Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

2

Wind energy resource atlas. Volume 8. The southern Rocky Mountain region  

DOE Green Energy (OSTI)

The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

3

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

4

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

6

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

7

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

8

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

9

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

10

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

11

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

12

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980  

DOE Green Energy (OSTI)

The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

1981-01-01T23:59:59.000Z

13

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northern Rockies Geothermal Region Northern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} Province is situated in northern Idaho and western Montana and includes folded mountains, fault-bounded uplifts, and volcanics formed during middle Cretaceous to late Eocene mountain period. The region is structtually cojmplex with faulting and folding asociated with eastward thrust faulting. Western Montana and northwestern Wyoming contain large areas of Tertiary volcanic rocks, including smaller localized Quaternary silicic volcanic rocks. Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Idaho, Montana Area 97,538 km²97,538,000,000 m²

14

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

15

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

16

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

17

Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains  

Science Conference Proceedings (OSTI)

The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and ...

Gregory T. Pederson; Stephen T. Gray; Toby Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich

2011-03-01T23:59:59.000Z

18

Natural Gas in the Rocky Mountains: Developing Infrastructure  

Reports and Publications (EIA)

This Supplement to EIA's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. The influence of these factors on regional prices and price volatility is examined.

Information Center

2007-09-20T23:59:59.000Z

19

About Rocky Mountain Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas. We sell more than 2.3 billion kilowatthours of power, generating from 19 hydroelectric plants. These plants are part of the Fryingpan-Arkansas Project and the Pick-Sloan...

20

Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981  

DOE Green Energy (OSTI)

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

None

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

22

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

23

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIAL PRODUCTION STIMULATION MARCH 31, 1998 FC970010 ROCKY MOUNTAIN OILFIELD TESTING CENTER Microbial Production Stimulation for: D. Michael Dennis Geomicrobial Technologies,...

24

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

25

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

26

Rocky Mountain Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

27

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

28

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

29

20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains,  

E-Print Network (OSTI)

, Rocky Mountains, Colorado, USA Matthew J. HOFFMAN,1 Andrew G. FOUNTAIN,2 Jonathan M. ACHUFF3 1 maps and aerial and ground-based photographs for the small cirque glaciers and glacierets of Rocky Mountain National Park in the northern Front Range of Colorado, USA, indicates modest change during the 20

Fountain, Andrew G.

30

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

32

Rocky Mountain Power - New Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

33

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

34

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

35

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

36

Rocky Mountain Power - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for contractor) Duct Sealing: 275 - 375 (75 for contractor) Windows: 1sq. ft. Insulation: 0.15 - 0.60sq. ft. Rocky Mountain Power offers the Home Energy Savings Program...

37

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

38

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

39

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

40

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

42

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

44

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

45

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

46

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

47

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

48

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

49

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

50

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Tilapia Aquaculture Low Temperature Geothermal Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility Rocky Mountain White Tilapia Sector Geothermal energy Type Aquaculture Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

51

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

52

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

53

The Role of Terrain and Pressure Stresses in Rocky Mountain Lee Cyclones  

Science Conference Proceedings (OSTI)

The earthatmosphere exchange of storm absolute dynamic circulation by mountain-induced surface pressure stress and the response of the circulation in a Rocky Mountain Ice cyclone is examined. Surface pressure stresses that transfer horizontal ...

Alan C. Czarnetzki; Donald R. Johnson

1996-04-01T23:59:59.000Z

54

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

55

Rocky Mountain Power - Self-Direction Credit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Maximum Rebate 80% Credit: $400,000 per calendar year 50% Credit: $50,000 per calendar year Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Customers receive credits equal to 50% or 80% of eligible expenses Provider Rocky Mountain Power Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through this program, customers who pursue self-investments in energy efficiency and related demand-side management projects can receive credits of up to 80% of

56

Southern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Rockies Geothermal Region Southern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Colorado, New Mexico Area 128,454 km²128,454,000,000 m² 49,583.244 mi² 1,382,666,010,600 ft² 153,630,984,000 yd² 31,741,625.67 acres USGS Resource Estimate for this Region Identified Mean Potential 0 MW0 kW 0 W 0 mW 0 GW 0 TW Undiscovered Mean Potential 1,010 MW1,010,000 kW 1,010,000,000 W 1,010,000,000,000 mW 1.01 GW 0.00101 TW Planned Capacity

57

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

58

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

LOW COST REFRACTURING LOW COST REFRACTURING JANUARY 23, 1998 FC9550/96PT14 RMOTC Test Report Number 96PT14 Low Cost Refracturing Rock Creek Enterprises 980 Rock Creek Road Buffalo, Wyoming 82834 (307) 684-5243 (307) 684-0902 (fax) David H. Doyle, Acting Project Manager Rocky Mountain Oilfield Testing Center January 23, 1998 Introduction There are relatively few stimulation options available to owners of marginal or stripper wells. These wells are commonly restricted in their production rates because of formation or wellbore damage near the wellbore. Current services available to remove this damage are compared to the small gains possible from old, marginal wells. Over time, several things can occur that cause the flow of oil into the wellbore to be restricted. First, carbonate or sulfate scale can accumulate around the well or in the perforations. The accumulated scale will block oil from

59

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

06/97DT15 06/97DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno, Acting Project Manager Rocky Mountain Oilfield Testing Center December 17, 1997 Introduction Directional drilling is more expensive than vertical drilling. This is due to the high maintenance cost of downhole motors and MWD systems required to control hole trajectory. In addition, directional holes have lower penetration rates due to the poor hole cleaning with a non-rotating string. Down time is often spent orienting tool face to obtain the desired trajectory after tile weight is placed on the bit and the reactive torque of the motor is absorbed by the drill string. Holes drilled in this manner often have a tortuous profile compared to holes drilled with a rotary system, increasing the torque

60

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPROVED ELASTOMER COMPOUND FOR IMPROVED ELASTOMER COMPOUND FOR PROGRESSIVE CAVITY PUMPS Cameron Elastomer Technology MARCH 23, 1998 FC9563/96PT17 RMOTC Test Report Number 96PT17 Improved Elastomer Compound for Progressive Cavity Pumps Cameron Elastomer Technology 29501 Katy Fwy Katy, Texas 77494-7801 (281) 391-4615 (281) 391-4640 (fax) David H. Doyle, PE, Project Manager Rocky Mountain Oilfield Testing Center March 23, 1998 Introduction The purpose of this project was to evaluate improved progressing cavity (PC) pump stator elastomer materials in NPR-3 crude under field conditions. The goal of the project was to test an elastomer material that can be used in high API-gravity (greater than 38' API) crude oils. Currently available materials used for the construction of pump stators swell and fail in contact with such crude oils. This limits the applicability of progressing cavity

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOMETER DYNAMOMETER Sandia National Laboratories FEBRUARY 10, 1998 FC9514 / 95PT6 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-

62

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

DYNAMOTER DYNAMOTER Sandia National Laboratories FEBRUARY 10, 1998 FC9542 / 96PT11 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-off state.

63

Rocky Mountain Sustainable Enterprises LLC | Open Energy Information  

Open Energy Info (EERE)

Enterprises LLC Enterprises LLC Jump to: navigation, search Name Rocky Mountain Sustainable Enterprises LLC Place Boulder, Colorado Zip 80302 Product Colorado-based biofuel producer, liquid waste recycler, and distributed resource consultancy. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAM MOUNTED GAS COMPRESSOR BEAM MOUNTED GAS COMPRESSOR (JACGAS COMPRESSOR) MARCH 3, 1998 FC970004/97PT23 RMOTC Test Report Number 97PT23 Jacgas Compressor Morrison International Iron Horse Compression Ltd. 9852-33 Avenue Edmonton, Alberta T6N 1C6 (403) 462-6847 David H. Doyle, Project Manager Rocky Mountain Oilfield Testing Center March 3, 1998 Introduction Gas compressors that mount on the walking beam of an oil well pumping unit have been tried with mixed success for many years. Gas compression at the wellhead instead of further downstream can 'increase both oil and gas production by reducing the casinghead gas pressure. Excess pressure on the annulus of the well reduces fluid inflow and restricts production. In old, shallow wells, the small amount of pressure (50 psi) may be sufficient to prevent the well from producing economically. Other applications include the unloading of water

65

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMICAL & MICROBIAL CHEMICAL & MICROBIAL PARAFFIN CONTROL PROJECT DECEMBER 17, 1997 FC9544 / 96PT12 RMOTC Test Report Paraffin Control Project BDM Oklahoma/NIPER 220 N. Virginia Bartlesville, OK 4003 918-336-2400, FAX 918-337-4365 Leo Giangiacomo, Project Manager Rocky Mountain Oilfield Testing Center December 17. 1997 Abstract This report summarizes the field performance results of a comparison of chemical and microbial paraffin control systems. The two systems were selected from laboratory screening work. Well selection was based on production rates, produced fluids, and prior paraffin treatments. The treatments were performed on similar groups of wells over the same period of time, using quantities and techniques recommended by the supplier specifically for the wells to be treated. The tests were conducted by the U. S. Department of

66

Secular Fluctuations of Temperature in the Rocky Mountain States and a Comparison with Precipitation Fluctuations  

Science Conference Proceedings (OSTI)

Fluctuations of temperature in the Rocky Mountain states of Idaho, Montana, Wyoming, Colorado and Utah are analyzed for the period 18911978. Prior to 1891, data for this area are too sparse to make meaningful generalizations. After screening ...

Raymond S. Bradley

1980-07-01T23:59:59.000Z

67

The Structure and Evolution of a Simulated Rocky Mountain Lee Trough  

Science Conference Proceedings (OSTI)

This paper describes the life cycle of a lee trough associated with the passage of a baroclinic wave over the Rocky Mountains based on two overlapping simulations by the Pennsylvania State University-National Center for Atmospheric Research ...

W. James Steenburgh; Clifford F. Mass

1994-12-01T23:59:59.000Z

68

Analyzing and Forecasting Rocky Mountain Lee Cyclogenesis Often Associated with Strong Winds  

Science Conference Proceedings (OSTI)

Since numerical forecast models often err in predicting the timing and location of lee cyclogenesis, a physically based method to diagnose such errors is sought. A case of Rocky Mountain lee cyclogenesis associated with strong winds is examined ...

David M. Schultz; Charles A. Doswell III

2000-04-01T23:59:59.000Z

69

ROMPEXThe Rocky Mountain Peaks Experiment of 1985: Preliminary Assessment  

Science Conference Proceedings (OSTI)

During the late summer of 1985 a field experiment was conducted to investigate mountaintop winds over a broad area of the Rocky Mountains extending from south central Wyoming through northern New Mexico. The principal motivation for this ...

Elmar R. Reiter; John D. Sheaffer; James E. Bossert; Richard C. Fleming; William E. Clements; J. T. Lee; Sumner Barr; John A. Archuleta; Donald E. Hoard

1987-04-01T23:59:59.000Z

70

Cold Fronts Aloft and the Forecasting of Precipitation and Severe Weather East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

Brief descriptions are given of four cases that illustrate the important role that cold fronts aloft (CFA) can play in producing significant weather cast of the Rocky Mountains. In all four cases, the CFA, and its associated short wave, were ...

Peter V. Hobbs; John D. Locatelli; Jonathan E. Martin

1990-12-01T23:59:59.000Z

71

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IN-SITU H IN-SITU H 2 S BIOREMEDIATION JULY 11, 1994 FC9509 / 95PT3 Rocky Mountain Oilfield Testing Center 907 North Poplar, Suite 100, Casper, WY 82601 (307) 261-5000, ext. 5060; FAX (307) 261-5997 IN-SITU H2S BIOREMEDIATION NATIONAL PARAKLEEN COMPANY PREPARED BY Fred Brown Michael R. Tyler 731 W.Wadley Field Engineer Building O July 11, 1994 Suite 130 Midland, Texas 79705 Phone (915)-683-3076 Fax (915)-683-3081 TEST PURPOSE: To treat producing oil wells that contain high concentrations of H2S with a product that will lower the levels of H2S in the well. METHOD OF TREATMENT: A bio-nutrient product (55 gallons) was mixed with 120 bbls of produced tensleep water and the mixture was pumped down the annulus of selected wells. The well was then shut-in for a 24 hour period and then was returned to production.

72

Factors Affecting Cold-Air Outbreaks East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

A two-layer isentropic model is used to examine the parameters controlling the severity of cold-air outbreaks east of the Rocky Mountains, and in particular the channeling effect of the mountain range. The case that is scrutinized is the cold-air ...

Gisela Hartjenstein; Rainer Bleck

1991-09-01T23:59:59.000Z

73

State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979  

SciTech Connect

The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

Griffith, J.L. (comp.)

1980-08-01T23:59:59.000Z

74

Overview of Rocky Mountain Region's Capital Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Workshop Planning Workshop Overview of Western's Current Transmission Planning Activities Robert H. Easton aeaston@wapa.gov (970) 461-7272 Transmission Planning - North Loveland, CO June 21, 2011 1 Transmission Planning Workshop AGENDA - 10-Yr Network Study Process NERC TPL- Study Process Capital Investment Plan 2 Transmission Planning Workshop 2011 10-YR Network Load Forecast Study and Process Transmission Planning Loveland, CO June 21, 2011 3 Purpose  Evaluate the steady state load serving capability of the integrated system.  Identify problem areas due to projected system load growth.  Allows for inclusion of necessary projects in Capital Investment Plan (CIP).  Ensure that system development keeps pace with load growth in order to continue serving Preference

75

Overview of Rocky Mountain Region's Capital Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital Investment Plan 2 Transmission Planning Workshop 2011 10-YR Network Load Forecast Study and Process Transmission Planning Loveland, CO June 21, 2011 3 Purpose ...

76

SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT F-62 Rocky Mountain Mule Deer  

E-Print Network (OSTI)

. USDA . Monthly Contract Report. 1986-2005. Farm Services Agency. U.S. Dept. Agriculture. Washington D 1978; Goggans 1986; Howie and Ritchie 1987; Reynolds and Linkhart 1992; Powers et al. 1996). In centralSOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT F-62 Rocky Mountain Mule Deer

77

Landscape and Urban Planning 71 (2005) 263275 Bird communities of the Colorado Rocky Mountains  

E-Print Network (OSTI)

at each survey point and derived digital land-cover maps from aerial photographs to characterizeLandscape and Urban Planning 71 (2005) 263­275 Bird communities of the Colorado Rocky Mountains and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA Received 11

Fraterrigo, Jennifer

78

Norwegian-Type and Cold Front AloftType Cyclones East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

Conventional data and mesoscale model simulations are used to analyze two cyclones that developed east of the Rocky Mountains in June and November 1998. Both cyclones formed when a Pacific cold front overtook a lee trough/dryline east of the ...

John D. Locatelli; Ralph D. Schwartz; Mark T. Stoelinga; Peter V. Hobbs

2002-02-01T23:59:59.000Z

79

Retail gasoline prices in the Rocky Mountains fall as U.S ...  

U.S. Energy Information Administration (EIA)

... gasoline prices in the Rockies were 41 cents below the U.S. average, which was a record for the region since EIA began tracking regional retail price data in 1992.

80

Assessing the Performance of Multiple Regional Climate Model Simulations for Seasonal Mountain Snow in the Upper Colorado River Basin  

Science Conference Proceedings (OSTI)

This study assesses the performance of the regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program (NARCCAP) for the Upper Colorado River basin (UCRB), U.S. Rocky Mountains. The UCRB is a major ...

Nadine Salzmann; Linda O. Mearns

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Density of Freshly Fallen Snow in the Central Rocky Mountains  

Science Conference Proceedings (OSTI)

New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured ...

Arthur Judson; Nolan Doesken

2000-07-01T23:59:59.000Z

82

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

83

A Rocky Mountain Storm. Part II: The Forest Blowdown over the West Slope of the Northern Colorado MountainsObservations, Analysis, and Modeling  

Science Conference Proceedings (OSTI)

A devastating winter storm affected the Rocky Mountain states over the 3-day period of 2426 October 1997. Blizzard conditions persisted over the foothills and adjoining plains from Wyoming to southern New Mexico, with maximum total snowfall ...

Michael P. Meyers; John S. Snook; Douglas A. Wesley; Gregory S. Poulos

2003-08-01T23:59:59.000Z

84

Regional geology and geophysics of the Jemez Mountains  

DOE Green Energy (OSTI)

The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

West, F.G.

1973-08-01T23:59:59.000Z

85

Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity  

Science Conference Proceedings (OSTI)

Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

Hadder, G.R.; Chin, S.M.

1994-02-01T23:59:59.000Z

86

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC RMOTC The Rocky Mountain Oilfield Testing Center (RMOTC), is an operating oil field focusing on environmentally-balanced energy technologies and alternatives, and is the premiere energy testing and demonstration field in the nation. 3 3 * the opportunity to explore environmentally- balanced solutions to the nation's energy issues * opportunities to develop, demonstrate, and evaluate a variety of energy related technologies * a chance to collaborate with top professionals in the energy, environmental technology, and engineering fields * shared industry knowledge through technology transfer via reports, journal articles, and presentations Located within the Naval Petroleum Reserve No. 3 (NPR-3) near Casper, Wyoming, RMOTC offers: RMOTC Offers Solutions 4 4 The Administration and Engineering

87

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01T23:59:59.000Z

88

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

Lunis, B.C. (ed.)

