Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect (OSTI)

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

2

Microsoft Word - Rockies Pipelines and Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

07 07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. * Natural gas reserves in the Rocky Mountain States account for nearly 22 percent of the total natural gas reserves in the United States, and are

3

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

4

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

5

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

6

sea pipeline  

Science Journals Connector (OSTI)

sea pipeline, sealine, marine (pipe)line, undersea (pipe)line, submarine (pipe)line, subsea (pipe)line ? Untermeer(es)(rohr)leitung f

2014-08-01T23:59:59.000Z

7

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

8

DOE - Office of Legacy Management -- Rocky Benefits  

Office of Legacy Management (LM)

Colorado > Rocky Benefits Rocky Flats Site, Colorado Benefits Administration Rocky Flats Benefits Administration Rocky Flats Benefits Center P.O Box 9735 Providence, RI 02940 Phone...

9

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

10

About Rocky Mountain Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rates About the Rocky Mountain Region RM Office The Platte River Power Authority in Colorado, Nebraska Public Power District, Kansas Electric Power Cooperative and Wyoming...

11

Rocky Mountain's Home page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mountain Region service area The Rocky Mountain Region is one of four regions of the Western Area Power Administration. RM sells power in Colorado, most of Wyoming, Nebraska...

12

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

13

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect (OSTI)

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

14

Rocky flats teams forming  

SciTech Connect (OSTI)

Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

NONE

1994-08-01T23:59:59.000Z

15

Rockies | OpenEI  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 94, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections Rockies Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 258.8 KiB)

16

Independent Oversight Review, Rocky Flats Environmental Technology...  

Office of Environmental Management (EM)

Review, Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky...

17

diamond pipeline  

Science Journals Connector (OSTI)

the various steps through, which a diamond passes from production to marketing not including the end consumer. Also called diamond chain , pipeline ...

2009-01-01T23:59:59.000Z

18

Cleanup at Rocky Flats  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David L. Clark, Los Alamos National Laboratory David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water. More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

19

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

20

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline....

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

22

PIPELINE INVENTORIES  

Science Journals Connector (OSTI)

Inventory that are in the transportation network, the distribution system, and intermediate stocking points are called . The higher the time for the materials to move through the pipeline the larger the pipel...

2000-01-01T23:59:59.000Z

23

Pipeline Setback Ordinance (Minnesota)  

Broader source: Energy.gov [DOE]

This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

24

Propagating buckles in corroded pipelines  

Science Journals Connector (OSTI)

Rigid–plastic solutions for the steady-state, quasi-static buckle propagation pressure in corroded pipelines are derived and compared to finite element predictions (ABAQUS). The corroded pipeline is modeled as an infinitely long, cylindrical shell with a section of reduced thickness that is used to describe the corrosion. A five plastic hinge mechanism is used to describe plastic collapse of the corroded pipeline. Closed-form expressions are given for the buckle propagation pressure as a function of the amount of corrosion in an X77 steel pipeline. Buckles that propagate down the pipeline are caused by either global or snap-through buckling, depending on the amount of corrosion. Global buckling occurs when the angular extent of the corrosion is greater than 90°. When the angular extent is less than 90° and the corrosion is severe, snap-through buckling takes place. The buckle propagation pressure and the corresponding collapse modes also compare well to finite element predictions.

Michelle S. Hoo Fatt; Jianghong Xue

2001-01-01T23:59:59.000Z

25

Pipeline ADC Design Methodology  

E-Print Network [OSTI]

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

26

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

27

Enforcement Letter - Rocky Flats  

Broader source: Energy.gov (indexed) [DOE]

1, 2000 1, 2000 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C Rocky Flats Environmental Technology Site 10808 Highway 93, Unit B Golden, CO 80403-8200 Subject: Enforcement Letter Dear Mr. Card: This letter refers to an evaluation by the Department of Energy (DOE) of noncompliance report number NTS-RFO--KHLL-SITEWIDE-2000-0005, which describes noncompliances with the design and procurement requirements of 10 CFR 830.120 (Quality Assurance Rule). 10 CFR 830.120(c)(2)(iii) requires that procured items and services shall meet established requirements and perform as required; 10 CFR 830.120(c)(2)(ii) requires that design work including changes, shall incorporate applicable requirements and design bases; 10 CFR 830.120(c)(2)(iv) requires that inspection and testing of specified items, services, and processes shall be conducted

28

Rocky Mountain Customers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

29

Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline  

Science Journals Connector (OSTI)

A set of 44 protein targets was used to test expression in the wheat germ cell-free system, the vast majority of which were expressed and soluble in this system; further increases in solubility were achieved by addition of the NVoy polymer.

Guild, K.

2011-08-31T23:59:59.000Z

30

Soil Decontamination at Rocky Flats  

Science Journals Connector (OSTI)

During the last few years, many articles have appeared in newspapers and journals concerning radioactive contamination around Rocky Flats.1,2 The amount of plutonium in the soil has been of particular interest. T...

R. L. Olsen; J. A. Hayden; C. E. Alford…

1980-01-01T23:59:59.000Z

31

4271 pipeline [n  

Science Journals Connector (OSTI)

envir. (Long-distance pipe for conveying natural gas, oil, potable water, etc.; specific terms gas pipeline, oil pipeline); s «pipeline» [m] (Conducto destinado al transporte de petróleo o gas a larg...

2010-01-01T23:59:59.000Z

32

Revegetation of the Rocky Flats Site | Department of Energy  

Energy Savers [EERE]

Flats Site Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats, Colorado Site Revegetation of the Rocky Flats Site More Documents & Publications Landfill...

33

DOE - Office of Legacy Management -- Rocky Flats External Resources  

Office of Legacy Management (LM)

Rocky Flats Stewardship Council Disclaimer Rocky Flats Cold War Museum Disclaimer U.S. Fish and Wildlife Service Rocky Flats National Wildlife Refuge Disclaimer Last Updated: 51...

34

ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy  

Energy Savers [EERE]

ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications...

35

Rocky Flats Environmental Technology Site Archived Soil & Groundwater...  

Office of Environmental Management (EM)

Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

36

Smooth Brome Monitoring at Rocky Flats-2005 Results | Department...  

Energy Savers [EERE]

Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring...

37

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

38

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

39

Pipeline Operations Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

40

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

42

Pipeline refurbishing  

SciTech Connect (OSTI)

A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

McConkey, S.E.

1989-04-01T23:59:59.000Z

43

Rocky Flats resumes shipments to WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rocky Flats Resumes Shipments to WIPP CARLSBAD, N.M., March 11, 2000 - The U.S. Department of Energy (DOE) has resumed transuranic radioactive waste shipments from DOE's Rocky...

44

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

Aspen Pipeline Jump to: navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and...

45

DOE - Office of Legacy Management -- Rocky  

Office of Legacy Management (LM)

Rocky Flats Site, Colorado Rocky Flats Site, Colorado A CERCLA and/or RCRA Site rkyflats_2011 Remediation at the Rocky Flats Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. The site transferred to the Office of Legacy Management in 2008 and requires operation and maintenance of remedial action systems, routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Rocky Flats site, view the fact sheet. Site History Site Documents Community Involvement Contact Us Rocky Flats Benefits Administration Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Record Database

46

Pipeline Construction Guidelines (Indiana)  

Broader source: Energy.gov [DOE]

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

47

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

48

Keystone XL pipeline update  

Broader source: Energy.gov [DOE]

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

49

Pipeline operation and safety  

SciTech Connect (OSTI)

Safety is central to the prosperity of the pipeline industry and the need to maintain high standards of the safety at all times is of paramount importance. Therefore, a primary concern of pipeline operator is adequate supervision and the control of the operation of pipelines. Clearly defined codes of practice, standards and maintenance schedules are necessary if protection is to be afforded to the pipeline system employees, the public at large, and the environment.

Tadors, M.K. [Petroleum Pipelines Co., Cairo (Egypt)

1996-12-31T23:59:59.000Z

50

RETROSPECTIVE: Software Pipelining  

E-Print Network [OSTI]

- cialized hardware designed to support software pipelining. In the meantime, trace scheduling was touted compiler with software pipelining for the polycyclic architecture, which had a novel crossbar whose crossRETROSPECTIVE: Software Pipelining: An Effective Scheduling Technique for VLIW Machines Monica S

Pratt, Vaughan

51

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

52

Residue management at Rocky Flats  

SciTech Connect (OSTI)

Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

Olencz, J.

1995-12-31T23:59:59.000Z

53

NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

E-Print Network [OSTI]

NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE AND THEIR CONSERVATION Methods 3 Rocky Flats Conservation Site Description 10 Walnut Creek Conservation Site Description 22 Rocky.S. Department of Energy's Rocky Flats Field Office for making this report possible. In particular, Dr. John

54

6 - Pipeline Drying  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews pipeline dewatering, cleaning, and drying. Dewatering can be a simple process or, if the procedure is not properly planned, a difficult one. Pipelines used to transport crude oil and/or refined products will probably only require removal of the test water before the line is placed in service. If the pipeline will be used to transport materials that must meet a specified dryness requirement, the pipeline will need to be dewatered, cleaned, and dried. Pipelines used to transport natural gas will need some drying, depending on the operating pressure and the location of the line, to prevent the formation of hydrates. Other pipelines may require drying to protect the pipe from internal corrosion caused by the formation of corrosive acids, such as carbonic acid in the case of carbon dioxide pipelines.

2014-01-01T23:59:59.000Z

55

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

56

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Broader source: Energy.gov (indexed) [DOE]

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

57

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Office of Environmental Management (EM)

LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

58

Independent Oversight Special Review, Rocky Flats Closure Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001...

59

Review of Beryllium Management Practices at Rocky Flats During...  

Broader source: Energy.gov (indexed) [DOE]

Beryllium Management Practices at Rocky Flats During Closure Operations Review of Beryllium Management Practices at Rocky Flats During Closure Operations Administrative and...

60

Preliminary Notice of Violation , Rocky Flats Environmental Technology...  

Broader source: Energy.gov (indexed) [DOE]

Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary...

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PIA - Rocky Mountain OTC GSS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated Safety Management...

62

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy Savers [EERE]

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

63

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

64

A pipeline scheduling model  

E-Print Network [OSTI]

A PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER QF SCIENCE August 1975 Major Subject: Computing... Science R PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Approved as to style and content by: Chairman of ommittee Member (Head o f Department ) Member August 1975 ABSTRACT A PIPELINE SCHEDULING MODEL (August 1975) Thomas Melvin...

Beatty, Thomas Melvin

2012-06-07T23:59:59.000Z

65

The Motion Capture Pipeline.  

E-Print Network [OSTI]

?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a… (more)

Holmboe, Dennis

2008-01-01T23:59:59.000Z

66

Product Pipeline Reports Tutorial  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player...

67

Closing Rocky Flats by 2006  

SciTech Connect (OSTI)

Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

Tuor, N. R.; Schubert, A. L.

2002-02-26T23:59:59.000Z

68

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Interstate Natural Gas...

69

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

70

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

71

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

72

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

73

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

74

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

75

FEATURE ARTICLE Pipeline Corrosion  

E-Print Network [OSTI]

F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

Botte, Gerardine G.

76

Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect  

E-Print Network [OSTI]

Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect High process through specialized "pipeline schematics". We find that the properties of a protein that are most the structural genomics pipeline,6 ­ 9 from target cloning, expression, purification, to structural determination

Gerstein, Mark

77

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

78

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

79

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

80

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

82

Ivelina Alexandrova, Generating VHs Using Predefined Bodily and Facial Emotions in Real-Time VEs 17.01.11 Abstract This thesis proposes a pipeline for generating a virtual human that can express realistic  

E-Print Network [OSTI]

-Time VEs 17.01.11 Abstract Abstract This thesis proposes a pipeline for generating a virtual human that can these case studies to show that that our pipeline can be used in different fields for different purposes simultaneously. Zusammenfassung Diese Arbeit schlägt eine Pipeline zur Erstellung eines virtuellen Menschen vor

83

Rocky Flats ash test procedure (sludge stabilization)  

SciTech Connect (OSTI)

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

Winstead, M.L.

1995-09-14T23:59:59.000Z

84

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

85

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

86

Composites Technology for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

87

REVEGETATION OF THE ROCKY FLATS SITE, COLORADO  

Broader source: Energy.gov (indexed) [DOE]

REVEGETATION OF THE ROCKY FLATS SITE, COLORADO REVEGETATION OF THE ROCKY FLATS SITE, COLORADO Jody K. Nelson Professional Environmental Group/S.M. Stoller Corporation Rocky Flats Site 11025 Dover Street, Suite 1000 Westminster, CO 80021 ABSTRACT At the U.S. Department of Energy's (DOE's) Rocky Flats Site (Site), a former nuclear weapons component manufacturing plant near Golden, Colorado, approximately 650 acres were revegetated as part of the cleanup and closure activities. Numerous issues and challenges were addressed during the revegetation activities at the Site. These included deciding on revegetation and restoration goals; addressing poor substrate issues and soil compaction problems; use of soil amendments and topsoil; seed selection issues; timing and location of revegetation projects

88

Rocky Flats Ash test procedure (sludge stabilization)  

SciTech Connect (OSTI)

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

Funston, G.A.

1995-06-14T23:59:59.000Z

89

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

2003-05-01T23:59:59.000Z

90

Neptunium processing at the Rocky Flats Plant  

SciTech Connect (OSTI)

Small quantities of neptunium-237 have been processed at the Rocky Flats Plant since 1962. This processing has involved preparation of pure neptunium oxide, metal, and metal alloys, and the recovery of neptunium-237 from a variety of residues. This report describes the processes used at Rocky Flats to recover and purify neptunium in addition to processes used for conversion to metal for casting and for rolling.

Conner, W.V.; Baaso, D.L.

1981-09-20T23:59:59.000Z

91

Tefken builds Turkish pipeline project  

SciTech Connect (OSTI)

A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

Not Available

1984-08-01T23:59:59.000Z

92

Pipelines in the constructed environment  

SciTech Connect (OSTI)

New pipeline construction, the maintenance of existing pipelines, and the rehabilitation or replacement of deteriorating pipelines often takes place with many challenges and constraints imposed by developmental regulations. The 1998 Pipeline Division Conference provided a forum for those involved in the field to share ideas and learn more about the issues faced today. These 92 peer-reviewed papers reflect the current methods and technology in the field of pipeline construction.

Castronovo, J.P.; Clark, J.A. [eds.

1998-07-01T23:59:59.000Z

93

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

94

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

95

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

96

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

97

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

98

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

99

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

100

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen...

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The next ten years in the Rockies:  

Science Journals Connector (OSTI)

...permit and build the offshore facilities and pipelines...gas demand by 2020. Wind energy becomes very...times for delivery of wind turbines. Optimistic estimates call for wind to provide 6 of Americas...build a pipeline to an offshore field to recover 100...

Rutt Bridges

102

Rocky Flats Compliance Program; Technology summary  

SciTech Connect (OSTI)

The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

NONE

1994-02-01T23:59:59.000Z

103

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northern Rockies Geothermal Region Northern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} Province is situated in northern Idaho and western Montana and includes folded mountains, fault-bounded uplifts, and volcanics formed during middle Cretaceous to late Eocene mountain period. The region is structtually cojmplex with faulting and folding asociated with eastward thrust faulting. Western Montana and northwestern Wyoming contain large areas of Tertiary volcanic rocks, including smaller localized Quaternary silicic volcanic rocks. Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Idaho, Montana Area 97,538 km²97,538,000,000 m²

105

Rocky Ridge I | Open Energy Information  

Open Energy Info (EERE)

I I Jump to: navigation, search Name Rocky Ridge I Facility Rocky Ridge I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel Green Power North America / TradeWind Energy Developer TradeWind Energy Energy Purchaser Western Farmers Electric Cooperative Location Rocky OK Coordinates 35.055821°, -98.838426° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.055821,"lon":-98.838426,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Solid waste recycling programs at Rocky Flats  

SciTech Connect (OSTI)

The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

Millette, R.L.; Blackman, T.E.; Shepard, M.D. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

107

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

108

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

109

DOE - Office of Legacy Management -- Rocky Flats Regulatory Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Documents Regulatory Documents Rocky Flats Site, Colorado Regulatory Documents All documents are Adobe Acrobat files. pdf_icon Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Third Five-Year Review Report for the Rocky Flats Site Rocky Flats Legacy Management Agreement Environmental Covenant, November 14, 2011 Corrective Action Decision/Record of Decision Amendment for Rocky Flats Plant (USDOE) Central Operable Unit Proposed Plan for the Rocky Flats CAD/ROD Amendment (June 2011) Second Five-Year Review Report for the Rocky Flats Site Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit Rocky Flats Environmental Technology Site Proposed Plan Present Landfill Monitoring and Maintenance Plan

110

Development of the NIST Rocky Flats Soil Standard  

Science Journals Connector (OSTI)

The National Institute of Standards and Technology (NIST) Rocky Flats Soil-II Standard reference material (SRM) ... values and uncertainties for the radionuclides in the Rocky Flats Soil II SRM.

