon B.; Gray, Joe W.; Korn, W. Michael

    2009-01-23T23:59:59.000Z

    Specific inhibitors of MEK have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We employed a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth-inhibition by small-molecule MEK inhibitors. Activation of the PI3 kinase pathway in response to MEK inhibition through a negative MEK-EGFR-PI3 kinase feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3 kinase produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.

  2. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect (OSTI)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03T23:59:59.000Z

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  3. Preparation of Single Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges

    E-Print Network [OSTI]

    Sadhanala, Aditya; Deschler, Felix; Thomas, Tudor H; Dutton, Siân E.; Goedel, Karl C.; Hanusch, Fabian C.; Lai, May L.; Steiner, Ullrich; Bein, Thomas; Docampo, Pablo; Cahen, David; Friend, Richard H.

    2014-07-09T23:59:59.000Z

    ?inorganic perovskite (CH3NH3PbI3?xClx) solar cells now show photovoltaic (PV) performance1?4 approaching 18%,5,6 and high charge-carrier mobilities.7 Perovskite films have also shown promising photoluminescence quantum efficiencies (PLQEs) of more than 70% and lasing... .; Grat?zel, M.; Mhaisalkar, S.; Sum, T. C. Low-Temperature Solution- Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476?480. (9) Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.- D.; Higler, R.; Hu?ttner, S...

  4. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect (OSTI)

    Zhang, Shuyu; Turnbull, Graham A., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)] [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2013-11-18T23:59:59.000Z

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275?nm and 335?nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  5. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21T23:59:59.000Z

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  6. High-Spin Cobalt Hydrides for Catalysis

    SciTech Connect (OSTI)

    Holland, Patrick L. [Yale University] [Yale University

    2013-08-29T23:59:59.000Z

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  7. Inhibition of Survivin and Aurora B Kinase Sensitizes Mesothelioma Cells by Enhancing Mitotic Arrests

    SciTech Connect (OSTI)

    Kim, Kwang Woon [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Mutter, Robert W. [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Willey, Christopher D. [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Subhawong, Ty K. [Department of Radiation Oncology, University of Pennsylvania Health System, Philadelphia, PA (United States); Shinohara, Eric T. [Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD (United States); Albert, Jeffrey M. [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Ling Geng [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Cao, Carolyn [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Gi, Young Jin [Department of Surgical Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States); Bo Lu [Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (United States)]. E-mail: bo.lu@vanderbilt.edu

    2007-04-01T23:59:59.000Z

    Purpose: Survivin, a member of the inhibitor of apoptosis gene family, has also been shown to regulate mitosis. It binds Aurora B kinase and the inner centromere protein to form the chromosome passenger complex. Both Aurora B and survivin are overexpressed in many tumors. In this study, we examined whether irradiation affected survivin and Aurora B expression in mesothelioma cells, and how inhibition of these molecules affected radiosensitivity. Methods and Materials: ZM447439 and survivin antisense oligonucleotides were used to inhibit survivin and Aurora B kinase respectively. Western blot was performed to determine the expression of survivin, Aurora B, phosphorylated-histone H3 (Ser 10), and caspase cleavage. Multinucleated cells were counted using flow cytometry, and cell survival after treatment was determined using clonogenic assay. Results: At 3-Gy irradiation an increase was observed in levels of survivin and Aurora B as well as the kinase activity of Aurora B, with an increase in G2/M phase. The radiation-induced upregulation of these molecules was effectively attenuated by antisense oligonucleotides against survivin and a small-molecule inhibitor of Aurora B, ZM447439. Dual inhibition of survivin and Aurora B synergistically radiosensitized mesothelioma cells with a dose enhancement ratio of 2.55. This treatment resulted in increased formation of multinucleated cells after irradiation but did not increase levels of cleaved caspase 3. Conclusion: Inhibition of survivin and Aurora B induces mitotic cell arrest in mesothelioma cells after irradiation. These two proteins may be potential therapeutic targets for the enhancement of radiotherapy in malignant pleural mesothelioma.