1982-08-01T23:59:59.000Z

89

Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory  

SciTech Connect

Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

2008-10-01T23:59:59.000Z

90

Thunderstorm Genesis Zones in the Colorado Rocky Mountains as Determined by Traceback of Geosynchronous Satellite Images  

Science Conference Proceedings (OSTI)

Mountain thunderstorms often originate in preferred regions of the topography, as shown qualitatively by pilot reports and more quantitatively by meteorological radar, satellite, and lightning detector studies. To further investigate the ...

Robert M. Banta; Crystal Barker Schaaf

1987-02-01T23:59:59.000Z

91

A Five-Year Climatology of Elevated Severe Convective Storms in the United States East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

A 5-yr climatology of elevated severe convective storms was constructed for 198387 east of the Rocky Mountains. Potential cases were selected by finding severe storm reports on the cold side of surface fronts. Of the 1826 days during the 5-yr ...

Katherine L. Horgan; David M. Schultz; John E. Hales Jr.; Stephen F. Corfidi; Robert H. Johns

2007-10-01T23:59:59.000Z

92

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Playing Hide and Seek with Playing Hide and Seek with the Hole-in-the-Wall Gang: Recent Technology Testing at Wyoming's Rocky Mountain Oilfield Testing Center (RMOTC) A presentation for The Salt Lake City SPE Chapter October 19, 2005 Tom Anderson Business Development Manager Data Management Project Manager RMOTC Outline * What is RMOTC? * The Hole-in-the-Wall Gang * "Virtual Field Trip" of Teapot Dome * Hiding: - CO 2 Sequestration - Pipeline Leak Detection * Seeking: - Microhole Drilling - High Pressure Jet-Assisted Drillbit - Flow Assurance Test Loop - Tubing Rotator * Sharing Data With Partners The Hole-in-the-Wall Gang Wyoming Doug Judith Spike Joe Brian Jim Mark Ralph Vicki Lyle Butch and Sundance \A1;Flow Assurance Loop 011 024 020 029 032 023 026 033 005 028 021 027 022 004 023 024 034 035 008 025 021 013 003 036 009 017 002 001

93

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

& Renewable Energy Scoping Meeting & Renewable Energy Scoping Meeting March 26, 2004 2 2 RMOTC The Rocky Mountain Oilfield Testing Center (RMOTC), is an operating oil field focusing on environmentally-balanced energy technologies and alternatives, and is the premiere energy testing and demonstration field in the nation. 3 3 * the opportunity to explore environmentally- balanced solutions to the nation's energy issues * opportunities to develop, demonstrate, and evaluate a variety of energy related technologies * a chance to collaborate with top professionals in the energy, environmental technology, and engineering fields * shared industry knowledge through technology transfer via reports, journal articles, and presentations Located within the Naval Petroleum Reserve No. 3 (NPR-3) near Casper, Wyoming, RMOTC offers:

94

A Synoptic Weather Pattern and Sounding-Based Climatology of Freezing Precipitation in the United States East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

An analysis of 411 winter storms that produced freezing precipitation events in the United States east of the Rocky Mountains over the 25-yr period of 197094 is presented to identify specific weather patterns associated with freezing ...

Robert M. Rauber; Larry S. Olthoff; Mohan K. Ramamurthy; Dianne Miller; Kenneth E. Kunkel

2001-10-01T23:59:59.000Z

95

Synoptic-Scale Environments of Predecessor Rain Events Occurring East of the Rocky Mountains in Association with Atlantic Basin Tropical Cyclones  

Science Conference Proceedings (OSTI)

The synoptic-scale environments of predecessor rain events (PREs) occurring to the east of the Rocky Mountains in association with Atlantic basin tropical cyclones (TCs) are examined. PREs that occurred during 19882010 are subjectively classified ...

Benjamin J. Moore; Lance F. Bosart; Daniel Keyser; Michael L. Jurewicz

2013-03-01T23:59:59.000Z

96

Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint  

DOE Green Energy (OSTI)

Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

2004-03-01T23:59:59.000Z

97

Two Case Studies of Wintertime Cloud Systems over the Colorado Rockies  

Science Conference Proceedings (OSTI)

The economical importance of the winter snowpack to the Colorado Rocky Mountain region (e.g., weather modification potential, ski industry, avalanche prediction, snow removal, etc.) calls for an understanding of how the mountain environment and ...

Robert R. Lee

1984-03-01T23:59:59.000Z

98

DOE/EA-1583: Final Site-wide Environmental Assessment and Finding of No Significant Impact for Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3 (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROCKY MOUNTAIN OILFIELD TESTING CENTER / ROCKY MOUNTAIN OILFIELD TESTING CENTER / NAVAL PETROLEUM RESERVE NO. 3 FINAL Site-wide Environmental Assessment and Finding of No Significant Impact October 2008 U.S. Department of Energy Rocky Mountain Oilfield Testing Center 907 N. Poplar Street, Suite 150 Casper WY 82601 DOE/EA-1583 Rocky Mountain Oilfield Testing Center / Naval Petroleum Reserve No.3 Final Site-Wide Environmental Assessment i TABLE OF CONTENTS Section Page ABBREVIATIONS AND ACRONYMS.................................................................................................vii SUMMARY ................................................................................................................................................ix 1.0 INTRODUCTION .........................................................................................................................1

99

Drilling in the Rockies  

Science Conference Proceedings (OSTI)

Despite rugged drilling conditions and high drilling costs, rig employment and drilling operations in the Rocky Mountain region of the Overthrust Belt have increased significantly since 1979. Rate of rig employment, well depths, and number of operating companies and contractors in the area are reported. By October 1980, more than 500 active rigs were working in the region, 30% more than were working during the entirety of 1979. (3 photos)

Peacock, D.

1980-12-01T23:59:59.000Z

100

Western Area Power Administration Rocky Mountain Region (RMR)  

NLE Websites -- All DOE Office Websites (Extended Search)

(RMR) (RMR) Meter Application Agreement (Boundary Meter, Revenue Meter, Delivery Point Change, or Usage or Ownership Change) Agreement Number and Effective Date (to be assigned by Western): Requesting Company Name: Street Address: City: State: Zip Code: Meter Type: Boundary Revenue Type of meter work requested (define project scope): Drawing Requirement: Please include a Utility System or Substation Single Line diagram of the proposed meter location. A legible, hand drawn diagram is acceptable.

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Structure and Evolution of Cold Surges East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

Northerly surges of cold air often move southward along the eastern side of the Rockies from southern Canada into Mexico. The strongest surges, which generally develop in midwinter, are associated with temperature decreases and pressure rises of ...

Brian A. Colle; Clifford F. Mass

1995-09-01T23:59:59.000Z

102

RWU 4201 Wildlife Ecology in Rocky Mountain Landscapes A Winter Survey Method for Detecting and  

E-Print Network (OSTI)

in the Pioneer, Anaconda-Pintler, Flint Creek, and Beaverhead mountain ranges in southwest Montana. We began

103

Rocky Mountain (PADD 4) Ending Stocks of Natural Gas Liquids and ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Rocky ... 1,900: 2000's: 1,774: 1,914: 2,139: 1,916: 1,611: 1,553: 1,549: 1,503: 1,418: 1,513: 2010's: 1,435 ...

104

Gas reservoir sweet spot detection and delineation in Rocky Mountain laramide basins. Topical report, May 1993-March 1996  

SciTech Connect

The determination of the position and configuration of the pressure boundary between normal and anomalously pressured regimes, and the detection and delineation of porosity/permeability `sweet spots` below this boundary are the two most important elements in exploring for basin-center or deep-basin gas in Rocky Mountain Laramide Basins. These two exploration elements from the basis for a new exploration paradigm. To utilize this new paradigm, the following tasks need to be included in the exploration strategy: (1) determine the position of the pressure boundary; (2) evaluate the three-dimensional aspects of the pressure boundary surface; (3) determine which depositional facies has the greatest potential for enhances storage capacity and deliverability below the pressure boundary; (4) document the determinative factors that control sweet spot development in the targeted lithofacies; and (5) detect and delineate sweet spots using 2-D and 3-D models of eletric log responses and seismic data.

Surdam, R.C.; Iverson, W.O.; Yin, P.

1995-10-01T23:59:59.000Z

105

Evaluation of habitat use by Rocky Mountain elk (Cervus elaphus nelsoni) in north-central New Mexico using global positioning system radio collars  

SciTech Connect

In 1996 the authors initiated a study to identify habitat use in north-central New Mexico by Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. They collared six elk in the spring of 1996 with GPS radio collars programmed to obtain locational fixes every 23 h. Between April 1, 1996 and January 7, 1997, they collected >1,200 fixes with an approximately 70% observation rate. They have interfaced GPS locational fixes of elk and detailed vegetation maps using the geographical information system to provide seasonal habitat use within mountainous regions of north-central New Mexico. Based on habitat use and availability analysis, use of grass/shrub and pinon/juniper habitats was generally higher than expected during most seasons and use of forested habitats was lower than expected. Most of the collared elk remained on LANL property year-round. The authors believe the application of GPS collars to elk studies in north-central New Mexico to be a more efficient and effective method than the use of VHF (very-high frequency) radio collars.

Biggs, J.; Bennett, K.; Fresquez, P.R.

1997-04-01T23:59:59.000Z

106

The Influence of the Rocky Mountain on the 1314 April 1986 Severe Weather Outbreak. Part I: Mesoscale Lee Cyclogenesis and Its Relationship to Severe Weather and Dust Storms  

Science Conference Proceedings (OSTI)

In this first of a two paper series, a sequence of dynamical processes involving the evolution of a mesoscale Ice cyclone and its subsequent interaction with a mesoscale tropopause fold downstream of the Rocky Mountains is investigated. These ...

V. Mohan Karyampudi; Michael L. Kaplan; Steven E. Koch; Robert J. Zamora

1995-05-01T23:59:59.000Z

107

Annual Snowpack Patterns across the Rockies: Long-Term Trends and Associated 500-mb Synoptic Patterns  

Science Conference Proceedings (OSTI)

Winter snowpack was investigated to determine spatial and temporal climate variability in a five-state region (Colorado, Idaho, Montana, Utah, and Wyoming) in the northern Rocky Mountains, covering the period 195185. Annual 1 April snowpack (SN) ...

David Changnon; Thomas B. McKee; Nolan J. Doesken

1993-03-01T23:59:59.000Z

108

Revised Livermore seismic hazard estimates for sixty-nine nuclear power plant sites east of the Rocky Mountains. Final report, July 1993--March 1994  

SciTech Connect

The draft version of this report presented updated Lawrence Livermore National Laboratory (LLNL) probabilistic seismic hazard analysis estimates for 69 nuclear power plant sites in the region of the United States east of the Rocky Mountains. LLNL performed a re-elicitation of seismicity and ground motion experts to improve their estimates of uncertainty in seismicity parameters and ground motion models. Using these revised inputs, LLNL updated the seismic hazard estimates documented in NUREG/CR-5250 (1989). These updated hazard estimates will be used in future NRC actions. The draft was issued for public comment in October 1993. By the end of the public comment period, February 28, 1994, comments had been received from two nuclear industry companies. The comments from these companies neither contested nor suggested amendments to the technical data conveyed in the report. Rather, they both suggest changes in the Individual Plant External Event Examination (IPEEE) program scope. This report is not the forum for discussion of the IPEEE program. Possible modification to the scope of the IPEEE will be examined in its own setting. Therefore, there are no technical differences between the draft report and this final report. Any information as to modifications to the IPEEE program will be provided to the public via an NRC general communication.

Sobel, P.

1994-04-01T23:59:59.000Z

109

On glacier retreat and drought cycles in the Rocky Mountains of Montana and Canada  

E-Print Network (OSTI)

in the strength of the Aleutian Low and conditions in thethe strength of the Aleutian Low and the temperature ofin the region of the Aleutian Low appears likely, although

Berger, Wolfgang H

2009-01-01T23:59:59.000Z

110

Regional hydrothermal commercialization plan  

SciTech Connect

This plan for the Rocky Mountain Basin and Range Region articulates the complete range of initiatives (federal, state, local, and industrial) required for the early commercialization of the regions geothermal resources. (MHR)

1978-07-14T23:59:59.000Z

111

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

112

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

A Secure Domestic Energy Supply CBM Fair June 3, 2004 4 4 The Challenges of Meeting the Demands of a Growing Economy Balancing Natural Gas Policy 5 5 * Recognizes Importance of Achieving Reliable, Affordable and Secure Energy * Comprehensive in Scope * Integrated Purpose and Application * Natural Gas Key - Staple of Electric Power * Diverse and New Energy Sources Required * Energy Efficiency and Conservation * Protect Environment - Science Based * www.whitehouse.gov/energy/ National Energy Policy 6 6 * Proposed Royalty Relief in Deep Water * Interagency Activities with Department of Interior - Access To Lands * BLM and MMS Improving Processing of Permits and Lease Sales * BLM Regional Task Forces on Drilling Applications NEP Steps Underway 7 7 * DOE Promoting Improved Exploration Technology -

113

Analysis of natural gases, Rocky Mtn. Region (AZ, CO, MT, NM, UT and WY), 1951-1991 (for microcomputers). Data file  

Science Conference Proceedings (OSTI)

The U.S. Bureau of Mines diskette contains analysis and related source data for 2,545 natural gas samples collected from Rocky Mountain Region, which include the following states: Arizona, Colorado, Montana, New Mexico, Utah, and Wyoming. All samples were obtained and analyzed as part of the Bureau's investigations of the occurrences of helium in natural gases of countries with free market economies. The survey has been conducted since 1917. The analysis contained on the diskette: READ.ME, RCKMTN.TXT, RCKMTN.DBF, USHEANAL.DBF, and BASINCDE.TXT. The READ.ME file contains documentation. The RCKMTN.TXT file contains 2,545 natural gas analysis records in ASCII nondelimited, fixed-length format. The length of each record is 411 characters.

Not Available

1991-01-01T23:59:59.000Z

114

Rocky Mountain's Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

most of Wyoming, Nebraska and northeastern Kansas to wholesale customers such as towns, rural electric cooperatives, public utility and irrigation districts, Federal, state, and...

115

A Multiscale and Multidisciplinary Investigation Of EcosystemAtmosphere CO2 Exchange Over the Rocky Mountains of Colorado  

Science Conference Proceedings (OSTI)

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surfaceatmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of ...

Jielun Sun; Steven P. Oncley; Sean P. Burns; Britton B. Stephens; Donald H. Lenschow; Teresa Campos; Andrew S. Watt; Russell K. Monson; David J. P. Moore; Jia Hu; Mark Tschudi; David S. Schimel; Steven Aulenbach; William J. Sacks; Stephan F. J. De Wekker; Chun-Ta Lai; Brian Lamb; Eugene Allwine; Teresa Coons; Dennis Ojima; Patrick Z. Ellsworth; Leonel S. L. Sternberg; Sharon Zhong; Craig Clements; Dean E. Anderson

2010-02-01T23:59:59.000Z

116

A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material  

Science Conference Proceedings (OSTI)

Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

Horn, L.L. (Univ. of Florida, Gainesville, FL (United States). Dept. of Geology); Hall, R.D. (Indiana Univ.--Purdue Univ., Indianapolis, IN (United States). Dept. of Geology)

1993-04-01T23:59:59.000Z

117

Microsoft Word - Rockies Pipelines and Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

07 07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. * Natural gas reserves in the Rocky Mountain States account for nearly 22 percent of the total natural gas reserves in the United States, and are

118

Rockies | OpenEI  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 94, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Rockies Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 258.8 KiB)

119

Best of the Canadian RoCkies  

E-Print Network (OSTI)

to beautiful Moraine Lake; the crystal-clear lake is nestled in the Valley of the Ten Peaks. Return to your adventure on the Athabasca River led by Rocky Mountain River Guides; and a trip on the Jasper Tramway

Connor, Ed

120

Sequence of surface meteorological variables with the passage of winter cold fronts in the United States east of the Rocky Mountains  

E-Print Network (OSTI)

According to the 80-year-old Norwegian cyclone model, fronts are pressure troughs, extensions of a mid-latitude cyclone. Thus, a cold frontal passage is evidenced at the surface by a minimum in air pressure and a corresponding wind shift. In addition, decreases in both temperature and humidity also occur. This conceptual model assumes that these changes are nearly coincident in time; however, this is usually not the case. Strict adherence to the model is the basis for the highly subjective single line drawn on a synoptic chart to indicate a front. To evaluate the behavior of meteorological variables with cold frontal passage, data was collected for seven American cities east of the Rocky Mountains, including NMC/NCEP 3-hourly surface analyses and NCDC archived hourly surface observations during three consecutive winters (October 1-March 31). Surface analyses were used to estimate the time of frontal passage. Using these estimates as a guide, the hourly observations were employed to determine the specific hours at which each meteorological variable demonstrated a change that could be conclusively attributed to the frontal passage. The four meteorological variables scrutinized include temperature, moisture (dew point), wind (direction), and pressure. Significance of means tests were applied to assess the statistical significance of the differences between the timing of each pair of variables (temperature vs. wind, dew point vs. pressure, etc.). Statistically significant differences mathematically validate the sequence of the means and suggest the likely repeatability of the sequence. At all locations and for all subsets of fronts, the pressure rise and the wind shift consistently precede the decreases in temperature and dew point. The timing of the pressure rise, however, is nearly indistinguishable from the wind shift, and likewise, there is rarely any significant difference between the decrease in temperature and the decrease in dew point. While all the variables are essentially coincident in time for some fronts, there is a frequent disparity between the pressure rise/wind shift and the temperature/dew point decrease. The data thus suggest a double-boundary frontal zone, a surface pressure trough/wind shift line followed by a temperature/moisture boundary.