S. Nour; K. Inn; J. Filliben

2008-07-01T23:59:59.000Z

111

Issues evaluation process at Rocky Flats Plant  

SciTech Connect (OSTI)

This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

Smith, L.C.

1992-04-16T23:59:59.000Z

112

Chemical tracking at the Rocky Flats Plant  

SciTech Connect (OSTI)

EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

Costain, D.B.

1994-04-01T23:59:59.000Z

113

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

114

Validation of a novel expressed sequence tag (EST) clustering method and development of a phylogenetic annotation pipeline for livestock gene families  

E-Print Network [OSTI]

Sequence EGAD Expressed Gene Anatomy Database BTGI Bos taurus Gene Indices GO Gene Ontology MAFFT Multiple Alignment Using Fast Fourier Transform viii TABLE OF CONTENTS Page ABSTRACT... Ontology Accession GO:0030295 from the Livestock EST Gene Family Database ........................................ 120 3.8 Search results for Bovine Oligo Microarray Consortium Locus 11695 from the Cattle EST Gene Family Database...

Venkatraman, Anand

2009-05-15T23:59:59.000Z

115

Materials Requirements for Pipeline Construction  

Science Journals Connector (OSTI)

...the same time, pipeline failure must be...the huge cost of repair. The first oil...where the initial pipeline construction cost...cost of a single repair can exceed C1M. TABLE 2. NORTH SEA PIPELINES grade max. water...

1976-01-01T23:59:59.000Z

116

Evidence of rocky planetesimals orbiting two Hyades stars  

Science Journals Connector (OSTI)

......material that is consistent with rocky planetary debris around two...calculated in the relatively flat region between 1310 and 1330a...thus provide insight on the rocky planetary systems they construct...chondritic meteorites and thus rocky. In contrast, planetary debris......

J. Farihi; B. T. Gänsicke; D. Koester

2013-01-01T23:59:59.000Z

117

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

118

Predicting pipeline frost load  

SciTech Connect (OSTI)

A study was undertaken to find a formula for predicting the additional load imposed on underground pipelines by soil freezing. The authors conclude that a modified Boussinesq equation can be used to assess this load. Results also showed that frost affects the modulus of soil reaction and therefore the induced stress in flexible pipe.

Fielding, M.B.; Cohen, A.

1988-11-01T23:59:59.000Z

119

New Materials for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

120

The SINFONI pipeline  

E-Print Network [OSTI]

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Framework of pipeline integrity management  

Science Journals Connector (OSTI)

Pipeline integrity is the cornerstone of many industrial and engineering systems. This paper provides a review and analysis of pipeline integrity that will support professionals from industry who are investigating technical challenges of pipeline integrity. In addition, it will provide an overview for academia to understand the complete picture of pipeline integrity threats and techniques to deal with these threats. Pipeline threats are explained and failures are classified. Design practices are discussed using pressure criteria. Inspection techniques are studied and used as a basis for describing the corresponding integrity assessment techniques, which are linked with integrity monitoring and maintenance criteria. Finally, pipeline integrity management system design is presented using activity models, process models, and knowledge structures. The paper will be useful for further development of automated tools to support pipeline integrity management.

Hossam A. Gabbar; Hossam A. Kishawy

2011-01-01T23:59:59.000Z

122

DOE - Office of Legacy Management -- Rocky Flats SOG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOG SOG Rocky Flats Site, Colorado Rocky Flats, Colorado, Site Operations Guide All documents are Adobe Acrobat files. pdf_icon Site Operations Guide Appendixes Appendix A: Annual Site Inspection Checklist Appendix B: Example Contact Record Appendix C: Rocky Flats Site Soil Disturbance Evaluation Procedure Appendix D: Site-Specific Checklist Appendix E: Rocky Flats, Colorado, Site Erosion Control Monitoring and Maintenance Inspection Procedure Appendix F: Erosion Control Plan for Rocky Flats Property Central Operable Unit Appendix G: Wildland Fire Management Plan for the Rocky Flats, Colorado, Site Appendix H: Emergency Response Plan for the Rocky Flats Site Dams Appendix I: Additional Field Implementation Detail for Selected Monitoring Objectives Historic documents may contain links to outside sources. LM cannot attest

123

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Broader source: Energy.gov (indexed) [DOE]

Oversight Special Review, Rocky Flats Closure Project Oversight Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP.

124

Independent Oversight Special Review, Rocky Flats Closure Project Site -  

Broader source: Energy.gov (indexed) [DOE]

Special Review, Rocky Flats Closure Project Special Review, Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site The U.S. Department of Energy (DOE) Office of Independent Environment, Safety, and Health Oversight (EH-2), within the Office of Environment, Safety and Health, conducted an independent oversight Special Review at the Rocky Flats Closure Project (RFCP). The Special Review was conducted at the request of the Rocky Flats Field Office (RFFO), which is the DOE organizational element with responsibility for the RFCP (formerly known as the Rocky Flats Environmental Technology Site). Kaiser-Hill Company, LLC (KH) is the prime contractor for the RFCP. RFCP's project-oriented approach and aggressive scheduling have resulted

125

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

126

Abstract--A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage  

E-Print Network [OSTI]

Abstract-- A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage operates on only one data set at a time. In the mesochronous scheme, pipeline stages operate on multiple data sets simultaneously. The clock period in conventional pipeline scheme

Delgado-Frias, José G.

127

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

128

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

129

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

130

Atmospheric heat redistribution and collapse on tidally locked rocky planets  

E-Print Network [OSTI]

Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

Wordsworth, Robin

2014-01-01T23:59:59.000Z

131

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

132

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length

133

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

134

Release fractions for Rocky Flats specific accidents  

SciTech Connect (OSTI)

As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches@to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved.

Weiss, R.C.

1992-09-01T23:59:59.000Z

135

Release fractions for Rocky Flats specific accidents  

SciTech Connect (OSTI)

As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved.

Weiss, R.C.

1992-01-01T23:59:59.000Z

136

Pipelines (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

137

Basic TRUEX process for Rocky Flats Plant  

SciTech Connect (OSTI)

The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

1994-08-01T23:59:59.000Z

138

THERMODYNAMIC LIMITS ON MAGNETODYNAMOS IN ROCKY EXOPLANETS  

SciTech Connect (OSTI)

To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron 'snow' will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of 'ocean' planets with {approx}10% mass in an upper mantle of water (ice).

Gaidos, Eric; Conrad, Clinton P. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Manga, Michael; Hernlund, John [Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720 (United States)

2010-08-01T23:59:59.000Z

139

Status Update: Closing Rocky Flats by 2006  

SciTech Connect (OSTI)

Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

Tuor, N.; Schubert, A.

2003-02-25T23:59:59.000Z

140

Microwave solidification development for Rocky Flats waste  

SciTech Connect (OSTI)

The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

Dixon, D.; Erle, R.; Eschen, V. [and others

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Southern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Rockies Geothermal Region Southern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Colorado, New Mexico Area 128,454 km²128,454,000,000 m² 49,583.244 mi² 1,382,666,010,600 ft² 153,630,984,000 yd² 31,741,625.67 acres USGS Resource Estimate for this Region Identified Mean Potential 0 MW0 kW 0 W 0 mW 0 GW 0 TW Undiscovered Mean Potential 1,010 MW1,010,000 kW 1,010,000,000 W 1,010,000,000,000 mW 1.01 GW 0.00101 TW Planned Capacity

142

Chapter Three - Pipeline Reliability Assessment  

Science Journals Connector (OSTI)

Abstract Another aspect of pipeline integrity management is the assessment of system reliability over the age of the pipeline. In order to assess the aging effects through the pipe’s lifetime, a reliability assessment is carried out for the pipeline or its segment. The assessment of the residual stress effect is carried out by evaluating the reliability of new uncorroded pipelines, which are assumed to be free from any flaw. The influence of residual stress parameters, mean, and coefficient of variation are considered in the reliability assessment.

Ramesh Singh

2014-01-01T23:59:59.000Z

143

Hydrogen Embrittlement in Pipeline Steels  

Broader source: Energy.gov (indexed) [DOE]

& Materials Division Material Measurement Laboratory HYDROGEN EMBRITTLEMENT IN PIPELINE STEELS AJ Slifka, ES Drexler, RL Amaro, DS Lauria, JR Fekete Applied Chemicals &...

144

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Playing Hide and Seek with Playing Hide and Seek with the Hole-in-the-Wall Gang: Recent Technology Testing at Wyoming's Rocky Mountain Oilfield Testing Center (RMOTC) A presentation for The Salt Lake City SPE Chapter October 19, 2005 Tom Anderson Business Development Manager Data Management Project Manager RMOTC Outline * What is RMOTC? * The Hole-in-the-Wall Gang * "Virtual Field Trip" of Teapot Dome * Hiding: - CO 2 Sequestration - Pipeline Leak Detection * Seeking: - Microhole Drilling - High Pressure Jet-Assisted Drillbit - Flow Assurance Test Loop - Tubing Rotator * Sharing Data With Partners The Hole-in-the-Wall Gang Wyoming Doug Judith Spike Joe Brian Jim Mark Ralph Vicki Lyle Butch and Sundance \A1;Flow Assurance Loop 011 024 020 029 032 023 026 033 005 028 021 027 022 004 023 024 034 035 008 025 021 013 003 036 009 017 002 001

145

DOE's Former Rocky Flats Weapons Production Site to Become National  

Broader source: Energy.gov (indexed) [DOE]

Former Rocky Flats Weapons Production Site to Become National Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a decade of environmental cleanup work, the transfer creates the Rocky Flats National Wildlife Refuge, 16 miles northwest of Denver, Colorado, and marks completion of the regulatory milestones to transform a formerly contaminated site into an environmental asset. "The Department of Energy's environmental cleanup of the Rocky Flats

146

Pipelining characteristics of Daqing waxy crude oil  

Science Journals Connector (OSTI)

Compared with pipelining Newtonian fluid, the pipelining characteristics of the waxy crude pipeline are sensitive to the complicated rheological properties. When the temperature is lower than the wax appearance t...

Ying-ru Zhu ???; Jin-jun Zhang ???

2007-02-01T23:59:59.000Z

147

RNA-Seq Pipeline in Galaxy  

E-Print Network [OSTI]

Assembly in Galaxy RNA-Seq q Pipeline p • QC : To find outRNA-Seq Pipeline in Galaxy Xiandong Meng 1 , Jeffrey Martinof California RNA--Seq Pipeline in Galaxy RNA Xiandong Meng

Meng, Xiandong

2014-01-01T23:59:59.000Z

148

Chapter 4 - Pipeline Inspection and Subsea Repair  

Science Journals Connector (OSTI)

Abstract Pipeline inspection is a part of the pipeline integrity management for keeping the pipeline in good condition. The rules governing inspection are the pipeline safety regulations. In most cases the pipeline is inspected regularly. The pipeline safety regulations require that the operator shall insure that a pipeline is maintained in an efficient state, in efficient working order and in good repair. The pipeline inspection includes external inspection and internal inspection. In this chapter, the metal loss inspection techniques are discussed. The subsea pipeline internal inspection is normally carried out through non-destructive testing techniques and technologies by intelligent pigs, such as magnetic-flux leakage technology inn axial and circumferential, ultrasound technologies, eddy-current technologies and other technologies. The repair methods are different for shallow and deep water subsea pipelines. The conventional repair methods are used for shallow water pipeline, but diverless repair and intelligent plus are good for deepwater pipeline repair.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

149

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

150

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Manager Rocky Mountain Oilfield Testing Center March 31, 1998 RMOTC Test Report GMT Production Stimulation Test Executive Summary The sulfates in oilfield...

151

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...  

Open Energy Info (EERE)

White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility...

152

EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

153

2006 Annual Ecology Report for the Rocky Flats Site  

Office of Legacy Management (LM)

Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

154

Unique process combination decontaminates mixed wastewater at Rocky Flats  

SciTech Connect (OSTI)

This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

Kelso, William J.; Cirillo, J. Russ

1999-08-01T23:59:59.000Z

155

Rocky Mountain Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

156

Rocky Mountain Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

157

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance...  

Office of Legacy Management (LM)

Site. LM provides periodic communications through several means, such as this report, web-based tools, and public meetings. LM prepared the Rocky Flats, Colorado, Site Site...

158

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance  

Office of Legacy Management (LM)

Site. LM provides periodic communications through several means, such as this report, web-based tools, and public meetings. LM prepared the Rocky Flats, Colorado, Site Site...

159

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

160

Detection of the internal corrosion in pipeline  

E-Print Network [OSTI]

Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

2006-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Machinist Pipeline/Apprentice Program Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

162

Composites Technology for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

163

Heavy oil transportation by pipeline  

SciTech Connect (OSTI)

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

164

Scour below submerged skewed pipeline  

Science Journals Connector (OSTI)

Summary Local scour below pipelines commonly occurs due to the erosive action of currents and waves. Scour is a major cause for the failure of underwater pipelines which is very important in water resources management. In this study, experiments were conducted to investigate the effect of four different pipeline orientations (30°, 45°, 60° and 90°) across a channel. The data sets of the laboratory measurements were also collected from published works. The temporal variation of local pipelines scour depth was studied to estimate the scour depth. The scour depth below the pipeline was determined using a regression model with five dimensionless parameters. A regression model with a coefficient of determination (R2 = 0.55) and a low root mean square error (RMSE = 0.47) produced fairly good predictions of the relative scour depth. The proposed equation gave satisfactory results when compared with the existing predictors.

H.Md. Azamathulla; M.A.M. Yusoff; Z.A. Hasan

2014-01-01T23:59:59.000Z

165

Repackaging Rocky Flats Legacy Transuranic Waste  

SciTech Connect (OSTI)

Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity. Glovebags work well in facilities that are in the process of D and D or still in full operations because glovebags are very safe and cost effective.

McTaggart, Jerri Lynne [Los Alamos National Laboratory, 115 N. Main St., Carlsbad, New Mexico, 88220 (United States)

2008-01-15T23:59:59.000Z

166

2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing...

167

Domestic campsites and cyber landscapes in the Rocky Mountains  

E-Print Network [OSTI]

Domestic campsites and cyber landscapes in the Rocky Mountains Laura L. Scheiber1 & Judson Byrd, Central Rocky Mountains, GIS, GPS, stone circles, architecture, multi-scalar, households, technology, tipis, horses and wagons occupying a flat clearing along a valley floor c. 1907. Photograph by Richard

Scheiber, Laura L.

168

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

2004-04-12T23:59:59.000Z

169

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

170

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

171

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

172

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

173

Rocky Mountain Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

174

Preliminary Notice of Violation , Rocky Flats Environmental Technology Site  

Broader source: Energy.gov (indexed) [DOE]

Violation , Rocky Flats Environmental Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary Notice of Violation issued to Safe Sites of Colorado related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-05) Based on our evaluation of these matters, DOE has concluded that violations of DOE's Occupational Radiation Protection Rule (10 CFR 835) and Quality Assurance Rule (10 CFR 830.120) likely occurred. An enforcement conference was held with you, as well as senior management of KHLL and Rocky Mountain Remediation Services (RMRS), on September 10, 1996. This conference included a discussion of the facts and circumstances surrounding these

175

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

176

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |  

Broader source: Energy.gov (indexed) [DOE]

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site October 22, 2013 - 11:01am Addthis What does this project do? Goal 1. Protect human health and the environment In August of this year the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Rocky Flats, site took advantage of an existing water diversion structure that was no longer needed, to replace an aging water monitoring flume and avoid future repairs that could interrupt data collection. The flume for Rocky Flats Legacy Management Agreement (RFLMA) Point of Evaluation (POE) monitoring location GS10 in South Walnut Creek was located at the bottom of fairly steep channel banks. The bank on the south side shows localized slumping and sliding toward the creek and GS10. Although

177

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

178

Independent Oversight Review, Rocky Flats Environmental Technology Site -  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Environmental Technology Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review and a follow-up review of the emergency management program at Rocky Flats Environmental Technology Site (RFETS) in February 2000. The primary purpose of this review was to assess the effectiveness of the Department's emergency management programs for transportation events involving hazardous materials (not related to transuranic waste or nuclear

179

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Broader source: Energy.gov (indexed) [DOE]

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

180

Independent Oversight Review, Rocky Flats Environmental Technology Site -  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Rocky Flats Environmental Technology Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review and a follow-up review of the emergency management program at Rocky Flats Environmental Technology Site (RFETS) in February 2000. The primary purpose of this review was to assess the effectiveness of the Department's emergency management programs for transportation events involving hazardous materials (not related to transuranic waste or nuclear

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - RockyFlatsPropLR111406.doc  

Broader source: Energy.gov (indexed) [DOE]

November 15, 2006 November 15, 2006 REPLY TO ATTN OF: IG-40 SUBJECT: Letter Report on "Alleged Waste of Funds Involving Excess Property at Rocky Flats" (INS-L-07-03) TO: Assistant Secretary for Environmental Management This is to advise you of the results of an Office of Inspector General inspection of alleged waste of funds involving excess property at the Department of Energy's (DOE's) Rocky Flats site. BACKGROUND Nuclear weapons production operations at Rocky Flats were discontinued in 1992. Subsequently, responsibility for Rocky Flats was reassigned from the Department's Office of Defense Programs to the Office of Environmental Management. In January 2000, DOE entered into a contract with Kaiser-Hill Company, LLC, for the closure of Rocky Flats by

182

Clean Economy Network-Rockies | Open Energy Information  

Open Energy Info (EERE)

Network-Rockies Network-Rockies Jump to: navigation, search Name Clean Economy Network-Rockies Place Denver, CO Region Rockies Area Website http://rockies.cleaneconomynet Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Transforming an ObjectOriented Pipeline to a MasterWorker: The StateBased Pipeline  

E-Print Network [OSTI]

Transforming an Object­Oriented Pipeline to a Master­Worker: The State­Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

184

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline  

E-Print Network [OSTI]

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

185

Immobilization of Rocky Flats Graphite Fines Residues  

SciTech Connect (OSTI)

The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

Rudisill, T. S.