  8. Structure-Based Inhibitor Design for an Enzyme That Binds Different Steriods

    SciTech Connect (OSTI)

    Qiu,W.; Zhou, M.; Mazumdar, M.; Azzi, A.; Ghanmi, D.; Luu-The, V.; Labrie, F.; Lin, S.

    2007-01-01T23:59:59.000Z

    Human type 5 17{beta}-hydroxysteroid dehydrogenase plays a crucial role in local androgen formation in prostate tissue. Several chemicals were synthesized and tested for their ability to inhibit this enzyme, and a series of estradiol derivatives bearing a lactone on the D-ring were found to inhibit its activity efficiently. The crystal structure of the type 5 enzyme in complex with NADP and such a novel inhibitor, EM1404, was determined to a resolution of 1.30 {angstrom}. Significantly more hydrogen bonding and hydrophobic interactions were defined between EM1404 and the enzyme than in the substrate ternary complex. The lactone ring of EM1404 accounts for important interactions with the enzyme, whereas the amide group at the opposite end of the inhibitor contributes to the stability of three protein loops involved in the construction of the substrate binding site. EM1404 has a strong competitive inhibition, with a K{sub i} of 6.9 {+-} 1.4 nM, demonstrating 40 times higher affinity than that of the best inhibitor previously reported. This is observed despite the fact that the inhibitor occupies only part of the binding cavity. Attempts to soak the inhibitor into crystals of the binary complex with NADP were unsuccessful, yielding a structure with a polyethylene glycol fragment occupying the substrate binding site. The relative crystal packing is discussed. Combined studies of small molecule inhibitor synthesis, x-ray crystallography, enzyme inhibition, and molecular modeling make it possible to analyze the plasticity of the substrate binding site of the enzyme, which is essential for developing more potent and specific inhibitors for hormone-dependent cancer therapy.

  9. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer

    SciTech Connect (OSTI)

    Drygin, Denis, E-mail: ddrygin@cylenepharma.com; Ho, Caroline B.; Omori, Mayuko; Bliesath, Joshua; Proffitt, Chris; Rice, Rachel; Siddiqui-Jain, Adam; O'Brien, Sean; Padgett, Claire; Lim, John K.C.; Anderes, Kenna; Rice, William G.; Ryckman, David

    2011-11-11T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.

  10. Spectroscopic accuracy directly from quantum chemistry: Application to ground and excited states of beryllium dimer

    SciTech Connect (OSTI)

    Sharma, Sandeep; Booth, George H.; Chan, Garnet Kin-Lic, E-mail: gkc1000@gmail.com [Department of Chemistry, Frick Laboratory, Princeton University, New Jersey 08544 (United States); Yanai, Takeshi [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)] [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Umrigar, C. J. [Laboratory of Atomic and Solid State Physics, Cornell University, New York 14853 (United States)] [Laboratory of Atomic and Solid State Physics, Cornell University, New York 14853 (United States)

    2014-03-14T23:59:59.000Z

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D{sub e} = 931.2 cm{sup ?1} which agrees very well with recent experimentally derived estimates D{sub e} = 929.7±2 cm{sup ?1} [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D{sub e}= 934.6 cm{sup ?1} [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D{sub e} = 938±15 cm{sup ?1} [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D{sub e}=935.1±10 cm{sup ?1} [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 {sup 1}?{sub g}{sup ?} state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

  11. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    SciTech Connect (OSTI)