Huckaby, Daniel Dale

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS  

E-Print Network (OSTI)

factors of i = 1,...,t, j = 1,...,n-1, by n, we have nfAjm+i = (jmnf +nif -nf +n).-.(jmnf +nif) = (.(if - f +1) -j)...(nif - j) (modp), so that Multiplying both sides of this congruence by Bn = n(2n) .(tf n

Williams, Kenneth Stuart

122

Rocky Great Mountains Southwest Plains  

E-Print Network (OSTI)

of snags and cavities for wildlife can utilize the existing tree species composition, which varied. Study Area The study was conducted on a 160-ha area, in the eastern portion of Hotel Creek Watershed

123

Analysis of the Impact of Snow on Daily Weather Variability in Mountainous Regions Using MM5  

Science Conference Proceedings (OSTI)

The impacts of snow on daily weather variability, as well as the mechanisms of snowmelt over the Sierra Nevada, CaliforniaNevada, mountainous region, were studied using the fifth-generation Pennsylvania State UniversityNational Center for ...

Jiming Jin; Norman L. Miller

2007-04-01T23:59:59.000Z

124

Local-Scale Variability of Solar Radiation in a Mountainous Region  

Science Conference Proceedings (OSTI)

Simultaneous measurements of horizontal global solar irradiance and other meteorological parameters have been taken over three years at a dense radiometric network. The network is located on a mountainous region in southeastern Spain (37N, 3W) ...

J. Tovar; F. J. Olmo; L. Alados-Arboledas

1995-10-01T23:59:59.000Z

125

A One-Level, Mesoscale Model for Diagnosing Surface Winds in Mountainous and Coastal Regions  

Science Conference Proceedings (OSTI)

This paper describes a one-level, sigma-coordinate, mesoscale model suitable for diagnosing surface winds in mountainous and coastal regions. The model requires only modest computer resources and needs little data for initialization. Energy and ...

Clifford F. Mass; David P. Dempsey

1985-07-01T23:59:59.000Z

126

Regional-Scale Flows in Mountainous Terrain. Part II: Simplified Numerical Experiments  

Science Conference Proceedings (OSTI)

A series of two- and three-dimensional idealized numerical experiments are conducted to examine the effects of different physical processes upon the development of the thermally driven regional-scale circulations over mountainous terrain ...

James E. Bossert; William R. Cotton

1994-07-01T23:59:59.000Z

127

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

128

Rainfall Regime of a Mountainous Mediterranean Region: Statistical Analysis at Short Time Steps  

Science Conference Proceedings (OSTI)

This paper presents an analysis of the rainfall regime of a Mediterranean mountainous region of southeastern France. The rainfall regime is studied on temporal scales from hourly to yearly using daily and hourly rain gauge data of 43 and 16 years, ...

Gilles Molini; Davide Ceresetti; Sandrine Anquetin; Jean Dominique Creutin; Brice Boudevillain

2012-03-01T23:59:59.000Z

129

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network (OSTI)

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company's ideal development plan. The steep hillsides prevent well pad development for about 22 vertical well locations in the 110 well expansion plan. Conventional production performs poorly in the area because the combination of relatively low permeability (1-10 md) and high viscosity (~220 cp) at the reservoir temperature. Cyclic steam injection has been widely used in diatomite reservoirs to take advantage of the diatomite rocks unique properties and lower the viscosity of the oil. Some companies used deviated wells for cyclic steam injection, but Santa Maria Pacific prefers the use only vertical wells for the expansion. Currently, the inability to create well pads above 22 vertical well target locations will result in an estimated $60,000,000 of lost revenue over a five year period. The target locations could be developed with unstimulated deviated or horizontal wells, but expected well rates and expenses have not been estimated. In this work, I use a thermal reservoir simulator to estimate production based on five potential development cases. The first case represents no development other than the cyclic wells. This case is used to calibrate the model based on the pilot program performance and serves as a reference point for the other cases. Two of the cases simulate a deviated well with and without artificial lift next to a cyclic well, and the final two cases simulate a horizontal well segment with and without artificial lift next to a cyclic well. The deviated well with artificial lift results in the highest NPV and profit after five years. The well experienced pressure support from the neighboring cyclic well and performed better with the cyclic well than without it. Adding 22 deviated wells with artificial lift will increase the project's net profit by an estimated $7,326,000 and NPV by $2,838,000 after five years.

Powell, Richard

2012-08-01T23:59:59.000Z

130

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

131

Age of Unstable Landforms in the Yucca Mountain Region and Implications for Past Ground Motions  

Science Conference Proceedings (OSTI)

A deep geologic repository at Yucca Mountain has been proposed for the disposal of commercial spent nuclear fuel (CSNF) as well as other nuclear fuel and high level radioactive waste from defense and nuclear weapons programs. The proposed repository site lies within the Basin and Range province, a region subject to seismic activity. As seismic hazard is considered an important risk driver for the repository, the determination of bounding ground motion magnitudes and frequencies described in this report i...

2009-06-30T23:59:59.000Z

132

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

133

Correction of Reflectivity in the Presence of Partial Beam Blockage over a Mountainous Region Using X-Band Dual Polarization Radar  

Science Conference Proceedings (OSTI)

Two approaches to correcting the partial beam blockage of radar reflectivity in mountainous areas were evaluated using X-band dual polarization radar data from the Hakone mountain region, Kanto, Japan. The comparatively simple digital elevation ...

Shakti P. C.; M. Maki; S. Shimizu; T. Maesaka; D.-S. Kim; D.-I. Lee; H. Iida

2013-06-01T23:59:59.000Z

134

Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate  

E-Print Network (OSTI)

Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be...

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

135

Preliminary Notice of Violation , Rocky Flats Environmental Technology Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Violation , Rocky Flats Environmental Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary Notice of Violation issued to Safe Sites of Colorado related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-05) Based on our evaluation of these matters, DOE has concluded that violations of DOE's Occupational Radiation Protection Rule (10 CFR 835) and Quality Assurance Rule (10 CFR 830.120) likely occurred. An enforcement conference was held with you, as well as senior management of KHLL and Rocky Mountain Remediation Services (RMRS), on September 10, 1996. This conference included a discussion of the facts and circumstances surrounding these

136

Physical processes and effects of magmatism in the Yucca Mountain region  

Science Conference Proceedings (OSTI)

This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth`s surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii.

Valentine, G.A.; Crowe, B.M. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, New Mexico (USA). Dept. of Geology

1991-12-31T23:59:59.000Z

137

The Influence of the Rocky Mountains on the 1314 April 1986 Severe Weather Outbreak. Part II: Evolution of a Prefrontal Bore and Its Role in Triggering a Squall Line  

Science Conference Proceedings (OSTI)

In this paper, Part II of a series, the evolution of a prefrontal bore on the leeside of the Rockies and its subsequent propagation and initiation of convection farther downstream over eastern Colorado and western Nebraska are investigated. The ...

V. Mohan Karyampudi; Steven E. Koch; Chaing Chen; James W. Rottman; Michael L. Kaplan

1995-05-01T23:59:59.000Z

138

Rocky Mountain (PADD 4) Reformulated Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

139

Rocky Mountain carbonate spring deposit development.  

E-Print Network (OSTI)

??Relict Holocene carbonate spring deposits containing diverse biotic and abiotic depositional textures are present at Fall Creek cold sulphur springs, Alberta, Fairmont Hot Springs, British (more)

Rainey, Dustin

2009-01-01T23:59:59.000Z

140

Characteristics of Supercooled Liquid Water in Clouds at Mountaintop Sites in the Colorado Rockies  

Science Conference Proceedings (OSTI)

Observations and measurements were made of supercooled liquid water in clouds which enveloped high elevation sites in the Colorado Rocky Mountains for the winters of 1980/81 through 1983/84. The observations showed that liquid water was more ...

Edward E. Hindman

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cheap Artificial AB-Mountains, Extraction of Water and Energy from Atmosphere and Change of Regional Climate  

E-Print Network (OSTI)

Author suggests and researches a new revolutionary method for changing the climates of entire countries or portions thereof, obtaining huge amounts of cheap water and energy from the atmosphere. In this paper is presented the idea of cheap artificial inflatable mountains, which may cardinally change the climate of a large region or country. Additional benefits: The potential of tapping large amounts of fresh water and energy. The mountains are inflatable semi-cylindrical constructions from thin film (gas bags) having heights of up to 3 - 5 km. They are located perpendicular to the main wind direction. Encountering these artificial mountains, humid air (wind) rises to crest altitude, is cooled and produces rain (or rain clouds). Many natural mountains are sources of rivers, and other forms of water and power production - and artificial mountains may provide these services for entire nations in the future. The film of these gasbags is supported at altitude by small additional atmospheric overpressure and may be connected to the ground by thin cables. The author has shown (in previous works about the AB-Dome) that this closed AB-Dome allows full control of the weather inside the Dome (the day is always fine, the rain is only at night, no strong winds) and influence to given region. This is a realistic and cheap method of economical irrigation, getting energy and virtual weather control on Earth at the current time.

Alexander Bolonkin

2008-01-31T23:59:59.000Z

142

Southern Colorado Plateau Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Colorado Plateau Geothermal Region Southern Colorado Plateau Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Colorado Plateau Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} "The Colorado Plateau is a high standing crustal block of relatively undeformed rocks surrounded by the highly deformed Rocky Mountains, and Basin and Range Provinces. The Uinta Mountains of Utah and Rocky Mountains of Colorado define the northern and northeastern boundaries of the Plateau. The Rio Grande Rift Valley in New Mexico defines the eastern boundary. The southern boundary is marked by the Mogollon Rim, an erosional cuesta that separates the Colorado Plateau from the extensively faulted Basin and Rang Province. To the west is a broad transition zone where the geologic

143

Rocky flats teams forming  

SciTech Connect

Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

NONE

1994-08-01T23:59:59.000Z

144

Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range  

SciTech Connect

Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

1996-03-01T23:59:59.000Z

145

Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

1982-05-01T23:59:59.000Z

146

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

1987-03-01T23:59:59.000Z

147

Cleanup at Rocky Flats  

NLE Websites -- All DOE Office Websites (Extended Search)

David L. Clark, Los Alamos National Laboratory David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water. More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

148

Linkages between Orographic Forcing and the Scaling Properties of Convective Rainfall in Mountainous Regions  

Science Conference Proceedings (OSTI)

Heavy rainfall over mountainous terrain often results in catastrophic flooding and presents a great challenge for forecasters. Statistical downscaling methods provide a way to bridge across the scale gap between rainfall forecasts from numerical ...

Deborah K. Nykanen

2008-06-01T23:59:59.000Z

149

Regional-Scale Flows in Mountainous Terrain. Part I: A Numerical and Observational Comparison  

Science Conference Proceedings (OSTI)

This study uses observed data and a numerical simulation to examine the generation of thermally driven flows across the Colorado mountain barrier on meso-? to meso-? scales. The observations were collected from remote surface observing systems at ...

James E. Bossert; William R. Cotton

1994-07-01T23:59:59.000Z

150

Regional Inventories  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This year has not started well for gasoline inventories, with inventories being low across regions of the country. The Midwest region (PADD II) had been running lower than most regions, but began to catch up during the last week in April. Gasoline inventories ran about 9% below their 5-year average for this time of year and about 4% below where they were last year. The recent refinery problems in the Midwest, though, could erase some of that recovery. The impacts of Tosco's Wood River refinery and Marathon's St Paul refinery are not fully realized. But inventories were also precariously low along the East Coast (PADD I) and are extremely low in the Rocky Mountain region (PADD IV), although the size of this market mitigates any national impact. While the

151

Clean Economy Network-Rockies | Open Energy Information  

Open Energy Info (EERE)

Network-Rockies Network-Rockies Jump to: navigation, search Name Clean Economy Network-Rockies Place Denver, CO Region Rockies Area Website http://rockies.cleaneconomynet Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Revegetation of the Rocky Flats Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats, Colorado Site Revegetation of the Rocky Flats Site More Documents &...

153

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

154

Regional gravity and aeromagnetic surveys of the Mineral Mountains and vicinity, Millard and Beaver Counties, Utah  

DOE Green Energy (OSTI)

The results of gravity and aeromagnetic surveys of the Mineral Mountains and vicinity are presented as a terrain-corrected Bouguer gravity anomaly map (about 1450 stations with 1-mgal contour interval) and a total magnetic field intensity residual anomaly map (with contour interval 50 gammas), respectively. Combined interpretation of the gravity and aeromagnetic data was conducted based on comparing and contrasting various processed maps and interpretative geologic cross sections produced from each survey. (MHR)

Carter, J.A.; Cook, K.L.

1978-04-01T23:59:59.000Z

155

Long-Term Climate Modeling and Hydrological Response to Climate Cycles in the Yucca Mountain Region  

Science Conference Proceedings (OSTI)

Climate and its influence on hydrological conditions are important considerations in the evaluation of the Yucca Mountain (YM) site as a geologic repository for disposal of U.S. commercial spent nuclear fuel and defense high level radioactive wastes. This report updates previous EPRI studies (reports 1013445 and 1015045), which produced a quantitative and paleo-climate-calibrated/verified model of how climate, infiltration, and YM flow properties might appear in the future. The studies also supported ass...

2009-06-30T23:59:59.000Z

156

Hydraulic frac sets Rockies depth record  

SciTech Connect

A depth record for massive hydraulic fracture in the Rocky Mt. region was set April 22 with the treatment of a central Wyoming gas well. The No. 1-29 Moneta Hills Well was treated through perforations at 19,838 to 19,874 ft and 20,064 to 20,100 ft. Soon after, another well in the Madden Deep Field was subject to hydraulic fracture through perforations a

Not Available

1980-06-01T23:59:59.000Z

157

Independent Probabilistic Volcanic Hazard Analysis (PVHA) for the Yucca Mountain Region  

Science Conference Proceedings (OSTI)

A deep geologic repository at Yucca Mountain has been proposed for the disposal of commercial spent nuclear fuel (CSNF) and other nuclear fuel and high-level radioactive waste from defense and nuclear weapons programs. On June 3, 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for repository construction. The Nuclear Waste Policy Act of 1982 (as amended) directed the U.S. Environmental Protection Agency (EPA) to promulgate a Yucca ...

2008-11-21T23:59:59.000Z

158

Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis  

SciTech Connect

The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis.

Church, H.W.; Zak, B.D.; Behl, Y.K.

1995-06-01T23:59:59.000Z

159

Enforcement Letter - Rocky Flats  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2000 1, 2000 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C Rocky Flats Environmental Technology Site 10808 Highway 93, Unit B Golden, CO 80403-8200 Subject: Enforcement Letter Dear Mr. Card: This letter refers to an evaluation by the Department of Energy (DOE) of noncompliance report number NTS-RFO--KHLL-SITEWIDE-2000-0005, which describes noncompliances with the design and procurement requirements of 10 CFR 830.120 (Quality Assurance Rule). 10 CFR 830.120(c)(2)(iii) requires that procured items and services shall meet established requirements and perform as required; 10 CFR 830.120(c)(2)(ii) requires that design work including changes, shall incorporate applicable requirements and design bases; 10 CFR 830.120(c)(2)(iv) requires that inspection and testing of specified items, services, and processes shall be conducted

160

The 1960s Drought and the Subsequent Shift to a Wetter Climate in the Catskill Mountains Region of the New York City Watershed  

Science Conference Proceedings (OSTI)

The precipitation history over the last century in the Catskill Mountains region that supplies water to New York City is studied. A severe drought occurred in the early to mid-1960s followed by a wet period that continues. Interannual variability ...

Richard Seager; Neil Pederson; Yochanan Kushnir; Jennifer Nakamura; Stephanie Jurburg

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Seasonal Climate Trends, the North Atlantic Oscillation, and Salamander Abundance in the Southern Appalachian Mountain Region  

Science Conference Proceedings (OSTI)

The North Atlantic Oscillation (NAO) is a large-scale climate teleconnection that coincides with worldwide changes in weather. Its impacts have been documented at large scales, particularly in Europe, but not as much at regional scales. ...

Robert J. Warren II; Mark A. Bradford

2010-08-01T23:59:59.000Z

162

Smooth Brome Monitoring at Rocky Flats-2005 Results | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring...

163

DOE - Office of Legacy Management -- Rocky Flats External Resources  

Office of Legacy Management (LM)

Rocky Flats Stewardship Council Disclaimer Rocky Flats Cold War Museum Disclaimer U.S. Fish and Wildlife Service Rocky Flats National Wildlife Refuge Disclaimer Last Updated: 51...

164

Statistical Behavior of Transient Eddies near Mountains and Implications for Theories of Lee Cyclogenesis  

Science Conference Proceedings (OSTI)

We examine the nature and spatial structure of meteorological high-frequency variability in two selected areas, one including the Alps and the other the Rocky Mountains. Seven years of geopotential height data, derived from ECMWF analysis set, ...

A. Buzzi; E. Tosi

1989-05-01T23:59:59.000Z

165

An Observational Study of the Boundary-Layer Winds in the Exit Region of a Mountain Gap  

Science Conference Proceedings (OSTI)

An observational study was undertaken at selected sites in and around a mountain gap to understand the downwind increase of winds transiting the gap. Observations indicate that there is a fanning out of surface winds emerging out of the gap. ...