1998-11-06T23:59:59.000Z

186

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

187

Subsea pipeline operational risk management  

SciTech Connect (OSTI)

Resources used for inspection, maintenance, and repair of a subsea pipeline must be allocated efficiently in order to operate it in the most cost effective manner. Operational risk management aids in resource allocation through the use of risk assessments and cost/benefit analyses. It identifies those areas where attention must be focused in order to reduce risk. When they are identified, a company`s resources (i.e., personnel, equipment, money, and time) can then be used for inspection, maintenance, and/or repair of the pipeline. The results are cost effective risk reduction and pipeline operation with minimum expenditure.

Bell, R.L.; Lanan, G.A.

1996-12-31T23:59:59.000Z

188

Crude Oil Stocks at Tank Farms & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Stocks at Tank Farms & Pipelines Stocks at Tank Farms & Pipelines (Thousand Barrels) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 263,633 264,749 252,781 242,174 232,837 248,898 1981-2013 East Coast (PADD 1) 2,000 1,635 1,585 1,793 1,507 2,033 1981-2013 Midwest (PADD 2) 100,842 101,525 99,186 89,116 84,420 84,878 1981-2013 Cushing, OK 49,237 50,172 48,671 40,459 34,809 33,017 2004-2013 Gulf Coast (PADD 3) 121,316 121,816 113,846 112,745 112,059 122,497 1981-2013 Rocky Mountain (PADD 4) 12,813 12,512 12,003 12,181 12,858 12,956 1981-2013 West Coast (PADD 5) 26,662 27,261 26,161 26,339 21,993 26,534 1981-2013

189

Pipeline design essential in making pigging plans  

SciTech Connect (OSTI)

Pigs have gotten an unfortunate reputation for getting stuck in pipelines. As a result, for many years few pigged their pipelines and consequently, many companies are paying the price to repair or replace their corroded pipelines. It is currently considered a necessary evil to run pigs to improve pipeline efficiency and prevent corrosion. Some pipelines were not designed to run pigs and occasionally the wrong type of pig is selected to run in a particular pipeline, increasing the chances of sticking a pig. A pipeline properly designed for pigging along with proper pig selection greatly reduces chances of sticking a pig.

Fisher, H. [BJ Pipeline Cleaners, Houston, TX (United States)

1998-08-01T23:59:59.000Z

190

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

191

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

192

Chapter 8 - Pipeline External Corrosion Protection  

Science Journals Connector (OSTI)

Offshore steel pipelines are normally designed for a life ranging from 10 years to 40 years. To enable the pipeline to last for the design life, the pipeline needs to be protected from corrosion both internally and externally. Internal corrosion is related to fluid that is carried by the pipeline, and this topic is not covered here. This chapter describes the method by which the external corrosion of offshore pipelines may be minimized.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

193

Natural Gas Pipeline Leaks Across Washington, DC  

Science Journals Connector (OSTI)

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. ... Along with reducing greenhouse gas emissions, repairing production and pipeline leaks would improve consumer health and safety and save money. ... (37) Several barriers to pipeline repair and replacement exist, however, as cost recovery for pipeline repairs by distribution companies is often capped by Public Utility Commissions (PUCs). ...

Robert B. Jackson; Adrian Down; Nathan G. Phillips; Robert C. Ackley; Charles W. Cook; Desiree L. Plata; Kaiguang Zhao

2014-01-16T23:59:59.000Z

194

VNG's Hampton Roads Pipeline Crossing  

Broader source: Energy.gov (indexed) [DOE]

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

195

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

196

Pipeline Processing of VLBI Data  

E-Print Network [OSTI]

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

197

Pipelines programming paradigms: Prefab plumbing  

SciTech Connect (OSTI)

Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

Boeheim, C.

1991-08-01T23:59:59.000Z

198

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect (OSTI)

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

199

Update on pipeline repair methods  

SciTech Connect (OSTI)

A comprehensive review of pipeline repair methods has been recently completed under the sponsorship of the American Gas Association`s, Pipeline Research Committee. This paper is intended to summarize the important results of that review. First and foremost, two relatively new methods of repair are reviewed. One involves the use of a continuous-fiber fiberglass composite material which can be applied as an alternative to a steel sleeve for the reinforcement of nonleaking defects. The second is the use of deposited weld metal to replace metal lost to external corrosion. This latter technique is not new in principle, but recent research has shown how it can be done safely on a pressurized pipeline. The other significant outcome of the comprehensive review was a set of guidelines for using all types of repairs including full-encirclement sleeves and repair clamps. Pipeline operators can use these guidelines to enhance their current repair procedures, or to train new personnel in maintenance techniques.

Kiefner, J.F. [Kiefner and Associates, Inc., Worthington, OH (United States); Bruce, W.A. [Edison Welding Inst., Columbus, OH (United States); Stephens, D.R. [Battelle, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

200

Decoupled Sampling for Graphics Pipelines  

E-Print Network [OSTI]

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

202

Gas Pipelines, County Roads (Indiana)  

Broader source: Energy.gov [DOE]

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

203

Interstate Natural Gas Pipelines (Iowa)  

Broader source: Energy.gov [DOE]

This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

204

Creating a pipeline rehabilitation plan  

SciTech Connect (OSTI)

This paper will highlight the various aspects of planning a pipeline rehabilitation project to maximize used resources. The paper will visit in some detail the aspect of pipeline data collection to make rehabilitation decisions, including intelligent pig data and its use, close interval survey and its use, hydrotest data and its use, etc. This paper will also review the analysis of the hydrotest data, the close interval survey data, and its meaning to the overall rehabilitation design and plan. The paper will also assess the various types of pipeline coatings and methods of recoating and typical and innovative cathodic protection methods. The paper will stress analysis of pipeline structural integrity prior to making rehabilitation decisions. It will review cost estimating for various types of pipeline rehabilitation, and look at various alternatives. Finally, this paper will review typical results from various types of rehabilitation and soil conditions. It will emphasize the need to assess the results of the different rehabilitation methods and detail the future pipeline rehabilitation project decision making. The paper will discuss the use of RAP sheets (rehabilitation analysis profile) for data review and suggest various methods to invest rehabilitation dollars to get the greatest quantity of rehabilitation work done for the least cost.

Marshall, W.F.

1997-05-01T23:59:59.000Z

205

The pipeline and future of drug development in schizophrenia  

E-Print Network [OSTI]

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

206

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Rocky Flats Closure Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

Sanford, P.C. [1129 Business Parkway South, Westminister, MD (United States); Skokan, B. [United States Department of Energy, Washington, DC (United States)

2007-07-01T23:59:59.000Z

208

Categorical Exclusion Determinations: Western Area Power Administration-Rocky Mountain Region  

Broader source: Energy.gov [DOE]

Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region.

209

Rocky Mountain Power - New Homes Program for Builders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

210

Pipeline Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

211

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

212

Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Cleanup Agreement Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. Parties DOE; US EPA; The State of Colorado Date 7/19/1996 SCOPE * Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. * Ensure that the environmental impacts associated with activities at the Site will continue to be investigated and that appropriate response actions are taken. * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the site. * Coordinate all of DOE's cleanup obligations under CERCLA, RCRA, and the Colorado

213

Rocky Flats Former Construction Workers, Construction Worker Screening  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Former Construction Workers, Construction Worker Rocky Flats Former Construction Workers, Construction Worker Screening Projects Rocky Flats Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Rocky Flats Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Dwayne Adkins 7510 W. Mississippi Ave., Suite 230 Lakewood, CO 80226 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

214

Microsoft Word - RockyFlatsCRO20030221.doc  

Broader source: Energy.gov (indexed) [DOE]

300,000 Block Grant to the 300,000 Block Grant to the Rocky Flats Community Reuse Organization Money Will Be Used To Develop Comprehensive Refuge Plan for Rocky Flats WASHINGTON, DC - The Department of Energy (DOE) today announced that it will award $300,000 to the Rocky Flats Coalition of Local Governments. A CRO is an organization recognized by the Energy Department that can apply for funding for programs that can modify the impacts of workforce restructuring at its facilities and reduce community dependence on the department's activities. This grant will enable the community reuse organization (CRO) to continue to play a critical role in working with the Energy Department on the development of a comprehensive refuge plan for Rocky Flats, review cleanup and closure documents to ensure that they meet long-term

215

Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save Taxpayers Billions GOLDEN, CO. - A major environmental victory was achieved at the Rocky Flats Site in Golden, Colo., today when the final remaining shipment of radioactive, transuranic (TRU) waste left the property on a truck bound for an underground waste repository in New Mexico. This major milestone is another step toward the final conversion of the site to a National Wildlife Refuge managed by the U.S. Fish and Wildlife Service. "This is great news for all of Colorado, and would not have been possible without hand-in-glove cooperation between the Department of Energy, the

216

Preliminary Notice of Violation, Rocky Mountain Remediation Services...  

Broader source: Energy.gov (indexed) [DOE]

Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department...

217

Benchmarking and performance improvement at Rocky Flats Technology Site  

SciTech Connect (OSTI)

The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., (United States); Doyle, G. [EG and G Rocky Flats, Inc., Golden, CO (United States); Featherman, W.L. [Project Performance Corp. (United States)

1997-03-01T23:59:59.000Z

218

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network [OSTI]

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

219

Robotic equipment for pipeline repair  

SciTech Connect (OSTI)

Hyperbaric welding provides the most reliable method for connection or repair of subsea oil and gas pipelines. Research on hyperbaric arc welding processes indicates that it should be possible to achieve stable welding conditions with Gas Tungsten Arc (GTA) to approximately 600m, and with Gas Metal Arc (GMA) and Plasma Arc to at least 1,000m. These depths are well beyond the limits of manned saturation diving. At the present time the limitation on the maximum depth to which these processes can be applied, in practice, is the requirement for completely diverless operation deeper than approximately 350m. Fully diverless hyperbaric welding is not presently available to the industry but several diverless pipeline repair systems which utilize mechanical connectors have been developed. This paper reviews the present status of mechanized hyperbaric welding systems currently being used in the North Sea and discusses some of the work being done to achieve fully diverless robotic pipeline repair with both welding and connectors.

Gibson, D.E.; Barratt, K.; Paterson, J. [National Hyperbaric Centre, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

220

Dynamic Process Management for Pipelined Applications  

Science Journals Connector (OSTI)

Many applications, particularly in the area of Signal and Image Processing (SIP) make use of what is referred to as a pipeline architecture. In these pipelined architectures, data are collected from some source and fed into a system for computation. ...

David Cronk; Graham Fagg; Susan Emeny; Scot Tucker

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PGAP: pan-genomes analysis pipeline  

Science Journals Connector (OSTI)

......called pan-genomes analysis pipeline (PGAP), which has integrated...Stanhope, 2007). In PGAP pipeline, 1366 core clusters have been...replication, recombination and repair, cell wall/membrane/envelope...replication, recombination and repair and cell wall/membrane......

Yongbing Zhao; Jiayan Wu; Junhui Yang; Shixiang Sun; Jingfa Xiao; Jun Yu

2012-02-01T23:59:59.000Z

222

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm Peak Laboratory (SPL), near Steamboat Springs, Colorado  

E-Print Network [OSTI]

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm in the Rocky Mountains to improve our understanding of regional carbon fluxes and to fill key gaps in the North Sep. 16, 2005. Large increases and a relatively flat profile at night indicate pooling of CO2 respired

Stephens, Britton B.

223

Technological Advances in Pipeline Isolation and Repair  

Science Journals Connector (OSTI)

Pipeline isolation has been practised for many years to implement various repairs. The tools originally applied were simple and...

Dr A. Aldeen

1994-01-01T23:59:59.000Z

224

Commercial Decommissioning at DOE's Rocky Flats  

SciTech Connect (OSTI)

Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

2002-02-25T23:59:59.000Z

225

NAZ EDUCATION PIPELINE the-naz.org  

E-Print Network [OSTI]

NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

Amin, S. Massoud

226

A Pipeline for Computational Historical Linguistics  

E-Print Network [OSTI]

#12;A Pipeline for Computational Historical Linguistics Lydia Steiner Bioinformatics Group an algorithmic pipeline that mimics, as closely as possible, the traditional workflow of language reconstruction known as the comparative method. The pipeline consists of suitably modified algorithms based on recent

227

Proceedings of IPC 2004 International Pipeline Conference  

E-Print Network [OSTI]

Proceedings of IPC 2004 International Pipeline Conference October 4 - 8, 2004 Calgary, Alberta) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL The most common cause of pipeline failure in North America is mechanical damage: denting or gouging

Clapham, Lynann

228

BDP: BrainSuite Diffusion Pipeline  

E-Print Network [OSTI]

BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

Leahy, Richard M.

229

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network [OSTI]

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

230

Trawler: de novo regulatory motif discovery pipeline  

E-Print Network [OSTI]

Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation Laurence, the fastest computational pipeline to date, to efficiently discover over-represented motifs in chromatin present the Trawler pipeline (Fig. 1a) that attempts the de novo identification of all over

Cai, Long

231

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed before "going public." 3) Explore the possibility of doing the Pipeline thesis for credit

Dennehy, John

232

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed. The proposal must be completed and signed by your mentor by the beginning of the Pipeline summer research

Dennehy, John

233

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

234

Buckle interaction in deep subsea pipelines  

Science Journals Connector (OSTI)

Abstract The paper investigates the interaction between propagation buckling and upheaval or lateral buckling in deep subsea pipelines. The upheaval and lateral buckling are two possible global buckling modes in long pipelines while the propagation buckling is a local mode that can quickly propagate and damage a long segment of a pipeline in deep water. A numerical study is conducted to simulate buckle interaction in deep subsea pipelines. The interaction produces a significant reduction in the buckle design capacity of the pipeline. This is further exasperated due to the inherent imperfection sensitivity of the problem.

Hassan Karampour; Faris Albermani; Martin Veidt

2013-01-01T23:59:59.000Z

235

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

236

Directional boring produces a better pipeline crossing  

SciTech Connect (OSTI)

This paper reviews the design of a directional drilling project by Tennessee Pipeline Company, to cross Chillipitin Creek in Texas. This pipeline was part of an overall pipeline repair and upgrade. Stream erosion had left the existing pipeline exposed in the channel of the creek. The paper describes the drilling equipment selected and the methods used in tracking the drilling operation throughout its completion. The Texas Railroad Commission requires a minimum of 45 feet of cover between the bottom of the stream and the pipeline. The methods used for engineering this crossing are described.