    Tsirulnikov, Kirill; Abuladze, Natalia [Department of Medicine, University of California at Los Angeles, CA 90095 (United States)] [Department of Medicine, University of California at Los Angeles, CA 90095 (United States); Bragin, Anatol [Department of Neurology, University of California at Los Angeles, CA 90095 (United States) [Department of Neurology, University of California at Los Angeles, CA 90095 (United States); Brain Research Institute, University of California at Los Angeles, CA 90095 (United States); Faull, Kym [Brain Research Institute, University of California at Los Angeles, CA 90095 (United States) [Brain Research Institute, University of California at Los Angeles, CA 90095 (United States); Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, CA 90095 (United States); Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, CA 90095 (United States); Cascio, Duilio [Institute of Genomics and Proteomics, University of California at Los Angeles, CA 90095 (United States)] [Institute of Genomics and Proteomics, University of California at Los Angeles, CA 90095 (United States); Damoiseaux, Robert; Schibler, Matthew J. [California NanoSystems Institute, University of California at Los Angeles, CA 90095 (United States)] [California NanoSystems Institute, University of California at Los Angeles, CA 90095 (United States); Pushkin, Alexander, E-mail: apushkin@mednet.ucla.edu [Department of Medicine, University of California at Los Angeles, CA 90095 (United States)] [Department of Medicine, University of California at Los Angeles, CA 90095 (United States)

    2012-09-15T23:59:59.000Z

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by ?-lyase. The enzymes of the GSH-conjugation pathway and ?-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a ?-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  12. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  13. Chemical technology division: Annual technical report 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  14. Chemical Technology Division annual technical report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  15. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    SciTech Connect (OSTI)

    Wenwan Zhong

    2003-08-05T23:59:59.000Z

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  16. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect (OSTI)

    Filone, Claire Marie [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Heise, Mark [Departments of Genetics and Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599 (United States); Doms, Robert W. [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20T23:59:59.000Z

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  17. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    SciTech Connect (OSTI)

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier, E-mail: olivier.dormond@chuv.ch

    2013-08-16T23:59:59.000Z

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

  18. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect (OSTI)

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03T23:59:59.000Z

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  19. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

    2012-04-13T23:59:59.000Z

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  20. Comprehensive Mechanisms for Combustion Chemistry: An Experimental and Numerical Study with Emphasis on Applied Sensitivity Analysis

    SciTech Connect (OSTI)

    Dryer, Frederick L.

    2009-04-10T23:59:59.000Z

    This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10-2 to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H2/O2 or H2/O2)by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H2/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the developed mechanisms and to assess the uncertainties in elementary rate constant evaluations.

  1. Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes

    E-Print Network [OSTI]

    Deepa Subramanian; Mikhail A. Anisimov

    2013-09-27T23:59:59.000Z

    Hydrotropes are amphiphilic molecules that are too small to spontaneously form equilibrium structures in aqueous solutions, but form dynamic, noncovalent assemblies, referred to as clusters. In the presence of a hydrophobic compound, these clusters seem to get stabilized leading to the formation of long-lived, highly stable mesoscopic droplets, a phenomenon that we call mesoscale solubilization. In this work, we focus on the unusual mesoscopic properties of aqueous solutions of a nonionic hydrotrope, namely tertiary butyl alcohol (TBA), on addition of various hydrophobic compounds. Aqueous TBA solutions, in about 3 to 8 mol percent TBA concentration range and about 0 to 25 deg. C temperature range, show the presence of short-ranged (0.5 nm), short-lived (tens of picoseconds) molecular clusters which result in anomalies of the thermodynamic properties. These clusters are transient but do not relax by diffusion, thus distinctly different from conventional concentration fluctuations. In this concentration and temperature range, upon the addition of a third (more hydrophobic) component to TBA-water solutions, long-lived mesoscopic droplets of about 100 nm size are observed. In this work, we clarify the ambiguity behind the definition of solubility and elucidate the phenomenon of mesoscale solubilization. A systematic study of the macro and meso phase behavior of three ternary systems TBA-water-propylene oxide, TBA-water-isobutyl alcohol, and TBA-water-cyclohexane has been carried out. We differentiate between molecular solubility, mesoscale solubilization, and macroscopic phase separation. We have confirmed that practically stable aqueous colloids can be created from small molecules, without addition of surfactants or polymers. Such kind of novel materials may find applications in the design of various processes and products, ranging from pharmaceuticals to cosmetics and agrochemicals.