G. Ramachandran; K. V. Rao; K. Krishna

1980-07-01T23:59:59.000Z

166

Organization and Structure of Clouds and Precipitation on the Mid-Atlantic Coast of the United States. Part I: Synoptic Evolution of a Frontal System from the Rockies to the Atlantic Coast  

Science Conference Proceedings (OSTI)

The frontal structure of a cyclone that developed in the lee of the Rocky Mountains and moved eastward across the United States is examined. The evolutions and interactions of three frontal features are traced: the primary cold front, a shallow ...

John D. Locatelli; Joseph M. Sienkiewicz; Peter V. Hobbs

1989-05-01T23:59:59.000Z

167

DOE - Office of Legacy Management -- Rocky  

Office of Legacy Management (LM)

Rocky Flats Site, Colorado Rocky Flats Site, Colorado A CERCLA and/or RCRA Site rkyflats_2011 Remediation at the Rocky Flats Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. The site transferred to the Office of Legacy Management in 2008 and requires operation and maintenance of remedial action systems, routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Rocky Flats site, view the fact sheet. Site History Site Documents Community Involvement Contact Us Rocky Flats Benefits Administration Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Record Database

168

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

169

ROCKY MOUNTAIN OILFIELD TESTING CENTER Texaco Dual Action Pumping System  

NLE Websites -- All DOE Office Websites (Extended Search)

Texaco Dual Action Pumping System Texaco Dual Action Pumping System PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Texaco Dual Action Pumping System (DAPS) is designed to separate water from the oil in the casing-tubing annulas and inject most of the water into a lower formation while lifting the oil and remaining water to the surface. As oil production declines in a well the water production can increase. The lifting cost can be reduced per barrel of oil if less water is brought to the surface and processed. The DAPS was installed in a well that had been producing four (4) barrels of oil per day (bopd) and 46 barrels of water per day (bwpd), from the zone that became the injection zone. The well was recompleted in a shallower zone that was expected to yield an excessive quantity of

170

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

171

Rocky Mountain (PADD 4) Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

456: 451: 448: 440: 1993: 435: 427: 441: 428: 442: 433: 426: 423: 422: 421: 418: 422: 1994: 415: 418: 414: 407: 408: 402: 368: 375: 401: 394: 391: 388: 1995: 401: 466 ...

172

Rocky Mountain (PADD 4) Imports of Crude Oil and Petroleum ...  

U.S. Energy Information Administration (EIA)

Area: Period-Unit: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Area: Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View ... 51: 26: 1984 ...

173

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

174

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

1,000 words (plus % Fluor Daniel (NPOSR), Inc. 6 pages of data) 907 North Poplar, Suite 100 First Rights Only Casper, Wyoming 82601 1994 RMOTC ('107) 261-5000, ext....

175

Rocky Mountain (PADD 4) Product Supplied for Crude Oil and ...  

U.S. Energy Information Administration (EIA)

4,982: 5,787: 5,702: 5,935: 5,714: 2004-2013: Greater than 15 to 500 ppm Sulfur: 83: 33: 102: 40: 70: 78: 1994-2013: Greater than 500 ppm Sulfur: 6-16-11-30-18-22 ...

176

Rocky Mountain (PADD 4) Refinery - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

177

Rocky Mountain (PADD 4) Petrochemical Feedstocks Net Receipts ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

178

Stocks by Type - Rocky Mountain (PADD 4) CBOB Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

179

Rocky Mountain (PADD 4) Crude Oil Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

180

A Review of New Multilateral Technology at the Rocky Mountain...  

NLE Websites -- All DOE Office Websites (Extended Search)

injection and EOR facilities is provided in accordance with DOE's "Domestic Natural Gas and Oil Initiative" which allows "new applications that lead to increased production,...

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rocky Mountain Arsenal Natural Resource Damage Assessment Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Park. * Operated for research, development, and processes in support of the Manhattan project. 5 INDUSTRIAL ECONOMICS, INCORPORATED Site Map 8 INDUSTRIAL ECONOMICS,...

182

Domestic campsites and cyber landscapes in the Rocky Mountains  

E-Print Network (OSTI)

Indian tribal groups such as the Crow, Shoshone and Blackfeet historically used a four-pole tipi, Blackfeet and Shoshone. While we cannot conclusively assign these sites to a Crow ethnic affiliation of the Blackfeet. New York: Doubleday, Page & Company. SEYMOUR, D.J. 2009. Nineteenth-century Apache wickiups

Scheiber, Laura L.

183

Rocky Mountain (PADD 4) Unfinished Oils - Kerosene and Light ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

184

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

is also possible. Well 83A4 at the Naval Petroleum Reserve No. 3 was selected as a test well. This well is rod pumped and had a stable production history. It produced enough...

185

Rocky Mountains (PADD 4) Percent Utilization of Refinery Operable ...  

U.S. Energy Information Administration (EIA)

75.3: 75.6: 74.6: 86.6: 89.7: 89.0: 91.1: 90.1: 81.0: 84.6: 83.9: 1990: 80.2: 80.5: 77.1: 78.7: 89.0: 89.5: 90.2: 92.2: 88.7: 79.2: 78.9: 77.5: 1991: 73.5: 78.5: 83.3 ...

186

Rocky Mountain Power - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation: 350home. Program Information Idaho Program Type Utility Rebate Program Rebate...

187

Glacier change of the Columbia Icefield, Canadian Rocky Mountains, 19192009  

E-Print Network (OSTI)

Commission Survey maps from 1919, eight sets of aerial photographs from 1948 to 1993, and satellite data from, 1997). The Water Survey of Canada monitored Saskatchewan and Athabasca Glaciers from the 1940s in climate. The primary objective of this study is to use Inter- provincial Boundary Commission Survey (IBCS

Menounos, Brian

188

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

189

Rocky Mountain Power - Self-Direction Credit Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more. Through this program, customers who pursue...

190

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

191

Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oklahoma: Energy Resources Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663°, -94.7674486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.8053663,"lon":-94.7674486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

controller that remotely monitors and indicates the power utilized by the electric motor driving a conventional beam pumping unit. The parameters monitored include the...

193

An Analysis of Daily Humidity Patterns at a Mountainous and Urban Site in a Tropical High-Altitude Region  

Science Conference Proceedings (OSTI)

Mixing ratio data of water vapor at different hours of the day in a high-altitude tropical plateau in Mexico are shown. The objective is to measure water vapor quantity in a mountainous zone, where no previous studies of this kind exist, and in ...

H. G. Padilla; A. C. Leyva; P. A. Mosio

1993-10-01T23:59:59.000Z

194

Sustainability Center of the Rockies | Open Energy Information  

Open Energy Info (EERE)

Sustainability Center of the Rockies Sustainability Center of the Rockies Jump to: navigation, search Name Sustainability Center of the Rockies Address Post Office Box 2020 Place Carbondale, Colorado Zip 81623 Region Rockies Area Notes Mission is to transform the Roaring Fork Valley's built environment into a model of resource-efficient living Website http://www.scor1.org/ Coordinates 39.397478°, -107.216685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.397478,"lon":-107.216685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Rocky Flats resumes shipments to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (DOE) has resumed transuranic radioactive waste shipments from DOE's Rocky Flats Environmental Technology Site (RFETS) to the Waste Isolation Pilot Plant (WIPP). A...

196

DOE - Office of Legacy Management -- Rocky  

NLE Websites -- All DOE Office Websites (Extended Search)

A CERCLA andor RCRA Site rkyflats2011 Remediation at the Rocky Flats Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act...

197

Photo of the Week: Rocky Flats Wildlife Refuge | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Wildlife Refuge Photo of the Week: Rocky Flats Wildlife Refuge December 21, 2012 - 11:27am Addthis The Rocky Flats Plant was first established in 1951 as a nuclear...

198

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

199

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

200

Preliminary Notice of Violation , Rocky Flats Environmental Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary...

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Audit of the Contractor Incentive Programs at the Rocky Flats...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Rocky Flats Environmental Technology Site, IG-0411 Audit of the Contractor Incentive Programs at the Rocky Flats Environmental Technology Site, IG-0411 Report on "Audit...

202

Long-Term Surveillance and Maintenance at Rocky Flats: Early...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Rocky Flats: Early Experiences and Lessons Learned Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned Long-Term Surveillance and...

203

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site,...

204

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

205

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats...

206

DOE's Former Rocky Flats Weapons Production Site to Become National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 -...

207

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

208

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

209

Closing Rocky Flats by 2006  

Science Conference Proceedings (OSTI)

Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

Tuor, N. R.; Schubert, A. L.

2002-02-26T23:59:59.000Z

210

The Characteristics and Distribution of Cloud Water over the Mountains of Northern Colorado during Wintertime Storms. Part II: Spatial Distribution and Microphysical Characteristics  

Science Conference Proceedings (OSTI)

The Physical and microphysical structure of the supercooled water fields in wintertime storms over the Park Range of the northern Colorado Rocky Mountains is examined using aircraft and ground-based measurements. Cloud top, cloud base, and zones ...

Robert M. Rauber; Lewis O. Grant

1986-04-01T23:59:59.000Z

211

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

212

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

213

Rocky Flats ash test procedure (sludge stabilization)  

SciTech Connect

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

Winstead, M.L.

1995-09-14T23:59:59.000Z

214

REVEGETATION OF THE ROCKY FLATS SITE, COLORADO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVEGETATION OF THE ROCKY FLATS SITE, COLORADO REVEGETATION OF THE ROCKY FLATS SITE, COLORADO Jody K. Nelson Professional Environmental Group/S.M. Stoller Corporation Rocky Flats Site 11025 Dover Street, Suite 1000 Westminster, CO 80021 ABSTRACT At the U.S. Department of Energy's (DOE's) Rocky Flats Site (Site), a former nuclear weapons component manufacturing plant near Golden, Colorado, approximately 650 acres were revegetated as part of the cleanup and closure activities. Numerous issues and challenges were addressed during the revegetation activities at the Site. These included deciding on revegetation and restoration goals; addressing poor substrate issues and soil compaction problems; use of soil amendments and topsoil; seed selection issues; timing and location of revegetation projects

215

Large eddy simultations of the atmospheric boundary layer east of the Colorado Rockies  

SciTech Connect

Large eddy simulation, LES, has often been carried out for the idealized situation of a simple convective boundary layer. Studies of dual Doppler radar and aircraft data from the Phoenix II experiment indicate that the boundary layer of the Colorado High Plains is not a purely convective boundary layer and it is influenced by the mountains to the west. The purpose of this study is to investigate the atmospheric boundary layer on one particular day on the Colorado High Plains. This research applies a LES nested within larger grids, which contain realistic topography and can simulate the larger-scale circulations initiated by the presence of the mountain barrier. How and to what extent the atmospheric boundary layer of the Colorado High Plains is influenced by larger scale circulations and other phenomena associated with the mountain barrier to the west is investigated. The nested grid LES reproduces the characteristics of the atmosphere for the case study day reasonably well. The mountains influence the atmospheric boundary layer over the plains to the east in several ways. The mountains contribute to the vertical shear of the horizontal winds through the thermally-induced mountain-plains circulation. As a consequence of the wind shear, the boundary layer that develops over the mountains is advected eastward over the top of the plains boundary layer, which is developing separately. This layer is marked by a mixture of gravity waves and turbulence and is atypical of a purely convective boundary layer. Just below this layer, the capping inversion of the plains boundary layer is weak and poorly defined compared to the inversions capping purely convective boundary layers. Gravity waves, triggered by the obstacle of the Rocky Mountains and by convection in the mountain boundary layer, also influence the atmosphere above the Colorado High Plains. These influences are found to have significant effects on the turbulence statistics and the energy spectra.

Costigan, K.R.; Cotton, W.R.

1992-10-22T23:59:59.000Z

216

Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico  

DOE Green Energy (OSTI)

This circular covers the geology of the Pyramid Peak, Swallow Fork Peak, Table Top Mountain, and South Pyramid Peak 7-1/2-min quadrangles, which include the Lightning Dock KGRA. Hot wells (70 to 115.5/sup 0/C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene north-trending basin-and-range fault (Animas Valley fault), and a northeast-trending lineament that appears to control anomalously heated underground waters and Pliocene-Pleistocene basalt cones in the San Bernardino, San Simon, and Animas Valleys. The Muir cauldron, approximately 20 km in diameter, collapsed in two stages, each associated with the eruption of a rhyolite ash-flow-tuff sheet and of ring-fracture domes. Most of the hydrothermal alteration of the Lightning Dock KGRA is related to the first stage of eruption and collapse, not to the modern geothermal system. Contrary to previous reports, no silicic volcanic rocks younger than basin-and-range faulting are known; unconformities beneath rhyolite ring-fracture domes are caused by Oligocene caldera collapse, not by basin-and-range faulting. The Animas Valley is the site of widespread post-20 My travertine deposits and near-surface veins of calcite, fluorite, and/or psilomelane, controlled by north- or northwest-trending basin-and-range faults. The fluoride-bearing waters of the Lightning Dock KGRA may be a late stage of this hydrothermal activity. Distribution of Pliocene-Pleistocene basalt suggests that deep-seated basalt near the solids may be the ultimate heat source.

Elston, W.E.; Deal, E.G.; Logsdon, M.J.

1983-01-01T23:59:59.000Z

217

Lessons Learned from a Regional Approach to Route Selection for Spent Nuclear Fuel Shipments to Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Route Identification Project Midwestern Route Identification Project Sarah K. Wochos Policy Analyst Council of State Governments - Midwest Approach Why Regional? * States need to know the routes as soon as possible * Regions develop and use the criteria that is important to them * States have a better feel for routes that run through their jurisdictions * States felt that EIS routes were a poor starting point for discussions * Regional framework has worked well on other issues Why a Suite of Routes? * Better variety and thus perhaps better security? * Flexibility during construction, bad weather or special events * Inevitable further winnowing through national discussion Methodology Primary Factors - from U.S. DOT's Guidelines for Selecting Preferred Highway Routes for Highway Route Controlled Shipments of Radioactive Materials

218

Rocky Flats Compliance Program; Technology summary  

SciTech Connect

The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

NONE

1994-02-01T23:59:59.000Z

219

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

220

Rocky Ridge I | Open Energy Information  

Open Energy Info (EERE)

I I Jump to: navigation, search Name Rocky Ridge I Facility Rocky Ridge I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America / TradeWind Energy Developer TradeWind Energy Energy Purchaser Western Farmers Electric Cooperative Location Rocky OK Coordinates 35.055821°, -98.838426° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.055821,"lon":-98.838426,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- Rocky Flats Regulatory Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Documents Regulatory Documents Rocky Flats Site, Colorado Regulatory Documents All documents are Adobe Acrobat files. pdf_icon Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Third Five-Year Review Report for the Rocky Flats Site Rocky Flats Legacy Management Agreement Environmental Covenant, November 14, 2011 Corrective Action Decision/Record of Decision Amendment for Rocky Flats Plant (USDOE) Central Operable Unit Proposed Plan for the Rocky Flats CAD/ROD Amendment (June 2011) Second Five-Year Review Report for the Rocky Flats Site Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit Rocky Flats Environmental Technology Site Proposed Plan Present Landfill Monitoring and Maintenance Plan

222

Report on Matters Identified at the Rocky Flats Field Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Field Office During the Audit of the Department's Consolidated Fiscal Year 1996 Financial Statements, WR-FS-97-03 Report on Matters Identified at the Rocky Flats Field...

223

Issues evaluation process at Rocky Flats Plant  

SciTech Connect

This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

Smith, L.C.

1992-04-16T23:59:59.000Z

224

Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts  

E-Print Network (OSTI)

The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high gradient of 0.15 is flanked to the north by a moderate gradient of 0.015 and to the south by a very small gradient of 0.0001. Since the mechanisms creating this feature have the potential to cause changes in the position and configuration of the water table, they must be understood so risk analysis of the site may be performed. The three distinct gradient regions found at the site may be related to the Cenozoic volcanics, the Paleozoic clastic aquitard, and the Paleozoic carbonates. The large hydraulic gradient regionally corresponds with the northern limit of the Paleozoic carbonates, at the contact of the Eleana Formation, a Paleozoic aquitard. This study investigates, using finite difference modeling, the relationship between the steep hydraulic gradient and hydraulic conductivity contrasts. The site was modeled with flow boundaries to investigate the effects of variable gradient input to the flow balance calculation. A model was run with differential volcanic hydraulic conductivity zones with regulated flow into the carbonates. Constant head boundaries were implemented in models to investigate the effect of both a confined and open carbonate zone and with vertical barriers above the argillite/carbonate contact. The results of the study found that vertical and horizontal hydraulic conductivity contrasts do not fully account for the steep gradients, although the vertical contrasts marginally increase the gradient from horizontal contrasts. The confined carbonate zone model produced results that do not correlate with field data. The vertical barrier model did successfully reproduce steep gradients with gradient steepness related to flow restriction. Through the use of flow boundaries the steep gradient was reproduced successfully with a contrast of 0.8 orders of magnitude by allowing flow into the carbonate zone.

Davidson, Timothy Ross

1994-01-01T23:59:59.000Z

225

Modeling Interregional Transmission Congestion in the National Energy Modeling System  

E-Print Network (OSTI)

electricity region 13, California, for example, can build coal plants in coal region 12 Rocky Mountain (Utah/Colorado)

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-01-01T23:59:59.000Z

226

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Review, Rocky Flats Closure Project Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP. RFCP's project-oriented approach and aggressive scheduling have resulted

227

DOE - Office of Legacy Management -- Rocky Flats SOG  

NLE Websites -- All DOE Office Websites (Extended Search)

SOG SOG Rocky Flats Site, Colorado Rocky Flats, Colorado, Site Operations Guide All documents are Adobe Acrobat files. pdf_icon Site Operations Guide Appendixes Appendix A: Annual Site Inspection Checklist Appendix B: Example Contact Record Appendix C: Rocky Flats Site Soil Disturbance Evaluation Procedure Appendix D: Site-Specific Checklist Appendix E: Rocky Flats, Colorado, Site Erosion Control Monitoring and Maintenance Inspection Procedure Appendix F: Erosion Control Plan for Rocky Flats Property Central Operable Unit Appendix G: Wildland Fire Management Plan for the Rocky Flats, Colorado, Site Appendix H: Emergency Response Plan for the Rocky Flats Site Dams Appendix I: Additional Field Implementation Detail for Selected Monitoring Objectives Historic documents may contain links to outside sources. LM cannot attest

228

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Special Review, Rocky Flats Closure Project Oversight Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP.