NONE

1996-06-01T23:59:59.000Z

237

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

238

34 - Pipeline Commissioning, Operations, and Maintenance  

Science Journals Connector (OSTI)

Abstract The commissioning of a pipeline involves the activities after installation required to place the system into services, which activities include hydrostatic testing, cleaning and drying, and the introduction of the product to be transported into the pipeline. Pipeline operations are generally carried out by the pipeline operating company. Detailed operation and maintenance procedures specific to the pipeline should be available for use before the pipeline is commissioned and handed over to operation. Manuals for operation and maintenance should be prepared, setting out the schedules, procedures, and instructions on which activities are to be carried out, including liaison with third parties. In this chapter, the procedures of commissioning, operation, and maintenance of subsea pipeline are detailed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

239

Pipeline rehabilitation using field applied tape systems  

SciTech Connect (OSTI)

Bare steel pipelines were first installed years before the turn of the century. Pipeline operators soon realized the lie of bare steel could be greatly enhanced by applying coatings. Thus began ``pipeline rehabilitation.`` Many of the older pipelines were exposed, evaluated, coated and returned to service. This procedure has reached new heights in recent years as coated pipelines of the twentieth century, having lived past their original design life, are now subject to coating failure. Many operator companies with pipelines thirty years or older are faced with ``replace or recondition.`` Considering the emphasis on cost restraints and environmental issues, replacing an existing pipeline is often not the best decision. Rehabilitation is a preferred solution for many operators.

Reeves, C.R. [Tapecoat Co., Evanston, IL (United States)

1998-12-31T23:59:59.000Z

240

Hydrogeologic characterization report for the Rocky Flats environmental technology site  

SciTech Connect (OSTI)

The Denver groundwater basin encompasses approximately 6,700 square miles, extending east from the Front Range of the Rocky Mountains. This structural basin contains four Cretaceous bedrock aquifers overlain by a regional Quaternary alluvial aquifer. The Rocky Flats Site is located on the northwest margin of the basin. The shallow groundwater system at the Rocky Flats Site is divided into upper and lower hydrostratigraphic units (UHSU and LHSU, respectively). The UHSU at the Rocky Flats site comprises Quaternary alluvium, colluvium, valley-fill alluvium, artificial fill, weathered bedrock of the undifferentiated Arapahoe and Laramie formations and all sandstones that are hydraulically connected with overlying surficial groundwater. The LHSU comprises unweathered claystone with interbedded siltstones and sandstones of the undifferentiated Arapahoe and Laramie formations. The contact separating the UHSU and LHSU is identified as the base of the weathered zone. The separation of hydrostratigraphic units is supported by the contrasting permeabilities of the units comprising the UHSU and LHSU, well hydrograph data indicating that the units respond differently to seasonal recharge events, and geochemical data reflecting distinct major ion chemistries in the groundwaters of the UHSU and LHSU. Surface-water/groundwater interactions at the Rocky Flats site generally respond to seasonal fluctuations in precipitation, recharge, groundwater storage, and stream and ditch flow. Effluent conditions are dominant in the spring along western stream segments and influent conditions are common in the late summer and fall along most stream reaches.

Reeder, D.C.; Burcar, S. [S.M. Stoller Corp., Boulder, CO (United States); Smith, R. [RMRS, Golden, CO (United States)] [and others

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

242

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

243

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

244

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

246

Rocky Flats Plant Site Environmental Report, January--December 1990  

SciTech Connect (OSTI)

This report provides information to the public about the impact of the Rocky Flats Plant on the environment and public health. The report contains a compliance summary, a description of environmental monitoring programs, and radiation dose estimates for the surrounding population for the period January 1 through December 31, 1990. An environmental surveillance program has been ongoing at the Rocky Flats Plant since the 1950s. Early programs focused on radiological impacts to the environment. The current program examines potential impacts to air, surface water, groundwater, and soils from radiological and nonradiological sources. Environmental operations at Rocky Flats Plant are under the jurisdiction of several local, state, and federal agencies, most notably the Colorado Department of Health, Environmental Protection Agency, and Department of Energy. A variety of reports are prepared at different intervals for these and other agencies in addition to the annual environmental report.

Cirrincione, D.A.; Costain, D.B. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant

1990-12-31T23:59:59.000Z

247

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

248

A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA  

SciTech Connect (OSTI)

This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

McPherson, Brian; Matthews, Vince

2013-09-15T23:59:59.000Z

249

Preliminary Notice of Violation, Rocky Mountain Remediation Services- EA-97-04  

Broader source: Energy.gov [DOE]

Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04)

250

Department of Energy Awards $300,000 Block Grant to the Rocky...  

Energy Savers [EERE]

300,000 Block Grant to the Rocky Flats Community Reuse Organization Department of Energy Awards 300,000 Block Grant to the Rocky Flats Community Reuse Organization Department of...

251

Workforce Pipeline | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

252

Analytic prognostic for petrochemical pipelines  

E-Print Network [OSTI]

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

253

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

254

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

255

Increase in uranium concentration in streams draining Rocky Flats, Colorado  

Science Journals Connector (OSTI)

Uranium has been determined by fission track measurements of two suites of water samples taken at different times from a variety of surface waters in an area in central Colorado. Although this area surrounds the Rocky Flats nuclear plant at which parts for weapons are fabricated, the variations in U are inferred to be influenced most strongly by the distance of water flow across soil derived from the U-rich Laramie Formation. This flow produces progressive increases in U concentrations as flow proceeds eastward and hence is much more closely related to the local geochemistry and geology than to the presence of the Rocky Flats plant.

A.C. Delany; R.L. Fleischer

1978-01-01T23:59:59.000Z

256

Rocky Flats Plant site environmental report, January--December 1991  

SciTech Connect (OSTI)

This report provides information to the public about the impact of the Rocky Flats Plant on the environment and public health. The report contains a compliance summary, 4 description of environmental monitoring programs, and radiation dose estimates for the surrounding population for the period January 1 through December 31, 1991. An environmental surveillance program has been ongoing at the Rocky Flats Plant since the 1950s. Early programs focused on radiological impacts to the environment. The current program not only examines potential impacts to air surface water, groundwater, and soils from radiological and nonradiological sources, but also includes ecological studies and environmental remediation programs.

Cirrncione, D.A.; Erdmann, N.L. [eds.

1991-12-31T23:59:59.000Z

257

The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

NONE

1998-08-01T23:59:59.000Z

258

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents [OSTI]

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

259

A Seismic Refraction Survey in the Northern Rocky Mountains: More Evidence for an Intermediate Crustal Layer  

Science Journals Connector (OSTI)

......from the P,,arrivals of the Rocky Mountain profile. The observations...sistent with those for the Rocky Mountain profile. The amplitudesof...decrease as sharply as on the Rocky Mountain profile, but in this...sediments is 3kms-' and using flat earth theory, the thicknesses......

A. L. Hales; J. B. Nation

1973-12-01T23:59:59.000Z

260

SIGNIFICANT NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

E-Print Network [OSTI]

SIGNIFICANT NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE to assess the ecological values of the Rock Creek drainage at the Rocky Flats Environmental Technology Site from existing data at the Rocky Flats Environmental Technology Site. 2.Perform ground surveys to rank

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe #12;Pipeline Christi 8" H2 Pipeline (1998) Originally built as crude oil gathering pipelines (1940-1950) ­ 140 miles

262

Alaskan Oil: Court Ruling Revives Canada Pipeline Issue  

Science Journals Connector (OSTI)

...48-inch hot oil pipeline-the largest ever-from...integrity of the pipeline from potential earthquakes...the pi,peline design. For their part...State-ment on the pipeline project would have...for a pipe-line crossing the federal domain...and its service road a right-of-way...

Luther J. Carter

1973-03-09T23:59:59.000Z

263

Pipeline incidents and emergency repair in the North Sea  

SciTech Connect (OSTI)

The failures of submarine pipelines in the North Sea, and the response of pipeline operators are first discussed. Against this background, the methods currently available for submarine pipeline repairs are reviewed. The Emergency Pipeline Repair Services available are described, and some future developments in the field of submarine pipeline repair are briefly outlined.

Wood, G.D.

1988-12-01T23:59:59.000Z

264

10 - Lateral Buckling and Pipeline Walking  

Science Journals Connector (OSTI)

Abstract Lateral buckling of pipelines due to high pressure and high temperature (HPHT) may occur if the pipeline is exposed on the seabed, and upheaval buckling may occur if it is buried or constrained in a trench. Uncontrolled global buckling can cause excessive plastic deformation of the pipeline, which could lead to localized buckling collapse or cyclic fatigue failure during operation, if it is not properly managed. In this chapter, the principles of lateral buckling and pipeline walking are detailed, the Hobbs’s method is used to predicate the critical effective axial force for buckling. The limit state design of pipeline for lateral buckling is given. Then, mitigation methods, such as snake–lay, sleeper, and distributed buoyancy for lateral buckling and pile for pipeline walking are discussed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

265

Protecting coatings vital to ensuring pipelines` longevity  

SciTech Connect (OSTI)

Today many old pipelines are being rehabilitated because of corrosion damage. A tremendous amount of time, personnel and money is invested to keep these old pipelines operating. The pipeline companies have created new departments to monitor their pipelines, one of which is the corrosion control group. This group is continuously looking for the next weak spot caused by corrosion that needs to be repaired in order to keep the pipeline from being shut down. As these groups discover the corrosion and research its cases, they have been able to teach us what not to do during pipeline construction so the coating will not be damaged. The paper discusses coating protection, types of coating protection, and choosing the best method.

Turnage, C. [Ozzie`s Pipeline Padder, Scottsdale, AZ (United States)

1997-04-01T23:59:59.000Z

266

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT ď‚· In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline. ď‚· Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments. ď‚· Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

267

Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure  

Science Journals Connector (OSTI)

Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the ... specific circumstances lead to a delayed appreciation ...

Douglas B. Craig; John Longmuir

1980-09-01T23:59:59.000Z

268

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

269

Modelling of Paraffin Wax in Oil Pipelines.  

E-Print Network [OSTI]

?? As warm oil or condensate from the reservoir flow through a pipeline on the cold sea bottom, wax often precipitate and deposit on the… (more)

Siljuberg, Morten Kristoffer

2012-01-01T23:59:59.000Z

270

Chapter 14 - Pipeline Testing and Precommissioning  

Science Journals Connector (OSTI)

From its fabrication to start-up, a pipeline system has to pass a series of tests. Some of these, such as the factory acceptance test (FAT), are done onshore at the fabrication yards with individual components. The FAT mainly consists of the inspection, testing, and reporting of the system according to the drawings, specifications, and requirements of the contract. Pipe sections must pass the FAT before they are accepted. Some of the tests, such as the pipeline hydrotest, are mainly done offshore with either a portion of the whole pipeline system or the whole pipeline system. The hydrotests are conducted to check the mechanical strength of the pipeline system and the integrity of the connections. The hydrotest is one of the pipeline precommissioning activities. Precommissioning is performed after the pipeline system is installed, and all the tie-ins are completed to assess the global integrity, qualify the system as ready for commissioning and start-up, confirm the safety to personnel and environment, and confirm the operational control of the pipeline system. This chapter covers the main activities associated with subsea pipeline testing and pre-commissioning.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

271

Local Linear Learned Image Processing Pipeline  

Science Journals Connector (OSTI)

The local linear learned (L3) algorithm is presented that simultaneously performs the demosaicking, denoising, and color transform calculations of an image processing pipeline for a...

Lansel, Steven; Wandell, Brian

272

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

273

Optical Pipeline for Transport of Particles  

Science Journals Connector (OSTI)

We developed an optical pipeline for laser-guiding particles in air using vortex beams. Transport of agglomerates of nanoparticles forward and backward between two optical traps...

Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw Z; Kivshar, Yuri S

274

GLAST (FERMI) Data-Processing Pipeline  

SciTech Connect (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

275

Shorting pipeline and jacket cathodic protection systems  

SciTech Connect (OSTI)

The benefits of shorting pipeline and jacket cathodic protection (CP) systems for the external protection of subsea pipelines based on data from operations in the Gulf of Mexico, Persian Gulf, North Sea, and Indonesia are discussed. Shorting, as opposed to traditional electrical isolation, is cost effective because CP surveys and future retrofits are greatly simplified. Jacket CP systems can provide protection of coated pipelines for distances much greater than normally anticipated. Some simple modeling of jacket/pipeline CP systems is used to illustrate the effect of various design parameters.

Thomason, W.H. (Conoco Inc., Ponca City, OK (United States)); Evans, S. (Conoco Inc., Houston, TX (United States)); Rippon, I.J. (Conoco Ltd., Aberdeen (United Kingdom)); Maurin, A.E. III (Conoco Inc., Lafayette, LA (United States))

1993-09-01T23:59:59.000Z

276

Pipeline Safety Research, Development and Technology  

Energy Savers [EERE]

Pipeline and Hazardous Materials Safety Administration Replacing Hydrotesting? * Why hydro? What benefits? - Pressure & Spike Tests * Can ILI tools in concert with leak...

277

Adhesive technologies in repairing polyethylene pipelines  

Science Journals Connector (OSTI)

Adhesive technologies for repairing polyethylene pipelines are considered taking into account the peculiarities ... the modified binder for application in the gluing repair technologies under consideration. It is...

V. F. Stroganov

2014-07-01T23:59:59.000Z

278

External corrosion assessment in a LNG pipeline  

SciTech Connect (OSTI)

A 16 inch. diameter LNG pipeline which transports 54 MBPD between extraction and fractionation facilities located north-east of Venezuela, showed an accelerated external corrosion even though coating and cathodic protection had been used to protect it. A diagnosis of the external condition of the pipeline was addressed by matching the results obtained by using different techniques such as electromagnetic pigging, DC voltage gradient survey, close interval potential survey, soil classification and resistivity profiles along the pipeline. This paper discusses the factors evaluated to identify sections of the pipe where corrosion problems occurred under disbonded pipeline coating, which required immediate attention for coating rehabilitation.

Luciani, B.; Gutierrez, X. [Corpoven S.A., Caracas (Venezuela)

1998-12-31T23:59:59.000Z

279

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

280

Sustainability Center of the Rockies | Open Energy Information  

Open Energy Info (EERE)

Sustainability Center of the Rockies Sustainability Center of the Rockies Jump to: navigation, search Name Sustainability Center of the Rockies Address Post Office Box 2020 Place Carbondale, Colorado Zip 81623 Region Rockies Area Notes Mission is to transform the Roaring Fork Valley's built environment into a model of resource-efficient living Website http://www.scor1.org/ Coordinates 39.397478°, -107.216685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.397478,"lon":-107.216685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

282

Rocky Flats Cleanup Agreement implementation successes and challenges  

SciTech Connect (OSTI)

On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

Shelton, D.C.

1997-02-01T23:59:59.000Z

283

Rocky Flats Plant Site Environmental Report for 1992  

SciTech Connect (OSTI)

The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

Cirrincione, D.A.; Erdmann, N.L. [eds.

1992-12-31T23:59:59.000Z

284

Dr Rocky K. C. Chang Warden of Lizhi Hall  

E-Print Network [OSTI]

Dr Rocky K. C. Chang Warden of Lizhi Hall Warden Office: Room 968 Intercom: 0968 Email: csrchang in women sports (swimming, field and track, badminton, volleyball, etc). I have confirmed with Ruby on energy saving came as a pleasant surprise. Our achievements are by no means limited to these external

Chang, Rocky Kow-Chuen

285

Site wide integration of the Rocky Flats closure project  

SciTech Connect (OSTI)

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01T23:59:59.000Z

286

TGS measurements of pyrochemical salts at Rocky Flats  

SciTech Connect (OSTI)

A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

Mercer, D. J. (David J.); Hansen, J. S. (J. Steven); Lestone, J. P. (John P.); Prettyman, T. H. (Thomas H.)

2001-01-01T23:59:59.000Z

287

Adsorption study for uranium in Rocky Flats groundwater  

SciTech Connect (OSTI)

Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

Laul, J.C.; Rupert, M.C. [EG and G Rocky Flats, Inc., Golden, CO (United States); Harris, M.J. [Science Applications International Corp., Golden, CO (United States); Duran, A. [Environmental Protection Agency, Denver, CO (United States)

1995-01-01T23:59:59.000Z

288

Pipeline repair development in support of the Oman to India gas pipeline  

SciTech Connect (OSTI)

This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.

Abadie, W.; Carlson, W.

1995-12-01T23:59:59.000Z

289

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network [OSTI]

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

290

Global buckling behavior of submarine unburied pipelines under thermal stress  

Science Journals Connector (OSTI)

Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling

Lin-ping Guo ???; Run Liu ??; Shu-wang Yan ???

2013-07-01T23:59:59.000Z

291

A new versatile method for modelling geomagnetic induction in pipelines  

Science Journals Connector (OSTI)

......geomagnetic induction in pipelines D. H. Boteler...2617 Anderson Road, Ottawa. E-mail...telluric currents in pipelines and creates fluctuations...being used at the design stage allowing...PSP variations on pipelines crossing or adjacent to......

D. H. Boteler

2013-01-01T23:59:59.000Z

292

Supplementary Figure 1 SHAPE-MaP data analysis pipeline.  