  2. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    SciTech Connect (OSTI)

    Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina)] [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)] [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

    2014-04-28T23:59:59.000Z

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  3. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

    2008-01-01T23:59:59.000Z

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  4. Energetics and structure in solvent: A dielectric continuum model of solvation combined with molecular mechanics, Ab Initio, and Semi-empirical molecular orbital treatments of the solute

    SciTech Connect (OSTI)

    Tawa, G.J. [Frederick Cancer Research and Development Center, MD (United States); Pratt, L.R.; Martin, R.L. [Los Alamos National Lab., NM (United States)

    1996-12-31T23:59:59.000Z

    We present a method for computing the electrostatic component of the solvation free energy, {Delta}G{sup el}, of a solute molecule in the presence of solvent modeled as a dielectric continuum. The method is based on an integral form of Poisson`s equation which is solved to obtain a distribution of induced polarization charge at the solute-solvent dielectric interface. The solution of Poisson`s equation is obtained by application of a boundary element procedure. The method is tested by comparing its predictions of {Delta}G{sup el} to exact values for several model problems. The method is then used in a variety of contexts to assess its qualitative prediction ability. It is first combined with a molecular mechanics treatment of the solute to evaluate the effects of aqueous solvent on the conformational equilibria of several small molecules of interest-these are N-methyl acetamide and alanine dipeptide. For both molecules dielectric continuum solvation predicts torsional free energies of solvation that are in accord with other more complete treatments of solvation. The method is then combined with ab initio and semi-empirical molecular orbital theory for the solute. Self consistent reaction field calculations (SCRF) are performed to evaluate the correlation is in general very good. Relative agreement with experiment is best for ions where electrostatics predominate and worst for non-polar neutral molecules were electrostatics are minor. Semi-empirical configuration interaction SCRF calculations are also performed in the presence of solvent in order to determine ground-to-excited state absorption energy shifts for formaldehyde and indole mine ground-to-excited state absorption energy shifts for formaldehyde and indole when placed in water. We find a rough correlation between transition energy shifts and the dipole moments of the initial and final states involved in the transition.

  5. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect (OSTI)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05T23:59:59.000Z

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  6. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors

    SciTech Connect (OSTI)

    Lin, David Yin-wei; Tanaka, Yoshimasa; Iwasaki, Masashi; Gittis, Apostolos G.; Su, Hua-Poo; Mikami, Bunzo; Okazaki, Taku; Honjo, Tasuku; Minato, Nagahiro; Garboczi, David N. (NIH); (Kyoto)

    2008-07-29T23:59:59.000Z

    Signaling through the programmed death 1 (PD-1) inhibitory receptor upon binding its ligand, PD-L1, suppresses immune responses against autoantigens and tumors and plays an important role in the maintenance of peripheral immune tolerance. Release from PD-1 inhibitory signaling revives 'exhausted' virus-specific T cells in chronic viral infections. Here we present the crystal structure of murine PD-1 in complex with human PD-L1. PD-1 and PD-L1 interact through the conserved front and side of their Ig variable (IgV) domains, as do the IgV domains of antibodies and T cell receptors. This places the loops at the ends of the IgV domains on the same side of the PD-1/PD-L1 complex, forming a surface that is similar to the antigen-binding surface of antibodies and T cell receptors. Mapping conserved residues allowed the identification of residues that are important in forming the PD-1/PD-L1 interface. Based on the structure, we show that some reported loss-of-binding mutations involve the PD-1/PD-L1 interaction but that others compromise protein folding. The PD-1/PD-L1 interaction described here may be blocked by antibodies or by designed small-molecule drugs to lower inhibitory signaling that results in a stronger immune response. The immune receptor-like loops offer a new surface for further study and potentially the design of molecules that would affect PD-1/PD-L1 complex formation and thereby modulate the immune response.