229

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

230

History of Rocky Flats waste streams  

SciTech Connect

An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL.

Luckett, L.L.; Dickman, A.A.; Wells, C.R.; Vickery, D.J.

1982-03-10T23:59:59.000Z

231

Status Update: Closing Rocky Flats by 2006  

SciTech Connect

Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

Tuor, N.; Schubert, A.

2003-02-25T23:59:59.000Z

232

Rockies flood projects add to production  

Science Conference Proceedings (OSTI)

Nine new polymer waterfloods in the Rockies in the past year shows that tertiary recovery needn't be impeded by a $29/bbl oil price, so long as costs are held to a minimum. The uncertain fate faced by several expensive carbon dioxide pilots - even though recoveries have been or promise to be at or well above predictions - points up the overwhelming importance of keeping costs down.

Gill, D.

1983-09-01T23:59:59.000Z

233

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Region Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region. DOCUMENTS AVAILABLE FOR DOWNLOAD June 20, 2013...

234

DOE's Former Rocky Flats Weapons Production Site to Become National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Rocky Flats Weapons Production Site to Become National Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a decade of environmental cleanup work, the transfer creates the Rocky Flats National Wildlife Refuge, 16 miles northwest of Denver, Colorado, and marks completion of the regulatory milestones to transform a formerly contaminated site into an environmental asset. "The Department of Energy's environmental cleanup of the Rocky Flats

235

Unique process combination decontaminates mixed wastewater at Rocky Flats  

Science Conference Proceedings (OSTI)

This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

Kelso, William J.; Cirillo, J. Russ

1999-08-01T23:59:59.000Z

236

Former Worker Medical Screening Program - Rocky Flats Former...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Flats Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Dwayne...

237

2006 Annual Ecology Report for the Rocky Flats Site  

Office of Legacy Management (LM)

Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

238

Rocky Flats, Former Production Workers Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flats, Former Production Workers Screening Projects Rocky Flats, Former Production Workers Screening Projects Project Name: National Supplemental Screening Program Covered DOE...

239

The Plutonium Stabilization andPackaging System at the Rocky...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Site (Rocky Flats) produced nuclear weapons components for the Department of Energy. In January 1992, the primary mission of the site changed from nuclear weapons...

240

Trace-chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

A summary is presented of the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate, and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Trace chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

This report summarizes the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1981-04-01T23:59:59.000Z

242

Repackaging Rocky Flats Legacy Transuranic Waste  

Science Conference Proceedings (OSTI)

Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity. Glovebags work well in facilities that are in the process of D and D or still in full operations because glovebags are very safe and cost effective.

McTaggart, Jerri Lynne [Los Alamos National Laboratory, 115 N. Main St., Carlsbad, New Mexico, 88220 (United States)

2008-01-15T23:59:59.000Z

243

Optimization of Sodar Wind Profile Measurements in Low-Humidity Climates at High Altitudes: Cooperative Research and Development Final Report, CRADA number CRD-07-00246  

SciTech Connect

The assessment of potential wind energy sites in the region of the U.S. from the Rocky Mountains westward.

Kelley, N.

2010-07-01T23:59:59.000Z

244

ENVIRONMENTAL REVIEW for CATEGORICAL EXCLUSION DETERMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION Rocky Mountain Region, Western Area Power Administration Alliance Substation Communication Building Installation Box Butte County, Nebraska A. Brief Description...

245

THE U.S. DEPARTMENT OF ENERGY'S FACILITY REUSE AT THE ROCKY FLATS...  

NLE Websites -- All DOE Office Websites (Extended Search)

FACILITY REUSE AT THE ROCKY FLATS ENVIRONMENTALTECHNOLOGY SITE, IG-0425 THE U.S. DEPARTMENT OF ENERGY'S FACILITY REUSE AT THE ROCKY FLATS ENVIRONMENTALTECHNOLOGY SITE, IG-0425 For...

246

NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

E-Print Network (OSTI)

.S. Department of Energy's Rocky Flats Field Office for making this report possible. In particular, Dr. John.S. Department of Energy's Rocky Flats Field Office to inventory and rank the natural heritage resources at its Divide. The RFETS is part of the U.S. Department of Energy nuclear weapons manufacturing complex

247

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

248

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

249

Independent Oversight Review, Rocky Flats Environmental Technology Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, Rocky Flats Environmental Technology Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review and a follow-up review of the emergency management program at Rocky Flats Environmental Technology Site (RFETS) in February 2000. The primary purpose of this review was to assess the effectiveness of the Department's emergency management programs for transportation events involving hazardous materials (not related to transuranic waste or nuclear

250

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site October 22, 2013 - 11:01am Addthis What does this project do? Goal 1. Protect human health and the environment In August of this year the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Rocky Flats, site took advantage of an existing water diversion structure that was no longer needed, to replace an aging water monitoring flume and avoid future repairs that could interrupt data collection. The flume for Rocky Flats Legacy Management Agreement (RFLMA) Point of Evaluation (POE) monitoring location GS10 in South Walnut Creek was located at the bottom of fairly steep channel banks. The bank on the south side shows localized slumping and sliding toward the creek and GS10. Although

251

Independent Oversight Review, Rocky Flats Environmental Technology Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Environmental Technology Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review and a follow-up review of the emergency management program at Rocky Flats Environmental Technology Site (RFETS) in February 2000. The primary purpose of this review was to assess the effectiveness of the Department's emergency management programs for transportation events involving hazardous materials (not related to transuranic waste or nuclear

252

Microsoft Word - RockyFlatsPropLR111406.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 15, 2006 November 15, 2006 REPLY TO ATTN OF: IG-40 SUBJECT: Letter Report on "Alleged Waste of Funds Involving Excess Property at Rocky Flats" (INS-L-07-03) TO: Assistant Secretary for Environmental Management This is to advise you of the results of an Office of Inspector General inspection of alleged waste of funds involving excess property at the Department of Energy's (DOE's) Rocky Flats site. BACKGROUND Nuclear weapons production operations at Rocky Flats were discontinued in 1992. Subsequently, responsibility for Rocky Flats was reassigned from the Department's Office of Defense Programs to the Office of Environmental Management. In January 2000, DOE entered into a contract with Kaiser-Hill Company, LLC, for the closure of Rocky Flats by

253

AEO2011: Coal Minemouth Prices by Region and Type | OpenEI  

Open Energy Info (EERE)

Minemouth Prices by Region and Type Minemouth Prices by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 141, and contains only the reference case. The dataset uses million short tons and the US Dollar. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, Gulf, Dakota medium, western Montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Minemouth Prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Minemouth Prices by Region and Type- Reference Case (xls, 121.6 KiB)

254

AEO2011: Coal Production by Region and Type | OpenEI  

Open Energy Info (EERE)

by Region and Type by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Production EIA Data application/vnd.ms-excel icon AE2011: Coal Production by Region and Type- Reference Case (xls, 122.3 KiB)

255

Effects of Climate Variability and Change on Mountain Water Resources in the Western U.S.  

Science Conference Proceedings (OSTI)

The western U.S. derives its water resources predominantly from cold season precipitation and storage in snowpack along the narrow Cascades and Sierra ranges, and the Rocky Mountains. Hydroclimate is modulated by the diverse orographic features across the region. Precipitation, runoff, and water demand generally peaks during winter, spring, and summer respectively. Such phase differences between water supply and demand create a necessity for water management, which is reflected by major development in irrigation, hydropower production, and flood control during the past 50 years. Because water resources have been essential to the economic development and environmental well being of the western states, it is worrisome that recent studies suggest that global warming may exert significant impacts on snowpack and streamflow, which may seriously affect water resources in the western U.S. in the 21st century (e.g., Leung and Wigmosta 1999; Leung and Ghan 1999; Mile et al. 2000; Leung et al. 2002a; Miller et al. 2002). To understand how climate change may affect mountain water resources, we have taken the approach of ?end-to-end? assessment where simulations of current and future climate produced by global climate models (GCMs) are downscaled using regional climate models (RCMs), which then provide atmospheric conditions for assessing water impacts using hydrologic models (e.g., Leung and Wigmosta 1999; Miller et al. 2000; Wood et al. 2002) and water management models (e.g., Hamlet and Lettenmaier 1999; Payne et al. 2002). This suite of models guides us through a comprehensive and global view of the effects of greenhouse warming on the atmosphere-ocean-land system to regional climate change, hydrologic response in river basins and watersheds, and reservoir management. The latter converts hydrologic response to impacts on water management objectives and enables the evaluation of adaptation strategies through modifications to existing reservoir operating rules.

Leung, Lai R.

2005-06-01T23:59:59.000Z

256

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

257

Immobilization of Rocky Flats Graphite Fines Residues  

SciTech Connect

The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

Rudisill, T. S.

1998-11-06T23:59:59.000Z

258

Fiscal year 1990 Rocky Flats Plant Environmental Restoration program Current-Year Work Plan  

SciTech Connect

The Rocky Flats Plant (RFP) is a nuclear weapons manufacturing facility currently operated by EG G for the US Department of Energy (DOE). RFP is located at the foot of the Rocky Mountains in Jefferson Country, Colorado. The Fiscal Year 1990 (FY90) Current-Year Work Plan (CYWP) is intended to serve as a guidance document for the Environmental Restoration (ER) and RCRA Compliance programs that will be implemented at RFP. The CYWP provides in one document any cross-references necessary to understand the interrelationships between the CYWP and the DOE Five-Year Plan (FYP), Site-Specific Plan (SSP), and other related documents. The scope of this plan includes comparison of planned FY90 ER activities to those actually achieved. The CYWP has been updated to include Colorado Department of Health (CDH), US Environmental Protection Agency (EPA), and DOE Inter-Agency Agreement ER activities. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. The CYWP also addresses facilities and sites contaminated with or used in management of those wastes.

Nielsen, T. (EG and G Rocky Flats, Inc., Golden, CO (USA)); Waage, E.; Miller, D. (Stoller (S.M.) Corp., Boulder, CO (USA))

1990-01-01T23:59:59.000Z

259

Rocky Flats Environmental Technology Site Mixed Residue Consent Order, September 24, 1999 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-09-24-01 9-09-24-01 State Colorado Agreement Type Consent Order Legal Driver(s) RCRA Scope Summary Substitute this Consent Order for the MR Consent Order; establish requirements for mixed residues management. Parties DOE ; Kaiser-Hill Company, LLC; Safe Sites of Colorado, LLC; Rocky Mountain Remediation Services, LLC; Colorado Department of Public Health and Environment Date 9/24/1999 SCOPE * Substitute this Consent Order for the MR Consent Order by modifying in its entirety the Settlement Agreement and Compliance Order on Consent, number 93-04-23-01, (the "MR Consent Order"). * Establish requirements for certain activities involving mixed residues management. * Establish enforceable commitment dates. ESTABLISHING MILESTONES * Provisions regarding enforceable commitment dates and the procedures to add

260

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rocky Flats Closure Unit Cost Data  

SciTech Connect

The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

Sanford, P.C. [1129 Business Parkway South, Westminister, MD (United States); Skokan, B. [United States Department of Energy, Washington, DC (United States)

2007-07-01T23:59:59.000Z

262

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

263

Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save Taxpayers Billions GOLDEN, CO. - A major environmental victory was achieved at the Rocky Flats Site in Golden, Colo., today when the final remaining shipment of radioactive, transuranic (TRU) waste left the property on a truck bound for an underground waste repository in New Mexico. This major milestone is another step toward the final conversion of the site to a National Wildlife Refuge managed by the U.S. Fish and Wildlife Service. "This is great news for all of Colorado, and would not have been possible without hand-in-glove cooperation between the Department of Energy, the

264

Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Cleanup Agreement Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. Parties DOE; US EPA; The State of Colorado Date 7/19/1996 SCOPE * Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. * Ensure that the environmental impacts associated with activities at the Site will continue to be investigated and that appropriate response actions are taken. * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the site. * Coordinate all of DOE's cleanup obligations under CERCLA, RCRA, and the Colorado

265

Rocky Flats Former Construction Workers, Construction Worker Screening  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Former Construction Workers, Construction Worker Rocky Flats Former Construction Workers, Construction Worker Screening Projects Rocky Flats Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Rocky Flats Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Dwayne Adkins 7510 W. Mississippi Ave., Suite 230 Lakewood, CO 80226 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

266

Microsoft Word - RockyFlatsCRO20030221.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300,000 Block Grant to the 300,000 Block Grant to the Rocky Flats Community Reuse Organization Money Will Be Used To Develop Comprehensive Refuge Plan for Rocky Flats WASHINGTON, DC - The Department of Energy (DOE) today announced that it will award $300,000 to the Rocky Flats Coalition of Local Governments. A CRO is an organization recognized by the Energy Department that can apply for funding for programs that can modify the impacts of workforce restructuring at its facilities and reduce community dependence on the department's activities. This grant will enable the community reuse organization (CRO) to continue to play a critical role in working with the Energy Department on the development of a comprehensive refuge plan for Rocky Flats, review cleanup and closure documents to ensure that they meet long-term

267

Rocky Flats 100th Shipments Arrives at WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

RELEASE Rocky Flats For Immediate Release Contact: Karen Lutz, DOE RFFO, 303966-4546 01-08 Jennifer Thompson, Kaiser-Hill, 303966-6285 Kate Foster, Westinghouse TRU Solutions,...

268

Former Worker Medical Screening Program - Rocky Flats Former...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Flats Worker Population Served: Production Workers Principal Investigator: Donna Cragle, PhD Toll-free Telephone: (866) 812-6703 Website: http:www.orau.orgnssp This...

269

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance  

Office of Legacy Management (LM)

Calendar Year 2013 October 2013 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-2nd...

270

Regional Maps  

Gasoline and Diesel Fuel Update (EIA)

1 East Central Area Reliability Coordination Agreement (ECAR) 1 East Central Area Reliability Coordination Agreement (ECAR) 2 Electric Reliability Council of Texas (ERCOT) 3 Mid-Atlantic Area Council (MAAC) 4 Mid-America Interconnected Network (MAIN) 5 Mid-Continent Area Power Pool (MAPP) 6. New York (NY) Southern Nevada (RA) 7. New England (NE) 8 Florida Reliability Coordinating Council (FL) 9 Southeastern Electric Reliability Council (SERC) 10 Southwest Power Pool (SPP) 11 Northwest Power Pool (NWP) 12. Rocky Mountain Power Area, Arizona, New Mexico, and 13 California (CA) Source: Energy Information Administration. Office of Integrated Analysis and Forecasting Figure 3. Petroleum Administration for Defense Districts Source: Energy Information Administration. Office of Integrated Analysis and Forecasting AK WA NV

271

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

272

Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region  

Science Conference Proceedings (OSTI)

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

Don L. Hanosh

2006-08-15T23:59:59.000Z

273

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

274

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

275

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Colorado Renewable Energy Society Colorado Renewable Energy Society PO Box Golden Colorado Works for the sensible adoption of cost effective energy efficiency and renewable energy technologies by Colorado businesses and consumers http www cres energy org Rockies Area Environmental Entrepreneurs E2 Environmental Entrepreneurs E2 Pearl Street Suite Boulder Colorado http www e2 org jsp controller docName roxchapterwebpage Rockies Area Hogan Hartson Hogan Hartson Walnut Street Boulder Colorado Climate Change Clean Energy http www hhlaw com Rockies Area Northern Colorado Clean Energy Cluster Northern Colorado Clean Energy Cluster Denver Colorado Business led project oriented group of regional partners seeking to have a global impact http www nccleanenergy com Rockies Area Sustainability Center of the Rockies Sustainability Center of the Rockies

276

Case History of a Clean Water Act Compliance Agreement at the Rocky Flats Environmental Technology Site near Golden, Colorado  

Science Conference Proceedings (OSTI)

A major Clean Water Act (CWA) Federal Facilities Compliance Agreement was signed on March 25, 1991 by the US Department of Energy, Rocky Flats Field Office (DOE, RFFO) and the Water Enforcement Division of the Environmental Protection Agency (EPA), Region VIII. The agreement revised the Rocky Flats Plant`s National Pollutant Discharge Elimination System (NPDES) permit and arose from pemittee-requested changes in effluent monitoring points and permit violations, most notably the February 22, 1989 Chromic Acid Incident. The Rocky Flats Plant, now called the Rocky Flats Environmental Technology Site (Site) near Golden Colorado was operated at that time by Rockwell International Corporation, who later plead guilty to six misdemeanor and felony counts of the CWA (the aforementioned NPDES permit violations) and paid a $4 million fine on March 26, 1992. The Compliance Agreement, hereafter referred to as the NPDES FFCA, called for three separate remedial action plans and contained a schedule for their submittal to the EPA. The compliance plans focussed on: (1) Waste Water Treatment Plant (WWTP) performance upgrades, (2) source control and surface water protection, and (3) characterization of the impacts from past sludge disposal practices. Projects that implemented the compliance plans were initiated soon after submittal to the EPA and are forecast to complete in 1997 at a total cost of over $35 million. This paper presents a case history of NPDES FFCA compliance projects and highlights the successes, failures, and lessons learned.