E-Print Network [OSTI]

Supplementary Figure 1 SHAPE-MaP data analysis pipeline. Outline of software pipeline that fully.1 GHz Intel Core i7 and 16 GB RAM). This strategy is implemented in the SHAPE-MaP Folding Pipeline

Cai, Long

293

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network [OSTI]

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

294

E-Print Network 3.0 - arctic gas pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pipeline Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic gas pipeline...

295

Oregon's Rocky Shore Species: Anemones Giant Green Anemones get their bright coloration from symbiotic, single-celled  

E-Print Network [OSTI]

(right) and grow flat. Photos: Laurel Hillmann #12;Oregon's Rocky Shore Species: Molluscs & ArthropodsOregon's Rocky Shore Species: Anemones Giant Green Anemones get their bright coloration from;Oregon's Rocky Shore Species: Sea Stars Rocky shores are home to a diverse group of species including

Wright, Dawn Jeannine

296

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

297

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

298

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

299

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

300

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Report to Congress: Dedicated Ethanol Pipeline Feasability Study...  

Office of Environmental Management (EM)

Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

302

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

303

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

304

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

305

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

306

Price of Massena, NY Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Price of Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet)...

307

2005 Hydrogen Pipeline Working Group Workshop | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Presentations on August 31, 2005 Hydrogen Pipeline Experience (PDF 473 KB), Leroy Remp, Air Products Questions and Issues on Hydrogen Pipelines (PDF 1 MB), Jim Campbell, Air...

308

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

309

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

Broader source: Energy.gov (indexed) [DOE]

Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group...

310

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

311

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

312

Cleaning the Valhall offshore oil pipeline  

SciTech Connect (OSTI)

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

313

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

314

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

315

Encirclement sleeves reduce pipeline repair costs  

SciTech Connect (OSTI)

Welded sleeve, or replacement of line repair methods have been used successfully for many years in the pipeline industry but can lead to other difficulties for a pipeline operator. Clock Spring`s composite sleeves have been used in over ten thousand pipeline repairs with pipe sizes ranging from 6- to 56-inches in diameter, all without costly shutdown, welding or purging. Repairs can be completed while the pipeline is fully operational and require only six inches of clearance under the pipe for wrapping the eight thicknesses of the coil. This minimizes costly digging and backfilling over long runs of pipe and necessary shoring for personnel safety. Also it provides a more cost-effective alterative to conventional pipeline repair since special handling, lifting, or installation equipment is not needed. This paper reviews the installation and performance of these sleeves.

NONE

1996-01-01T23:59:59.000Z

316

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

317

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

318

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

319

Health Surveillance Outcomes in Former Rocky Flats Radiation Workers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surveillance of Rocky Flats Radiation Workers Surveillance of Rocky Flats Radiation Workers Janice P. Watkins 1 , Elizabeth D. Ellis 1 , F. Joseph Furman 2 , Roger B. Falk 2 , Joe M. Aldrich 2 , and Donna L. Cragle 1 ORAU Technical Report # 2006-0408 1 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; P.O. Box 117; Oak Ridge, TN 37831-0117 2 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; 9950 W. 80 th Avenue, Suite 17; Arvada, CO 80005-3914 This report was funded by Department of Energy Environmental Health Division under contract number DE-AC05-00OR22750. Table of Contents List of Figures.................................................................................................................2 List of Tables

320

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Tilapia Aquaculture Low Temperature Geothermal Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility Rocky Mountain White Tilapia Sector Geothermal energy Type Aquaculture Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

322

DOE - Office of Legacy Management -- Rocky Flats Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive Archive Rocky Flats Site, Colorado Key Document Archive All documents are Adobe Acrobat files. pdf_icon NEPA - Rocky Flats Surface Water Configuration Environmental Assessment (EA) Site-Specific Uranium Standards Petition Site Surveillance and Maintenance Reports Quarterly Reports 2013 3rd Quarter 2nd Quarter Overview 1st Quarter Overview 2012 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2011 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2010 3rd Ouarter Overview 2nd Ouarter Overview 1st Quarter Overview 2009 1st Quarter Overview 2nd Ouarter Overview 3rd Quarter Overview 2008 1st Quarter Overview 2nd Quarter Overview 3rd Quarter Overview 2007 1st Quarter Overview 2nd Quarter Overview 3rd Quarter Overview 2006

323

Actinide solution processing at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

NONE

1995-04-01T23:59:59.000Z

324

Colorado and the Accelerated Cleanup at Rocky Flats  

SciTech Connect (OSTI)

When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

Spreng, C. [Public Health and Environment, Colorado Dept., Denver, CO (United States)

2007-07-01T23:59:59.000Z

325

Polymer solidification of mixed wastes at the Rocky Flats Plant  

SciTech Connect (OSTI)

The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

1994-02-01T23:59:59.000Z

326

Facility overview for commercial application of selected Rocky Flats facilities  

SciTech Connect (OSTI)

The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

NONE

1996-11-01T23:59:59.000Z

327

Implementing DOE guidance for hazards assessments at Rocky Flats Plant  

SciTech Connect (OSTI)

Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ``Guidance for a Hazards Assessment Methodology``). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ``Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports``). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments.

Zimmerman, G.A.

1993-06-01T23:59:59.000Z

328

Microsoft Word - Rocky Ridge_CX Memo .docx  

Broader source: Energy.gov (indexed) [DOE]

31, 2013 31, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Tripp Project Manager - TEP-CSB-1 Proposed Action: Rocky Ridge Radio Station Upgrade Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meterological and radio towers Location: Powell County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade its Rocky Ridge Radio Station located about 6 miles east of Garrison, Montana. The upgrade would involve replacing the existing analog communication system with a new digital communication system to ensure communication reliability. The site is located on Montana Department of Natural Resource Conservation land. Construction would be staged

329

Special Review of the Rocky Flats Closure Project Site  

Broader source: Energy.gov (indexed) [DOE]

April April 2001 Special Review of the Integrated Safety Management ISM OVERSIGHT Table of Contents EXECUTIVE SUMMARY ............................................................................... 1 1.0 INTRODUCTION ...................................................................................... 6 2.0 FOCUSED REVIEW OF THE INTEGRATED WORK CONTROL PROCESS AND LINE MANAGEMENT OVERSIGHT .............................................................................................. 8 2.1 Background ...................................................................................... 8 2.2 Line Management Oversight and Selected Other Management Systems .................................................................... 10 2.3 Rocky Flats Closure Project Integrated Work Control Process

330

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

331

Rocky Flats Plant Site Environmental Report: 1993 Highlights  

SciTech Connect (OSTI)

The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

Not Available

1993-12-31T23:59:59.000Z

332

DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

SciTech Connect (OSTI)

This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

Dorr, K. A.; Hoover, J.

2002-02-25T23:59:59.000Z

333

Inspection of management of excess personal property at Rocky Flats  

SciTech Connect (OSTI)

Inspection revealed that immediate management attention is needed to properly control, store, and dispose of excess personal property at Rocky Flats. Current system of operation does not allow for efficient, timely, cost effective management; current storage and disposal practices are not consistent with contract requirements or DOE policies and procedures. Other deficiencies are pointed out. Results of inspection are divided into 4 sections: contract changeover issues, moratorium issues, additional excess property issues, and award fee observations. Recommendations are outlined.

Not Available

1993-05-17T23:59:59.000Z

334

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

335

Map of mixed prairie grassland vegetation, Rocky Flats, Colorado  

SciTech Connect (OSTI)

A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

1980-01-01T23:59:59.000Z

336

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

337

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

338

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline  

E-Print Network [OSTI]

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline in 2005 Build It, and They Will Come, the pipeline of physician- scientists has a serious problem, first de- scribed more than a generation ago.2-scientist career pipeline. Design We assessed recent trends in the physician-scientist career pipeline using data

Oliver, Douglas L.

339

Reference: RGL 84-07 Subject: MAPPING PIPELINES  

E-Print Network [OSTI]

Reference: RGL 84-07 Subject: MAPPING PIPELINES Title: CHARTING OF PIPELINES AND CABLES Issued: 05/01/84 Expires: 12/31/86 Originator: DAEN-CWO-N Description: REQUIRES MAPPING OF PIPELINE CROSSINGS ON NAUTICAL and pipeline crossings on nautical charts published by the Government. This policy is contained in 33 CFR 209

US Army Corps of Engineers

340

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network [OSTI]

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pipelined FPGA Adders LIP Research Report RR2010-16  

E-Print Network [OSTI]

Pipelined FPGA Adders LIP Research Report RR2010-16 Florent de Dinechin, Hong Diep Nguyen, Bogdan and frequency for pipelined large-precision adders on FPGA. It compares three pipelined adder architectures: the classical pipelined ripple-carry adder, a variation that reduces register count, and an FPGA- specific

Paris-Sud XI, Université de

342

A moving horizon solution to the gas pipeline optimization problem  

E-Print Network [OSTI]

A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

Grossmann, Ignacio E.

343

Pipeline Carriers (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

344

The pipeline and valve location problem  

Science Journals Connector (OSTI)

This paper, proposes an exact algorithm for the problem of locating a pipeline between two points of a network, as well as a set of safety valves which help control the damage caused by possible spills along the pipeline. A labelling approach is developed to determine simultaneously the optimal pipeline and valve locations, with the objective of optimising an impact measure that depends on the average number of accidents and their cost. Computational experiments on grid and random instances are presented in order to evaluate the algorithm's performance and to compare its results to the solutions provided by sequential approaches. [Received 11 May 2010; Revised 10 October 2010; Accepted 21 November 2010

Gilbert Laporte; Marta M.B. Pascoal

2012-01-01T23:59:59.000Z

345

Chapter 14 - Pipeline Flow Risk Assessment  

Science Journals Connector (OSTI)

Abstract Risk assessment is the process of assessing risks and factors influencing the level of safety of a project. It involves researching how hazardous events or states develop and interact to cause an accident. The risk assessment effort should be tailored to the level and source of technical risk involved with the project and the project stage being considered. The assessment of technical risk will take different forms in different stages of the project. Pipeline flow risk mainly includes fluid leakage and blockage happening in the pipelines. This chapter describes the application of Quantitative Risk Assessment (QRA) for the blockage in the oil and gas pipelines.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

346

Chapter Two - Pipeline Defects and Corrective Actions  

Science Journals Connector (OSTI)

Abstract One important part of pipeline integrity management activity encompasses the repair and maintenance of anomalies by the maintenance crew. In addition to the advanced inspection tools, knowledge of pipeline defects and how to conduct both immediate and scheduled repairs is of critical importance. The pipeline industry had used the ASME B31G criteria to evaluate corroded pipe for removal or repair. However, there was a need to establish a new approach. The modified criteria were therefore established with the objective to reduce excess conservatism without creating an unsafe condition.

Ramesh Singh

2014-01-01T23:59:59.000Z

347

Regulation changes create opportunities for pipeline manufacturers  

SciTech Connect (OSTI)

The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

Santon, J.

1999-09-01T23:59:59.000Z

348

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

349

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition  

Science Journals Connector (OSTI)

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition ... In the present work, various solid surfaces and crude oils have been used to study the effect of material and crude oil composition on the wettability of pipeline-mimicking surfaces. ... A procedure for evaluation of the plugging potential and for identification and extn. of naturally hydrate inhibiting components in crude petroleums was presented. ...

Guro Aspenes; Sylvi Hřiland; Anna E. Borgund; Tanja Barth

2009-11-16T23:59:59.000Z

350

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung  

E-Print Network [OSTI]

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK Abstract. Pipeline morphing is a simple but e ective technique for re- con guring pipelined FPGA designs at run time. By overlapping com

Cheung, Peter Y. K.

351

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies*  

E-Print Network [OSTI]

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance), Intel Corp. and Semiconductor Research Corp. (SRC). Abstract Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100

Paris-Sud XI, Université de

352

E-Print Network 3.0 - annual rocky mountain Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system occurs on dry... , and extends out onto breaks in the Great Plains. In Colorado, the southern Rocky ... Source: Colorado State University, Center for Environmental...

353

Late Miocene Erosion and Evolution of Topography along the Western Slope of the Colorado Rockies.  

E-Print Network [OSTI]

??It is increasingly apparent that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky… (more)

Rosenberg, Russell

2013-01-01T23:59:59.000Z

354

Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado  

SciTech Connect (OSTI)

Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

Perstein, J.; Castellano, J.A. [Hughes Associates, Inc., Wheaton, MD (United States)

1989-01-20T23:59:59.000Z

355

The effect of a small creek valley on drainage flows in the Rocky Flats region  

SciTech Connect (OSTI)

Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program.

Porch, W. [Los Alamos National Lab., NM (United States)

1996-12-31T23:59:59.000Z

356

Rockwell International's Nuclear Criticality Safety Program at the Rocky Flats Plant  

SciTech Connect (OSTI)

This paper describes the criticality safety program at the Rocky Flats Plant. The groups responsible for safety are named and their functions outlined. (JDH)

McCarthy, J.D.

1987-01-01T23:59:59.000Z

357

ACS calibration pipeline testing: error propagation  

E-Print Network [OSTI]

1 ACS calibration pipeline testing: error propagation Doug Van Orsow, Max Mutchler, Warren Hack files (see ISRs 99-03 "CALACS Operation and Implementation" by Hack and 99-04 "ACS calibra- tion

Sirianni, Marco

358

On-the-fly pipeline parallelism  

E-Print Network [OSTI]

Pipeline parallelism organizes a parallel program as a linear sequence of s stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element ...

Lee, I-Ting Angelina

359

BALBES: a molecular-replacement pipeline  

Science Journals Connector (OSTI)

The fully automated pipeline, BALBES, integrates a redesigned hierarchical database of protein structures with their domains and multimeric organization, and solves molecular-replacement problems using only input X-ray and sequence data.

Long, F.

2007-12-04T23:59:59.000Z

360

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

Pipelining has been used to implement efficient, high-speed vector computers. It is also an effective method for implementing multiprocessors. The Heterogeneous Element Processor (HEP) built by Denelcor Incorporated is the first commercially available computer system to use pipelining to implement multiple processes. This paper introduces the architecture and programming environment of the HEP and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware.

Jordon, H.F.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Intelligent pigging of pipelines: A turnkey approach  

SciTech Connect (OSTI)

The international pipeline systems are growing in age and some installations have already been in operation beyond the service life they had originally been designed for. It is therefore of ever increasing importance that pipeline operators are provided with the means to accurately and reliably inspect their pipelines and obtain the information needed for decision making regarding safe operation, rehabilitation and repair. This paper will introduce the concept of bundled services for pipeline-inspection and -maintenance, ranging from pre-inspection engineering, cleaning, gauging, on-line inspection through to analysis of data, interpretation, advice on action plans including aspects of maintenance, rehabilitation and repair. Special attention will be given to an assessment of the latest developments in on-line inspection tools for metal loss- and crack-detection and the type of information that can be obtained and consequently used for integrity assessment and fitness for purpose analysis.

Beller, M. [Pipetronix GmbH, Stutensee (Germany); Hettrich, U. [Hettrich Consulting, Munich (Germany)

1997-05-01T23:59:59.000Z

362

Products pipeline rehabilitated while on stream  

SciTech Connect (OSTI)

Rehabilitation of a 186-mile petroleum products pipeline in southern Africa employed sleeve welding, reinstatement of external coatings, and upgrading of the cathodic-protection system. The pipeline had an unusual history in which the political environment of the region forced its shutdown for 17 years. This shutdown played a major role in its deterioration. The pipeline, which exhibited extensive internal and external corrosion, was a crucial supply route for imported refined products. So important was the line that during the entire repair project, the line could not be shutdown. This technical difficulty was compounded by various practical difficulties as well. The paper describes the shutdown, the coatings and cathodic protection history, pipeline inspection, repair program, sleeving on a live line, developing a procedure, wrapping systems, cathodic protection, practical problems, and hydrostatic testing.

Denney, A.K.; Coleman, S.L.; Pirani, R. (John Brown Engineers and Constructors Ltd., London (United Kingdom)); Webb, N. (Corrolec and Metallurgical Services, Rivonia (South Africa)); Turner, P. (Teknica (Overseas) Ltd., London (United Kingdom))

1995-01-09T23:59:59.000Z

363

Review of Gas Transmission Pipeline Repair Methods  

Science Journals Connector (OSTI)

Repair methods are key operations for the integrity management of pipelines. The parameters guiding the repair decision are briefly reminded. A nonexhaustive external and internal repair techniques are described,...