  7. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    SciTech Connect (OSTI)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)

    2012-03-27T23:59:59.000Z

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  8. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    SciTech Connect (OSTI)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01T23:59:59.000Z

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  9. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    SciTech Connect (OSTI)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01T23:59:59.000Z

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5?-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Ĺ resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine ?-lyase and methionine ?-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the ?-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  10. A Substructure Combination Strategy To Create Potent and Selective Transthyretin Kinetic Stabilizers That Prevent Amyloidogenesis and Cytotoxicity

    SciTech Connect (OSTI)

    Choi, Sungwook; Reixach, Natlia; Connelly, Stephen; Johnson, Steven M.; Wilson, Ian A.; Kelly, Jeffery W. (Scripps)

    2010-08-13T23:59:59.000Z

    Transthyretin aggregation-associated proteotoxicity appears to cause several human amyloid diseases. Rate-limiting tetramer dissociation and monomer misfolding of transthyretin (TTR) occur before its aggregation into cross-{beta}-sheet amyloid fibrils. Small molecule binding to and preferential stabilization of the tetrameric state of TTR over the dissociative transition state raises the kinetic barrier for dissociation, imposing kinetic stabilization on TTR and preventing aggregation. This is an effective strategy to halt neurodegeneration associated with polyneuropathy, according to recent placebo-controlled clinical trial results. In three recent papers, we systematically ranked possibilities for the three substructures composing a typical TTR kinetic stabilizer, using fibril inhibition potency and plasma TTR binding selectivity data. Herein, we have successfully employed a substructure combination strategy to use these data to develop potent and selective TTR kinetic stabilizers that rescue cells from the cytotoxic effects of TTR amyloidogenesis. Of the 92 stilbene and dihydrostilbene analogues synthesized, nearly all potently inhibit TTR fibril formation. Seventeen of these exhibit a binding stoichiometry of >1.5 of a maximum of 2 to plasma TTR, while displaying minimal binding to the thyroid hormone receptor (<20%). Six analogues were definitively categorized as kinetic stabilizers by evaluating dissociation time-courses. High-resolution TTR-(kinetic stabilizer)2 crystal structures (1.31-1.70 {angstrom}) confirmed the anticipated binding orientation of the 3,5-dibromo-4-hydroxyphenyl substructure and revealed a strong preference of the isosteric 3,5-dibromo-4-aminophenyl substructure to bind to the inner thyroxine binding pocket of TTR.

  11. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect (OSTI)

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07T23:59:59.000Z

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  12. Molybdenum as a contact material in zinc tin oxide thin film transistors

    SciTech Connect (OSTI)

    Hu, W.; Peterson, R. L., E-mail: blpeters@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2014-05-12T23:59:59.000Z

    Amorphous oxide semiconductors are of increasing interest for a variety of thin film electronics applications. Here, the contact properties of different source/drain electrode materials to solution-processed amorphous zinc tin oxide (ZTO) thin-film transistors are studied using the transmission line method. The width-normalized contact resistance between ZTO and sputtered molybdenum is measured to be 8.7 ?-cm, which is 10, 20, and 600 times smaller than that of gold/titanium, indium tin oxide, and evaporated molybdenum electrodes, respectively. The superior contact formed using sputtered molybdenum is due to a favorable work function lineup, an insulator-free interface, bombardment of ZTO during molybdenum sputtering, and trap-assisted tunneling. The transfer length of the sputtered molybdenum/ZTO contact is 0.34??m, opening the door to future radio-frequency sub-micron molybdenum/ZTO thin film transistors.

  13. Artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane

    E-Print Network [OSTI]

    Boeckle, Christoph

    2012-01-01T23:59:59.000Z

    We discuss artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the solution to the problem. We show a substantial increase in accuracy of the computed values for drag and lift when compared with results for traditional boundary conditions. We also analyze the qualitative behavior of the solutions in terms of the streamlines of the flow. The new boundary conditions are universal in the sense that they depend on a given body only through one constant, which can be determined in a feed-back loop as part of the solution process.

  14. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    SciTech Connect (OSTI)

    Phipps, Eric T.; Eldred, Michael S.; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01T23:59:59.000Z

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  15. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    SciTech Connect (OSTI)

    Ng, A.; Liu, X.; Sun, Y. C.; Djuriši?, A. B. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. (China); Ng, A. M. C. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China and Nanostructure Institute for Energy and Environmental Research, Division of Physical Sciences, South University of Science and Technology of China, Shenzhen (China); Chan, W. K. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. (China)

    2013-12-04T23:59:59.000Z

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO{sub 2}) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO{sub 2}/P3HT:PCBM/V{sub 2}O{sub 5}/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V{sub 2}O{sub 5}/P3HT:PCBM/ZnO or TiO{sub 2}/Al). The results are shown in detail.