Thompson, J.S.

1995-08-01T23:59:59.000Z

277

Weekly Rocky Mountain (PADD 4) Refiner Net Input of Crude Oil ...  

U.S. Energy Information Administration (EIA)

456 : 2003-May: 05/02 : 392 : 05/09 : 400 : 05/16 : 403 : 05/23 : 451 : 05/30 : 528 : 2003-Jun: 06/06 : 538 : 06/13 : 570 : 06/20 : 548 : 06/27 : 557 : 2003-Jul: 07/04 :

278

Design Criteria and Construction of a Capillary Barrier Cover System: The Rocky Mountain Arsenal Experience  

E-Print Network (OSTI)

and is subject to RCRA closure standards addressed in this plan. 4 #12;TA 54 Area G Landfill Closure/Post-Closure 124 received hazardous waste after November 19, 1980. Hence, it is subject to RCRA closure standards Protection Division-Water Quality and RCRA Group and at the DOE Los Alamos Site Office. 5.2 Pre-Closure

Zornberg, Jorge G.

279

Microsoft Word - ROCKY MOUNTAIN OILFIELD TESTING CENTER - STWA-AOT-10192011 -R2  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy STWA : Viscosity Reduction Test An assessment of an in-line viscosity reduction device Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for October 19, 2011 This document may contain protected/confi dential information produced under and Funds-In Agreement (FIA) and is not to be further disclosed except as expressly provided for in the FIA.

280

Elevated weathering rates in the Rocky Mountains during the Early Eocene  

E-Print Network (OSTI)

primarily of trona (NaHCO3·Na2CO3·2H2O) and halite (NaCl) and were mapped from over 200 exploratory Tuff 10 m Qm F L Bedrock Alluvium KP Qm Bedrock Alluvium Trona bed Union Pacific El Paso core WPM) Trona volume (km3) 0 2 4 6 Derived from Phanerozoic strata Figure 2 Early Eocene strata in the GGRB. a

Smith, Michael Elliot

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rocky Mountain (PADD 4) Asphalt and Road Oil Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

282

Rocky Mountain (PADD4) Stocks of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

283

NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS  

E-Print Network (OSTI)

Ridge of Butte (MT), behind the smelter stack at Anaconda (MT), near the (removed) smelter in Kellogg stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and along regenerating south of the Anaconda Superfund site. Aspen is able to colonize these areas due to mutualistic

Cripps, Cathy

284

RWU 4201 Wildlife Ecology in Rocky Mountain Landscapes Wolverine Movements and Habitat-Use Patterns  

E-Print Network (OSTI)

Since 2001, we have captured 13 wolverines in the Pioneer, Anaconda-Pintler, Flint Creek, and Beaverhead

285

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network (OSTI)

discharge water in associated retention ponds moving from the south to the north. Further, Hulin (2003). LOWESS was used because it is usually superior to the parametric ordinary least squares regression sug

McClain, Michael

286

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

OILFIELD TESTING OILFIELD TESTING OILFIELD TESTING CENTER CENTER 2 2 HISTORY OF TEAPOT DOME Mark Milliken 3 3 TEAPOT DOME LOCATION 4 4 Salt Creek 670 MMBBLS 722 BCF Teapot Dome 27 MMBBLS 57 BCF N P R - 3 Cumulative Production 5 5 The Great White Fleet December 1907 - February 1909 6 6 THE END OF COAL-FIRED SHIPS * 2-week cruising time. * Labor and time intensive cleaning and reloading. * At the mercy of foreign countries for coal supply. * 1912: All battleships will be oil-powered. Great White Fleet 7 7 NAVAL PETROLEUM RESERVES ARE BORN * 1908: Dr. Otis Smith, USGS Director, recommends DOI retain oil lands for fuel reserve for Navy. * 1909: Taft withdraws 3,000,000 acres in Wyoming and California. * 1910: Concern over the President's authority to withdraw lands, so Congress passed the Pickett Act. * 1910: Taft issues a 2nd land withdrawal executive

287

Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.  

DOE Green Energy (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

2006-01-26T23:59:59.000Z

288

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

289

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

DOE Green Energy (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

290

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

291

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

292

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

293

Department of Energy Awards $300,000 Block Grant to the Rocky...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300,000 Block Grant to the Rocky Flats Community Reuse Organization Department of Energy Awards 300,000 Block Grant to the Rocky Flats Community Reuse Organization Department of...

294

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network (OSTI)

.S. Geological Survey #12;Yucca Mountain (arrow) in its regional setting. From lower left to upper right (toward southeast), Forty-Mile Wash (trending south), and Jackass Flat (JF, sandy-colored area east ofYucca Mountain). Between Yucca Mountain and theAmargosa River lie Crater Flat (CF) with its young volcanic centers (red

Lu, Zhiming

295

Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., LLC, Golden, CO (United States)], Doyle, D. [USDOE Rocky Flats Office, Golden, CO (United States)], Featherman, W.D. [Project Performance Corp., Sterline, VA (United States)

1997-12-31T23:59:59.000Z

296

The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

NONE

1998-08-01T23:59:59.000Z

297

Phytomass change in the mountain forests of southern Siberia under climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

Phytomass change in the mountain forests of southern Siberia Phytomass change in the mountain forests of southern Siberia under climate warming Nadja M. Tchebakova (E-mail: ncheby@forest.akadem.ru) V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia. Robert A. Monserud (E-mail: rmonserud@fs.fed.us; Ph: +1-503-808-2059; Fax: +1-503-808- 2020) Rocky Mountain and Pacific Northwest Research Stations, USDA Forest Service, P.O. Box 3890, Portland, OR 97208-3890 USA. Corresponding author. Elena I. Parfenova (E-mail: lyeti@forest.akadem.ru) V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia. 28 February 2001 Abstract. Introduction: Mitigation of climate warming is related to carbon sequestration in vegetation

298

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

299

Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas  

Science Conference Proceedings (OSTI)

Severe weather has a more calamitous effect in the mountainous region-because the terrain is complex and the economy is poorly developed and fragile. Such weather systems occurring on a small spatiotemporal scale invite application of models with ...

Someshwar Das; S. V. Singh; E. N. Rajagopal; Robert Gall

2003-09-01T23:59:59.000Z

300

Mesoscale Snowfall Prediction and Verification in Mountainous Terrain  

Science Conference Proceedings (OSTI)

Short-term forecasting of precipitation often relies on meteorological radar coverage to provide information on the intensity, extent, and motion of approaching mesoscale features. However, in significant portions of mountainous regions, radar ...

Melanie Wetzel; Michael Meyers; Randolph Borys; Ray McAnelly; William Cotton; Andrew Rossi; Paul Frisbie; David Nadler; Douglas Lowenthal; Stephen Cohn; William Brown

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Interaction of Simulated Squall Lines with Idealized Mountain Ridges  

Science Conference Proceedings (OSTI)

Numerical simulations of squall lines traversing sinusoidal mountain ridges are performed using the Advanced Regional Prediction System cloud-resolving model. Precipitation and updraft strength are enhanced through orographic ascent as a squall ...

Jeffrey Frame; Paul Markowski

2006-07-01T23:59:59.000Z

302

Rocky Flats Cleanup Agreement implementation successes and challenges  

SciTech Connect

On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

Shelton, D.C.

1997-02-01T23:59:59.000Z

303

Site wide integration of the Rocky Flats closure project  

Science Conference Proceedings (OSTI)

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01T23:59:59.000Z

304

Rocky Flats Plant Site Environmental Report for 1992  

Science Conference Proceedings (OSTI)

The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

Cirrincione, D.A.; Erdmann, N.L. [eds.

1992-12-31T23:59:59.000Z

305

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

306

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

307

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

308

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

309

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Ronald E. Moulton  

Energy.gov (U.S. Department of Energy (DOE))

Ronald E. Moulton, P.E. serves as the Transmission Services Manager for Western Area Power Administration's Rocky Mountain Region, Desert Southwest Region and Colorado River Storage Project...

311

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

312

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

313

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

314

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

315

DOE - Office of Legacy Management -- Rocky Flats Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive Rocky Flats Site, Colorado Key Document Archive All documents are Adobe Acrobat files. pdf_icon NEPA - Rocky Flats Surface Water Configuration Environmental Assessment (EA) Site-Specific Uranium Standards Petition Site Surveillance and Maintenance Reports Quarterly Reports 2013 3rd Quarter 2nd Quarter Overview 1st Quarter Overview 2012 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2011 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2010 3rd Ouarter Overview 2nd Ouarter Overview 1st Quarter Overview 2009 1st Quarter Overview 2nd Ouarter Overview 3rd Quarter Overview 2008 1st Quarter Overview 2nd Quarter Overview 3rd Quarter Overview 2007 1st Quarter Overview 2nd Quarter Overview 3rd Quarter Overview 2006

316

Health Surveillance Outcomes in Former Rocky Flats Radiation Workers  

NLE Websites -- All DOE Office Websites (Extended Search)

Surveillance of Rocky Flats Radiation Workers Surveillance of Rocky Flats Radiation Workers Janice P. Watkins 1 , Elizabeth D. Ellis 1 , F. Joseph Furman 2 , Roger B. Falk 2 , Joe M. Aldrich 2 , and Donna L. Cragle 1 ORAU Technical Report # 2006-0408 1 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; P.O. Box 117; Oak Ridge, TN 37831-0117 2 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; 9950 W. 80 th Avenue, Suite 17; Arvada, CO 80005-3914 This report was funded by Department of Energy Environmental Health Division under contract number DE-AC05-00OR22750. Table of Contents List of Figures.................................................................................................................2 List of Tables

317

Colorado and the Accelerated Cleanup at Rocky Flats  

SciTech Connect

When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

Spreng, C. [Public Health and Environment, Colorado Dept., Denver, CO (United States)

2007-07-01T23:59:59.000Z

318

Facility overview for commercial application of selected Rocky Flats facilities  

SciTech Connect

The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

NONE

1996-11-01T23:59:59.000Z

319

Actinide solution processing at the Rocky Flats Environmental Technology Site  

SciTech Connect

The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

NONE

1995-04-01T23:59:59.000Z

320

Microsoft Word - Rocky Ridge_CX Memo .docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2013 31, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Tripp Project Manager - TEP-CSB-1 Proposed Action: Rocky Ridge Radio Station Upgrade Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meterological and radio towers Location: Powell County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade its Rocky Ridge Radio Station located about 6 miles east of Garrison, Montana. The upgrade would involve replacing the existing analog communication system with a new digital communication system to ensure communication reliability. The site is located on Montana Department of Natural Resource Conservation land. Construction would be staged

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Special Review of the Rocky Flats Closure Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April April 2001 Special Review of the Integrated Safety Management ISM OVERSIGHT Table of Contents EXECUTIVE SUMMARY ............................................................................... 1 1.0 INTRODUCTION ...................................................................................... 6 2.0 FOCUSED REVIEW OF THE INTEGRATED WORK CONTROL PROCESS AND LINE MANAGEMENT OVERSIGHT .............................................................................................. 8 2.1 Background ...................................................................................... 8 2.2 Line Management Oversight and Selected Other Management Systems .................................................................... 10 2.3 Rocky Flats Closure Project Integrated Work Control Process

322

DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

Science Conference Proceedings (OSTI)

This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

Dorr, K. A.; Hoover, J.

2002-02-25T23:59:59.000Z

323

Canada's first subsea gas line conquers rocky approaches  

SciTech Connect

This paper reports on the installation of a gas pipeline system connecting Vancouver Island to the British Columbia mainland. The design challenges of this project have consisted of deep water (maximum 1,360 ft; 415 m) steep and rocky shores, and an irregular seabed topography. In addition, the project location is far from an established offshore construction market, necessitating long- distance mobilization of specialized equipment.

Yamauchi, H.M. (Westcoast Energy Inc., Vancouver (CA)); Timmermans, W.J. (Intec Engineering, Inc., Houston, TX (US))

1991-03-06T23:59:59.000Z

324

Rocky Flats Plant Site Environmental Report: 1993 Highlights  

Science Conference Proceedings (OSTI)

The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

Not Available

1993-12-31T23:59:59.000Z

325

Developments in northern Rockies in 1979. [Tabular data and map  

SciTech Connect

In 1979, the Northern Rockies (Idaho, Montana, North Dakota, South Dakota, and Wyoming) had another increase in drilling. A total of 2500 wells was drilled during 1979 compared with 2433 during 1978. Exploratory wells resulted in 127 oil and 81 gas discoveries during 1979. Activities remained high in the natural gas provinces, but increased oil prices toward year end resulted in increased emphasis on exploration for oil.

Teselle, R.D.; Miller, D.D.; Thames, D.B. Jr.; Thuesen, R.A.

1980-09-01T23:59:59.000Z

326

Erosion of rocky carbonate coastlines: Andros Island, Bahamas  

SciTech Connect

Erosion of rocky carbonate coastlines has been monitored at intertidal and supratidal locations on Andros Island, Bahamas. The monitoring method involves periodic direct measurement of over 1000 points on a 0.25 square meter surface of rock. Comparisons are made between initial surface morphology and subsequent surface morphologies in order to measure rates and patterns of erosion. Rates of intertidal erosion vary from 2.5 meters/1000 years to 5.0 meters/1000 years, with an average of 3.1 meters/1000 years. The lack of wave action, combined with an absence of bioeroding organisms such as gastropods, chitons, sponges, worms and barnacles, which exist in the intertidal zone, causes the supratidal rate of erosion to be much lower than the rate of intertidal erosion. Degradation of rocky coastlines results in island retreat as well as the production of a large amount of sediment which is deposited in adjacent lagoons. Much of the sediment produced by bioerosion of these peloidal limestones exists as fecal pellets and sponge chips which are calcite. The erosion of rocky intertidal escarpments creates terraces and notches which lie near low-tide level. The width of the intertidal terraces of Andros Island aids our understanding of the duration of the most recent stillstand of sea level. Terraces and notches at other elevations indicate former stillstands.

Donn, T.F.; Boardman, M.R.

1985-01-01T23:59:59.000Z

327

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

328

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

329

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

330

Modeling Seasonal Changes in the Temperature Lapse Rate in a Northern Thailand Mountainous Area  

Science Conference Proceedings (OSTI)

Temperature data in the mountain forest regions are often extrapolated from temperature data recorded at base stations at lower elevation. Such extrapolation is often based on elevation differences between target regions and base stations at low ...

Hikaru Komatsu; Hirofumi Hashimoto; Tomonori Kume; Nobuaki Tanaka; Natsuko Yoshifuji; Kyoichi Otsuki; Masakazu Suzuki; Tomoomi Kumagai

2010-06-01T23:59:59.000Z

331

Rocky Flats Neutron Detector Testing at Valduc, France  

Science Conference Proceedings (OSTI)

Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

Kim, S S; Dulik, G M

2011-01-03T23:59:59.000Z

332

Final Land Configuration for the Rocky Flats Environmental Technology Site  

SciTech Connect

Closure of the Rocky Flats Environmental Technology Site (RFETS) has been completed. The future land use of the site is designated as a National Wildlife Refuge. A joint effort between Kaiser-Hill, Department of Energy, U.S. Fish and Wildlife Service, Environmental Protection Agency, State of Colorado, and other stakeholders was initiated to provide direction for developing the final land configuration. Through early identification of issues and developing mutually agreeable solutions, the final land configuration of the site was successfully completed. (authors)

Stegen, R. L.; Kapinos, J. M.; Wehner, J. P.; Snyder, B. [Parsons, 1700 Broadway, Suite 900, Denver, Colorado 80290 (United States); Davis, R. W. [Kaiser-Hill Company, LLC, 9193 S. Jamaica, Englewood, Colorado 80112 (United States)

2006-07-01T23:59:59.000Z

333

Plutonium dissolution from Rocky Flats Plant incinerator ash  

SciTech Connect

Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs.

Delegard, C.H.

1985-06-01T23:59:59.000Z

334

CX-008775: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration-Rocky Mountain Region Western Area Power Administration will replace transformer KV1A at the Archer Substation. CX-008775.pdf More Documents & Publications...

335

Sequence stratigraphy of the lower Pierre Shale in southern Powder River Basin, Wyoming, USA.  

E-Print Network (OSTI)

??Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River (more)

Kaykun, Armagan

2013-01-01T23:59:59.000Z

336

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region June 5, 2012 CX-008778: Categorical Exclusion Determination Combined Crew Vegetation Management on...

337

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

of Western's Current Transmission Business Unit Activities Meeting Transmission Challenges in the Rocky Mountain Region June 21, 2011 Overview * General description of the TBU *...

338

RM Maintenance Services  

NLE Websites -- All DOE Office Websites (Extended Search)

maintenance forces are responsible for over 118 substations and almost 5300 miles of transmission lines. The Rocky Mountain Region recently updated its Metering Policy. Its...

339

The Plutonium Stabilization andPackaging System at the Rocky Flats Environmental Technology Site,IG-0554  

Energy.gov (U.S. Department of Energy (DOE))

From 1952 to 1989, the Rocky Flats Environmental Technology Site (Rocky Flats) produced nuclear weapons components for the Department of Energy. In January 1992, the primary mission of the site...