Remi Batisse

2008-01-01T23:59:59.000Z

364

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

365

Sleeve installations speed pipeline defect repair  

SciTech Connect (OSTI)

Repairing defects in pipelines can be a major challenge for pipeline companies or contractors. To reduce cost and eliminate unscheduled shut downs, pipeline operating companies have adopted ``in-service`` repair methods to restore overall integrity of the pipeline without taking it out of service. Interprovincial Pipe Line Co. has undertaken an aggressive approach to this ``in-service`` repair method by using a developed sleeving system for repairing leaking and non-leaking defects. A structural reinforcement sleeve consists of two non-fillet welded collars (one on each side of the defect) and a full encirclement sleeve welded on top of these collars. The annular space between the pipe and sleeve is filled with a hardenable, non-shrinking epoxy. Three different pressure vessel sleeves can be used for repairing certain defects. They can be used in combination with the pre-stressed sleeve or for independent repairs. This paper reviews the performance and installation of these sleeves.

Friedrich, J.; Smith, J.

1995-12-01T23:59:59.000Z

366

Exploiting level sensitive latches in wire pipelining  

E-Print Network [OSTI]

The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

Seth, Vikram

2005-02-17T23:59:59.000Z

367

Computer Systems to Oil Pipeline Transporting  

E-Print Network [OSTI]

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

368

Seadrift/UCAR pipelines achieve ISO registration  

SciTech Connect (OSTI)

Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

1992-10-01T23:59:59.000Z

369

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. However, not all pipelines can be inspected with current systems that move inside the pipeline propelled by the product flow. Inspection platforms that crawl slowly inside a pipeline are being developed to maneuver past the physical barriers that limit inspection. Battelle is building innovative electromagnetic sensors for pipeline crawlers. The various sensor types will assess a wide range of pipeline anomalies including corrosion, mechanical damage, cracking and seam weld defects. An implementation of two electromagnetic sensors were designed and tested. A pulsed eddy current system that uses sensors to measure the decay of induced eddy currents to establish the wall thickness has excellent potential. The results of experiments are comparable with magnetic flux leakage detecting 10% metal loss steps following a monotonic increase in signal strength. A rotating permanent remote field eddy current exciter was designed and built to produce strong signal levels at the receiver and reduce power consumption. Midway through the development of each technology, both sensor systems have produced results that warrant further development.

J. Bruce Nestleroth

2004-05-01T23:59:59.000Z

370

Pipeline integrity programs help optimize resources  

SciTech Connect (OSTI)

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

371

Stuck in the Pipeline: A Critical Review of STEM Workforce Literature  

E-Print Network [OSTI]

and science careers: Leaky pipeline or gender filter? GenderL. (2006). Expanding the pipeline: Transforming the cultureThe incredible shrinking pipeline. Inroads: SIGCE Bulletin,

Metcalf, Heather

2010-01-01T23:59:59.000Z

372

GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes  

E-Print Network [OSTI]

PRediction IMprovement Pipeline for Amrita Pati 1 , NataliaGene Prediction IMprovement Pipeline, http://geneprimp.jgi-based post-processing pipeline that identifies erroneously

Pati, Amrita

2012-01-01T23:59:59.000Z

373

Applications of the Pipeline Environment for Visual Informatics and Genomics Computations  

E-Print Network [OSTI]

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

374

Applications of the pipeline environment for visual informatics and genomics computations  

E-Print Network [OSTI]

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

375

Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads  

E-Print Network [OSTI]

transcriptome assembly pipeline from stranded RNA-Seq readsRnnotator assembly pipeline. Figure 2. Read dereplicationan automated software pipeline that generates transcript

Martin, Jeffrey

2011-01-01T23:59:59.000Z

376

E-Print Network 3.0 - argentinian pipeline enlargement Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and that our pipelines will not be damaged. NGT&S would like... of pipelines, pipeline facilities and utilities Any crossing of ... Source: Wynne, Randolph H. -...

377

E-Print Network 3.0 - areas osbra pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Performance through Organized Pipeline... both the pipeline registers and the pipeline stage combinational ... Source: Iowa State University, Department of Electrical...

378

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

379

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Broader source: Energy.gov (indexed) [DOE]

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

380

Final Land Configuration for the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

Closure of the Rocky Flats Environmental Technology Site (RFETS) has been completed. The future land use of the site is designated as a National Wildlife Refuge. A joint effort between Kaiser-Hill, Department of Energy, U.S. Fish and Wildlife Service, Environmental Protection Agency, State of Colorado, and other stakeholders was initiated to provide direction for developing the final land configuration. Through early identification of issues and developing mutually agreeable solutions, the final land configuration of the site was successfully completed. (authors)

Stegen, R. L.; Kapinos, J. M.; Wehner, J. P.; Snyder, B. [Parsons, 1700 Broadway, Suite 900, Denver, Colorado 80290 (United States); Davis, R. W. [Kaiser-Hill Company, LLC, 9193 S. Jamaica, Englewood, Colorado 80112 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Rocky Flats Environmental Technology Site beryllium characterization project  

SciTech Connect (OSTI)

A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

Morrell, D.M. [Kaiser-Hill Co. LLC, Golden, CO (United States); Miller, J.R. [Radian International LLC, Los Alamos, NM (United States); Allen, D.F. [Radian International LLC, Oak Ridge, TN (United States)

1999-06-01T23:59:59.000Z

382

Meteorology program status from Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The meteorology program at Rocky Flats Environmental Technology Site (Site) has experienced significant changes the past 18 months. The purposes of the meteorology program at the Site are to (1) support Emergency Preparedness programs for assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance operations, health and safety related activities, and remediation operations. The meteorology program includes ambient monitoring, weather forecasting, climatological analyses, air dispersion modeling, and Emergency Preparedness organizational support.

Maxwell, D.R.

1996-02-01T23:59:59.000Z

383

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

384

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

385

Preliminary surficial geologic map of the Rocky Flats Plant and vicinity, Jefferson and Boulder Counties, Colorado  

SciTech Connect (OSTI)

This report contains a 1:6000 scale map of the 3-mile by 4-mile rectangular area surrounding the Rocky Flats Plant. The map shows the surface deposits estimated to be at least one meter thick. The accompanying report contains a detailed description of the map units, a discussion of the Rocky Flats alluvium and landslides, and cited references. 37 references.

Shroba, R.R.; Carrara, P.E.

1994-11-01T23:59:59.000Z

386

Independent Oversight Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program  

Broader source: Energy.gov (indexed) [DOE]

Rocky Rocky Flats Environmental Technology Site Transportation Emergency Management Program Independent Oversight Review of the March 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazard Survey and Hazards Assessments .................................... 6 Program Plans and Procedures ..................................................... 7 Emergency Responder Performance and Preparation ............... 9 Offsite Interfaces ........................................................................... 10 Feedback and Continuous Improvement Process

387

Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado  

SciTech Connect (OSTI)

This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

1995-12-13T23:59:59.000Z

388

DOE Certifies Rocky Flats Cleanup "Complete" | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Certifies Rocky Flats Cleanup "Complete" Certifies Rocky Flats Cleanup "Complete" DOE Certifies Rocky Flats Cleanup "Complete" December 8, 2005 - 4:45pm Addthis Golden, CO - Deputy Secretary of Energy Clay Sell announced today that the environmental cleanup of the former Rocky Flats site has been certified complete by the U.S. Department of Energy. Certification marks the final step in the DOE's successful effort to clean up and eventually turn over the former weapons production site for use as a National Wildlife Refuge. "With today's announcement, the cleanup chapter of Rocky Flats' history is closed, while another equally important chapter is just being opened," said Deputy Secretary Sell. "This successful cleanup represents a triumph of determination and spirit of cooperation that stands as an example for

389

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Broader source: Energy.gov (indexed) [DOE]

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

390

Rocky Mountain Power - Self-Direction Credit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Maximum Rebate 80% Credit: $400,000 per calendar year 50% Credit: $50,000 per calendar year Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Customers receive credits equal to 50% or 80% of eligible expenses Provider Rocky Mountain Power Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through this program, customers who pursue self-investments in energy efficiency and related demand-side management projects can receive credits of up to 80% of

391

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project  

Broader source: Energy.gov (indexed) [DOE]

DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute October 23, 2006 - 9:17am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology Site. The award was presented to DOE contractor Kaiser-Hill, LLC during the PMI Global Congress Dinner 2006 on Saturday, October 21st, 2006 in Seattle, Washington. "It is a great honor for the Department of Energy's Rocky Flats safe cleanup and closure effort to be recognized with this prestigious award," James Rispoli, Assistant Secretary of Energy for Environmental

392

Application of composite repair for pipeline anomalies  

SciTech Connect (OSTI)

The cost of maintaining the structural integrity of the 650,000 kilometer high-pressure gas gathering and transmission pipeline network is a significant part of the operating budget of the US pipeline industry. To help in controlling thee costs, the Gas Research institute (GRI) has supported research resulting in the development of Clock Spring{reg_sign}, a low-cost fiberglass composite alternative to conventional steel sleeves for transmission line pipe reinforcement and repair. Investigation and development of engineering guidelines have been completed. Field validation of laboratory research on application of Clock Spring as a repair for corrosion and mechanical damage defects is in progress. This paper presents an overview of composite repair technology for pipeline corrosion and mechanical damage defects. It summarizes the results and conclusions of modeling and experiments on reinforcement and repair of both corrosion and mechanical damage (i.e., dent and gouge) pipeline defects. These investigations provide quantitative results on the operating envelope of composite reinforcements and installation requirements that ensure sound and reliable repair of pipeline defects. The paper further summarizes the work to date on field installation in verification of composite repair performance.

Stephens, D.R. [Battelle, Columbus, OH (United States); Lindholm, U.S. [Southwest Research Inst., San Antonio, TX (United States); Hill, V.L. [Gas Research Inst., Chicago, IL (United States); Block, N. [Clock Spring Co., Houston, TX (United States)

1996-09-01T23:59:59.000Z

393

Diverless pipeline repair clamp: Phase 1  

SciTech Connect (OSTI)

Offshore oil and gas developments are underway for water depths beyond which divers can function. The economic lifelines of these projects are the pipelines which will transport the products to shore. In preparation for the day when one of these pipelines will require repair because of a leak, the Pipeline Research Committee of the American Gas Association is funding research directed at developing diverless pipeline repair capabilities. Several types of damage are possible, ranging from latent weld defects on one end of the spectrum to damage resulting in parting of the pipe at the other end. This study is specifically directed toward laying the groundwork for development of a diverless pipeline repair clamp for use in repair of leaks resulting from minor pipe defects. The incentive for a clamp type repair is costs. When compared to replacing a section of pipe, either by welding or by mechanical means, the clamp type repair requires much less disturbance of the pipe, less time, fewer operations and less equipment. This report summarizes (1) capabilities of remotely operated vehicles (ROV's) and associated systems, (2) highlights areas for further research and development, (3) describes the required capabilities of the diverless repairclamp, (4) investigates some alternatives to the diverless clamp, (5) overviews the state of the art in leak repair clamps, and (6) critiques several possible generic clamp concepts.

Miller, J.E.; Knott, B. (Stress Engineering Services, Inc., Houston, TX (United States))

1991-12-01T23:59:59.000Z

394

E-Print Network 3.0 - automatic pipeline monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lake Erie Crossing Summary: ... 25 7.0 Pipeline monitoring and repair... .8%). Millennium will monitor the pipeline continuously...

395

NewPipeline-Robot-Power-Source.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

396

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

397

Chapter 8 - Risk Analysis for Subsea Pipelines  

Science Journals Connector (OSTI)

Abstract The purpose of this chapter is to apply risk-based inspection planning methodologies to pipeline systems, by developing a set of methods and tools for the estimation of risks using structural reliability approach and incidental databases, and to illustrate our risk based inspection and management approach through three examples, including risk analysis for a subsea gas pipeline, dropped object risk analysis and how to use RBIM to reduce operation costs. After outlining the constituent steps of a complete risk analysis methodology, it gives detailed information about each step of the methodology such that a complete risk analysis can be achieved. To get the final acceptable design/procedure, these steps are needed, including acceptance criteria, identification of initiating events, crude consequence analysis, cause analysis, quantitative cause analysis, consequence analysis and risk estimation. This chapter also gave a detailed guidance on evaluation of failure frequency, consequence, risk and risk-based inspection and integrity management of pipeline systems.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

398

Enhancing pipeline integrity through internal inspection  

SciTech Connect (OSTI)

A pipeline operating company with an 8,000 mile liquid petroleum distribution system reviews the costs and results of the past ten-year, internal inspection program. A comparison of total inspection and repair costs and repair rates are presented for twenty mainline sections. Comparisons are also made for five different internal inspection contractors and for inspection tools of the first and second generation. The effects of cost in comparison to pipeline length, coating condition, and the location of a line in urban or rural environments are analyzed. The effects this program has had on the number of corrosion leaks are also analyzed. Also, a conclusion is made as to the program`s impact on pipeline integrity.

Turner, D.R. [Williams Pipe Line Co., Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

399

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

400

Study of Paraffin Wax Deposition in Seasonally Pigged Pipelines  

Science Journals Connector (OSTI)

Waxy crude oil pipelines are pigged periodically to scrape the adhered wax deposit from the pipe wall and remove it from the pipeline. If wax deposition on the pipe wall is not ... severe and there is not much ch...

Wang Wenda; Huang Qiyu; Huang Jun; Pang Quan…

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

402

Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

403

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

404

Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

405

Marysville, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

406

St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

407

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National...

408

In-service repair of main pipelines by welding  

Science Journals Connector (OSTI)

A new approach to the repair of main pipelines by welding without removing them from service ... failure risk; safety of welding works on pipeline under pressure; use of different variants of repair by welding; s...

V. I. Makhnenko; V. S. But; O. I. Oleinik

2009-09-01T23:59:59.000Z

409

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied repair procedures have been investigated to determine if they can be used for pipeline repair under hydrogen service. The focus was on the pipeline load and the effect...

410

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

411

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Energy Savers [EERE]

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

412

Calais, ME Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Calais, ME Natural Gas Imports by Pipeline from...

413

Massena, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Massena, NY Natural Gas Imports by Pipeline from...

414

Corsby, ND Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

415

Noyes, MN Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Noyes, MN Natural Gas Imports by Pipeline from...

416

Champlain, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Champlain, NY Natural Gas Imports by Pipeline from...

417

Waddington, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Waddington, NY Natural Gas Imports by Pipeline from...

418

Eastport, ID Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Eastport, ID Natural Gas Imports by Pipeline from...

419

Vibration of a Pipeline with Liquid Under Combined Vibration Perturbations  

Science Journals Connector (OSTI)

We study the influence of combined vibration perturbations on the vibration of a pipeline with flowing liquid. The ... nonlinear model of a pipeline whose foundation suffers vibration perturbations in the longitu...

V. O. Limarchenko

2014-09-01T23:59:59.000Z

420

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Some applications of pipelining techniques in parallel scientific computing  

E-Print Network [OSTI]

In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

Deng, Yuanhua

2012-06-07T23:59:59.000Z

422

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network [OSTI]

;Pipeline Repair Protocol 1 Leak detection and compressor shut down 2 Damage location 3 Excavate pipe 4 hyperbaric repair welding 9 Repair coating 10 Recommission pipeline North Atlantic Pipeline Partners, L of Presentation #12;PIPELINE PIPELINE FAILURE, CRACK, BUCKLE ETC. REPAIR OF A DAMAGED SECTION OF PIPELINE AT 250 m

Bruneau, Steve

423

Software design for panoramic astronomical pipeline processing  

E-Print Network [OSTI]

We describe the software requirement and design specifications for all-sky panoramic astronomical pipelines. The described software aims to meet the specific needs of super-wide angle optics, and includes cosmic-ray hit rejection, image compression, star recognition, sky opacity analysis, transient detection and a web server allowing access to real-time and archived data. The presented software is being regularly used for the pipeline processing of 11 all-sky cameras located in some of the world's premier observatories. We encourage all-sky camera operators to use our software and/or our hosting services and become part of the global Night Sky Live network.

Lior Shamir; Robert J. Nemiroff; David O. Torrey; Wellesley E. Pereira

2005-11-23T23:59:59.000Z

424

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

The authors introduces the architecture and programming environment of the heterogeneous element processor (HEP) and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware. 35 references.

Jordan, H.F.

1984-01-01T23:59:59.000Z

425

Pipeline gas pressure reduction with refrigeration generation  

SciTech Connect (OSTI)

The high pressure of pipeline gas is reduced to the low pressure of a distribution system with simultaneous generation of refrigeration by passing the gas through two successive centrifugal compressors driven by two turbo-expanders in which the compressed gas is expanded to successively lower pressures. Refrigeration is recovered from the gas as it leaves each turbo-expander. Methanol is injected into the pipeline gas before it is expanded to prevent ice formation. Aqueous methanol condensate separated from the expanded gas is distilled for the recovery and reuse of methanol.