  16. Zinc Oxide Modified with Benzylphosphonic Acids as Transparent Electrodes in Regular and Inverted Organic Solar Cell Structures

    E-Print Network [OSTI]

    Ilja Lange; Sina Reiter; Juliane Kniepert; Fortunato Piersimoni; Michael Paetzel; Jana Hildebrandt; Thomas Brenner; Stefan Hecht; Dieter Neher

    2015-02-05T23:59:59.000Z

    An approach is presented to modify the WF of solution-processed sol-gel derived ZnOover an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using P3HT:PCBM as the active layer. These devices compete with or even exceed the performance of the reference cell on ITO/PEDOT:PSS. Our finding challenges the current view that bottom electrodes in inverted solar cells need to be electron-blocking for good device performance.

  17. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30T23:59:59.000Z

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  18. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); McBranch, Duncan W. (Santa Fe, NM); Robinson, Jeanne M. (Los Alamos, NM); Koskelo, Aaron C. (Los Alamos, NM); Love, Steven P. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  19. FeO0.7F1.3/C Nanocomposite as a High-Capacity Cathode Material for Sodium-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning [Brookhaven National Laboratory, Department of Chemistry, Uptown, NY (United States); Sina, Masha [Rutgers Univ., Materials and Engineering, Piscataway, NJ (United States); Pereira, Nathalie [Rutgers Univ., Energy Storage Research Group (ESRG), Piscataway, NJ (United States); Yu, Xiquian [Brookhaven National Laboratory, Department of Chemistry, Uptown, NY (United States); Amatucci, Glenn G. [Rutgers Univ., Energy Storage Research Group (ESRG), Piscataway, NJ (United States); Yang, Xiao-Qing [Brookhaven National Laboratory, Department of Chemistry, Uptown, NY (United States); Cosandey, Frederic [Rutgers Univ., Materials and Engineering, Piscataway, NJ (United States); Nam, Kyung-Wan [Dongguk University-Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering

    2015-02-01T23:59:59.000Z

    Searching high capacity cathode materials is one of the most important fields of the research and development of sodium-ion batteries (SIBs). Here, we report a FeO0.7F1.3/C nanocomposite synthesized via a solution process as a new cathode material for SIBs. This material exhibits a high initial discharge capacity of 496 mAh g-1 in a sodium cell at 50 °C. From the 3rd to 50th cycle, the capacity fading is only 0.14% per cycle (from 388 mAh g-1 at 3rd the cycle to 360 mAh g-1 at the 50th cycle), demonstrating superior cyclability. A high energy density of 650 Wh kg-1 is obtained at the material level. The reaction mechanism studies of FeO0.7F1.3/C with sodium show a hybridized mechanism of both intercalation and conversion reaction.

  20. Solution based prompt inorganic condensation and atomic layer deposition of Al{sub 2}O{sub 3} films: A side-by-side comparison

    SciTech Connect (OSTI)

    Smith, Sean W.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331-5501 (United States); Wang, Wei; Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2014-07-15T23:59:59.000Z

    A comparison was made of Al{sub 2}O{sub 3} films deposited on Si via prompt inorganic condensation (PIC) and atomic layer deposition (ALD). Current–voltage measurements as a function of annealing temperature indicate that the solution-processed PIC films, annealed at 500?°C, exhibit lower leakage and roughly equivalent breakdown strength in comparison to ALD films. PIC films are less dense than as-deposited ALD films and capacitance–voltage measurements indicate a lower relative dielectric constant. On the basis of x-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy, it is found that the 500?°C anneal results in the formation of a ?6?nm thick interfacial SiO{sub 2} layer at the Si interface. This SiO{sub 2} interfacial layer significantly affects the electrical performance of PIC Al{sub 2}O{sub 3} films deposited on Si.