340

Independent Oversight Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Rocky Flats Environmental Technology Site Transportation Emergency Management Program Independent Oversight Review of the March 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazard Survey and Hazards Assessments .................................... 6 Program Plans and Procedures ..................................................... 7 Emergency Responder Performance and Preparation ............... 9 Offsite Interfaces ........................................................................... 10 Feedback and Continuous Improvement Process

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado  

SciTech Connect

This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

1995-12-13T23:59:59.000Z

342

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

343

DOE Certifies Rocky Flats Cleanup "Complete" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certifies Rocky Flats Cleanup "Complete" Certifies Rocky Flats Cleanup "Complete" DOE Certifies Rocky Flats Cleanup "Complete" December 8, 2005 - 4:45pm Addthis Golden, CO - Deputy Secretary of Energy Clay Sell announced today that the environmental cleanup of the former Rocky Flats site has been certified complete by the U.S. Department of Energy. Certification marks the final step in the DOE's successful effort to clean up and eventually turn over the former weapons production site for use as a National Wildlife Refuge. "With today's announcement, the cleanup chapter of Rocky Flats' history is closed, while another equally important chapter is just being opened," said Deputy Secretary Sell. "This successful cleanup represents a triumph of determination and spirit of cooperation that stands as an example for

344

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

345

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

346

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

348

AEO2011: Electric Power Projections for EMM Region - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 94, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Rockies Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 258.8 KiB)

349

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

350

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

351

Symposium on the Nature of Science—Rocky Kolb  

NLE Websites -- All DOE Office Websites (Extended Search)

FIRST SECOND IN THE LIFE OF THE UNIVERSE FIRST SECOND IN THE LIFE OF THE UNIVERSE Rocky Kolb Watch the talk (Running time 51:09) Video in Frame Detached Video Some users have reported problems with the "Video in Frame" option. If you have problems, please try the "Detached Video" option. Requires RealPlayer 7.0 or higher. Get RealPlayer Thirteen billion years ago our universe started with a bang. Today we are gathering the fossil evidence of the very earliest moments of the universe. Our picture of the very beginning of the universe is still incomplete, with outstanding questions like: What powered the big bang? What is the dark matter that binds together the universe? What is the dark energy that thrusts apart the universe? Are there hidden spacetime dimensions? What was before the big bang?

352

City of Rocky Mount, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mount, North Carolina (Utility Company) Mount, North Carolina (Utility Company) Jump to: navigation, search Name City of Rocky Mount Place North Carolina Utility Id 16226 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting - 1000W MH Lighting Area Lighting - 1000W MV Lighting Area Lighting - 100W MH Lighting Area Lighting - 100W MH (SE) Lighting Area Lighting - 100W SV Lighting Area Lighting - 100W SV (SE) Lighting Area Lighting - 1500W MH Lighting Area Lighting - 150W SV Lighting Area Lighting - 175W MH Lighting

353

Enforcement Letter -Rocky Flats-08/02/2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2000 , 2000 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site 10808 Highway 93, Unit B Golden, CO 80403-8200 Subject: Enforcement Letter Dear Mr. Card: This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure to perform required combustible gas surveillances. The failure to fully perform the required surveillances was identified by the contractor during a comprehensive Kaiser-Hill (KHLL) Implementation Validation Review (IVR) team verifying implementation of the Basis of Interim Operation (BIO) for Buildings 776 and

354

Enforcement Letter - Rocky Flats -07/20/1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 1998 , 1998 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site P.O. Box 464 Golden, CO 80402-0464 Subject: Enforcement Letter Noncompliance Reports NTS-RFO--KHLL-SITEWIDE-1997-0006 NTS-RFO--KHLL-371OPS-1997-0002 NTS-RFO--KHLL-SITEWIDE-1997-0010 NTS-RFO--KHLL-SITEWIDE-1998-0001 Dear Mr. Card: This letter refers to the Department of Energy=s (DOE) evaluation of noncompliances reported in four Noncompliance Tracking System (NTS) entries, identified in the subject line above. The four NTS reports were submitted between September 24, 1997, and March 3, 1998. The reports identified potential noncompliances with requirements of 10 CFR 830.120 (Quality Assurance Rule) and 10 CFR 835 (Radiation Protection Rule). The Office of Enforcement and Investigation evaluated these NTS reports based on the

355

DOE - Office of Legacy Management -- Rocky Flats Petition  

NLE Websites -- All DOE Office Websites (Extended Search)

Petition Petition Rocky Flats Site, Colorado Site-Specific Uranium Standards Petition All documents are Adobe Acrobat files. pdf_icon U.S. Department of Energy's Proponent's Pre-Hearing Statement for Proposed Revisions to Segments 4a, 4b, and 5 of Big Dry Creek (Walnut and Woman Creeks) Regulation #38 (5 CCR 1002-38) Figure 1 Figure 2 Thermal Ionization Mass Spectrometry Uranium Results for November 2008 RFETS Waters Thermal Ionization Mass Spectrometry Uranium Results for September 2008 RFETS Waters Thermal Ionization Mass Spectrometry Uranium Results for October 2007 RFETS Waters Quantitative Evaluation of Mixture Components in RFETS Uranium Isotopic Analyses Proposed Notice Petition for Rulemaking Regarding Site-Specific Uranium Standards Rulemaking Petition Water Monitoring Locations

356

Sitewide risk perspectives for the Rocky Flats Environmental Technology Site  

SciTech Connect

The US Department of Energy (DOE) has recently finalized a closure plan (originally called the Ten Year Plan) for closure and environmental cleanup of previous nuclear weapons facilities. The DOE Rocky Flats Field Office has established priorities for risk reduction work to Support closure activities, as well as addressing those hazards associated with storage and management of radioactive materials and hazardous chemicals. To provide information for future National Environmental Policy Act (NEPA) or other regulatory assessments of specific risk reduction projects identified in the Closure Plan, a risk assessment of normal operations and potential accidents was recently prepared to provide an updated baseline of the cumulative impacts to the worker, public and environment due to the Site`s operations, activities, and environmental conditions in light of the Site`s change in mission, and of future closure projects. This paper summarizes the risk assessment approach, results, and conclusions.

Olinger, S.J. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Foppe, T.L. [M.H. Chew and Associates, Inc., Golden, CO (United States)

1998-05-01T23:59:59.000Z

357

Oil and gas developments in Northern Rockies in 1976  

SciTech Connect

In 1976 the Northern Rockies experienced a 22% decline in drilling compard to 1975. All states suffered except North Dakota and South Dakota. North Dakota had an increase of 9.4% in total drilling; South Dakota had an increase of 14.2% in total drilling. A new and significant area in western Wyoming, the overthrust belt, had a 50% wildcat success rate. The exploration of Cretaceous stratigraphic sandstones in the Powder River Basin continues strongly. At the end of the year, activity in general was on the upswing, but there was not enough time to compensate for the doldrums of the summer when drilling decreased partly because of unfortunate government policies in the areas of price and environment.

Walker, R.E. (Gulf Energy and Minerals Co., Casper, WY); Maio, C.G.; Johnson, R.P.

1977-08-01T23:59:59.000Z

358

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

State geothermal commercialization programs in seven Rocky Mountain States. Semi-annual progress report, January-June 1980  

DOE Green Energy (OSTI)

The following are included: a summary of the state projects, a summary of findings, public outreach, and a description of the major conclusions and recommendations. The commercialization activities carried out by the state teams are described for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

Tuttle, J.; Coe, B.A.; Gertsch, W.D.; Meyer, R.T.

1980-12-01T23:59:59.000Z

362

Effects of energy development on air quality in the Rocky Mountain West. [Environmental effects of coal and oil shale development  

SciTech Connect

Future need for fossil fuels may lead to an exploitation of Western coal and oil shale at the expense of the traditional clean air and clear skies of the West. This report evaluates the prospects for future changes in western air quality, the constraints imposed on western energy development by air quality regulations, and the impacts of that development.

Hinman, G.W.; Leonard, E.M.

1977-01-01T23:59:59.000Z

363

Blister Rust Prevalence in Krummholz Whitebark Pine: Implications for Treeline Dynamics, Northern Rocky Mountains, Montana, U.S.A.  

E-Print Network (OSTI)

in whitebark pine krummholz in the alpine treeline ecotone east of the Continental Divide on the Blackfeet; Divide Peak (48u679N, 113u389W), situated on the border of the Blackfeet Indian Reservation and Glacier increasingly wind-exposed farther away from the base of the actual peak. Locations east of the Continental

Resler, Lynn M.

364

Convective Snowbands Downstream of the Rocky Mountains in an Environment with Conditional, Dry Symmetric, and Inertial Instabilities  

Science Conference Proceedings (OSTI)

Convective snowbands moved slowly over Wyoming and northern Colorado on 1617 February 2007 and produced up to 71 mm (2.8 in.) of snow that was unpredicted by operational numerical weather prediction models and human forecasters. The northwest...

Russ S. Schumacher; David M. Schultz; John A. Knox

2010-12-01T23:59:59.000Z

365

Microphysical Effects of Wintertime Cloud Seeding with Silver Iodide over the Rocky Mountains. Part I: Experimental Design and Instrumentation  

Science Conference Proceedings (OSTI)

A series of winter orographic cloud seeding experiments is described in which the seeding agent and associated changes in cloud microphysics are monitored to within 300 m of the target areas (Montana and Colorado), and at the surface (Colorado ...

Arlin B. Super; Bruce A. Boe; Edmond W. Holroyd III; James A. Heimbach Jr.

1988-10-01T23:59:59.000Z

366

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Facility Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

367

VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. This decision will consider a Motion for Partial Dismissal and Limitation on Scope of Complainant's Claims filed by EG&G Rocky Flats, Inc. (EG&G) on June 13, 1997. In its motion, EG&G seeks partial dismissal of the underlying complaint and hearing request filed by Arthur Murfin (Murfin) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Murfin's request for a hearing under 10 C.F.R. § 708.9 was filed on January 27, 1997, and it has been assigned Office of Hearings and Appeals (OHA) Case No. VWA-0016. vwz0008.pdf More Documents & Publications LWA-0010 - In the Matter of Howard W. Spaletta

368

Comparison and evaluation of turbulence estimation schemes at Rocky Flats Plant  

SciTech Connect

The Rocky Flats Plant (RFP) routinely measures meteorological data to support Air Quality and Emergency Response activities. These data help to characterize the transport and dispersion of actual or potential airborne releases of radionuclides or other hazardous materials.

Bowen, B.M.; Pamp, S.E.

1993-10-01T23:59:59.000Z

369

A Method for Predicting Chinook Winds East of the Montana Rockies  

Science Conference Proceedings (OSTI)

Damaging foehn winds, locally known as chinook winds, are loosely defined and generally described for the east slopes of the Montana Rockies. Three upper-level patterns associated with chinook episodes in Montana are described and illustrated. ...

Michael J. Oard

1993-06-01T23:59:59.000Z

370

The Detection and Significance of Diurnal Pressure and Potential Vorticity Anomalies East of the Rockies  

Science Conference Proceedings (OSTI)

Harmonic analysis of pressure, temperature, and precipitation data from 1000 Automated Surface Observing System (ASOS) stations reveals a mix of stationary and eastwest moving disturbances east of the Rockies. Optimization of the pressure data ...

Yanping Li; Ronald B. Smith

2010-09-01T23:59:59.000Z

371

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Residues Treatment, Repackaging and Storage at the 0: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal from the U.S. Department of Energy Rocky Flats Environmental Technology Site in Golden, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1996 EA-1120: Finding of No Significant Impact Solid Residues Treatment, Repackaging and Storage at the Rocky Flats

372

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

373

Characteristics of the Near-Surface Boundary Layer within a Mountain Valley during Winter  

Science Conference Proceedings (OSTI)

Within mountainous regions, estimating the exchange of sensible heat and water vapor between the surface and the atmosphere is an important but inexact endeavor. Measurements of the turbulence characteristics of the near-surface boundary layer in ...

Warren Helgason; John W. Pomeroy

2012-03-01T23:59:59.000Z

374

Lidar Investigation of the Temporal and Spatial Distribution of Atmospheric Aerosols in Mountain Valleys  

Science Conference Proceedings (OSTI)

Lidar experiments were conducted in the mountainous region of Bulgaria to determine the spatial and temporal distribution of major aerosol sources and the zones of aerosol accumulation. When these lidar data are combined with conventional ...

Plamen B. Savov; Toni S. Skakalova; Ivan N. Kolev; Francis L. Ludwig

2002-05-01T23:59:59.000Z

375

On the Decline of Wintertime Precipitation in the Snowy Mountains of Southeastern Australia  

Science Conference Proceedings (OSTI)

Data from a precipitation gauge network in the Snowy Mountains of southeastern Australia have been analyzed to produce a new climatology of wintertime precipitation and airmass history for the region in the period 19902009. Precipitation amounts ...

Thomas H. Chubb; Steven T. Siems; Michael J. Manton

2011-12-01T23:59:59.000Z

376

Seasonal and Synoptic Variations in Near-Surface Air Temperature Lapse Rates in a Mountainous Basin  

Science Conference Proceedings (OSTI)

To accurately estimate near-surface (2 m) air temperatures in a mountainous region for hydrologic prediction models and other investigations of environmental processes, the authors evaluated daily and seasonal variations (with the consideration ...

Troy R. Blandford; Karen S. Humes; Brian J. Harshburger; Brandon C. Moore; Von P. Walden; Hengchun Ye

2008-01-01T23:59:59.000Z

377

Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Airflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of ...

Stephen F. Mueller; Aaron Song; William B. Noms; Shekar Gupta; Richard T. McNider

1996-11-01T23:59:59.000Z

378

CX-009801: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

379

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

380

Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada  

SciTech Connect

The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

382

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

383

Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste  

SciTech Connect

This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

1995-07-01T23:59:59.000Z

384

Institutional constraints on alternative water for energy: a guidebook for regional assessments  

Science Conference Proceedings (OSTI)

Basic information is presented about the legal, political, and social constraints faced by energy developers in the acquisition of water from underground, irrigation return flow, municipal waste, and saline sources. It is a guide to those institutional constraints which are general and pronounced enough to be important for regional assessments. First, attention was focused on the acquisition phase of the water use cycle. Second, constraints were analyzed primarily from a regional, rather than state-by-state, perspective. Emphasis was placed generally on the West - particularly the synfuel-rich Rocky Mountain states, the East, and Mid-West, in that order. Alaska and Hawaii were not surveyed. Third, the study focuses on the constraints associated with groundwater, municipal waste, irrigation return flow, and sea water, in that order. The phrase, institutional constraints, as used in the study, means legal, social, economic, and political restrictions, requirements, circumstances, or conditions that must be anticipated or responded to in order to acquire water for energy development. The study focuses primarily on legal constraints and secondarily on political constraints, because they tend to encompass or reflect other forms of institutional constraints.

Not Available

1980-11-01T23:59:59.000Z

385

Zuni Mountains Nm Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zuni Mountains Nm Geothermal Area Zuni Mountains Nm Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zuni Mountains Nm Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

386

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

387

DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

388

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

389

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

390

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

391

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network (OSTI)

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

392

FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter WS FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS By R.M. Flores and C coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

393

Risk-Quantified Decision-Making at Rocky Flats  

SciTech Connect

Surface soils in the 903 Pad Lip Area of the Rocky Flats Environmental Technology Site (RFETS) were contaminated with {sup 239/240}Pu by site operations. To meet remediation goals, accurate definition of areas where {sup 239/240}Pu activity exceeded the threshold level of 50 pCi/g and those below 50- pCi/g needed definition. In addition, the confidence for remedial decisions needed to be quantified and displayed visually. Remedial objectives needed to achieve a 90 percent certainty that unremediated soils had less than a 10 percent chance of {sup 239/240}Pu activity exceeding 50-pCi/g. Removing areas where the chance of exceedance is greater than 10 percent creates a 90 percent confidence in the remedial effort results. To achieve the stipulated goals, the geostatistical approach of probability kriging (Myers 1997) was implemented. Lessons learnt: Geostatistical techniques provided a risk-quantified approach to remedial decision-making and provided visualizations of the excavation area. Error analysis demonstrated compliance and confirmed that more than sufficient soils were removed. Error analysis also illustrated that any soils above the threshold that were not removed would be of nominal activity. These quantitative approaches were useful from a regulatory, engineering, and stakeholder satisfaction perspective.

Myers, Jeffrey C. [Washington Safety Management Solutions, Aiken, South Carolina (United States)

2008-01-15T23:59:59.000Z

394

Project Fever - Fostering Electric Vehicle Expansion in the Rockies  

DOE Green Energy (OSTI)

Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

Swalnick, Natalia

2013-06-30T23:59:59.000Z

395

Environmental Survey preliminary report, Rocky Flats Plant, Golden, Colorado  

SciTech Connect

This report presents the preliminary findings of the Environmental Survey of the United States Department of Energy (DOE), Rocky Flats Plant (RFP), conducted August 11 through 22, 1986. The Survey is being conducted by an multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the RFP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data observations of the operations carried on at RFP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activates. The Sampling and Analysis Plan is being executed by DOE's Oak Ridge National Laboratory. When completed, the results will be incorporated into the RFP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the RFP Survey. 75 refs., 24 figs., 33 tabs.

Not Available

1987-06-01T23:59:59.000Z

396

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

397

Table HC14.8 Water Heating Characteristics by West Census Region ...  