Markbreiter, S. J.; Schorr, H. P.

1985-06-11T23:59:59.000Z

426

Tests validate pipeline sleeve repair technique  

SciTech Connect (OSTI)

The sleeve-on-sleeve pipeline-repair technique is a viable, acceptable means of repairing sleeves and preventing fluid leakage resulting from fracture of cracked fillet welds at the ends of an existing single-layer sleeve. This technique was conceived by Interprovincial Pipe Line Co. as a means of repair for situations in which one or both of the circumferential fillet welds at the ends of an initial repair sleeve may need to be reinforced. It was necessary to determine whether this technique can be employed without serious impairment of the integrity of the pipelines on which it is to be used.

Kiefner, J.F.; Maxey, W.A. (Battelle Memorial Inst., Columbus, OH (USA))

1989-08-28T23:59:59.000Z

427

Improving the Design Reliability of Petroleum Pipeline Components on Repair  

Science Journals Connector (OSTI)

Developments are considered that may appreciably improve the design reliability in the repair of petroleum pipeline components.

I. N. Karelin

428

Impacts of different diameter combinations on the temperature of a crude oil pipeline when colocating with a products pipeline  

Science Journals Connector (OSTI)

In order to show the effects of different diameter combinations on crude oil temperature when a crude oil pipeline and a products pipeline are laid in one trench, four typical ... temperature difference of the cr...

Bo Yu; Yue Shi; Xin Liu; Jinjun Zhang…

2010-06-01T23:59:59.000Z

429

Method for route selection of transcontinental natural gas pipelines  

E-Print Network [OSTI]

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

Kouroupetroglou, Georgios

430

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water;Objectives · To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels

431

Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox  

E-Print Network [OSTI]

DRAFT Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox Computer Laboratory, University of Cambridge Submitted: 15th December, 1995 Revised: 30th May, 1996 Abstract The rotary pipeline processor is a new architecture for su- perscalar computing. It is based on a simple and regular pipeline

Robinson, Peter

432

INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS  

E-Print Network [OSTI]

BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

433

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network [OSTI]

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

434

Performance of Concurrent Rendezvous Systems with Complex Pipeline Structures  

E-Print Network [OSTI]

Performance of Concurrent Rendezvous Systems with Complex Pipeline Structures Real February 11, 1998 Abstract The term ``complex pipeline'' describes a set of tasks which process incoming data in a sequence, like a pipeline, but have various kinds of parallel execution steps coupled

Woodside, C. Murray

435

Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox  

E-Print Network [OSTI]

DRAFT Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox Computer Laboratory pipeline processor is a new architecture for su- perscalar computing. It is based on a simple and regular pipeline structure which can support several ALUs for effi- cient dispatching of multiple instructions

Moore, Simon

436

Abstract 3967: The Cancer Genome Project high throughput analysis pipeline  

Science Journals Connector (OSTI)

...Genome Project high throughput analysis pipeline Adam P. Butler 1 Jon W. Teague 1 Keiran...somatic changes. We have built an analysis pipeline to track and analyse large numbers of...externally available tools. The analysis pipeline is built around a 2,000 node compute...

Adam P. Butler; Jon W. Teague; Keiran M. Raine; Andrew Menzies; David Jones; John Marshall; Jon Hinton; Serge Dronov; John Gamble; Lucy Stebbings; Alagu Jayakumar; Catherine Leroy; Ultan McDermott; Michael R. Stratton; Peter Campbell; Andy Futreal

2012-06-04T23:59:59.000Z

437

A computational genomics pipeline for prokaryotic sequencing projects  

Science Journals Connector (OSTI)

......used to perform tasks in the pipeline. In the Discussion section...objectives of our work on the pipeline and how these relate to larger...end-polishing, adaptor ligation, nick repair and single-stranded library...passed to the first stage of the pipeline-genome assembly. Table 1......

Andrey O. Kislyuk; Lee S. Katz; Sonia Agrawal; Matthew S. Hagen; Andrew B. Conley; Pushkala Jayaraman; Viswateja Nelakuditi; Jay C. Humphrey; Scott A. Sammons; Dhwani Govil; Raydel D. Mair; Kathleen M. Tatti; Maria L. Tondella; Brian H. Harcourt; Leonard W. Mayer; I. King Jordan

2010-08-01T23:59:59.000Z

438

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters  

E-Print Network [OSTI]

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

439

Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman  

E-Print Network [OSTI]

Capabilities of the VLA pipeline in AIPS Lorâ??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

Sjouwerman, Loránt

440

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell  

E-Print Network [OSTI]

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell Psychology Department Stanford reproduction pipeline, spanning image capture, processing and display, must be designed to account for the properties of the human observer. In designing an image pipeline, three principles of human vision

Wandell, Brian A.

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS  

E-Print Network [OSTI]

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

Sjouwerman, Loránt

442

Software Pipelined Execution of Stream Programs on GPUs  

E-Print Network [OSTI]

Software Pipelined Execution of Stream Programs on GPUs Abhishek Udupa, R. Govindarajan, Matthew J task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUsIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs

Plotkin, Joshua B.

443

INT WFS Pipeline Processing Mike Irwin & Jim Lewis  

E-Print Network [OSTI]

INT WFS Pipeline Processing Mike Irwin & Jim Lewis Institute of Astronomy, Madingley Road pipeline processing developed specifically for the Wide Field Sur­ vey (WFS). The importance of accurate and complete FITS header information is stresed. Data processing products output from the complete pipeline

Irwin, Mike

444

CUNY Pipeline Program for Careers in College Teaching and Research  

E-Print Network [OSTI]

CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity to the CUNY Pipeline Program which is designed to prepare promising undergraduate students for admission;CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity & Diversity

Dennehy, John

445

A Reactive Control Approach for Pipeline Inspection with an AUV  

E-Print Network [OSTI]

A Reactive Control Approach for Pipeline Inspection with an AUV Pedro K. Paim, Bruno Jouvencel and research activities, performing tasks such as survey, inspection of sub-sea pipelines and object recovery of mission. This paper proposes a reactive control approach for pipeline following by a torpedo- like

Paris-Sud XI, Université de

446

Innovative Electromagnetic Sensors for Pipeline Crawlers  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

J. Bruce Nestleroth

2006-05-04T23:59:59.000Z

447

City of Rocky Mount, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mount, North Carolina (Utility Company) Mount, North Carolina (Utility Company) Jump to: navigation, search Name City of Rocky Mount Place North Carolina Utility Id 16226 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting - 1000W MH Lighting Area Lighting - 1000W MV Lighting Area Lighting - 100W MH Lighting Area Lighting - 100W MH (SE) Lighting Area Lighting - 100W SV Lighting Area Lighting - 100W SV (SE) Lighting Area Lighting - 1500W MH Lighting Area Lighting - 150W SV Lighting Area Lighting - 175W MH Lighting

448

Enforcement Letter -Rocky Flats-08/02/2000  

Broader source: Energy.gov (indexed) [DOE]

, 2000 , 2000 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site 10808 Highway 93, Unit B Golden, CO 80403-8200 Subject: Enforcement Letter Dear Mr. Card: This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure to perform required combustible gas surveillances. The failure to fully perform the required surveillances was identified by the contractor during a comprehensive Kaiser-Hill (KHLL) Implementation Validation Review (IVR) team verifying implementation of the Basis of Interim Operation (BIO) for Buildings 776 and

449

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DYNAMOTER DYNAMOTER Sandia National Laboratories FEBRUARY 10, 1998 FC9542 / 96PT11 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-off state.

450

Enforcement Letter - Rocky Flats -07/20/1998  

Broader source: Energy.gov (indexed) [DOE]

, 1998 , 1998 Mr. Robert G. Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site P.O. Box 464 Golden, CO 80402-0464 Subject: Enforcement Letter Noncompliance Reports NTS-RFO--KHLL-SITEWIDE-1997-0006 NTS-RFO--KHLL-371OPS-1997-0002 NTS-RFO--KHLL-SITEWIDE-1997-0010 NTS-RFO--KHLL-SITEWIDE-1998-0001 Dear Mr. Card: This letter refers to the Department of Energy=s (DOE) evaluation of noncompliances reported in four Noncompliance Tracking System (NTS) entries, identified in the subject line above. The four NTS reports were submitted between September 24, 1997, and March 3, 1998. The reports identified potential noncompliances with requirements of 10 CFR 830.120 (Quality Assurance Rule) and 10 CFR 835 (Radiation Protection Rule). The Office of Enforcement and Investigation evaluated these NTS reports based on the

451

Rocky Mountain Sustainable Enterprises LLC | Open Energy Information  

Open Energy Info (EERE)

Enterprises LLC Enterprises LLC Jump to: navigation, search Name Rocky Mountain Sustainable Enterprises LLC Place Boulder, Colorado Zip 80302 Product Colorado-based biofuel producer, liquid waste recycler, and distributed resource consultancy. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

DOE - Office of Legacy Management -- Rocky Flats Petition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petition Petition Rocky Flats Site, Colorado Site-Specific Uranium Standards Petition All documents are Adobe Acrobat files. pdf_icon U.S. Department of Energy's Proponent's Pre-Hearing Statement for Proposed Revisions to Segments 4a, 4b, and 5 of Big Dry Creek (Walnut and Woman Creeks) Regulation #38 (5 CCR 1002-38) Figure 1 Figure 2 Thermal Ionization Mass Spectrometry Uranium Results for November 2008 RFETS Waters Thermal Ionization Mass Spectrometry Uranium Results for September 2008 RFETS Waters Thermal Ionization Mass Spectrometry Uranium Results for October 2007 RFETS Waters Quantitative Evaluation of Mixture Components in RFETS Uranium Isotopic Analyses Proposed Notice Petition for Rulemaking Regarding Site-Specific Uranium Standards Rulemaking Petition Water Monitoring Locations

453

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEAM MOUNTED GAS COMPRESSOR BEAM MOUNTED GAS COMPRESSOR (JACGAS COMPRESSOR) MARCH 3, 1998 FC970004/97PT23 RMOTC Test Report Number 97PT23 Jacgas Compressor Morrison International Iron Horse Compression Ltd. 9852-33 Avenue Edmonton, Alberta T6N 1C6 (403) 462-6847 David H. Doyle, Project Manager Rocky Mountain Oilfield Testing Center March 3, 1998 Introduction Gas compressors that mount on the walking beam of an oil well pumping unit have been tried with mixed success for many years. Gas compression at the wellhead instead of further downstream can 'increase both oil and gas production by reducing the casinghead gas pressure. Excess pressure on the annulus of the well reduces fluid inflow and restricts production. In old, shallow wells, the small amount of pressure (50 psi) may be sufficient to prevent the well from producing economically. Other applications include the unloading of water

454

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHEMICAL & MICROBIAL CHEMICAL & MICROBIAL PARAFFIN CONTROL PROJECT DECEMBER 17, 1997 FC9544 / 96PT12 RMOTC Test Report Paraffin Control Project BDM Oklahoma/NIPER 220 N. Virginia Bartlesville, OK 4003 918-336-2400, FAX 918-337-4365 Leo Giangiacomo, Project Manager Rocky Mountain Oilfield Testing Center December 17. 1997 Abstract This report summarizes the field performance results of a comparison of chemical and microbial paraffin control systems. The two systems were selected from laboratory screening work. Well selection was based on production rates, produced fluids, and prior paraffin treatments. The treatments were performed on similar groups of wells over the same period of time, using quantities and techniques recommended by the supplier specifically for the wells to be treated. The tests were conducted by the U. S. Department of

455

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOW COST REFRACTURING LOW COST REFRACTURING JANUARY 23, 1998 FC9550/96PT14 RMOTC Test Report Number 96PT14 Low Cost Refracturing Rock Creek Enterprises 980 Rock Creek Road Buffalo, Wyoming 82834 (307) 684-5243 (307) 684-0902 (fax) David H. Doyle, Acting Project Manager Rocky Mountain Oilfield Testing Center January 23, 1998 Introduction There are relatively few stimulation options available to owners of marginal or stripper wells. These wells are commonly restricted in their production rates because of formation or wellbore damage near the wellbore. Current services available to remove this damage are compared to the small gains possible from old, marginal wells. Over time, several things can occur that cause the flow of oil into the wellbore to be restricted. First, carbonate or sulfate scale can accumulate around the well or in the perforations. The accumulated scale will block oil from

456

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

06/97DT15 06/97DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno, Acting Project Manager Rocky Mountain Oilfield Testing Center December 17, 1997 Introduction Directional drilling is more expensive than vertical drilling. This is due to the high maintenance cost of downhole motors and MWD systems required to control hole trajectory. In addition, directional holes have lower penetration rates due to the poor hole cleaning with a non-rotating string. Down time is often spent orienting tool face to obtain the desired trajectory after tile weight is placed on the bit and the reactive torque of the motor is absorbed by the drill string. Holes drilled in this manner often have a tortuous profile compared to holes drilled with a rotary system, increasing the torque

457

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPROVED ELASTOMER COMPOUND FOR IMPROVED ELASTOMER COMPOUND FOR PROGRESSIVE CAVITY PUMPS Cameron Elastomer Technology MARCH 23, 1998 FC9563/96PT17 RMOTC Test Report Number 96PT17 Improved Elastomer Compound for Progressive Cavity Pumps Cameron Elastomer Technology 29501 Katy Fwy Katy, Texas 77494-7801 (281) 391-4615 (281) 391-4640 (fax) David H. Doyle, PE, Project Manager Rocky Mountain Oilfield Testing Center March 23, 1998 Introduction The purpose of this project was to evaluate improved progressing cavity (PC) pump stator elastomer materials in NPR-3 crude under field conditions. The goal of the project was to test an elastomer material that can be used in high API-gravity (greater than 38' API) crude oils. Currently available materials used for the construction of pump stators swell and fail in contact with such crude oils. This limits the applicability of progressing cavity

458

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DYNAMOMETER DYNAMOMETER Sandia National Laboratories FEBRUARY 10, 1998 FC9514 / 95PT6 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-

459

Symposium on the Nature of Science—Rocky Kolb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FIRST SECOND IN THE LIFE OF THE UNIVERSE FIRST SECOND IN THE LIFE OF THE UNIVERSE Rocky Kolb Watch the talk (Running time 51:09) Video in Frame Detached Video Some users have reported problems with the "Video in Frame" option. If you have problems, please try the "Detached Video" option. Requires RealPlayer 7.0 or higher. Get RealPlayer Thirteen billion years ago our universe started with a bang. Today we are gathering the fossil evidence of the very earliest moments of the universe. Our picture of the very beginning of the universe is still incomplete, with outstanding questions like: What powered the big bang? What is the dark matter that binds together the universe? What is the dark energy that thrusts apart the universe? Are there hidden spacetime dimensions? What was before the big bang?

460

Sitewide risk perspectives for the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recently finalized a closure plan (originally called the Ten Year Plan) for closure and environmental cleanup of previous nuclear weapons facilities. The DOE Rocky Flats Field Office has established priorities for risk reduction work to Support closure activities, as well as addressing those hazards associated with storage and management of radioactive materials and hazardous chemicals. To provide information for future National Environmental Policy Act (NEPA) or other regulatory assessments of specific risk reduction projects identified in the Closure Plan, a risk assessment of normal operations and potential accidents was recently prepared to provide an updated baseline of the cumulative impacts to the worker, public and environment due to the Site`s operations, activities, and environmental conditions in light of the Site`s change in mission, and of future closure projects. This paper summarizes the risk assessment approach, results, and conclusions.

Olinger, S.J. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Foppe, T.L. [M.H. Chew and Associates, Inc., Golden, CO (United States)

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Analysis of offsite Emergency Planning Zones for Rocky Flats Plant  

SciTech Connect (OSTI)

The purpose of this quality assurance program was to ensure the quality and technical adequacy of Phase 2 of the Analysis of Offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant project. Quality assurance was accomplished by managing and controlling the processes in the development of the product. The quality assurance task team conducted audits, reviews, and surveillances of project and related activities. This process contributed to identifying areas where the quality assurance plan was not fully implemented, areas needing improvement, and/or corrective actions resulting in a improved product. During the reviews and audits, several key areas were identified where quality assurance plan implementation needed to be improved. These areas included maintaining adequate documentation, reviewing technical results, making inputs traceable to technical results, and understanding that all personnel are responsible for quality.

Inger, J.R. (TENERA, L.P., Knoxville, TN (United States)); Brown-Strattan, M.A. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant)

1991-01-01T23:59:59.000Z

462

Criticality safety management during the new mission at Rocky Flats  

SciTech Connect (OSTI)

Under the cleanup and waste management missions at the former United States Department of Energy (DOE) production sites, a redirection of nuclear criticality safety programs has to take place to accommodate new objectives and reduced resources. The Rocky Flats Environmental Technology Site (RFETS) provides innovative approaches to respond to the needs of its new mission. The paper provides some background on the changes in the DOE complex and expands on the steps undertaken at RFETS with the hope that some of the novel approaches could be of use at other facilities. With the demise of the Cold War, the United States Department of Energy weapons complex has transitioned from the production of nuclear material to the disposition of weapons and cleanup of former production sites. Fissionable material in stored waste, contaminated facilities and equipment, and left over inventories presents nuclear criticality safety challenges that requires careful management.

Toffer, H.; Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

463

TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)  

E-Print Network [OSTI]

1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

Buckler, Edward S.

464

EMAT based inspection of natural gas pipelines for SSC cracks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMAT-Based Inspection of Natural Gas EMAT-Based Inspection of Natural Gas Pipelines for Stress Corrosion Cracks FY2004 Report Venugopal K. Varma, Raymond W. Tucker, Jr., and Austin P. Albright Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 1 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

465

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

466

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

467

Deepwater pipeline repair technology: A general overview  

SciTech Connect (OSTI)

During the life of oil and gas transportation sea lines, periodic inspection, maintenance and repair in case of major damage are the most important tasks to be considered especially in deepwater installations. In particular the capabilities to perform quick and cost effective repairs have been of strategic importance in the eighties for SNAM during the development of the S.A.S. (Submersible Automatic System) a diverless and guidelineless repair system for the 20 inch Transmediterranean sealines. The trials on this prototype were successfully completed in early summer 1992, simulating a complete repair procedure at 610 in water depth. Based on the technology the authors have acquired during the implementation of the system, an upgrading phase aimed at improving the capability to mate the new 26 inch lines is being developed. Considering that at the moment only a few pipeline transportation systems are laid in deep water, but some new installations are foreseen in the near future, technological developments would be necessary in view of different scenarios other than the Mediterranean area. This paper will be focused on an overview of the existing repair technologies and will discuss the possible future pipelines operating scenarios and the envisaged new developments of repair technology. Possible way of approaching and solving in a cost-effective way the needs of Pipeline Operators to have repair systems available will be discussed for the different pipeline scenarios.

Magnelli, G.; Radicioni, A. [Snamprogetti S.p.A., Fano (Italy). Offshore Division

1994-12-31T23:59:59.000Z

468

New system pinpoints leaks in ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

1995-04-01T23:59:59.000Z

469

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

470

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

471

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

472

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

473

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

474

PRS -- A priority ranking system for managing pipeline integrity  

SciTech Connect (OSTI)

Pipeline operating companies have a huge investment in pipelines that vary in age from recent construction to more than 50 years old. Aging pipelines contain a variety of operational integrity concerns that most often begin to show up as leaks, but sometimes result in ruptures if not detected soon enough. Fluor Daniel Williams Brothers (FDWB) has developed a management tool that helps pipeline operating companies address this concern and take a proactive approach to pipeline integrity management. Using this methodology, a Priority Ranking System (PRS) is developed which allows early detection and resolution of pipeline integrity concerns. When fully developed, it includes a spreadsheet of annual budgets related to pipeline integrity work and a complete historical record of inspection and rehabilitation results.

Hodgdon, A.M. [Fluor Daniel Williams Brothers, Houston, TX (United States); Wernicke, T. [Texas Utilities Fuel Co., Dallas, TX (United States)

1997-05-01T23:59:59.000Z

475

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is in the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In this third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted.

J. Bruce Nestleroth; Richard J. Davis

2005-05-23T23:59:59.000Z

476

VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. VWZ-0008 - In the Matter of EG&G Rocky Flats, Inc. This decision will consider a Motion for Partial Dismissal and Limitation on Scope of Complainant's Claims filed by EG&G Rocky Flats, Inc. (EG&G) on June 13, 1997. In its motion, EG&G seeks partial dismissal of the underlying complaint and hearing request filed by Arthur Murfin (Murfin) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Murfin's request for a hearing under 10 C.F.R. § 708.9 was filed on January 27, 1997, and it has been assigned Office of Hearings and Appeals (OHA) Case No. VWA-0016. vwz0008.pdf More Documents & Publications LWA-0010 - In the Matter of Howard W. Spaletta

477

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Facility Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

478

Acid precipitation and surface-water vulnerability on the western slope of the high colorado rockies  

Science Journals Connector (OSTI)

Precipitation and surface waters in a high-elevation watershed on the western slope of the Colorado Rockies were studied over a three-year...?1 in the former and 100 to 900 ?eq L?1 in the latter.

John Harts; Greg P. Lockett; Richard A. Schneider…

1985-07-01T23:59:59.000Z

479

Visitor impact on rocky shore communities of Qeshm Island, the Persian Gulf, Iran  

Science Journals Connector (OSTI)

The influence of visitors on macroinvertebrates of rocky intertidal shores was investigated in southern coasts of the Qeshm Island, the Persian Gulf, Iran. Qeshm Island located at the...2, is the largest island i...

Fatemeh Aghajan Pour; Mohammad Reza Shokri…

2013-02-01T23:59:59.000Z

480

Preliminary Notice of Violation, Rocky Flats Environmental Technology Site- EA-96-05  

Broader source: Energy.gov [DOE]

Preliminary Notice of Violation issued to Safe Sites of Colorado related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-05)

Note: This page contains sample records for the topic "rockies express pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park  

E-Print Network [OSTI]

Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

Frank, Jerritt

2008-09-05T23:59:59.000Z

482

A Stochastic Advection-Diffusion Model for the Rocky Flats Soil Plutonium Data  

Science Journals Connector (OSTI)

An advection-diffusion equation with time and space dependent random coefficients is derived as a model for the plutonium concentration changes in the surface soil around the Rocky Flats Plant northwest of Denver...

Jaroslav Mohapl

2000-03-01T23:59:59.000Z

483

Comparison and evaluation of turbulence estimation schemes at Rocky Flats Plant  

SciTech Connect (OSTI)

The Rocky Flats Plant (RFP) routinely measures meteorological data to support Air Quality and Emergency Response activities. These data help to characterize the transport and dispersion of actual or potential airborne releases of radionuclides or other hazardous materials.

Bowen, B.M.; Pamp, S.E.

1993-10-01T23:59:59.000Z

484

Physicochemical Speciation of Americium in Soils from Rocky Flats, Colorado, USA  

Science Journals Connector (OSTI)

The objective of the research was to characterize the 241Am distribution in six operationally defined chemical and mineralogical phases of soil samples taken from the Rocky Flats Environmental Technology Site (RF...

S. A. Ibrahim; W. R. Salazar

2000-02-01T23:59:59.000Z

485

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Residues Treatment, Repackaging and Storage at the 0: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening of a suitable repository to which they would be shipped for disposal from the U.S. Department of Energy Rocky Flats Environmental Technology Site in Golden, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1996 EA-1120: Finding of No Significant Impact Solid Residues Treatment, Repackaging and Storage at the Rocky Flats

486

Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste  

SciTech Connect (OSTI)

This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

NONE

1995-07-01T23:59:59.000Z

487

Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning  

SciTech Connect (OSTI)

The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

Jones, M.E. [EG& G Rocky Flats, Inc., Englewood, CO (United States); Shain, D.I. [EG& G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

488

Analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant  

SciTech Connect (OSTI)

This project plan for Phase II summarizes the design of a project to complete analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant. Federal, state, and local governments develop emergency plans for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of these plans is to identify EPZs where actions might be necessary to protect public health. Public protective actions include sheltering, evacuation, and relocation. Agencies use EPZs to develop response plans and to determine needed resources. The State of Colorado, with support from the US Department of Energy (DOE) and Rocky Flats contractors, has developed emergency plans and EPZs for the Rocky Flats Plant periodically beginning in 1980. In Phase II, Interim Emergency Planning Zones Analysis, Maximum Credible Accident'' we will utilize the current Rocky Flats maximum credible accident (MCA), existing dispersion methodologies, and upgraded dosimetry methodologies to update the radiological EPZs. Additionally, we will develop recommendations for EPZs for nonradiological hazardous materials releases and evaluate potential surface water releases from the facility. This project will allow EG G Rocky Flats to meet current commitments to the state of Colorado and make steady, tangible improvements in our understanding of risk to offsite populations during potential emergencies at the Rocky Flats Plant. 8 refs., 5 figs., 4 tabs.

Hodgin, C.R.; Armstrong, C.; Daugherty, N.M.; Foppe, T.L.; Petrocchi, A.J.; Southward, B.

1990-05-01T23:59:59.000Z

489

Pipeline safety joint eliminates need for divers  

SciTech Connect (OSTI)

The Sea-Hook coupling is a diverless pressure-compensated pipeline safety joint designed to protect the pipe from damage by excessive physical loads. The coupling provides a predetermined weak point in the line that will cause a controlled separation when the line is exposed to strong wave action or dragging anchors. Moreover, it offers prepressurized remote lockout protection, metal seal integrity, no hand-up separation, enclosed bolting, optimal manual lockout, and no springs or shear rings.

Not Available

1983-04-01T23:59:59.000Z

490

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN-SITU H IN-SITU H 2 S BIOREMEDIATION JULY 11, 1994 FC9509 / 95PT3 Rocky Mountain Oilfield Testing Center 907 North Poplar, Suite 100, Casper, WY 82601 (307) 261-5000, ext. 5060; FAX (307) 261-5997 IN-SITU H2S BIOREMEDIATION NATIONAL PARAKLEEN COMPANY PREPARED BY Fred Brown Michael R. Tyler 731 W.Wadley Field Engineer Building O July 11, 1994 Suite 130 Midland, Texas 79705 Phone (915)-683-3076 Fax (915)-683-3081 TEST PURPOSE: To treat producing oil wells that contain high concentrations of H2S with a product that will lower the levels of H2S in the well. METHOD OF TREATMENT: A bio-nutrient product (55 gallons) was mixed with 120 bbls of produced tensleep water and the mixture was pumped down the annulus of selected wells. The well was then shut-in for a 24 hour period and then was returned to production.

491

Paleozoic paleotectonics and sedimentation in southern Rocky Mountain region  

SciTech Connect (OSTI)

During the Paleozoic, the southern Rocky Mountain region included most of New Mexico and Arizona and at least the northern parts of adjacent Chihuahua and Sonora. It was particularly stable part of the North American craton during the Cambrian through Middle Devonian. Slow deposition of shelf clastics and dolomitic carbonates was interrupted by several long erosional hiatuses. Major recognizable tectonism first appeared in the Devonian with at least one depositional basin formed west of the Defiance-Zuni uplift. Thin Early Mississippian shelf carbonates and evaporites covered nearly the entire region. The most significant tectonic activities started in the late Chesterian and extended with increasing magnitude until the end of Wolfcampian time. Local basins and uplifts date from this interval and occurred in two belts. One belt was about 80 mi (130 km) wide along the western sides of the Hueco and Pedernal uplifts and along both sides of the Uncompahgre uplift. Another belt extended northwest from the Pedresoga basin into southeastern Arizona. Major tectonic events initiated the Morrowan, Atokan, and Missourian Epochs and occurred twice within the Wolfcampian Epoch. Leonardian, Guadalupian, and Ochoan Epochs were times of tectonic stability. During the Leonardian, sediments from the Uncompahgre uplift gradually covered all the other uplifts. The timing of these paleozoic tectonic events suggests a cause-effect relationship with plate-tectonic histories that brought North American and northern Europe together in the Late Devonian (Acadian orogeny) and Euramerica and northwestern Gondwana together in the Late Mississippian through Early Permian (Appalachian orogeny).

Ross, C.A.; Ross, J.R.P.

1985-05-01T23:59:59.000Z

492

Environmental Survey preliminary report, Rocky Flats Plant, Golden, Colorado  

SciTech Connect (OSTI)

This report presents the preliminary findings of the Environmental Survey of the United States Department of Energy (DOE), Rocky Flats Plant (RFP), conducted August 11 through 22, 1986. The Survey is being conducted by an multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the RFP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data observations of the operations carried on at RFP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activates. The Sampling and Analysis Plan is being executed by DOE's Oak Ridge National Laboratory. When completed, the results will be incorporated into the RFP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the RFP Survey. 75 refs., 24 figs., 33 tabs.

Not Available

1987-06-01T23:59:59.000Z

493

Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)  

SciTech Connect (OSTI)

The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

1999-03-01T23:59:59.000Z

494

DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS  

SciTech Connect (OSTI)

The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

2003-02-27T23:59:59.000Z

495

Risk-Quantified Decision-Making at Rocky Flats  

SciTech Connect (OSTI)

Surface soils in the 903 Pad Lip Area of the Rocky Flats Environmental Technology Site (RFETS) were contaminated with {sup 239/240}Pu by site operations. To meet remediation goals, accurate definition of areas where {sup 239/240}Pu activity exceeded the threshold level of 50 pCi/g and those below 50- pCi/g needed definition. In addition, the confidence for remedial decisions needed to be quantified and displayed visually. Remedial objectives needed to achieve a 90 percent certainty that unremediated soils had less than a 10 percent chance of {sup 239/240}Pu activity exceeding 50-pCi/g. Removing areas where the chance of exceedance is greater than 10 percent creates a 90 percent confidence in the remedial effort results. To achieve the stipulated goals, the geostatistical approach of probability kriging (Myers 1997) was implemented. Lessons learnt: Geostatistical techniques provided a risk-quantified approach to remedial decision-making and provided visualizations of the excavation area. Error analysis demonstrated compliance and confirmed that more than sufficient soils were removed. Error analysis also illustrated that any soils above the threshold that were not removed would be of nominal activity. These quantitative approaches were useful from a regulatory, engineering, and stakeholder satisfaction perspective.

Myers, Jeffrey C. [Washington Safety Management Solutions, Aiken, South Carolina (United States)

2008-01-15T23:59:59.000Z

496

Seismic equipment qualification at Rocky Flats Plant: Lessons learned  

SciTech Connect (OSTI)

Seismic equipment qualification is being evaluated as a part of the Systematic Evaluation Program (SEP) at Rocky Flats Plant (RFP). Initially it was believed that the experience database developed by the Seismic Qualification Utility Group (SQUG) for commercial nuclear power plants, as outlined in their Generic Implementation Procedure (GIP), would provide a substantial benefit for the seismic adequacy verification of equipment at RFP. However, further review of the simplified guidelines contained in the GIP with respect to the specific RFP structures and components revealed substantial differences from the GIP criteria. Therefore, the number of ``outliers`` from the experience database defined in the GIP is greater than was initially anticipated. This paper presents details of the differences found between the RFP structures and components and those represented in the GIP, and the challenges presented for their evaluation at RFP. Approaches necessary to develop seismic verification data are also discussed. The discussions focus on experience with one of the nuclear facilities at RFP, Building 707. However, the conclusions are generally applicable to other similar facilities that typically comprise the RFP nuclear facilities.

Peregoy, W.; Herring, K.

1993-08-01T23:59:59.000Z

497

Drag reduction in coal log pipelines  

SciTech Connect (OSTI)

It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

Marrero, T.R.; Liu, H. [Univ. of Missouri, Columbia, MO (United States). Capsule Pipeline Research Center

1996-12-31T23:59:59.000Z

498

A NegativeOverhead, SelfTimed Pipeline Brian D. Winters and Mark R. Greenstreet  

E-Print Network [OSTI]

A Negative­Overhead, Self­Timed Pipeline Brian D. Winters and Mark R. Greenstreet Department a novel variation of wave pipelining that we call ``surfing.'' In previous wave pipelined designs, timing variation of wave pipelin­ ing called ``surfing.'' In surfing pipelines, a timing pulse is propagated along

Greenstreet, Mark

499

International Journal of Parallel Programming submission February 3, 1997 Analyzing Asynchronous Pipeline Schedules  

E-Print Network [OSTI]

Pipeline Schedules Val Donaldson and Jeanne Ferrante Computer Science and Engineering Department University pipelining is a form of parallelism which may be used in distributed memory systems. An asynchronous pipeline of a pipeline schedule is needed to determine if pipelining is appropriate for a loop, and to compare

Ferrante, Jeanne

500

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure  

E-Print Network [OSTI]

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure (The SIRTF "Pipeline Picker") F and request (AOR, IER or SER) is assigned a pipeline thread to initiate processing. It was developed by J, the "pipeline picker" routine is triggered to uniquely determine an appropriate pipeline script-ID (pl

Masci, Frank