U.S. Energy Information Administration (EIA)

Table HC14.8 Water Heating Characteristics by West Census Region, 2005 Million U.S. Housing Units Water Heating Characteristics Mountain Pacific West Census Region

398

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

399

THE U.S. DEPARTMENT OF ENERGYS FACILITY REUSE AT THE ROCKY FLATS ENVIRONMENTALTECHNOLOGY SITE, IG-0425  

Energy.gov (U.S. Department of Energy (DOE))

For several decades, the Rocky Flats Environmental Technology Site (Site) operated as part of the Nation's nuclear weapons production complex. In 1989, however, the Department of Energy (DOE)...

400

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rime Mushrooms on Mountains: Description, Formation, and Impacts on Mountaineering  

Science Conference Proceedings (OSTI)

Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime ...

C. David Whiteman; Rolando Garibotti

2013-09-01T23:59:59.000Z

402

Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste  

Science Conference Proceedings (OSTI)

Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

1995-11-01T23:59:59.000Z

403

FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs  

SciTech Connect

The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

Joe M. Aldrich

2004-11-01T23:59:59.000Z

404

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

405

Volcanism Studies: Final Report for the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

406

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

to: to: Meeting Transmission Challenges in the Rocky Mountain Region Sponsored by June 21, 2011 Rocky Mountain Innosphere Fort Collins, CO Meeting Transmission Challenges in the Rocky Mountain Region What is the Western Area Power Administration? * Power marketing administration, under the U.S Depart of Energy * Wholesale electricity supplier, 57 hydropower plants, 10,479 MW capacity * 682 long-term/firm power preference customers Meeting Transmission Challenges in the Rocky Mountain Region Western's Core Mission * Maintain long-standing core business of marketing and reliably delivering clean, hydropower and transmission services to preference power customers at the lowest possible rates, using sound business principles Meeting Transmission Challenges in the Rocky Mountain Region

407

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30N-40N and 40N-50N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

408

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: Solid Residues Treatment, Repackaging and Storage at the 20: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal from the U.S. Department of Energy Rocky Flats Environmental Technology Site in Golden, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1996 EA-1120: Finding of No Significant Impact

409

Comparative risk analysis for the Rocky Flats Plant integrated project planning  

Science Conference Proceedings (OSTI)

The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

Jones, M.E.; Shain, D.I.

1994-05-01T23:59:59.000Z

410

Public distrust and hazard management success at the Rocky Flats nuclear weapons plant  

SciTech Connect

Based on experience gained while serving a public oversight commission appointed by the governor of Colorado, hazard management at the Department of Energy's Rocky Flats nuclear weapons plant is reviewed. Specific reference is made to the plant's history of controversy, its defense-in-depth strategy of hazard control, occupational health issues, public exposure to plutonium, and the assessment of low-probability, high-consequence risks. This leads to the conclusion that Rocky flats is, by any objective standard, a hazard management success. It follows that public distrust of Rocky Flats arises as much from fear and loathing of nuclear weapons themselves as from the manufacturing process by which they are made.

Hohenemser, C.

1987-06-01T23:59:59.000Z

411

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

412

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

413

Impacts of human trampling and periodic sand inundation on Southern California intertidal algal turf communities : implications for conservation and management of rocky shores  

E-Print Network (OSTI)

associated with rocky shore algae. Pgs. 36- 56 in: P.G.associated with rocky shore algae. In: P. G. Moore & R.h. Boulder Boulder / Turf Other Algae Sand > 50 mm, < 200 mm

Huff, Tonya Michelle

2006-01-01T23:59:59.000Z

414

First semiannual report: Rocky Flats Small Wind Systems Test Center activities. Volume I. Description of the National Small Wind Systems Test Center  

DOE Green Energy (OSTI)

Information is presented concerning the Rocky Flats wind turbine test site; the philosophy of testing at Rocky Flats; test procedure development; atmospheric SWECS testing; SWECS component testing; data collection, handling, and analysis; reporting procedures; and future plans.

None

1978-09-28T23:59:59.000Z

415

Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado  

SciTech Connect

Spatial analysis of the {sup 240}Pu:{sup 239}Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 {+-} 0.003 to 0.169 {+-} 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio {ge}0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio {le}0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

Litaor, M.I. [Tel-Hai Rodman Coll., Upper Galilee (Israel). Dept. of Biotechnology and Environmental Sciences

1999-02-01T23:59:59.000Z

416

Evaluation of an emergency response model for the Rocky Flats Plant: Charter  

Science Conference Proceedings (OSTI)

This Charter provides a basis for a cooperative, interagency effort to evaluate the Terrain-Responsive Atmospheric Code for emergency response and emergency planning for the Rocky Flats Plant. This document establishes the foundation for the project entitled, Evaluation of an Emergency Response Model for the Rocky Flats Plant'' (to be referred to as the Project). This document meets the following objectives: Identify the Project; establish the project management structure, organizational responsibilities, and organizational commitments for reaching the goals of the Project, and identify a process for model revision and revelation for acceptance. 2 figs.

Not Available

1991-01-01T23:59:59.000Z

417

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

418

ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

419

A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY),  

E-Print Network (OSTI)

Chapter SN A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY), NORTH PARK BASIN, COLORADO By S assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

420

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network (OSTI)

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

422

A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO  

E-Print Network (OSTI)

Chapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

423

FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS  

E-Print Network (OSTI)

Chapter HS FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

424

Property:Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search This is a property of type Page. Pages using the property "Region" Showing 25 pages using this property. (previous 25) (next 25) 1 1st Light Energy, Inc. + Southern CA Area + 2 21-Century Silicon, Inc. + Texas Area + 3 3Degrees + Bay Area + 3TIER + Pacific Northwest Area + 4 4th Day Energy + Southern CA Area + 5 5 boro biofuel + Northeast - NY NJ CT PA Area + @ @Ventures (California) + Bay Area + @Ventures (Massachusetts) + Greater Boston Area + A A1 Sun, Inc. + Bay Area + A10 Power + Bay Area + A123 Systems + Greater Boston Area + A2BE Carbon Capture LLC + Rockies Area + ABC Solar, Inc. + Southern CA Area + ABS Alaskan Inc + United States + AC Solar Inc + Rockies Area + AEE Solar + Bay Area + AER NY Kinetics LLC + United States +

425

Western Regional Partnership Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Overview Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP states range from 41.8% - 84.5% of total state land WRP Region's Importance to DoD  Extensive Training Ranges  Interconnected ground/air ranges provide unmatched warfighter training opportunities

426

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

427

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

429

Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline  

Science Conference Proceedings (OSTI)

This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

Gelles, C. M.; Sheppard, F. R.

2002-02-26T23:59:59.000Z

430

Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE's) Rocky Flats Site was established in 1951 as part of the United States' nationwide nuclear weapons complex to manufacture nuclear weapons components. In 1992 weapons production halted, and the Rocky Flats mission changed to include environmental investigations, cleanup, and site closure. In October 2005, DOE and its contractor completed an accelerated 10-year, $7 billion cleanup of chemical and radiological contamination left from nearly 50 years of production. The cleanup required the decommissioning, decontamination, demolition, and removal of more than 800 structures; removal of more than 500,000 cubic meters of low-level radioactive waste; and remediation of more than 360 potentially contaminated environmental sites. The final remedy for the site was selected in September 2006 and included institutional controls, physical controls, and continued monitoring for the former industrial portion of the site. The remainder of the site, which served as a buffer zone surrounding the former industrial area, was transferred to the U.S. Fish and Wildlife Service in July 2007 for a national wildlife refuge. DOE's Office of Legacy Management is responsible for the long-term surveillance and maintenance of Rocky Flats, which includes remedy implementation activities and general site maintenance. Several factors have complicated the transition from closure to post-closure at Rocky Flats. The early experiences associated with the two years since the physical cleanup and closure work were completed have led to several valuable lessons learned. (authors)

Surovchak, S. [U.S. Department of Energy, Office of Legacy Management, Westminster, CO (United States); Kaiser, L.; DiSalvo, R.; Boylan, J.; Squibb, G.; Nelson, J.; Darr, B.; Hanson, M. [S.M. Stoller Corporation, Westminster, CO (United States)

2008-07-01T23:59:59.000Z

431

Radiological/Health physics program assessement at Rocky Flats, the process  

SciTech Connect

The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings.

Psomas, P.O. [Department of Energy, Golden, CO (United States)

1996-06-01T23:59:59.000Z

432

NEPA Yucca Mountain Downloads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

433

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

434

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

435

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

436

Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico | Open  

Open Energy Info (EERE)

Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Lithic fragments are a highly varied but significant component of the Bandelier Tuff, Jemez Mountains, New Mexico. Lithic material occurs in concentrations from trace amounts to 30 wt.%, and within the Otowi Member of the tuff has a total volume of 10 km3. Approximately 90% of the fragments are Cenozoic volcanic rocks of the Jemez volcanic field, 10% are Paleozoic sedimentary rocks, and only trace amounts are Precambrian basement. The large volume of lithic material and predominance of shallowly

437

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

438

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

439

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain,  

Open Energy Info (EERE)

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Details Activities (1) Areas (1) Regions (0) Abstract: CO2 and heat fluxes were measured over a six-week period (09/08/2006 to 10/24/2006) by the eddy covariance (EC) technique at the Horseshoe Lake tree kill (HLTK), Mammoth Mountain, CA, a site with complex terrain and high, spatially heterogeneous CO2 emission rates. EC CO2 fluxes ranged from 218 to 3500 g m- 2 d- 1 (mean = 1346 g m- 2 d- 1). Using footprint modeling, EC CO2 fluxes were compared to CO2 fluxes measured by

440

Trace Element Analysis At Socorro Mountain Area (Owens, Et Al., 2005) |  

Open Energy Info (EERE)

Trace Element Analysis At Socorro Mountain Area (Owens, Et Al., 2005) Trace Element Analysis At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Trace Element Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In order to determine which of the faults in these regions were active and open to hydrothermal fluid circulation, we have employed selective ion geochemistry that is a new geochemical method capable of detecting anomalous concentrations for up to 47 elements transported to soils by geochemical cells or low pressure vapors. Enzyme leach and Terrasol leach are two such techniques. This method has to datae been mostly applied to

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Mountain Energy Company Place Texas Utility Id 7554 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861...

442

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

443

Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

NONE

1995-06-01T23:59:59.000Z

444

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

445

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

446

Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006  

Science Conference Proceedings (OSTI)

This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

Smith, Ken

2007-11-26T23:59:59.000Z

447

Yucca Mountain and The Environment  

Science Conference Proceedings (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

448

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

449

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis...

450

Motion to Withdraw from Yucca Mountain application | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic...

451

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

452

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

453

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP)...

454

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

455

Numerical Simulation of Slope and Mountain Flows  

Science Conference Proceedings (OSTI)

Early descriptive models of mountain-valley circulations indicated that the mountain flow (i.e., the along-valley axis component out of the valley) is a true three-dimensional phenomenon. According to these descriptions, at night shallow-down ...

Richard T. McNider; Roger A. Pielke

1984-10-01T23:59:59.000Z

456

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Yucca Mountain Press Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

462

Touriga Naional x environment interaction in the Little Karoo region of South Africa.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The Little Karoo region of South Africa stretches from Montagu in the west, through Barrydale on the Langeberg Mountain, towards Ladismith, Calitzdorp, Oudtshoorn (more)

Nel, Margaux

2009-01-01T23:59:59.000Z

463

Microsoft Word - CX-RockyReach-MapleValley_Bridge_FY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEPR-4 KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Ross Project Manager - TELF-TPP-3 Proposed Action: Rocky Reach-Maple Valley #1 Temporary Bridge Installation (116/4-117/1) PP&A Project No.: 2203 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance. Location: The project area is confined to the existing access road located to the south of the right-of-way corridor of Bonneville Power Administration's (BPA) Rocky Reach-Maple Valley 345-kV transmission line between miles 116-117. The proposed project, located in King County, Washington, is within BPA's Covington District. Proposed by: BPA Description of the Proposed Action: BPA is proposing to construct a temporary bridge over

464

Review of Beryllium Management Practices at Rocky Flats During Closure Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Environmental Management DOE - Complex Wide Review of Beryllium Management Practices at Rocky Flats During Closure Operations Challenge Beryllium (Be) metal is used by DOE in weapons production, as a reactor moderator or reflector, and as a fuel element cladding. Workers who are exposed to high concentrations of beryllium often develop acute beryllium disease caused by the inhalation of beryllium dust or particles which can cause Be sensitivity or chronic Be disease (CBD), a disabling and often fatal lung disease. A review of Rocky Flats Environmental Technology Site (RFETS) Be practices put in place by Kaiser-Hill, the cleanup contractor, was initiated to determine the effectiveness of RFETS beryllium characterization and prevention programs and to determine what, if any, suggestions could be

465

The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy`s Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work.

Shelton, D.C.; Brooks, L.M.

1998-11-01T23:59:59.000Z

466

Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report  

Science Conference Proceedings (OSTI)

The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

NONE

1995-05-31T23:59:59.000Z

467

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment  

SciTech Connect

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

Janeen Denise Robertson

1999-02-01T23:59:59.000Z

468

Toward assessing the geothermal potential of the Jemez Mountains volcanic complex: a telluric-magnetotelluric survey  

DOE Green Energy (OSTI)

Telluric-magnetotelluric studies were performed in the Jemez Mountains of north-central New Mexico to characterize the total geothermal system of the Valles Caldera and to be integrated with an east-west regional survey supported by the United States Geological Survey. The data from the regional survey indicate that electrically the San Juan Basin to the west of the Jemez Mountains is rather homogeneous in contrast to the eastern side near Las Vegas where the presence of a broad heterogeneous structure is clearly sensed. The data from the Jemez Mountain area are strikingly similar to other Rio Grande rift data and suggest a conducting layer at a depth of approximately 15 km. The telluric data indicate that the hydrothermal system in the area is of a localized nature.

Hermance, J.F.

1979-02-01T23:59:59.000Z

469

Regional Maps  

Gasoline and Diesel Fuel Update (EIA)

Carolina Mountain Division 2 West North Central Virginia Middle Atlantic West Virginia Arizona Iowa Colorado New Jersey Kansas Division 6 Idaho New York Minnesota East South...

470

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

471

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Wu, and G.S. Bodvarsson, Radionuclide Transport Models Underdaughters of certain radionuclides. Increasing infiltrationOF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN THE UNSATURATED

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

472

A Deep Convection Event above the Tunuyn Valley near the Andes Mountains  

Science Conference Proceedings (OSTI)

Deep convection in the Tunuyn Valley region (3334S, 6970W) on the eastern side of the highest peaks of the Andes Mountains is sometimes associated with damaging hail. Understanding the physical mechanisms responsible for the occurrence of ...

A. de la Torre; V. Daniel; R. Tailleux; H. Teitelbaum

2004-09-01T23:59:59.000Z

473

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Turbulent Kinetic Energy Budgets over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The objective of this study is to describe the characteristics of the airflow and turbulence structure over mountainous terrain. Turbulent characteristics of the airflow were measured using well-instrumented aircraft. The shear, buoyancy, ...

Theodore S. Karacostas; John D. Marwitz

1980-02-01T23:59:59.000Z

478

Ice Crystal Production by Mountain Surfaces  

Science Conference Proceedings (OSTI)

Evidence is presented for a process of ice crystal generation in supercooled orographic clouds in contact with snow-covered mountain surfaces. Comparisons of the crystal concentrations at the surface with aircraft sampling indicate that the ...

David C. Rogers; Gabor Vali

1987-09-01T23:59:59.000Z

479

Mountain Torque Events at the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The interaction of large-scale wave systems with the Tibetan Plateau (TP) is investigated by regressing pressure, potential temperature, winds, precipitation, and selected fluxes in winter onto the three components Toi of this massifs mountain ...

Joseph Egger; Klaus-Peter Hoinka

2008-02-01T23:59:59.000Z

480

On the Diurnal Variation of Mountain Waves  

Science Conference Proceedings (OSTI)

The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled OceanAtmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag ...

Qingfang Jiang; James D. Doyle

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rocky mountains region" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

482

Anelastic Semigeostrophic Flow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

Scale analysis indicates that five nondimensional parameters (R02 ?, ? ? and k?) characterize the disturbance generated by the steady flow of a uniform wind (U0, V0) incident on a mountain ridge of width a in an isothermal, uniformly rotating, ...

Peter R. Bannon; Pe-Cheng Chu

1988-03-01T23:59:59.000Z

483

Microsoft Word - IceMountainFinal.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tumbled-down boulders, called talus, on Ice Mountain's north- western slope collect ice during the winter. In the summer, cold air flows out of vents in the base of the talus,...

484

Mountain Torque and Rossby Wave Radiation  

Science Conference Proceedings (OSTI)

Planetary-scale orography exerts a substantial pressure drag on the atmosphere. This drag appears to be partially balanced by the convergence of momentum transports by Rossby waves induced by these mountains. Simple models of this process are ...

Joseph Egger

1998-09-01T23:59:59.000Z

485

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

486

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

487

Downscaling Climate over Complex Terrain: High Finescale (<1000 m) Spatial Variation of Near-Ground Temperatures in a Montane Forested Landscape (Great Smoky Mountains)  

Science Conference Proceedings (OSTI)

Landscape-driven microclimates in mountainous terrain pose significant obstacles to predicting the response of organisms to atmospheric warming, but few if any studies have documented the extent of such finescale variation over large regions. ...

Jason D. Fridley

2009-05-01T23:59:59.000Z

488

Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction  

Science Conference Proceedings (OSTI)

Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

R.A. Levich; J.S. Stuckless

2006-09-25T23:59:59.000Z

489

Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF  

Science Conference Proceedings (OSTI)

A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

2012-10